
Theoretical Computer Science 232 (2000) 187–229
www.elsevier.com/locate/tcs

The calculus of constructions as a framework
for proof search with set variable instantiation

Amy Felty
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA

Abstract

We show how a procedure developed by Bledsoe for automatically �nding substitution in-
stances for set variables in higher-order logic can be adapted to provide increased automation
in proof search in the Calculus of Constructions (CC). Bledsoe’s procedure operates on an ex-
tension of �rst-order logic that allows existential quanti�cation over set variables. This class of
variables can also be identi�ed in CC. The existence of a correspondence between higher-order
logic and higher-order type theories such as CC is well-known. CC can be viewed as an ex-
tension of higher-order logic where the basic terms of the language, the simply-typed �-terms,
are replaced with terms containing dependent types. We show how Bledsoe’s techniques can be
incorporated into a reformulation of a search procedure for CC given by Dowek and extended to
handle terms with dependent types. We introduce a notion of search context for CC which al-
lows us to separate the operations of assumption introduction and backchaining. Search contexts
allow a smooth integration of the step which �nds solutions to set variables. We discuss how the
procedure can be restricted to obtain procedures for set variable instantiation in sublanguages of
CC such as the Logical Framework (LF) and higher-order hereditary Harrop formulas (hohh).
The latter serves as the logical foundation of the �Prolog logic programming language. c© 2000
Elsevier Science B.V. All rights reserved.

Keywords: Proof search; Higher order logic; Type theory; Set theory; Calculus of constructions

1. Introduction

Both higher-order logic and higher-order type theories serve as the logical foundation
of a variety of interactive tactic-style theorem provers. For example, both HOL [15] and
Isabelle [23] implement higher-order logic, while Coq [8] implements the Calculus of
Constructions (CC) type theory [7] and Nuprl [6] implements Martin-L�of type theory
[20]. Much work has been carried out in both kinds of systems on building tactics
and automating proof search. However, little work has been done on providing the
means for exploiting proof search methods designed for one kind of system within the

E-mail address: felty@research.bell-labs.com (A. Felty)

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00175 -9

188 A. Felty / Theoretical Computer Science 232 (2000) 187–229

other. In this paper, we show how a particular proof search procedure designed for
higher-order logic can be used to help automate the search for proofs in CC.
In some cases, such as the second-order polymorphic �-calculus and second-order

propositional logic, the correspondence between higher-order logic and higher-order
type theories is exact and known as the Curry–Howard isomorphism [17]. Although it
is less direct for CC, one way to view the correspondence was shown in Felty [12].
Intuitively, a functional type P→Q corresponds to an implication, while a dependent
type ∀x :P:Q corresponds to universal quanti�cation. An important di�erence is that
while in CC the type P can be an arbitrary CC type, in higher-order logic (e.g.,
Church’s simple theory of types [5]) P must be a simple type. Although CC types
include the types of the simply-typed �-calculus, they also include much more.
Formally establishing such correspondences provides a framework in which to study

how theorem proving techniques designed for one kind of system can be applied to
proof search in the other. In this paper we adapt techniques described in Bledsoe [3]
for the automatic discovery of substitutions for set variables to a modi�ed version of
the search procedure for CC given by Dowek in [9, 10]. (Below, we refer exclusively
to [10] except for the case where we use an auxiliary result that occurs only in [9].)
Dowek’s procedure actually operates on all type systems in Barendregt’s cube [2]. We
use only the restriction to CC. In our formulation, we both adapt these techniques to
the type theoretic setting as well as extend them to handle the extra expressivity of
dependent types. To incorporate dependent types, we consider not only single element
membership such as t ∈A, but also sets of tuples 〈t1; : : : ; tn〉 ∈A where for 16i¡j6n,
the type of tj may depend on the type of ti.
In [3], the procedure for �nding substitution instances is implemented within an

automatic theorem prover for natural deduction in �rst-order logic, thus extending
it to handle existential quanti�cation over a restricted set of second-order variables.
The procedure has been successfully applied to obtain results in intermediate analysis,
topology, logic, and program veri�cation. To prove a theorem with set variables, the
theorem prover makes two passes. The �rst �nds maximal solutions for these variables.
Once instantiated with the solutions, the formula becomes �rst-order, and the built-in
strategy for proving �rst-order formulas is used. If the formula is provable, maximal
solutions for set variables will lead to a proof. However, maximal solutions may be
given during the �rst pass even though the formula is not provable. Thus the second
pass is required. We take an example from Bledsoe [3] to illustrate maximal solutions.
Consider the theorem

P(a)⊃∃A(∀x(x∈A⊃P(x)) ∧ ∃y(y∈A)):
A maximal solution for A is a term B that when substituted for A results in a provable
formula, and such that for any other solution C, whenever B⊆C it must be the case that
C is the same as B. In this example, if we consider the two conjuncts separately, the set
{x |P(x)} is a maximal solution for A in the �rst, and the universal set is a solution for
the second. Their intersection, {x |P(x)}, is a maximal solution for A in the formula
as a whole. Note that there are often non-maximal solutions that result in provable

A. Felty / Theoretical Computer Science 232 (2000) 187–229 189

formulas. In this case, for example, ∅ is a solution to the �rst conjunct. However, it
is not a solution to the whole formula. Maximal solutions are more generally useful
because solutions to subformulas are easily combined to obtain solutions to the whole
formula.
Dowek’s procedure for automatic proof search in CC is a complete procedure. It

begins with the type representing the formula to be proved and attempts to �nd a term
of that type representing a proof. However, although the procedure is complete, it is
not e�cient in practice because of the complexity of CC. In particular, the number
of search paths quickly becomes prohibitive for most theorems. In the presence of
assumptions with polymorphic types, for example, there may be in�nite branching at
many points during search. The main cause of such in�nite branching is the need to
enumerate types. There are many ways to direct the search by tuning it to a particular
class of theorems. Our work can be viewed as the tuning of Dowek’s procedure to �nd
proofs more directly for theorems in the class considered by Bledsoe, i.e., theorems in
an extension of �rst-order logic with existential quanti�cation over a certain class of
higher-order variables.
This work has two parts. The �rst part is the introduction of the notion of search

context for CC. In [10], the operations of assumption introduction and backchaining
are combined; search contexts allow us to separate them. This separation was inspired
by our implementation in �Prolog (see below). By making this separation, we are
able to present the procedure in more �ne-grain steps. We believe this re�nement
enhances understanding as well as allows a smoother integration of the step which �nds
maximal solutions to set variables. The integration of this step is the second part of
the work. The result is a procedure which incorporates Bledsoe’s method into Dowek’s
algorithm.
We present two procedures. The �rst, called SetVar, is not complete for CC, but is

complete for the class considered by Bledsoe as well as for proof search in interesting
sublanguages of CC such as higher-order hereditary Harrop formulas (hohh) [21] and
the Logical Framework (LF) [16]. In LF, proof search covers the search for a term
of a particular type, but not for a type of a particular kind. We present the SetVar
procedure as a set of three search operations, one whose sole purpose is to instantiate
set variables. If we leave out this operation, the SetVar procedure restricted to the other
two search operations is a complete search procedure for both hohh and LF. However,
simply adding in this operation does not present an interesting search procedure for
either language. In the case of LF, there are no set variables because quanti�cation
over predicates is not allowed, so the extra search operation does not add anything.
In the case of hohh, quanti�cation over predicates that correspond to set variables is
severely restricted, so the extra search operation adds little. We will discuss how, in
both cases, the languages can be directly extended to allow set variables in a manner
that is analogous to the way that �rst-order logic is extended in Bledsoe’s system.
Furthermore, set variables with dependent types are easily incorporated into LF.
The second procedure, SetVar+, extends SetVar to a complete procedure for CC by

adding a few more search operations. As a whole, it can be viewed as a reformulation of

190 A. Felty / Theoretical Computer Science 232 (2000) 187–229

Dowek’s procedure with the addition of an operation specialized for �nding maximal
solutions to set variables. The class of variables corresponding to set variables are
already contained within CC, and so no extension of the language needs to be made
to incorporate them. However, adding the operation which instantiates them provides
a procedure which expands branches of the search that lead to maximal solutions
more directly. On the other hand, removing this specialized operation does not a�ect
completeness.
This paper extends Felty [14] in several ways. First, we separate the procedures

SetVar and SetVar+. SetVar should be more useful in practice because it eliminates
the non-determinism that corresponds to enumerating types, while still handling most
examples and remaining complete for various sublanguages of CC extended with set
variables. Second, the introduction of search contexts is new. Third, we include proofs
of soundness of SetVar and soundness and completeness of SetVar+. We prove com-
pleteness by showing that every operation in Dowek’s procedure has a corresponding
set of operations in SetVar+. We could prove soundness by proving the converse, i.e.,
that every execution of SetVar+ can be divided into sequences of operations such that
each sequence corresponds to an operation in Dowek’s procedure. Instead, we prove it
directly to illustrate how it can be proved using search contexts. The proof follows the
basic outline of Dowek’s proof and in addition veri�es that the additional operation
for �nding maximal solutions preserves soundness.
We have implemented a prototype of the SetVar procedure in �Prolog [21]. We

use a goal-directed tactic style framework where each of the search operations of the
procedure is implemented as a tactic [13]. The SetVar procedure as described here
does not resolve all non-determinism in search. In the prototype, the non-determinism
is resolved by having the user specify which operation to apply at each step. Using
this prototype, we have proved the examples in this paper as well as some of the
examples classi�ed as “major examples” in Bledsoe [3]. Although we have not yet
done so, the set of tactics we have implemented can be combined to obtain a procedure
that corresponds fairly directly to a one-pass version of Bledsoe’s procedure. Such a
procedure would be able to prove most of the examples in [3] fully automatically. This
procedure could also be incorporated into Coq as a tactic, and used to automatically
generate substitution instances when applied to goals of the appropriate form.
In the next section, we present CC and an extension of it due to Dowek [10] which

is used as the foundation for the search procedures. We also show how to map set
theory into CC. We use the usual notion that a set is a predicate over elements of
a particular type, or over other sets. In addition, we de�ne maximal solutions in our
setting, which directly extend those in Bledsoe [3]. In Section 3, we present search
contexts and use them in presenting the SetVar search procedure. We also show that
it is sound. In addition, we prove theorems that justify the maximal solutions used in
the search procedure. These theorems are extensions of the theorems in Bledsoe [3].
In Section 4, we present the SetVar+ procedure and prove its correctness. Finally, we
conclude in Section 5.

A. Felty / Theoretical Computer Science 232 (2000) 187–229 191

2. The calculus of constructions and set variables

The syntax of terms of the calculus of constructions (CC) is given by the following
grammar:

Type |Prop | x |PQ | �x :P:Q | ∀x :P:Q

Here Type and Prop are constants called sorts, x ranges over variables, and P and
Q range over terms. We also use other upper-case letters to denote terms, and both
upper- and lower-case letters to denote variables. We assume a denumerable set of
CC variables. The variable x is bound in the expressions �x :P:Q and ∀x :P:Q. The
former binding operator corresponds to the usual notion of �-abstraction, while the latter
corresponds to abstraction in dependent types. We write P→Q for ∀x :P:Q when x
does not occur in Q. In both kinds of bindings, we sometimes leave o� the type P
of x when it can be easily inferred. A context is an ordered list of pairs of the form
x :P, called a declaration, where x is a variable and P a term. We use �; �, and �
to denote contexts.
The rules of CC are given in Fig. 1. In these rules, s; s1, and s2 are either Type

or Prop. In (INTRO), (PROD), and (ABS), we assume that the variable x does not already
occur as the left hand side of a declaration in �. A tree built using the rules of Fig. 1
is called a proof. We say that � is a valid context if there is a proof such that (` �
context) occurs at the root. We say that � ` P :Q holds or is derivable in CC if
� is a valid context and this judgment occurs at the root of a proof. In this case, we
also say that P has type Q or is of type Q in �, that Q is the type of P in �, and
that P is well-typed in �. When Q is a sort, we say that P is a type in �. In addition,
sometimes we simply write � ` P :Q to indicate that this judgment is derivable. It
will be clear from context when this is the case.
Terms that di�er only in the names of bound variables are identi�ed. If x is a vari-

able and P is a term, then [P=x] denotes the operation of substituting P for all free
occurrences of x, systematically changing bound variables in order to avoid variable
capture. The expression [P1=x1; : : : ; Pn=xn] denotes the simultaneous substitution of the
terms P1; : : : ; Pn for distinct variables x1; : : : ; xn, respectively. The relation of convert-
ibility up to �; �; and � is written as =��. Given valid context �, all terms that are
well-typed in � have a unique ��-normal form and a unique ��-long form (which we
call the normal form in �), as well as a unique type modulo ��-equivalence. We will
often say “if term P has the form Q” to mean that P is ��-convertible to a term of
the form Q.
Several other properties of CC are used later. For example, if (`�; x :P

context) is derivable, we know that � ` P : s is derivable for some sort s. If � `
�x :R:P : ∀x :R:Q is derivable, we know that �; x :R ` P :Q is derivable. Also if �; �
and �; �′ are valid contexts, then the context �; �; �′ is also valid as long as the
variables on the left in declarations in � and �′ are distinct. This property is called
thinning. Finally, we note that for terms P; Q; R, if P =�� Q, then [R=x]P =�� [R=x]Q.

192 A. Felty / Theoretical Computer Science 232 (2000) 187–229

` 〈〉 context (EMPTY-CTX)
` � context � ` P : s

` �; x :P context
(INTRO)

` � context

� ` Prop :Type (PROP-TYPE)
x :P ∈� ` � context

� ` x :P (INIT)

� ` P : s1 �; x :P ` Q : s2
� ` ∀x :P:Q : s2 (PROD)

� ` ∀x :R:Q : s �; x :R ` P :Q
� ` �x :R:P : ∀x :R:Q (ABS)

� ` P1 : ∀x :Q1:Q2 � ` P2 :Q1
� ` P1P2 : [P2=x]Q2 (APP)

� ` Q : s � ` Q′ : s � ` P :Q Q =�� Q′

� ` P :Q′ (CONV)

Fig. 1. CC typing rules.

As in [10], the description of the search procedure and the proof of its correct-
ness relies on extending CC to allows existential quanti�cation of the form ∃x :P and
equations between terms, written P=Q, to appear in contexts. We call the new infer-
ence system CC+. Given a context �, a variable x is universal (existential) in � if
there is a P such that x :P ∈� (∃x :P ∈�). The declaration x :P ∈� is also called a
universal declaration and ∃x :P ∈� is called an existential declaration. The equation
P=Q is called a constraint. A context element is either a declaration or constraint,
sometimes denoted e. A term P is closed in � if every variable x occurring free in P
is universal in �, and the type of x is closed in �. The CC+ typing rules include all
those for CC plus the additional rules in Fig. 2. In addition, =�� in (CONV) in Fig. 1 is
replaced by =��� which denotes equality modulo ��-conversion plus the constraints in
�. A subcontext of a context � is any context obtained by removing some elements
of �. Given terms P and Q and context �, P is said to be of type Q in � without
using the constraints if there is a subcontext � containing no constraints such that
� ` P :Q. All terms that are well-typed in a context without using the constraints have
a unique normal form [10]. The normal form of a context is obtained by replacing all
types of variables and all members of constraints that are well-typed without using the
constraints by their normal forms.
We say that a term P is atomic in context � (in CC or CC+) if there is a Q such

that � ` P :Q is derivable and there is a variable x and terms M1; : : : ; Mn; n¿0 such
that P =�� xM1 : : : Mn. If x is universal in �, we say that P is rigid. Otherwise, x is
existential in � and we say that P is
exible. We say that K is a base type in � if K
is a type in � and K is atomic in �.
Generally, proof search in CC+ starts with a context of the form �; ∃x :P where � is

a context of universal declarations, P is a property to be proved from the declarations

A. Felty / Theoretical Computer Science 232 (2000) 187–229 193

` � context � ` P : s
` �; ∃x :P context

(Q-INTRO)
` � context � ` P :Q � ` P′ :Q

` �; P=P′ context
(EQ-INTRO)

∃x :P ∈� ` � context

� ` x :P (Q-INIT)

Fig. 2. Additional typing rules for CC+.

∧ := �A; B :Prop:∀C :Prop:((A→B→C)→C)

∨ := �A; B :Prop:∀C :Prop:((A→C)→ (B→C)→C)

∃Q := �P :Q→Prop:∀C :Prop:((∀x :Q:Px→C)→C)

⊥ := ∀C :Prop:C
> := ∀C :Prop:C→C

¬ := �A :Prop:A→⊥
=Q := �M; N :Q:∀P :Q→Prop:PM→PN

Fig. 3. CC encoding of the connectives of higher-order logic.

in �, and x is a “placeholder” for a proof of P. The goal of the search process is
to instantiate x with a term of type P (or equivalently, a proof of formula P). The
search process will generate the instantiation incrementally, and along the way new
existential variables and constraints between terms will be generated. Proof search
terminates successfully when the term instantiating x contains no existential variables
and all constraints generated along the way are satis�ed.
It is shown in [18] that higher-order logic is contained within CC. Terms are in-

troduced that encode the connectives and it is shown that the corresponding natu-
ral deduction inference rules are provable in CC. Here, we use the abbreviations for
the connectives, which are given in Fig. 3. For example, when we write the term
(∃Q �x :Q:A), it represents the term ∀C :Prop:((∀x :Q:A→C)→C), and encodes the
formula ∃Qx:A where ∃Q is the existential quanti�er at type Q in higher-order logic. In
CC, it must be the case that � ` Q :Prop or � ` Q :Type where � is the context in
which the existentially quanti�ed expression occurs. We often omit the type subscript Q
on ∃Q because it can be inferred from the type of the bound variable in the argument.
For readability, we will use in�x notation for the binary connectives. Implication and
universal quanti�cation are encoded directly using the function arrow and dependent
type constructor of CC, respectively. Note that equality is Leibniz equality indexed
over types in the same way as existential quanti�cation.
In set theory, from the fact that a∈{x: P(x)}, it is possible to immediately de-

duce P(a). In our encoding, we build in this correspondence directly and de�ne sets
to be predicates of a certain class of types. Term A is a set type in context � if

194 A. Felty / Theoretical Computer Science 232 (2000) 187–229

{〈x1; : : : ; xn〉 |A} := �x1 :A1 : : : �xn :An:A

〈M1; : : : ; Mn〉 ∈B := (BM1 : : : Mn)

∅ := �x1 :A1 : : : �xn :An:⊥
B⊆C := ∀x1 :A1 : : :∀xn :An:(〈x1; : : : ; xn〉 ∈B)→ (〈x1; : : : ; xn〉 ∈C)
B∪C := �x1 :A1 : : : �xn :An:((〈x1; : : : ; xn〉 ∈B) ∨ (〈x1; : : : ; xn〉 ∈C))
B∩C := �x1 :A1 : : : �xn :An:((〈x1; : : : ; xn〉 ∈B) ∧ (〈x1; : : : ; xn〉 ∈C))

B =S C := (B⊆C) ∧ (C ⊆B)
Provisos : �x1 :A1 : : : �xn :An:A; B, and C are sets in some context �

� ` �x1 :A1 : : : �xn :An:A : ∀x1 :A1 : : :∀xn :An:Prop
� ` B : ∀x1 :A1 : : :∀xn :An:Prop
� ` C : ∀x1 :A1 : : :∀xn :An:Prop
� ` Mi : [M1=x1; : : : ; Mi−1=xi−1]Ai for i=1; : : : ; n

Fig. 4. CC encoding of sets.

� ` A :Type is derivable and A has the form ∀x1 :A1 : : :∀xn :An:Prop, where n¿0 and
for i=1; : : : ; n; Ai is a rigid base type or set type in �; x1 :A1; : : : ; xi−1 :Ai−1. Term
M is a set in context � if � ` M :A and A is a set type in �. In our setting, a
set variable is actually a term of a certain form. In particular, a set in context � of
the form zz1 : : : zn where z is an existential variable in �, and z1; : : : ; zn are distinct
universal variables in � is called a set variable in �.
To illustrate, let � be the context Nat :Type; 0 :Nat; s :Nat→Nat. Note that Nat→

Prop; (Nat→Prop)→Prop; ((Nat→Prop)→Prop)→Prop, etc., are all set types.
Thus predicates over type Nat, predicates over sets of type Nat, predicates over sets
of sets of type Nat, etc., are all sets. We use abbreviations for sets and set operations
to keep the correspondence with set membership in Bledsoe’s work. Fig. 4 contains
these abbreviations. We write =S for set equality.
Returning to the example given in Section 1, we illustrate its proof within the frame-

work of CC. Let � be the CC context Nat :Type; P :Nat→Prop; a :Nat. Proving the
theorem from Section 1 in higher-order logic corresponds to �nding a CC term M such
that the following judgment is derivable:

� ` M :Pa→ (∃�A :Nat→Prop:((∀x :Nat:〈x〉 ∈A→Px) ∧ (∃ �y :Nat:〈y〉 ∈A)))
Expanding the �rst ∃ and applying ABS three times in the backward direction, we get
the following judgment as the rightmost premise. (We ignore the left premise of each

A. Felty / Theoretical Computer Science 232 (2000) 187–229 195

application. These are easily proved.)

�; h1 :Pa; C :Prop;

h2 : ∀A :Nat→Prop:((∀x :Nat:〈x〉 ∈A→Px) ∧ (∃ �y :Nat:〈y〉 ∈A))→C

` M ′ :C

Here, M ′ is a new term such that M is equal to �h1:�C:�h2:M ′. Let �′ be the context
in the above judgment containing �; h1; C; and h2. The proof can be completed using
two applications of (APP) from h2, setting M ′ to h2AM ′′, where A and M ′′ are terms
that must be �lled in by proving the following two judgments:

�′ ` A :Nat→Prop

�′ ` M ′′ : (∀x :Nat:〈x〉 ∈A→Px) ∧ (∃ �y :Nat:〈y〉 ∈A)
As in Section 1, we take A to be {x |Px}, and so we must prove �′ ` {x |Px} :Nat→
Prop and �nd a term M ′′ such that

�′ ` M ′′ : (∀x :Nat:〈x〉 ∈ {x |Px}→Px) ∧ (∃ �y :Nat:〈y〉 ∈ {x |Px})
holds. The �rst judgment is directly provable because by de�nition {x |Px} is just
�x :Nat:Px which is �-equivalent to P. After expanding de�nitions in the second judg-
ment, it is straightforward to �ll in M ′′ and complete the proof.
Fig. 5 shows maximal solutions for variables A and B in various subformulas. A is

assumed to occur in context � only in the form 〈M1; : : : ; Mn〉 ∈A, and similarly for B.
These are the solutions considered by Bledsoe in the form handled by our version of
Dowek’s procedure. As stated, our solutions are generalizations of Bledsoe’s solutions
in that they allow tuples instead of singleton members of sets and dependencies may
occur in the types of the tuples.
We will use these rules directly in the procedure in the next section. The �rst rule

is the one that was used to determine the solution of the �rst conjunct of the example
above. Although the second rule looks complicated, it is just the dependent-type version
of solving for fx∈B→P′(x) obtaining maximal solution {z | ∀x(z=fx→P′(x))}: In
the CC version, the types of the last r arguments of the tuple can depend on the types
of the �rst j arguments but not on the types of each other. The remaining rules are
fairly straightforward. Since our rules are extensions of Bledsoe’s rules, we extend the
theorems in [3] which justify the role of these rules in determining maximal solutions.
The proofs of the extended theorems appear in Section 3.3.

3. Proof search with set variable instantiation

The SetVar procedure is de�ned using our modi�ed notion of contexts called search
contexts. To distinguish them from the notion of context de�ned in the previous sec-
tion, we say standard context to denote the latter. In [10, 14], the search procedure

196 A. Felty / Theoretical Computer Science 232 (2000) 187–229

Subformula Solution for A or B

1. 〈x1; : : : ; xp〉 ∈Az1 : : : zn→Px1 : : : xp −→{〈x1; : : : ; xp〉 |Px1 : : : xp}
2. 〈x1; : : : ; xj; f1x1 : : : xp; : : : ; frx1 : : : xp〉 ∈Bz1 : : : zn→P′x1 : : : xp

−→{〈x1; : : : ; xj; w1; : : : ; wr〉 |
∀xj+1 :Dj+1 : : :∀xp :Dp:w1 =Cj+1 f1x1 : : : xp
→ · · · →wr =Cj+r frx1 : : : xp→P′x1 : : : xp}

3. 〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈Bz1 : : : zn→Q −→{〈x1; : : : ; xj; w1; : : : ; wr〉 |
w1 =Cj+1 M1→ · · · →wr =Cj+r Mr→Q}

4. ¬(〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈Bz1 : : : zn) −→{〈x1; : : : ; xj; w1; : : : ; wr〉 |
¬(w1 =Cj+1 M1 ∧ · · · ∧ wr =Cj+r Mr)}

5. 〈N1; : : : ; Np〉 ∈Az1 : : : zn −→{〈x1; : : : ; xp〉 | >}
6. If 1–4 yield {〈y1; : : : ; yq〉 |Q′}, and w is a free variable of type C in Q′

−→{〈y1; : : : ; yq〉 | (∃ �w :C:Q′)}
Provisos:

• Az1 : : : zn and Bz1 : : : zn are set variables in some context �, i.e., they are sets
in �; A and B are existential variables in �, and z1; : : : ; zn are distinct universal
variables in �.

• p¿0; j¿0; p¿j; r¿0; n¿0.
• � ` Az1 : : : zn : ∀x1 :C1 : : :∀xp :Cp:Prop
• � ` Bz1 : : : zn : ∀x1 :C1 : : :∀xj :Cj:Cj+1→ · · · →Cj+r→Prop
• � ` P : ∀x1 :C1 : : :∀xp :Cp:Prop
• � ` P′ : ∀x1 :C1 : : :∀xj :Cj:∀xj+1 :Dj+1 : : :∀xp :Dp:Prop
• � ` fi : ∀x1 :C1 : : :∀xj :Cj:∀xj+1 :Dj+1 : : :∀xp :Dp:Cj+i for i=1; : : : ; r
• � ` Q :Prop
• �; x1 :C1; : : : ; xj :Cj ` Mi :Cj+i for i=1; : : : ; r
• � ` Ni : [N1=x1; : : : ; Ni−1=xi−1]Ci for i=1; : : : ; p
• � ` C :Prop or � ` C :Type
• All universal variables occurring in P; P′; Q; f1; : : : ; fr;M1; : : : ; Mr appear before
A or B in �.

• A; B; x1; : : : ; xp; w1; : : : ; wr do not occur free in P; P′; Q; f1; : : : ; fr;M1; : : : ; Mr .
• A; B also do not occur free in C1; : : : ; Cp or C1; : : : ; Cj+r ; Dj+1; : : : ; Dp.
• x1; : : : ; xp; w are distinct universal variables in � that do not occur free elsewhere
in �.

Fig. 5. Maximal solutions for various subformulas.

was described as direct operations on standard contexts. We �rst de�ne the notions of
existential triple and constraint triple which replace existential declarations and con-
straints. An existential triple is a tuple of the form (�; z; B) where � is a standard
context containing only universal declarations, z is a variable, and B is a term. A con-

A. Felty / Theoretical Computer Science 232 (2000) 187–229 197

straint triple is a tuple of the form (�; P; Q) where � is a standard context containing
only universal declarations and P and Q are terms. In either case, � is called a local
context and the universal variables in � are called local variables. A search context
is an ordered list of universal declarations, existential triples, and constraint triples.
We de�ne an operation
atten on context elements of search contexts as follows:

•
atten(e) is e if e is a universal declaration.
•
atten((z1 :A1; : : : ; zn :An); z; B) is ∃z : (∀z1 :A1 : : :∀zn :An:B).
•
atten((z1 :A1; : : : ; zn :An); P; Q) is (∀z1 :A1 : : :∀zn :An:P)= (∀z1 :A1 : : :∀zn :An:Q).
We extend the
atten operation to search contexts in the obvious way: given context
�,
atten(�) is the context such that each element e of � is mapped to
atten(e).
We write �e as shorthand for
atten(e) and �� as shorthand for
atten(�). Note that

atten maps a search context to a standard context. We say that a search context � is
valid if �� is valid. Note that variables can be renamed so that we can assume that all
universal variables and local variables occur at most once on the left of a declaration.
We do not do so, but instead assume that all local variables in a particular existential or
constraint triple, although not necessarily distinct from local variables in other triples,
are distinct from each other and from all other universal variables in the context. Note
that under this assumption, given a valid search context �; (�; z; B) or �; (�; P; Q),
the search context �;� is also valid and equivalently the standard context ��;� is
valid.
Note that we can equate standard contexts with search contexts whose local contexts

are all empty by viewing (〈〉; z; B) as alternate syntax for ∃z :B and (〈〉; P; Q) as alter-
nate syntax for P=Q. Thus, all standard contexts can be viewed as search contexts
of a particular form. This equivalence allows us to directly adapt many properties of
contexts shown in [10].
The de�nition of normal form for a context (see Section 2) is extended to search

contexts: the normal form of a search context � is obtained as follows.
• For each universal declaration in �, if the type of the universal variable is well-typed
in �� without using the constraints, replace the type by its normal form in ��.

• For each existential triple (�; z; B) in �, if the type of z in
atten(�; z; B) is well-
typed in �� without using the constraints, then replace B and the types of the universal
variables in � with their normal forms in ��;�.

• For each constraint triple (�; P; Q) in �, if the members of the constraint

atten(�; P; Q) are well-typed in �� without using the constraints, then replace P;Q,
and the types of the universal variables in � with their normal forms in ��;�.
We de�ne substitution for search contexts. Let � be a set of tuples of the form

〈z; �;M 〉 where z is a variable, � is a search context, and M is a term. The set � is
a substitution if for any variable z, there is at most one tuple in � with z as its �rst
component. The application of such a substitution to a term is de�ned in the usual way
ignoring the middle arguments of tuples. The application of substitution � to a search
context �, denoted ��, is de�ned recursively as follows.
• If � is 〈〉; �� is 〈〉.
• If � is �′; x :P, then �� is ��′; x : �P.

198 A. Felty / Theoretical Computer Science 232 (2000) 187–229

• If � is �′; ((z1 :A1; : : : ; zn :An); z; B) where n¿0, then if there is a tuple 〈z; �;M 〉 in
�; �� is ��′; �. Otherwise, �� is ��′; ((z1 : �A1; : : : ; zn : �An); z; �B).

• If � is �′; ((z1 :A1; : : : ; zn :An); P; Q), then �� is ��′; ((z1 : �A1; : : : ; zn : �An); �P;
�Q).

By restricting the above de�nition so that both � and � are required to be standard
contexts, we obtain the de�nition of substitution given in [10]. Given substitution �,
we write �� to denote the substitution obtained by replacing the context argument � of
each tuple in � by ��. Note that � and �� are the same substitution on terms, i.e., for
any term P, �P= ��P.
A valid context � is a success context if it contains no existential triples and for

every constraint triple e;
atten(e) relates ��-convertible terms. A valid context � is a
failure context if it contains a constraint triple e such that
atten(e) relates two terms
that have no free occurrences of existential variables and that are not ��-convertible.
Let � be a valid search context. A candidate triple of � is an existential triple

((z1 :A1; : : : ; zn :An); z;∀x1 :B1 : : :∀xm :Bm:xM1 : : : Mp)

where n; m; p¿0 and x is universal in �; z1 :A1; : : : ; zn :An; x1 :B1; : : : ; xm :Bm: As we
will see in Section 3.2, if a valid context is not a success or failure context, there is
always at least one candidate triple.

3.1. The SetVar procedure

The SETVAR, INTRO, and BACKCHAIN operations described below de�ne the SetVar
search procedure. At each step, an operation is applied to a search context in normal
form. The result is a substitution �. The substitution is applied to the input search
context which is then normalized to obtain the input to the next step of the procedure.
Generally, the original input has the form �; (〈〉; z; P) where � is a standard context
and P is a theorem for which a proof is sought. If a success context is reached then
the series of substitutions provides a solution to z which represents the proof. Along
the way set variables may arise. Their solutions can also be extracted from the series
of substitutions. In describing these operations, we often write ∀ �xn : �An:K to denote the
term ∀x1 :A1 : : :∀xn :An:K , where n¿0. Similarly, we write � �xn : �An:K to denote the
term �x1 :A1 : : : �xn :An:K . Note that this notation is overloaded since it also denotes

atten. However, since
atten only applies to contexts or context elements, there should
be no confusion.
SETVAR operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An); z;

∀x1 :C1 : : :∀xp :Cp:Prop) a candidate triple in �, where n¿0, p¿0, and ∀x1 :C1 : : :∀xp :
Cp:Prop is a set type. Let � be the context z1 :A1; : : : ; zn :An. In order for this oper-
ation to apply, there must be q occurrences of z in terms in � where q¿0, and for
i=1; : : : ; q, the ith occurrence is in some term Pi which is part of an existential triple of
the form ((�;�i); z′i ; Pi) occurring after the candidate triple containing z. Furthermore,
Pi must be of one of the following forms:
1. 〈x1; : : : ; xp〉 ∈ zz1 : : : zn→Px1 : : : xp

A. Felty / Theoretical Computer Science 232 (2000) 187–229 199

2. 〈x1; : : : ; xj; f1x1 : : : xp′ ; : : : ; frx1 : : : xp′〉 ∈ zz1 : : : zn→P′x1 : : : xp′

3. 〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈ zz1 : : : zn→Q
4. ¬(〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈ zz1 : : : zn)
5. 〈N1; : : : ; Np〉 ∈ zz1 : : : zn
such that the provisos of the corresponding rule in Fig. 5 hold in the context ��; z1 :A1;
: : : ; zn :An. For i=1; : : : ; q, let Qi be the solution for zz1 : : : zn in Pi according to rules
1–5 of Fig. 5. If appropriate, apply rule 6 of the �gure as many times as possible to
Qi to obtain Q′

i . Let Q be the term Q′
1∩· · ·∩Q′

q. Let � be the singleton set containing
the tuple 〈z; 〈〉; � �zn : �An:Q〉.
INTRO operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An); z;

∀x :A:B) a candidate triple in �. Let z′ be a variable that does not occur in �
and assume x does not occur in �. Let � be the context containing the single triple
((z1 :A1; : : : ; zn :An; x :A); z′; B), and let � be {〈z; �; z′〉}.
BACKCHAIN operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An);

z; xM1 : : : Mm) a candidate triple in �, where m; n¿0, and ��; z1 :A1; : : : ; zn :An
` xM1 : : : Mm : s holds where s is Prop or Type. If there is a universal declaration w :Q
such that either w is one of z1; : : : ; zn or w :Q occurs to the left of ((z1 :A1; : : : ; zn :An); z;
xM1 : : : Mm) in �, the judgment ��; z1 :A1; : : : ; zn :An ` Q : s holds, Q has the form
∀y1 :Q1 : : :∀yq :Qq:yN1 : : : Np (p; q¿0), and y is x or any existential variable in �,
then we can “backchain” on Q as follows. Let h1; : : : ; hq be variables that do not occur
in �. Let � be the context z1 :A1; : : : ; zn :An. Let � be the context

(�; h1; Q1);

(�; h2; [h1z1 : : : zn=y1]Q2);

...

(�; hq; [h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq);

(�; [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]yN1 : : : Nn; xM1 : : : Mm):

Let � be {〈z; �; � �zn : �An:w(h1z1 : : : zn) : : : (hqz1 : : : zn)〉}:
A derivation of a search context � is a list of substitutions �1; : : : ; �n such that for

i=1; : : : ; n, �i is the result of applying one of the search operations to the normal form
of �i−1 : : : �1� and the normal form of �n : : : �1� is a success context.
As mentioned earlier, the use of search contexts allows us to separate a single op-

eration in Dowek’s procedure into two operations here, INTRO and BACKCHAIN, which
correspond to fairly intuitive steps of proof search. The INTRO operation performs the
introduction of assumptions into the environment. In particular, assumptions are in-
troduced into local contexts. In the search context as a whole, the third element of
existential triples represent the formulas that must be proved, and for any given for-
mula the assumptions that are available to use in its proof are those in its local context
as well as all universal declarations that occur before the triple.

200 A. Felty / Theoretical Computer Science 232 (2000) 187–229

The BACKCHAIN operation performs the usual operation of backchaining on an as-
sumption when the formula to be proved “matches” the atomic part of the assumption.
In particular, for the particular candidate triple involved, it is not required that its
third argument be the same as or unify with the atomic part of the assumption used in
backchaining. Instead, a constraint is added that must be checked as the search proceeds.
Subsequent search operations may instantiate existential variables in such a way that the
constraint may or may not relate two terms that are ��-convertible. In the case when
they are not ��-convertible, the context becomes a failure context. In addition to the
constraint, BACKCHAIN generates new existential triples for the subgoals that must still be
proven. Also, a substitution is formed which instantiates the existential variable in the
original candidate triple. Whenever there are subgoals, this instantiation is partial since
it will contain occurrences of the new existential variables created for the subgoals.
Search contexts provide a way to simplify the handling of scoping constraints within

the framework of a proof search procedure which operates by �lling in substitution in-
stances for existential variables incrementally. This notion of context does not deviate
far from the standard one in the sense that at any point during search a simple transla-
tion via the
atten operation can be applied to transform search contexts which contain
local contexts back to ordinary contexts. This
atten operation is essential in form-
ing and propagating substitutions. These substitutions can be said to use a functional
encoding of scope. In Dowek’s procedure [10], this functional encoding of scope is
used in both contexts and substitutions. At the other end of the spectrum are various
calculi that avoid a functional encoding by integrating existential variables with ex-
plicit substitutions. Examples include the ��-calculus [11], the �L�-calculus [22], and
the substitution calculus for Martin–L�of type theory [19]. In these calculi, existential
variables are distinct from ordinary variables and substitutions are represented explic-
itly, allowing reduction of terms with existential variables to be delayed as necessary
until the terms are �lled in. The calculi involved are more complex, but they provide
simpli�ed handling of scoping constraints and representation of substitutions.
Note that the procedure as described is non-deterministic since it does not specify an

order on the application of search operations. As mentioned earlier, our implementation
in �Prolog resolves non-determinism by requesting input from the user. Depth-�rst
search with backtracking is another possible strategy.
To illustrate, we describe the execution of the procedure on two examples. We start

with a simple example to illustrate the interaction of INTRO and BACKCHAIN. The second
example is a modi�ed form of our earlier example. The proof of this example contains
an essential use of the SETVAR operation; it is not possible to prove it using only INTRO

and BACKCHAIN. For the �rst example, let � be the context

Nat :Type; P :Nat→Prop; a :Nat

as in the previous section from which we want to prove the theorem (∀n :Nat:Pn)→Pa:
We begin with the following search context:

�; (〈〉; M; (∀n :Nat:Pn)→Pa) (1)

A. Felty / Theoretical Computer Science 232 (2000) 187–229 201

This context is in normal form and the existential triple is a candidate triple to
which the INTRO operation can be applied. Note that (∀n :Nat:Pn)→Pa can be written
∀h : (∀n :Nat:Pn):Pa. The operation results in a substitution �1 of the form

{〈M; ((h : (∀n :Nat:Pn)); M ′; Pa); M ′〉}
where M ′ is a new variable. Applying this substitution to (1), we obtain the context

�; ((h : (∀n :Nat:Pn)); M ′; Pa): (2)

When applying INTRO, it is actually not necessary to change the name of the existential
variable. Here, all occurrences of M are replaced with M ′ which is another variable
of the same type (after applying
atten). Instead, we can just keep M . We adopt this
convention in the next example below. In this example, we can now apply BACKCHAIN

with the existential triple as the candidate triple. The universal declaration we will use
in this application of BACKCHAIN is h : (∀n :Nat:Pn). We know this operation can be
applied because both of the following judgments hold as required:

�; ∃M ′ : (∀n :Nat:Pn)→Pa; h : (∀n :Nat:Pn) ` Pa :Prop
�; ∃M ′ : (∀n :Nat:Pn)→Pa; h : (∀n :Nat:Pn) ` (∀n :Nat:Pn) :Prop

We form the context �2 of the BACKCHAIN operation

((h : (∀n :Nat:Pn)); N;Nat); ((h : (∀n :Nat:Pn)); [Nh=n]Pn; Pa)
where the �rst element is an existential triple with new variable N , and the second
element is a constraint triple. The term [Nh=n]Pn is just P(Nh). The substitution �2 of
this operation is

{〈M ′; �2; �h : (∀n :Nat:Pn):h(Nh)〉}:
Applying �2 to (2) completes the application of BACKCHAIN and gives

�; ((h : (∀n :Nat:Pn)); N;Nat); ((h : (∀n :Nat:Pn)); P(Nh); Pa): (3)

Let �′ denote the above context. Note that ��′ is

�; ∃N : ∀h : (∀n :Nat:Pn):Nat; ∀h : (∀n :Nat:Pn):P(Nh)=∀h : (∀n :Nat:Pn):Pa:
One more application of BACKCHAIN will complete the search. This time, we apply
it using the candidate triple ((h : (∀n :Nat:Pn)); N;Nat) and the universal declaration
a :Nat. In this case, the two typing judgments required to hold in order to apply
BACKCHAIN are the same:

��′; h : (∀n :Nat:Pn) ` Nat :Type:
The context �3 contains only the simple constraint ((h : (∀n :Nat:Pn));Nat;Nat) and
thus, the substitution �3 is {〈N; �3; �h : (∀n :Nat:Pn):a〉}: Applying this substitution to
(3) and normalizing results in the following context:

�; ((h : (∀n :Nat:Pn));Nat;Nat); ((h : (∀n :Nat:Pn)); Pa; Pa): (4)

202 A. Felty / Theoretical Computer Science 232 (2000) 187–229

Note that this context contains no existential triples and two constraint triples that
relate ��-equivalent terms. Thus it is a success context and search is completed. The
proof of the formula (∀n :Nat:Pn)→Pa in the context we started with is obtained by
applying the substitutions obtained at each step to the original existential variable M and
normalizing. In this case, the normal form of �3�2�1M is the term �h : (∀n :Nat:Pn):ha
For the second example, let � be the context

Nat :Type; P :Nat→Prop; Q :Nat→Prop:

We want to �nd a term to instantiate M in the following search context:

�; (〈〉; M;∃�A :Nat→Prop:((∀x :Nat:〈x〉 ∈A→Px) ∧ (∀x :Nat:〈x〉 ∈A→Qx)))

(5)

The formula we want to prove contains occurrences of ∃ and ∧, which we must �rst
expand before proceeding with search. To simplify the presentation of this example, we
�rst make some observations about proofs of formulas containing these connectives.
Consider the general case of proof search in a context of the form �; (�;M;∃�x :Q:P)
where � is a context of the form z1 :A1; : : : ; zn :An. Expanding ∃, this context is the
same as

�; (�;M;∀C :Prop:(∀x :Q:Px→C)→C): (6)

In general, in searching for a proof of an existential formula, a term is chosen to in-
stantiate the bound variable and search proceeds. Alternately, a variable or placeholder
is used which gets �lled in as search continues. In the SetVar procedure, two appli-
cations of INTRO followed by an application of BACKCHAIN to the existential triple in
context (6) has the a�ect of introducing such a placeholder. To see this, �rst note, that
we can apply INTRO, generating the substitution �1,

{〈M; ((�;C :Prop); M; (∀x :Q:Px→C)→C); M 〉}:

Here, we reuse the name M as discussed above. Applying �1 to (6) results in the
context

�; ((�;C :Prop); M; (∀x :Q:Px→C)→C): (7)

A second INTRO generates the substitution �2,

{〈M; ((�;C :Prop; h : (∀x :Q:Px→C)); M; C); M 〉}

and thus the context

�; ((�;C :Prop; h : (∀x :Q:Px→C)); M; C): (8)

Now, we can apply BACKCHAIN to the above existential triple using universal declaration
h : (∀x :Q:Px→C). From now on, we leave out showing that the necessary typing

A. Felty / Theoretical Computer Science 232 (2000) 187–229 203

judgments hold in order for BACKCHAIN to be applicable. Using new variables X and
M ′, we form the context �3 as follows:

((�;C :Prop; h : (∀x :Q:Px→C)); X; Q);

((�;C :Prop; h : (∀x :Q:Px→C)); M ′; P(Xz1 : : : znCh));

((�;C :Prop; h : (∀n :Nat:Pn)); C; C):
The substitution �3 of this operation is

{〈M;�3; ∀ �zn : �An:�C :Prop:�h : (∀x :Q:Px→C):h(Xz1 : : : znCh)(M ′z1 : : : znCh)〉}:
Applying �3 to (8), we get �; �3. Note the roles of X and M ′. In particular, Xz1 : : : znCh
is the placeholder for the term bound by existential quanti�cation while M ′z1 : : : znCh
must be �lled in with the proof of the instantiated formula. Also, note the roles of
h and C in these three steps. They are introduced only to be used immediately in
backchaining and it is unlikely that they will have any further role in the search
for a proof. Also, note that the constraint in �3 relates equivalent terms and that no
subsequent instantiations of existential variables will change that. We use these facts to
introduce a search operation, which we call EXISTS-INTRO, that abbreviates this sequence
of steps and eliminates C, h, and the constraint. In particular, we introduce a new
constant ∃I . From a context of the form in (6) using new variables X0 and M ′

0, the
EXISTS-INTRO operation generates the context �

(�; X0; Q); (�;M ′
0; P(X0z1 : : : zn))

and the substitution �

{〈M;�;∀ �zn : �An:(∃I (X0z1 : : : zn)(M ′
0z1 : : : zn))〉}:

In our example, we will use this operation in place of the sequence of two applications
of INTRO followed by an application of BACKCHAIN as above. It will always be the
case that any application of this operation can be expanded into a sequence of the
three operations using new variables X; M ′; C, and h. In the abbreviated version
all occurrences of X0z1 : : : zn and M ′

0z1 : : : zn stand for Xz1 : : : znCh and M
′z1 : : : znCh,

respectively. Also, ∃I (X0z1 : : : zn)(M ′
0z1 : : : zn) abbreviates the term

�C :Prop:�h : (∀x :Q:Px→C):h(Xz1 : : : znCh)(M ′z1 : : : znCh):

Since the variables C and h along with their types are left out of local contexts, these
declarations as well as the constraint must be put back in to get the expanded form. In
the unabbreviated sequence, note that once C and h are introduced, they stay around.
Thus, the abbreviated form actually changes the contexts that appear in subsequent
search. However, it is straightforward to transform a derivation that uses EXISTS-INTRO
to one containing only SETVAR, INTRO, and BACKCHAIN, systematically adding occurrences
of C and h where necessary. Using the abbreviated form has the consequence of
imposing the restriction that, because C and h do not appear at all, they do not appear

204 A. Felty / Theoretical Computer Science 232 (2000) 187–229

in subsequent substitution terms. This restriction is not a serious one for the class of
theorems we are considering.
We introduce a similar operation called AND-INTRO to abbreviate several steps for the

case when the context has the form �; (�;M; A ∧ B). Note that this context denotes
�; (�;M;∀C :Prop:(A→B→C)→C):

AND-INTRO generates the context �, which is simply

(�;M0; A); (�;M ′
0; B)

and the substitution �

{〈M;�;∀ �zn : �An:(∧I (M0z1 : : : zn)(M ′
0z1 : : : zn))〉}:

This operation can also be expanded to two applications of INTRO followed by
BACKCHAIN. Similar to EXISTS-INTRO, there are variables M; M ′; C, and h such that in the
abbreviated version, all occurrences of M0z1 : : : zn and M ′

0z1 : : : zn stand for Mz1 : : : znCh
and M ′z1 : : : znCh, respectively, and ∧I (M0z1 : : : zn)(M ′

0z1 : : : zn) abbreviates the term

�C :Prop:�h :A→B→C:h(Mz1 : : : znCh)(M ′z1 : : : znCh):

Furthermore, to get the expanded form, the declarations C :Prop and h :A→B→C
must be added to local context � in elements of � and the constraint ((�;C :Prop; h :
A→B→C); C; C) must also be added to �. Also, AND-INTRO imposes a restriction
similar to EXISTS-INTRO since C and h do not apper in �.
The EXISTS-INTRO and AND-INTRO operations, respectively, can now be used for the �rst

two steps of proof search in our second example denoted by the context (5). First, the
result of applying EXISTS-INTRO is the context �1 and substitution �1, respectively, as
follows where A0 and M ′

0 are new variables:

�1:=(〈〉; A0;Nat→Prop); (〈〉; M ′
0; (∀x :Nat:〈x〉 ∈A0→Px)

∧(∀x :Nat:〈x〉 ∈A0→Qx))

�1:={〈M;�1; (∃I X0M ′
0)〉}

Applying �1 to context (5), we get the following context:

�; (〈〉; A0;Nat→Prop); (〈〉; M ′
0; (∀x :Nat:〈x〉 ∈A0→Px)

∧(∀x :Nat:〈x〉 ∈A0→Qx)): (9)

Using the triple containing M ′
0 as the candidate triple, the result of applying AND-INTRO

is the following context and substitution:

�2 := (〈〉; M ′
1; ∀x :Nat:〈x〉 ∈A0→Px); (〈〉; M ′

2; ∀x :Nat:〈x〉 ∈A0→Qx)

�2 := {〈M ′
0; �2; (∧I M ′

1M
′
2)〉}:

A. Felty / Theoretical Computer Science 232 (2000) 187–229 205

Applying �2 to context (9), we get the following context:

�; (〈〉; A0;Nat→Prop);

(〈〉; M ′
1; ∀x :Nat:〈x〉 ∈A0→Px); (〈〉; M ′

2; ∀x :Nat:〈x〉 ∈A0→Qx): (10)

We can now apply SETVAR to obtain a solution for A0 using the maximal solutions
for the two types containing A0. In particular, for this application, the existential triple
containing A0 is the candidate triple and the remaining two existential triples contain
occurrences of A0. Both occurrences are in formulas of the �rst form listed in the
de�nition of SETVAR and thus the maximal solution in each case is obtained using rule
1 of Fig. 5. The substitution resulting from this application is

�3 := {〈A0; 〈〉; {〈x〉 |Px} ∩ {〈x〉 |Qx}〉}:

After substitution and �-conversion, the context becomes

�;(〈〉; M ′
1; ∀x :Nat:(〈x〉 ∈ ({〈x〉 |Px} ∩ {〈x〉 |Qx}))→Px);

(〈〉; M ′
2; ∀x :Nat:(〈x〉 ∈ ({〈x〉 |Px} ∩ {〈x〉 |Qx}))→Qx):

Note that expanding all de�nitions, this context is equivalent to

�;(〈〉; M ′
1; ∀x :Nat:(∀C :Prop:((Px→Qx→C)→C))→Px);

(〈〉; M ′
2; ∀x :Nat:(∀C :Prop:((Px→Qx→C)→C))→Qx):

From this point on, several more instances of INTRO and BACKCHAIN are needed to
transform this context to a success context.
To see why this derivation cannot be completed without SETVAR, consider again the

context (10) of this example just before SETVAR was applied. Expanding de�nitions,
this context is equivalent to

�; (〈〉; A0;Nat→Prop); (〈〉; M ′
1; ∀x :Nat:A0x→Px); (〈〉; M ′

2; ∀x :Nat:A0x→Qx):

(11)

After applying all possible instances of INTRO, we get the context

�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); M ′
1; Px); ((x :Nat; h :A0x); M

′
2; Qx): (12)

At this point, BACKCHAIN can be applied to any of the existential triples, but none
leads to a success context. For example, consider the �rst triple. The only universal
declarations that can be used in backchaining are the declarations of P :Nat→Prop
or Q :Nat→Prop. If the �rst is used, then the following context and substitution are
generated:

� := ((x :Nat); X;Nat); ((x :Nat);Prop;Prop)

� := {〈A0; �; �x :Nat:P(Xx)〉}

206 A. Felty / Theoretical Computer Science 232 (2000) 187–229

After one more BACKCHAIN to �ll in X using local declaration x :Nat, the instanti-
ation for A0 becomes �x :Nat:Px. Similarly, if the declaration Q :Nat→Prop were
chosen instead, two applications of BACKCHAIN would lead to the instance �x :Nat:Qx
for A0.
The same problem occurs if we begin with a BACKCHAIN using the second or third

existential triples in context (12). Consider the second triple. The only universal dec-
laration that can be used in backchaining is h :A0x in the local context. Using this
declaration, the following context and substitution are generated:

� := ((x :Nat; h :A0x); A0x; Px)

� := {〈M ′
1; �; �x :Nat:�h :A0x:h〉}

Applying � to the context (12) results in the context

�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); A0x; Px); ((x :Nat; h :A0x); M ′
2; Qx):

The variable A0 will not get �lled in until the �rst existential triple is used in backchain-
ing. The only way to satisfy the new constraint is to use P :Nat→Prop as the universal
declaration in such an application of BACKCHAIN, which as before, leads to �x :Nat:Px
as the instantiation for A0. At this point, the only way to continue search is to apply
BACKCHAIN to the existential triple containing M ′

2. However, such a BACKCHAIN leads to a
constraint ((x :Nat; h :A0x); Px; Qx) which relates two terms that are not ��-convertible,
and thus the result is a failure context.
In a similar manner, starting with a BACKCHAIN on the third existential triple in (12)

also leads to a failure context. The problem in this example is that restricting search
to INTRO and BACKCHAIN forces instances of A0x to be atomic and no atomic instance
leads to a proof. The SETVAR operation, on the other hand, results in a type containing
set intersection, which unfolds to conjunction, which further unfolds to a non-atomic
type. As we will see in Section 4, without SETVAR, we must use the operation which
performs enumeration of types in order to get an instance for A0x that is not atomic.
In general, type enumeration leads to a very large search space. One way to view the
SETVAR operation is as a method for controlling type enumeration for theorems in a
particular class.
As mentioned, SetVar also serves as a proof search procedure for extensions of

hohh and LF. We view either one as a sublanguage of CC+ by making appropriate
restrictions. For example, to restrict the procedure to hohh, we must restrict the types
of bound variables in context elements to be types in Church’s simple theory of types.
In addition, we must place restrictions on the syntax of types that are analogous to
the restrictions placed on formulas of higher-order logic in hohh. To describe one of
the restrictions, we de�ne the notion of positive and negative occurrences of terms
in formulas. If a term A occurs in a base type P in some context �, A is said to
occur positively in P. Term A occurs positively (negatively) in ∀x :P:Q or P→Q if
A occurs positively (negatively) in Q or negatively (positively) in P. In hohh, one
of the restrictions on the syntax of formulas is that for every base type xM1 : : : Mn, if

A. Felty / Theoretical Computer Science 232 (2000) 187–229 207

this term appears positively in a universal declaration, then x cannot be an existential
variable; it must be a universal variable. Similarly, if xM1 : : : Mn appears negatively in
an existential declaration, then x must be a universal variable. In our extension, we
relax this restriction and allow x to be an existential variable whenever its type has
the form �1→ · · · → �j→ �′1→ · · · → �′k →Prop for some j¿0 and k¿0, the type
�′1→ · · · → �′k →Prop is a set type, and x only occurs in expressions of the form
〈x1; : : : ; xk〉 ∈ xz1 : : : zj where xz1 : : : zj is a set variable. In this sublanguage of CC+, the
INTRO and BACKCHAIN operations correspond fairly closely to search operations in the
�Prolog interpreter, while the SETVAR operation handles instantiation of set variables
in the extended language. In addition, the SETVAR operation within the context of this
extended version of hohh gives a formalization of Bledsoe’s procedure in a higher-
order logic setting. In contrast, SetVar is described in an adhoc extension to �rst-order
logic in Bledsoe [3].
To use this procedure for proof search in LF, we must extend LF to permit quanti�-

cation over certain predicates. We permit such quanti�cation in a restricted way, similar
to the way it is permitted in the extension of hohh above. In particular, we allow exis-
tential quanti�cation over predicate x whenever the following conditions hold: the type
of x has the form ∀ �xj : �Aj:∀zk :Bk:Prop for some j¿0 and k¿0; the types A1; : : : ; Aj
are any LF types; the types B1; : : : ; Bk are base types in LF (which means that the type
∀zk :Bk:Prop is a set type of a particular form); and x only occurs in expressions of
the form 〈x1; : : : ; xk〉 ∈ xz1 : : : zj where xz1 : : : zj is a set variable. In Bledsoe’s setting,
after instantiating all set variables, the formula becomes a formula of �rst-order logic.
Similarly, in LF with the extension just described, whenever a context has a deriva-
tion, it will be the case that after instantiation of existential quanti�ers, the result is
a valid context in pure LF. For LF, an additional change is needed. Because LF does
not permit general quanti�cation over predicates, we cannot use the direct encoding of
logical connectives and set operations described in the previous section. Instead, these
de�nitions need to be axiomatized in LF.

3.2. Soundness of the SetVar search procedure

We begin by stating and proving some general properties about search contexts,
substitution, and normal forms.
Given term P and context �, we write ��(P; �) (or just ��(P) when � is obvious)

to denote the normal form of P in � if it has one. Similarly, we write ��(�) to
denote the normal form of context �. Let � be a valid search context. When applying
a series of substitutions to a context or term, it is easy to see that if a normalization
is performed after all substitutions are completed, then any intermediate normalization
steps have no e�ect. The following lemma states this fact.

Lemma 1. Let P be a term, let � be a context, and let � and � be two sub-
stitutions. If ��P has a normal form in ���; then ��(�(��(�P)))= ��(��P). Also
��(�(��(��)))= ��(���).

208 A. Felty / Theoretical Computer Science 232 (2000) 187–229

The next two lemmas about search contexts follow directly from properties about
standard contexts in [10].

Lemma 2. Let � be a valid search context, let �′ be its normal form, and let P and
Q be two terms such that �� ` P :Q. Then �′ is a valid search context and ��′ ` P :Q.

Lemma 3. Let � be a normal valid search context which is neither a success context
nor a failure context. Then there is an existential triple ((z1 :A1; : : : ; zn :An); z; B) in
�; n¿0; such that ∀z1 :A1 : : :∀zn :An:B is well-typed in �� without using the constraints
and B has the form ∀zn+1 :An+1 : : :∀zm :Am:C where m¿n and C is atomic and rigid
in ��; z1 :A1; : : : ; zm :Am.

If x is a variable, P is a term, and � is a standard context then [P=x]� denotes the
operation of substituting P for all free occurrences of x in constraints and on the right
of declarations in �. The following property is known to hold for standard contexts in
CC and was shown in Dowek [9] to extend to CC+ contexts.

Lemma 4. Let M;N; A be terms and let �; x :B; �′ be a context such that �; x :B; �′ `
M :A and � ` N :B. Then �; [N=x]�′ is a valid context and �; [N=x]�′ ` [N=x]M :
[N=x]A.

The next three lemmas are needed to allow us to adapt additional properties in
[10] to our setting. Lemmas 5 and 6 provide the necessary correspondence between
standard contexts and search contexts. Lemma 7 introduces a new concept needed for
our soundness proof.

Lemma 5. Let � be a valid search context and let � be a substitution. Then �� ��= ��.

Proof. The proof is by induction on the length of �. The theorem clearly holds if �
is the empty context. Otherwise, � has the form �′; e and we assume that �� ��′= ��′.
For the case when e is a universal declaration of the form x :P, �� �� is �� ��′; x : ��P

and �� is ��′; x : �P. By the induction hypothesis and the fact that ��P= �P, these
two contexts are the same.
For the case when e is an existential triple of the form ((z1 :A1; : : : ; zn :An); z; B)

where n¿0, then if there is a tuple 〈z; �;M 〉 in �, then �� is ��′; � and 〈z; ��;M 〉 is in
��. Thus �� �� is �� ��′; �� and �� is ��′; �� which are the same context by a simple applica-
tion of the induction hypothesis. Otherwise, �� is ��′; ((z1 : �A1; : : : ; zn : �An); z; �B). In
this case �� �� is �� ��′; ∃z : ∀z1 : ��A1 : : :∀zn : ��An: ��B and �� is ��′; ∃z : ∀z1 : �A1 : : :∀zn :
�An:�B which are again the same context because � and �� are the same substitution
on terms.
The case when e is a constraint triple is similar to the case for existential triples

when the existential variable is not bound by �.

Let � be a valid search context. A substitution � is well-typed in � if �� is a valid
context, for every tuple 〈z; �;M 〉 ∈ �, either z does not occur in � or if it occurs, �

A. Felty / Theoretical Computer Science 232 (2000) 187–229 209

has the form �′; ((z1 :A1; : : : ; zn :An); z; B); �′′ and ��′; �� ` M : �(∀z1 :A1 : : :∀zn :An:B)
holds. We can assume that all the existential variables introduced in the context argu-
ment of tuples in � are distinct from one another.

Lemma 6. Let � be a valid search context and � a substitution. Then � is well-typed
in � if and only if �� is well-typed in ��.

Proof. The proof is by induction on the length of �. The theorem clearly holds if � is
the empty context. Otherwise, � has the form �′; e. We must show that � is well-typed
in �′; e if and only if �� is well-typed in ��′; �e. We only show the case for the forward
direction when e is an existential triple of the form ((z1 :A1; : : : ; zn :An); z; B) where
n¿0. The other cases are similar, and the proof is easily reversed to get the backward
direction.
We assume that � is well-typed in �′; e and we show that �� is well-typed in ��′; �e.

Clearly � is well-typed in �′, so by the induction hypothesis, we know that �� is
well-typed in ��′. Thus, by de�nition of well-typed substitution, ��′ is a valid search
context and �� ��′ is a valid standard context.
We �rst consider the case when z does not occur as the �rst argument in a tuple in

�. Since � is well-typed in �′; ((z1 :A1; : : : ; zn :An); z; B), we know that ��′; ((z1 : �A1;
: : : ; zn : �An); z; �B) is a valid search context. Thus, by de�nition, ��′; ∃z : �(∀z1 :A1 : : :
∀zn :An:B) is a valid standard context. By Lemma 5, this context is the same as
�� ��′; ∃z : �(∀z1 :A1 : : :∀zn :An:B). We must show that �� is well-typed in ��′; ∃z : ∀z1 :A1
: : :∀zn :An:B. This follows if we can show that �� ��′; ∃z : ��(∀z1 :A1 : : :∀zn :An:B) is a
valid context. This follows from the valid standard context above and the fact that �
and �� are the same when applied to terms.
If there is a tuple 〈z; �;M 〉 in �, then from the fact that � is well-typed in �′; e,

we know that ��′; �e is a valid search context, from which it follows that ��′; � is
a valid search context. Thus, ��′; �� is a valid standard context. We also know that
��′; �� ` M : �(∀z1 :A1 : : :∀zn :An:B) holds. The tuple 〈z; ��;M 〉 is in ��, so we must show
that �� ��′; �� is a valid context. By Lemma 5, this is the same context as ��′; �� which we
have shown to be valid. We must also show that �� ��′; ��� ` M : ��(∀z1 :A1 : : :∀zn :An:B)
holds. Note that �� ��′ is the same as ��� ���′ by Lemma 5, which is the same as �� ��′,
which again by Lemma 5, is the same as ��′. Also ��� is ��. From these equivalences,
and the fact that � and �� are the same when applied to terms, the above judgment is
equivalent to ��′; �� ` M : �(∀z1 :A1 : : :∀zn :An:B) which we have shown to hold.
We introduce a weaker notion of well-typed substitution restricted to the normal

form of a context. A substitution � is ��-well-typed in � if ��(��) is a valid context,
for every tuple 〈z; �;M 〉 ∈ �, either z does not occur in � or if it occurs, � has the
form �′; ((z1 :A1; : : : ; zn :An); z; B); �′′, both M and �(∀z1 :A1 : : :∀zn :An:B) have normal
forms in ��(��′; ��), and ��(��′; ��) ` ��(M) : ��(�(∀z1 :A1 : : :∀zn :An:B)) holds.

Lemma 7. Let � be a valid search context and let � be a substitution. If � is well-
typed in �; then � is ��-well-typed in �.

210 A. Felty / Theoretical Computer Science 232 (2000) 187–229

Proof. This theorem follows directly from the de�nition of well-typed substitution and
Lemma 2.

The next four lemmas follow directly from Lemmas 5–7, and properties in [10]. We
give the proof of Lemma 10 only.

Lemma 8. Let � be a valid search context, � a substitution, and P and Q two
terms such that �� ` P :Q. If � is well-typed in �; then �� is a valid context and
�� ` �P : �Q. If � is ��-well-typed in �; then ��(��) is a valid context and ��(��) `
��(�P) : ��(�Q).

The composition of two substitutions � and �, denoted � ◦ �, is the union of the set
of triples 〈z; ��; �M 〉 such that 〈z; �;M 〉 ∈ �, and the set of triples 〈z; �;M 〉 such that
〈z; �;M 〉 ∈ � and z is does not occur as the �rst element of a triple in �.

Lemma 9. Let � and � be two substitutions and let � be a search context. Then
(� ◦ �)�= ���.

Lemma 10. Let � be a valid search context and let � and � be two substitutions.
1. If � is well-typed in � and � is well-typed in ��; then � ◦ � is well-typed in �.
2. If � is ��-well-typed in � and � is ��-well-typed in the normal form of ��; then
� ◦ � is ��-well-typed in �.

Proof. Assume that � is well-typed in � and � is well-typed in ��. Then ��� is a valid
context, and so by the equivalence of Lemma 9, (�◦�)� is a valid context. Every tuple
in �◦� either comes from � or �. We �rst consider tuples from �. Let 〈z; �;M 〉 be such
a tuple. Then 〈z; ��; �M 〉 is in �◦�. If � has the form �′; ((z1 : A1; : : : ; zn : An); z; B); �′′,
we must show that

(� ◦ �)�′; �� ` �M : (� ◦ �)(∀z1 : A1 : : :∀zn : An:B): (1)

Since � is well-typed in �, we know that

��′; �� ` M : �(∀z1 : A1 : : :∀zn : An:B): (2)

We know that � is well-typed in �� and by de�nition of substitution, ��′; � is a
subcontext of ��. Thus, � is well-typed in ��′; �. So from (2) and Lemma 8, we
know that

���′; �� ` �M : ��(∀z1 : A1 : : :∀zn : An:B)
which by Lemma 9 is equivalent to (1) and we have our result. We now con-
sider tuples from �. Let 〈z; �;M 〉 be such a tuple. By de�nition of composition, we
know that this tuple is in � ◦ � and that z is not bound by �. If � has the form
�′; ((z1 : A1; : : : ; zn : An); z; B); �′′, we must show that

(� ◦ �)�′; �� ` M : (� ◦ �)(∀z1 : A1 : : :∀zn : An:B): (3)

A. Felty / Theoretical Computer Science 232 (2000) 187–229 211

Since z is not bound by �, we know that �� has the form ��′; ((z1 : �A1; : : : ; zn : �An);
z; �B); ��′′. Since � is well-typed in ��, we know that ���′; �� ` M : ��(∀z1 : A1 : : :
∀zn : An:B), which by Lemma 9 is equivalent to (3) and we have our result.
For the case when � is ��-well-typed in � and � is ��-well-typed in the normal

form of ��, the proof is similar and also relies on Lemmas 1 and 5.

Given valid search context �, a substitution � is said to be a solution to � if � is
��-well-typed in � and ��(��) is a success context. A solution is normal if it binds
exactly the existential variables of � and for every tuple 〈z; �;M 〉 such that � has the
form �′; ((z1 : A1; : : : ; zn : An); z; B); �′′, we have that � is empty and M is normal in
��′. For an arbitrary solution � to a context �, we obtain the normal form of � from �
as follows: remove all tuples 〈z; �;M 〉 such that z is not an existential variable in �; for
all other tuples 〈z; �;M 〉 ∈ � such that � has the form �′; ((z1 : A1; : : : ; zn : An); z; B); �′′,
replace this tuple with 〈z; 〈〉; M ′〉 where M ′ is the normal form of M in ��′.

Lemma 11. Let � be a valid search context and let � be a solution to �. Let �′ be
the normal form of �. Then �′ is a normal solution to �.

The remaining lemmas and their proofs follow fairly closely the proof of soundness
in [10]. The main di�erences are that we must prove additional cases for the SETVAR

operation and the cases for INTRO and BACKCHAIN are slightly modi�ed because of the
use of search contexts.

Lemma 12. Let � be a normal valid search context of the form �′; ((z1 : A1; : : : ;
zn : An); z; C); �′′. Let {〈z; �;M 〉} be the result of applying a search operation to �.
Then �′; � is a valid search context.

Proof. Let �′ be the single item context ((z1 : A1; : : : ; zn : An); z; C). Since � is a valid
search context, �′ and �′; �′ are valid search contexts, and thus ��′ and ��′; ��′ are valid
standard contexts. To show that �′; � is valid, we need to show that ��′; �� is a valid
standard context.
For the SETVAR case, � is empty and we have our result.
For the INTRO case, C has the form ∀x : A:B, M is some new variable z′ and �

is ((z1 : A1; : : : ; zn : An; x : A); z′; B). Since ��′ is the same as �� up to renaming of the
existential variable and ��′; ��′ is valid, we have our result.
For the BACKCHAIN case, there is a declaration w : ∀y1 :Q1 : : :∀yq :Qq:B with q¿0

which either occurs in �′ or w is one of z1; : : : ; zn. �� is

∃h1 : ∀�zn : �An:Q1;
∃h2 : ∀�zn : �An:[h1z1 : : : zn=y1]Q2;

...

212 A. Felty / Theoretical Computer Science 232 (2000) 187–229

∃hq : ∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq;
∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B = ∀�zn : �An:C:

From the de�nition of BACKCHAIN, we know that the following hold:

��′; z1 : A1; : : : ; zn : An ` C : s (1)

��′; z1 : A1; : : : ; zn : An ` ∀y1 :Q1 : : :∀yq :Qq:B : s
where s is Prop or Type. Thus, for i = 1; : : : ; n, there is a sort si, and for j = 1; : : : ; q,
there is a sort s′j such that the following hold:

��′; z1 : A1; : : : ; zi−1 : Ai−1 ` Ai : si (2)

��′; z1 : A1; : : : ; zn : An; y1 :Q1; : : : ; yj−1 :Qj−1 ` Qj : s′j (3)

��′; z1 : A1; : : : ; zn : An; y1 :Q1; : : : ; yq :Qq ` B : s (4)

For i=1; : : : ; q, let �i be the context containing the �rst i elements of ��. We prove by
induction on q that ��′; �q is valid. If q is 0, �q is empty and we are done. Otherwise
assume that ��′; �q−1 is valid. Since ��′; z1 : A1; : : : ; zn : An is valid, by thinning we know
that ��′; �q−1; z1 : A1; : : : ; zn : An is valid. Thus, for i=1; : : : ; q−1, by Q-INIT we have that

��′; �q−1; z1 : A1; : : : ; zn : An ` hi : ∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hi−1z1 : : : zn=yi−1]Qi:
(5)

From (5), by repeated applications of APP, for i=1; : : : ; q− 1, we get
��′; �q−1; z1 : A1; : : : ; zn : An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi−1z1 : : : zn=yi−1]Qi:

(6)

From (2) with i=1; : : : ; n, (3), and thinning, we get

��′; �q−1; z1 : A1; : : : ; zi−1 : Ai−1 ` Ai : si (7)

��′; �q−1; z1 : A1; : : : ; zn : An; y1 :Q1; : : : ; yq−1 :Qq−1 ` Qq : s′q: (8)

From (6) with i=1, (8), and Lemma 4, we obtain

��′; �q−1; z1 : A1; : : : ; zn : An;

y2 : [h1z1 : : : zn=y1]Q2; : : : ; yq−1 : [h1z1 : : : zn=y1]Qq−1 ` [h1z1 : : : zn=y1]Qq : s′q:
By repeated applications of Lemma 4 and (6) with i=2; : : : ; q− 1, we obtain

��′; �q−1; z1 : A1; : : : ; zn : An ` [h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq : s′q: (9)

From (9), (7), and repeated applications of PROD, we can conclude

��′; �q−1 ` ∀�zn : �An[h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq : s′q
from which we can conclude by an application of Q-INTRO that ��′; �q is valid.

A. Felty / Theoretical Computer Science 232 (2000) 187–229 213

It remains to show that the constraint is well-typed in ��′; �q. By repeated applications
of PROD from (1) and (2), it follows that

��′ ` ∀�zn : �An:C : s: (10)

By thinning from (2), (4), and (10), the following hold:

��′; �q; z1 : A1; : : : ; zi−1 : Ai−1 ` Ai : si (11)

��′; �q ` ∀�zn : �An:C : s (12)

��′; �q; z1 : A1; : : : ; zn : An; y1 :Q1; : : : ; yq :Qq ` B : s (13)

Since ��′; �q is valid, we now know that (6) holds for i=1; : : : ; q with �q replacing
�q−1. Thus by repeated applications of Lemma 4 from (13) using this new version of
(6) with i=1; : : : ; q, we obtain the following:

��′; �q; z1 : A1; : : : ; zn : An ` [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B : s (14)

By repeated applications of PROD from (11) and (14), followed by a single application
of EQ-INTRO using (12), we get the desired result.

Lemma 13. Let � be a normal valid search context of the form �′; ((z1 : A1; : : : ;
zn : An); z; C); �′′. Let {〈z; �;M 〉} be the result of applying a search operation to �.
Then ��′; �� ` M : ∀z1 : A1 : : :∀zn : An:C holds.

Proof. For the SETVAR case, C is a set type of the form ∀x1 :C1 : : :∀xp :Cp:Prop with
p¿ 0, �� is empty, and M has the form ��zn : �An:Q′

1 ∩ · · · ∩Q′
q where q¿0 and for

i=1; : : : ; q; Q′
i is obtained from some formula Pi by an application of rules 1,2,3,4,

or 5 followed by 0 or more applications of rule 6 of Fig. 5. We must show that
��′ ` ��zn : �An:Q′

1 ∩ · · · ∩Q′
q : ∀�zn : �An:∀�xp : �Cp:Prop holds. This holds if by applications

of ABS and the de�nition of ∩, for i=1; : : : ; q, the following holds:
��′; z1 : A1; : : : ; zn : An ` Q′

i : ∀�xp : �Cp:Prop:
(It is straightforward to show that the left premises of this series of applications
of ABS hold, and also that if the above judgments hold then ��′; z1 : A1; : : : ; zn : An `
Q′
1 ∩ · · · ∩Q′

q : ∀�xp : �Cp:Prop holds.) For each i, we proceed by induction on the num-
ber k of applications of rule 6. In the case where k =0, then Q′

i was obtained from
Pi by a single application of one of the rules 1,2,3,4, or 5. Because � is valid, we
know that ��′ ` z : ∀�zn : �An:∀�xp : �Cp:Prop holds and that the context �′; z1 : A1; : : : ; zn : An
is valid. By thinning, we get ��′; z1 : A1; : : : ; zn : An ` z : ∀�zn : �An:∀�xp : �Cp:Prop and by
repeated applications of APP, we can conclude

��′; z1 : A1; : : : ; zn : An ` zz1 : : : zn : ∀x1 :C1 : : :∀xp :Cp:Prop: (1)

We show the case when Q′
i was obtained from rule 2. Similar (and simpler) reasoning

from the de�nition of the SETVAR operation and the provisos in Fig. 5 can be used to
show that the cases for rules 1,3,4, and 5 hold.

214 A. Felty / Theoretical Computer Science 232 (2000) 187–229

If Q′
i was obtained from rule 2, then from the fact that the provisos hold, there is

some j; r with 06j¡p and j + r=p such that (1) can be rewritten as

��′; z1 : A1; : : : ; zn : An ` zz1 : : : zn : ∀x1 :C1 : : :∀xj :Cj:Cj+1→ · · · →Cj+r→Prop:

(2)

Pi has the form 〈x1; : : : ; xj; f1x1 : : : xp′ ; : : : ; frx1 : : : xp′〉 ∈ zz1 : : : zn→P′x1 : : : xp′ for some
p′ such that p′ ¿ j and Q′

i has the form

{〈x1; : : : ; xj; w1; : : : ; wr〉 |
∀xj+1 :Dj+1 : : :∀xp′ :Dp′ :w1 = Cj+1f1x1 : : : xp′ → · · · →wr = Cj+rfrx1 : : : xp′

→P′x1 : : : xp′}

for some terms Dj+1; : : : ; Dp′ . We can prove that this term has type ∀x1 :C1 : : :∀xj :Cj:
Cj+1→ · · · →Cj+r→Prop in context ��′; z1 : A1; : : : ; zn : An if (by unfolding of the set
notation and applications of ABS and PROD in a backward direction) we can prove that
the following judgment holds. (Again, the left premises of the applications of ABS and
PROD follow easily.)

��′; z1 : A1; : : : ; zn : An; x1 :C1; : : : ; xj :Cj; w1 :Cj+1; : : : ; wr :Cj+r ; xj+1 :Dj+1; : : : ;

xp′ :Dp′ ` w1 =Cj+1 f1x1 : : : xp′ → · · · →wr =Cj+r frx1 : : : xp′ →P′x1 : : : xp′ :Prop

This follows directly from the types of =Ci for i= j + 1; : : : ; j + r, the types given in
the provisos of P′; f1; : : : ; fr , and applications of PROD.
For the induction case, when k ¿ 0, Q′

i has the form {〈y1; : : : ; yq′〉 | (∃�w :C′:Q′)}
and we must show that

��′; z1 : A1; : : : ; zn : An ` {〈y1; : : : ; yq′〉 | (∃�w :C′:Q′)} : ∀x1 :C1 : : :∀xp :Cp:Prop (3)

holds under the assumption that

��′; z1 : A1; : : : ; zn : An ` {〈y1; : : : ; yq′〉 |Q′} : ∀x1 :C1 : : :∀xp :Cp:Prop (4)

holds. Note that for this judgment to be derivable, it must be the case that q′6p.
Variables can be renamed so that y1; : : : ; yq′ are the same variables as x1; : : : ; xq. Then
(3) follows from (4), the type of ∃, and the fact that according to the provisos in Fig. 5,
w does not occur free elsewhere in ��′.
For the INTRO case, C has the form ∀x : A:B, M is some new variable z′ and �� is

∃z′ : ∀�zn : �An:∀x : A:B. Then directly by Q-INIT, ��′; �� ` z′ : ∀�zn : �An:∀x : A:B holds.
For the BACKCHAIN case, there is a declaration w : ∀y1 :Q1 : : :∀yq :Qq:B with q¿0

which either occurs in �′ or w is one of z1; : : : ; zn. The term M is ��zn :

A. Felty / Theoretical Computer Science 232 (2000) 187–229 215

�An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) and �� is

∃h1 : ∀�zn : �An:Q1;
∃h2 : ∀�zn : �An:[h1z1 : : : zn=y1]Q2;

...

∃hq : ∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq;
∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B= ∀�zn : �An:C:

We must show that

��′; �� ` ��zn : �An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) :∀�zn : �An:C (5)

holds. From the de�nition of BACKCHAIN and the fact that � is valid, we know that

��′; z1 : A1; : : : ; zn : An ` C : s
��′; z1 : A1; : : : ; zn : An ` w : ∀y1 :Q1 : : :∀yq :Qq:B

holds where s is either Prop or Type. By Lemma 12, we know that ��′; �� is a valid
context, so by thinning, the following hold:

��′; ��; z1 : A1; : : : ; zn : An ` C : s (6)

��′; ��; z1 : A1; : : : ; zn : An ` w : ∀y1 :Q1 : : :∀yq :Qq:B: (7)

From (6), by applications of PROD (where the left premises are easy to prove as before),
we can conclude

��′; �� ` ∀�zn : �AnC : s: (8)

Since ��; �� is valid, we also know that both sides of the constraint in �� have the same
type. Thus, from (8), we know

��′; �� ` ∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B : s (9)

holds. Also, for i=1; : : : ; q, the following hold:

��′; ��; z1 : A1; : : : ; zn : An ` hiz1 : : : zn : [h1z1 : : : zn=y1; : : : ; hi−1z1 : : : zn=yi−1]Qi (10)

By repeated applications of APP from (7) and (10)

��′; ��; z1 : A1; : : : ; zn : An ` w(h1z1 : : : zn) : : : (hqz1 : : : zn) :

[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B

216 A. Felty / Theoretical Computer Science 232 (2000) 187–229

holds, and by repeated applications of ABS where the left premises are easy to prove
as before

��′; �� ` ��zn : �An:w(h1z1 : : : zn) : : : (hqz1 : : : zn) :
∀�zn : �An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]B (11)

holds. Thus by an application of CONV from (8), (9), (11), and the constraint in ��, we
can conclude that the desired result (5) holds.

Lemma 14. Let � be a normal valid search context of the form �′; ((z1 : A1; : : : ;
zn : An); z; C); �′′. Let {〈z; �;M 〉} be the result of applying a search operation to �.
Let � be the substitution containing the single tuple 〈z; �;M 〉. Then � is well-typed
in �.

Proof. The proof is by induction on the number of elements in �′′. Note that ��′ is
just �′. Let �′ be the context containing the single element ((z1 : A1; : : : ; zn : An); z; C).
For the base case, when �′′ is empty, we have to show that �(�′; �′) is valid and

that ��′; �� ` M : �(∀�zn : �An:C) holds. By the de�nition of substitution, �(�′; �′) is
simply ��′; �. Since ��′ is �′, we have to show that �′; � is valid. This follows by
Lemma 12. Thus �(�′; �′) is valid. Since ��′ is �′, it is also the case that ��′ is
��′. Also, since � is valid, z does not occur free in A1; : : : ; An; C, so �(∀�zn : �An:C) is
∀�zn : �An:C. Thus, we have to show ��′; �� ` M : ∀�zn : �An:C. This follows by Lemma 13.
If �′′ is non-empty, it has the form �′′; e. Thus, �� is �′; �; ��′′; �(e). To show

that � is well-typed in �, we must show that �′; �; ��′′; �(e) is a valid search con-
text, or equivalently that ��′; ��; ��′′; �(e) is a valid standard context. By the induction
hypothesis, we know that � is well-typed in �′; �′; �′′ and thus �′; �; ��′′ is a valid
context.
We show the case when e is an existential triple of the form ((y1 :B1; : : : ; ym :Bm);

y; D) where m¿0. The others are similar. Note that �� is ��′; ��′; ��
′′
; ∃y : ∀ �ym : �Bm:D and

that �� is ��′; ��; ��′′; ∃y : �(∀ �ym : �Bm:D). Note that the Q-INTRO rule was the last rule
in a proof that �� is valid and thus ��′; ��′; ��′′ ` ∀ �ym : �Bm:D : s holds where s is Prop
or Type. Since � is well-typed in �′; �′; �′′, by Lemma 8 we know that ��′; ��; ��′′ `
�(∀ �ym : �Bm:D) : s and thus the standard context ��′; ��; ��′′; ∃y : �(∀ �ym : �Bm:D) is valid,
and hence so is the corresponding search context �′; �; ��′′; ((y1 : �B1; : : : ; ym : �Bm);
y; �D).

Let � be a normal valid search context and let �1; : : : ; �n be a derivation of �.
The normal form of �n ◦ · · · ◦ �1 is called the substitution denoted by the derivation
�1; : : : ; �n.

Lemma 15. Let � be a valid search context and let �1; : : : ; �n be a derivation of �.
Then the substitution denoted by the derivation �1; : : : ; �n is a solution to �.

Proof. We �rst prove that �n ◦ · · · ◦�1 is ��-well-typed in � by induction on n. If n is
0, then �n ◦ · · · ◦�1 is empty and we only need to show that ��(�n ◦ · · · ◦�1�) is valid.

A. Felty / Theoretical Computer Science 232 (2000) 187–229 217

Note that �n ◦ · · · ◦ �1� is �. Since � is valid, by Lemma 2 we can conclude that its
normal form is valid. For the induction case, we assume that �n−1 ◦ · · · ◦�1 is ��-well-
typed in �. Thus ��(�n−1 ◦ · · ·◦�1�) is valid. Since �n is the result of applying one of
the search operations to this context, by Lemma 14, we know that �n is well-typed in
��(�n−1 ◦· · ·◦�1�), and by Lemma 7, it is ��-well-typed in ��(�n−1 ◦· · ·◦�1�). Since
�n−1 ◦ · · · ◦ �1 is ��-well-typed in � and �n is ��-well-typed in ��(�n−1 ◦ · · · ◦ �1�),
by Lemma 10, �n ◦ · · · ◦ �1 is ��-well-typed in �.
By the de�nition of derivation, ��(�n : : : �1�) is a success context. By Lemma 9,

this is the same context as ��(�n ◦ · · · ◦ �1�). Since ��(�n ◦ · · · ◦ �1�) is a success
context and �n ◦ · · · ◦ �1 is ��-well-typed in �, we can conclude that �n ◦ · · · ◦ �1 is a
solution to �. By Lemma 11, its normal form is also a solution.

Theorem 16 (Soundness). Let � be a normal valid CC context (without existential
variables or constraints) and let A be a normal term of type Prop or Type in �. Let
�′ be the search context �; (〈〉; z; A). If there exists a derivation of �′; then there
exists a term M such that � ` M :A holds in CC.

Proof. Let � be the substitution denoted by a derivation of �′. Since � is normal,
it contains a single tuple of the form 〈z; 〈〉; M 〉 for some term M in normal form.
By Lemma 15, � is a solution, and thus by de�nition it is ��-well-typed in �′. By
de�nition of ��-well-typed, we know that ��(��) ` ��(M) : ��(�A) holds. Note that
�� is � and recall that � is normal. Thus ��(��) is ��. Since � contains no existential
triples or constraint triples, �� is �. Also, since M is normal ��(M) is M . In addition,
since � is valid and A is well-typed in �, we know that z does not occur in A and thus
�A is A. Thus, since A is normal, we have that ��(�A) is A. So the above judgment
is equivalent to � ` M :A and we have our result.

3.3. Maximal solutions for set variables

Let � be a normal valid search context of the form �′; (�; z; A); �′′ such that �′ does
not contain any existential triples, � has the form z1 : A1; : : : ; zn : An for some n¿0, and
A is a set type in �′; �. Let � be a substitution and M a term such that � contains
the single tuple 〈z; 〈〉; ��zn : �An:M 〉 and � is well-typed in �. M is a maximal solution
for zz1 : : : zn in � if the normal form of �� has a solution and for any substitution �′

containing a single tuple of the form 〈A; 〈〉; ��zn : �An:N 〉, it is the case that whenever
the following hold:
1. �′ is well-typed in �;
2. the normal form of �′� has a solution;
3. there is a term P such that ��′; � ` P :M ⊆N holds;
then there is always a term Q such that ��′; � ` Q :M =S N holds. Note that it is built
into this de�nition that ��′; � ` M :A and ��′; � ` N :A hold.
Theorems 17–21 justify the maximal solutions given in Fig. 5, while Theorem 22

justi�es taking the intersection of maximal solutions of di�erent occurrences of a set

218 A. Felty / Theoretical Computer Science 232 (2000) 187–229

variable as done in the SETVAR operation in Section 3. The proofs are similar to the
proofs in [3] but require extensions for our setting. We give the proof of Theorem 17
for illustration and sketch the others.

Theorem 17. Let � and �′ be contexts of the form z1 : A1; : : : ; zn : An and x1 :C1; : : : ;
xp :Cp; respectively; where n¿0 and p¿0. Let � be a normal valid search context
of the form

�′; (�; z; A); ((�;�′); h; 〈x1; : : : ; xp〉 ∈ zz1 : : : zn→Px1 : : : xp)

such that �′ does not contain any existential or constraint triples; A is a set type
of the form ∀x1 :C1 : : :∀xp :Cp:Prop; the judgment ��′; � ` P :A holds; and the terms
in �′ contain no free occurrences of z. Then {〈x1; : : : ; xp〉 |Px1 : : : xp} is a maximal
solution for zz1 : : : zn in �.

Proof. Let � and � be the substitutions containing the single tuples

〈z; 〈〉; ��zn : �An:{〈x1; : : : ; xp〉 |Px1 : : : xp}〉
and

〈h; 〈〉; ��zn : �An:� �xp : �Cp:�x :Px1 : : : xp:x; 〉
respectively. We �rst show that � is a solution to the normal form of ��.
First note that ��(�(��(��))) is ��(�′), which is just �′ since � (and therefore

�′) is normal. �′ is a success context since it is valid and contains no existential
or constraint triples. It remains to show that � is ��-well-typed in ��(��). Note that
��(��) is

��(�′; ((�;�′); h; 〈x1; : : : ; xp〉 ∈ {〈x1; : : : ; xp〉 |Px1 : : : xp}→Px1 : : : xp))

which after expanding de�nitions and normalizing, results in a context of the form

�′; ((�;�′); h; Px1 : : : xp→Px1 : : : xp):

We must show that

��(��′) ` ��(��zn : �An:� �xp : �Cp:�x :Px1 : : : xp:x) :
��(∀�zn : �An:∀�xp : �Cp:Px1 : : : xp→Px1 : : : xp)

(1)

holds. It is straightforward to construct a proof of

�′ ` (��zn : �An:� �xp : �Cp:�x :Px1 : : : xp:x) : (∀�zn : �An:∀�xp : �Cp:Px1 : : : xp→Px1 : : : xp): (2)

From the fact that ��(��′) is �′ and ��-convertibility, it follows from (2) that (1)
holds. From (1) and the fact that ��� is �′ which we know to be in normal form and
valid, we have that � is ��-well-typed in the normal form of ��. Since �′ is also a
success context, we have that � is a solution to the normal form of ��.

A. Felty / Theoretical Computer Science 232 (2000) 187–229 219

We must now show that {〈x1; : : : ; xp〉 |Px1 : : : xp} is maximal. Assume that there are
terms N; P′ and substitution �′ containing the single tuple 〈z; 〈〉; ��zn : �An:N 〉 such that
�′ is well-typed in �, the normal form of �′� has a solution, and the judgment

��′; � ` P′ : {〈x1; : : : ; xp〉 |Px1 : : : xp}⊆N (3)

holds. We must show that there is a term Q such that

��′; � ` Q : {〈x1; : : : ; xp〉 |Px1 : : : xp} =S N
or equivalently

��′; � ` Q : ({〈x1; : : : ; xp〉 |Px1 : : : xp}⊆N) ∧ (N ⊆{〈x1; : : : ; xp〉 |Px1 : : : xp}) (4)

holds. Note that z does not occur free in �, �′, or P. Thus ��(�′�) has the form

�′; ((�;�′); h; 〈x1; : : : ; xp〉 ∈N→Px1 : : : xp):

Since ��(�′�) has a solution, by Lemma 11, we know it has a normal solution, say
�′, containing a single tuple of the form 〈h; 〈〉; Q′〉 where Q′ is a term in normal form.
Since �′ is a solution, we know that it is ��-well-typed in ��(�′�), and thus

��′ ` Q′ : ∀�zn : �An:∀�xp : �Cp:〈x1; : : : ; xp〉 ∈N→Px1 : : : xp;

holds. This judgment is equivalent to

��′ ` Q′ : ∀�zn : �An:∀�xp : �Cp:〈x1; : : : ; xp〉 ∈N→〈x1 : : : xp〉 ∈ {〈x1; : : : ; xp〉 |Px1 : : : xp}
which is equivalent to

��′ ` Q′ : ∀�zn : �An:N ⊆{〈x1; : : : ; xp〉 |Px1 : : : xp}:
Hence Q′ must have the form ��zn : �An:Q′′ where Q′′ is in normal form and the following
also holds:

��′; � ` Q′′ :N ⊆{〈x1; : : : ; xp〉 |Px1 : : : xp}: (5)

Using (3) and (5), we can take Q in (4) to be

�C :Prop:�f : ({〈x1; : : : ;xp〉 |Px1 : : : xp}⊆N)
→ (N ⊆{〈x1; : : : ; xp〉 |Px1 : : : xp)}→C:fP′Q′′

and we have our result.

Theorem 18. Let � and �′ be contexts of the form z1 : A1; : : : ; zn : An and x1 :C1; : : : ;
xj :Cj respectively; where n; j ≥ 0. Let � be a normal valid search context of the
form

�′; (�; z; B); ((�;�′); h; 〈x1; : : : ; xj; f1x1 : : : xp; : : : ; frx1 : : : xp〉
∈ zz1 : : : zn→P′x1 : : : xp)

220 A. Felty / Theoretical Computer Science 232 (2000) 187–229

for some p¿j and r¿0 such that �′ does not contain any existential or constraint
triples; B is a set type of the form ∀x1 :C1 : : :∀xj :Cj:Cj+1→ · · · →Cj+r→Prop; the
terms in �′ contain no free occurrences of z; and the following judgments hold:

��;� ` P′ : ∀x1 :C1 : : :∀xj :Cj:∀xj+1 :Dj+1 : : :∀xp :Dp:Prop
��;� ` fi : ∀x1 :C1 : : :∀xj :Cj:∀xj+1 :Dj+1 : : :∀xp :Dp:Cj+i for i=1; : : : ; r:

Then
{〈x1; : : : ; xj; w1; : : : ; wr〉 | ∀xj+1 :Dj+1 : : :∀xp :Dp:

w1 = Cj+1f1x1 : : : xp→ · · · →wr = Cj+rfrx1 : : : xp→P′x1 : : : xp}
is a maximal solution for zz1 : : : zn in �.

Proof. Let � and � be the substitutions containing the single tuples

〈z; 〈〉; � �zn : �An:{〈x1; : : : ; xj; w1; : : : ; wr〉 |
∀xj+1 :Dj+1 : : :∀xp :Dp:w1 = Cj+1f1x1 : : : xp→ · · · →wr

=Cj+r frx1 : : : xp→P′x1 : : : xp}〉
〈h; 〈〉; ��zn : �An:� �xj : �Cj:�f : (∀xj+1 :Dj+1 : : :∀xp :Dp:
f1x1 : : : xp= Cj+1f1x1 : : : xp→ · · · →frx1 : : : xp =Cj+r frx1 : : : xp→P′x1 : : : xp):

fxj+1 : : : xp(�P :Cj+1→Prop:�x :P(f1x1 : : : xp):x) : : :

(�P :Cj+r→Prop:�x :P(frx1 : : : xp):x)〉
respectively. As in the proof of Theorem 17, we can show that � is a solution to the
normal form of ��, and that the solution for zz1 : : : zn is maximal.

Theorem 19. Let � and �′ be contexts of the form z1 : A1; : : : ; zn : An and x1 :C1; : : : ;
xj :Cj respectively; where n; j¿0. Let � be a normal valid search context of the form

�′; (�; z; B); ((�;�′); h; 〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈ zz1 : : : zn→Q)

for some r¿0 such that �′ does not contain any existential or constraint triples; B
is a set type of the form ∀x1 :C1 : : :∀xj :Cj:Cj+1→ · · · →Cj+r→Prop; the judgment
��′; � ` Q :Prop holds; and the judgments ��′; �; �′ ` Mi :Cj+i hold for i=1; : : : ; r; and
the terms in �′ contain no free occurrences of z. Then {〈x1; : : : ; xj; w1; : : : ; wr〉 |w1 = Cj+1

M1→ · · · →wr = Cj+rMr→Q} is a maximal solution for zz1 : : : zn in �.

Proof. Let � and � be the substitutions containing the single tuples

〈z; 〈〉; ��zn : �An:{〈x1; : : : ; xj; w1; : : : ; wr〉 |w1 = Cj+1M1→ · · · →wr = Cj+rMr→Q}〉
〈h; 〈〉; ��zn : �An:� �xj : �Cj:�f : (M1 = Cj+1M1→ · · · →Mr = Cj+rMr→Q):

f(�P :Cj+1→Prop:�x :PM1:x) : : : (�P :Cj+r→Prop:�x :PMr:x)〉

A. Felty / Theoretical Computer Science 232 (2000) 187–229 221

respectively. As in the previous theorems, we can show that � is a solution to the
normal form of ��; and that the solution for zz1 : : : zn is maximal.

Theorem 20. Let � and �′ be contexts of the form z1 : A1; : : : ; zn : An and x1 :C1; : : : ;
xj :Cj respectively; where n; j¿0. Let � be a normal valid search context of the form

�′; (�; z; B); ((�;�′); h;¬(〈x1; : : : ; xj; M1; : : : ; Mr〉 ∈ zz1 : : : zn)

for some r¿0 such that �′ does not contain any existential or constraint triples; B
is a set type of the form ∀x1 :C1 : : :∀xj :Cj:Cj+1→ · · · →Cj+r→Prop; the judgments
��′; �; �′ ` Mi :Cj+i hold for i=1; : : : ; r; and the terms in �′ contain no free occur-
rences of z. Then {〈x1; : : : ; xj; w1; : : : ; wr〉 | ¬(w1 = Cj+1M1→ · · · →wr = Cj+rMr)} is a
maximal solution for zz1 : : : zn in �.

Proof. This theorem is an instance of Theorem 19 with ⊥ as an instance of Q.

Theorem 21. Let � be a context of the form z1 : A1; : : : ; zn : An where n¿0. Let � be
a normal valid search context of the form

�′; (�; z; A); (�; h; 〈N1; : : : ; Np〉 ∈ zz1 : : : zn)

for some p¿0 such that �′ does not contain any existential or constraint triples; A
is a set type of the form ∀x1 :C1 : : :∀xp :Cp:Prop; and for i=1; : : : ; p; the judgments
��′; � ` Ni : [N1=x1; : : : ; Ni−1=xi−1]Ci hold. Then {〈x1; : : : ; xp〉 | >} is a maximal solution
for zz1 : : : zn in �.

Proof. Let � and � be the substitutions containing the single tuples

〈z; 〈〉; ��zn : �An:{〈x1; : : : ; xp〉 | >}〉 and 〈h; 〈〉; ��zn : �An:�C :Prop:�x :C :x〉;

respectively. As in the previous theorems, we can show that � is a solution to the
normal form of ��. To show that the universal set {〈x1; : : : ; xp〉 | >} is maximal, we
simply show that for any set N , N ⊆{〈x1; : : : ; xp〉 | >}. The following is the judgment
stating this fact.

��′; � ` �x1 :C1 : : : �xp :Cp:�x′ :Nx1 : : : xp:�C :Prop:�x :C:x :
∀x1 :C1 : : :∀xp :Cp:Nx1 : : : xp→∀C :Prop:C→C

Theorem 22. Let � be a context of the form z1 : A1; : : : ; zn : An where n¿0. Let � be
a normal valid search context of the form

�′; (�; z; A); (�; h; P ∧ Q)

such that �′ does not contain any existential or constraint triples; A is a set type of
the form ∀x1 :C1 : : :∀xp :Cp:Prop for some p¿0; and ��′; ∃z : ∀�zn : �An:A; � ` P∧Q :Prop

222 A. Felty / Theoretical Computer Science 232 (2000) 187–229

holds. Let C′ and h′ be variables that do not occur in �; let �′ be the context
C′ :Prop; h′ :P→Q→C′; and let D1 and D2 be maximal solutions for A in

�′; (�; z; A); ((�;�′); h; P) and �′; (�; z; A); ((�;�′); h; Q);

respectively. Then D1 ∩D2 is a maximal solution for A in �.

Proof. Let �1 and �2 be the contexts �′; (�; z; A); ((�;�′); h; P) and �′; (�; z; A); ((�;
�′); h; Q), respectively. Let �1, �2, and � be the substitutions containing the single
tuples

〈z; 〈〉; ��zn : �An:D1〉; 〈z; 〈〉; ��zn : �An:D2〉; 〈z; 〈〉; ��zn : �An:D1 ∩D2〉;
respectively. Note that D1 ∩ D2 is an abbreviation for

�x1 :C1 : : : �xp :Cp:∀C′ :Prop:(D1x1 : : : xp→D2x1 : : : xp→C′)→C′:

Because D1 and D2 are maximal solutions for A in �1 and �2, respectively, we know
that there are terms M1 and M2 and substitutions �1 and �2 de�ned as follows:

〈h; 〈〉; ��zn : �An:�C′ :Prop:�h′ :P→Q→C′:M1〉
〈h; 〈〉; ��zn : �An:�C′ :Prop:�h′ :P→Q→C′:M2〉

respectively, such that �1 is a normal solution to the normal form of �1�1 and �2 is
a normal solution to the normal form of �2�2. Using these substitutions, it is straight-
forward to show that

〈h; 〈〉; � �zn : �An:�C′ :Prop:�h′ :P→Q→C′:h′M1M2〉:
is a solution to the normal form of ��.
The proof that D1 ∩D2 is maximal follows the same reasoning as the corresponding

proof in [3]. Since no extensions are needed to adapt this proof to our setting beyond
what already appears in the proof of Theorem 17, we omit the details.

4. A complete search procedure

To incorporate the full expressiveness of CC, we extend CC+ to Meta as de�ned in
[10]. This inference system includes all the rules for CC+ plus the following additional
rule where Extern is a new sort:

` � context

� ` Type :Extern (TYPE-EXTERN)

In addition, in the rules of Fig. 1, s2 in (PROD) can be Extern, and s in (INTRO), (Q-INTRO),
and (ABS) can also be Extern. In this section, validity of standard and search contexts
will be with respect to Meta.
The SETVAR, INTRO, and BACKCHAIN operations are su�cient for proving the examples

given in Section 1 as well as most of the examples in [3] and they are also the

A. Felty / Theoretical Computer Science 232 (2000) 187–229 223

ones implemented in our �Prolog implementation. We add the SPLIT, PROD, and POLY

operations below to obtain the SetVar+ procedure that is complete for the full CC.
As stated earlier, they add complications for directing search. For example, once POLY
becomes applicable, it is possible to apply it in�nitely many times.
With the addition of the three new operations, we no longer need SETVAR. The

procedure is complete without it. We leave it in because even in the context of a
complete procedure, it is useful for directing search towards �nding certain substitution
instances more quickly. The other operations are useful for the cases when SETVAR is
not enough. Since it is not needed, SETVAR does not appear in the proof of completeness
of SetVar+. Its soundness was already established in the previous section.
SPLIT operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An); z; xM1 : : :

Mm) a candidate triple in �, where m; n¿0, and �� ` xM1 : : : Mm : s holds where s is
Prop or Type. If there is a universal declaration w :Q such that either w is one of
z1; : : : ; zn or w :Q occurs to the left of ((z1 :A1; : : : ; zn :An); z; xM1 : : : Mm) in �, the judg-
ment ��; z1 :A1; : : : ; zn :An ` Q : s holds, Q has the form ∀y1 :Q1 : : :∀yq :Qq:yN1 : : : Np
(p; q¿0), and y is any existential variable in �, then let h1; : : : ; hq be variables that
do not occur in �. Let � be the context z1 :A1; : : : ; zn :An. Let �0 be the context

(�; h1; Q1);

(�; h2; [h1z1 : : : zn=y1]Q2);

...

(�; hq; [h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq):

Choose a j such that j¿0. For i=1; : : : ; j, let si be either Prop or Type. Let H1; : : : ; Hj,
K1; : : : ; Kj, hq+1; : : : ; hq+j be variables that do not occur in �. For i=1; : : : ; j, let �i be
the following context

(�;Hi; si);

(�;Ki; Hiz1 : : : zn→ s);

(�; L;∀u :Hiz1 : : : zn:Kiz1 : : : znu)
(�; hq+i ; Hiz1 : : : zn)

where if i=1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]yN1 : : : Np and if i¿1,
L is the term Ki−1z1 : : : zn(hq+i−1z1 : : : zn). Let �′ be the context

(�;Kjz1 : : : zn(hq+jz1 : : : zn); xM1 : : : Mm):

Let � be the context �0; �1; : : : ; �j; �′. Let � be the substitution

{〈z; �; � �zn : �An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)〉}:

224 A. Felty / Theoretical Computer Science 232 (2000) 187–229

PROD operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An); z; s′) a
candidate triple in �, where n¿0 and s′ is Type or Extern. Let s be the sort such
that � ` s : s′. Let � be the substitution {〈z; 〈〉; � �zn : �An:s〉}.
POLY operation. Let � be a valid search context and ((z1 :A1; : : : ; zn :An); z; s′) a

candidate triple in �, where n¿0, and s′ is any sort. Let s be Prop or Type and let
� be the context z1 :A1; : : : ; zn :An. Let h and k be variables that do not occur in �.
Let � be the context

(�; h; s); (�; k; hz1 : : : zn→ s′):

Let � be the substitution {〈z; �; � �zn : �An:∀u : hz1 : : : zn:kz1 : : : znu〉}.
The SPLIT operation can be viewed as an extension of BACKCHAIN. If j were allowed

to be 0 in this operation, the operation essentially reduces to BACKCHAIN. We illustrate
its use by returning to the example from Section 3.1 for which INTRO and BACKCHAIN

were not su�cient. The following intermediate context appeared in the example as
context (12).

�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); M ′
1; Px); ((x :Nat; h :A0x); M

′
2; Qx) (1)

Consider the second existential triple as a candidate triple for the SPLIT operation. The
universal declaration used in this operation will be h :A0x from the local context. We
choose j to be 1 and s1 to be Prop. The context �0 of this operation is empty in this
case and �1 is as follows

�1 := ((x :Nat; h :A0x); H1;Prop);

((x :Nat; h :A0x); K1; H1xh→Prop);

((x :Nat; h :A0x); A0x; ∀u :H1xh:K1xhu);
((x :Nat; h :A0x); h1; H1xh)

where H1; K1; h1 are new variables. � is obtained by adding ((x :Nat; h :A0x); K1xh
(h1xh); Px) to the end of �1. The substitution � generated by this operation is

� : = {〈M ′
1; �; �x :Nat:�h :A0x:h(h1xh)〉}:

Applying � to (1), we get

�; ((x :Nat); A0;Prop); ((x :Nat; h :A0x); H1;Prop);

((x :Nat; h :A0x); K1; H1xh→Prop); ((x :Nat; h :A0x); A0x; ∀u :H1xh:K1xhu);
((x :Nat; h :A0x); h1; H1xh); ((x :Nat; h :A0x); K1xh(h1xh); Px);

((x :Nat; h :A0x); M ′
2; Qx):

Note the constraint which equates A0x with the non-atomic type ∀u :H1xh:K1xhu. The
POLY operation must be used to obtain an instantiation for A0 that can lead to a context
in which this constraint is satis�ed. We illustrate by going back to the context (1), and

A. Felty / Theoretical Computer Science 232 (2000) 187–229 225

considering the �rst existential triple as the candidate triple. Let s of POLY be Prop.
We obtain the following context and substitution:

� := ((x :Nat); h′;Prop); ((x :Nat); k; (h′x→Prop))

� := {〈A0; �; �x :Nat:∀u : h′x:kxu〉}
where h′ and k are new variables. Applying � to (1), we get

�; ((x :Nat); h′;Prop); ((x :Nat); k; (h′x→Prop));

((x :Nat; h : (∀u : h′x:kxu)); M ′
1; Px); ((x :Nat; h : (∀u : h′x:kxu)); M ′

2; Qx)

Note here that A0x has been replaced by the non-atomic type ∀u : h′x:kxu.
To prove correctness of SetVar+, we prove soundness by extending Theorem 16

for SetVar to the new operations, and we prove completeness relative to Dowek’s
procedure.

Theorem 23 (Soundness of SetVar+). Let � be a normal valid Meta context with-
out existential variables or constraints such that the types of universal variables in
declarations are Prop or Type but not Extern. Let A be a normal well-typed term in
�. Let �′ be the search context �; (〈〉; z; A). If there exists a derivation of �′; then
there exists a term M such that � ` M :A holds in CC.

Proof. The properties in Section. 3.2 about search contexts in CC+ also hold for search
contexts of Meta. We only need to extend Lemmas 12 and 13 with cases for SPLIT,
PROD, and POLY. Since these cases follow similarly to the cases already shown, we omit
the details. Once these lemmas are extended, Lemmas 14 and 15 and Theorem 16
follow directly for the extended search procedure.

To prove completeness we introduce Dowek’s procedure, which we call P. P op-
erates directly on Meta contexts. These contexts are restricted so that the types of
universal variables in declarations are Prop or Type but not Extern. We de�ne a
candidate declaration in a standard Meta context � to be an existential declaration
of the form ∃z : (∀z1 :A1 : : :∀zn :An:xM1 : : : Mp) where n; p¿0 and x is universal in
�; z1 :A1; : : : ; zn :An: Like SetVar+, at each step, a search operation is applied resulting
in a substitution. Note that since only variables in existential declarations can have
type Extern, if the procedure leads to a success context, all such variables will be
instantiated eliminating all occurrences of Extern and resulting in a valid CC context.
The procedure is de�ned by the three search operations given below. The �rst com-

bines INTRO, BACKCHAIN, and SPLIT, while the other two correspond directly to PROD and
POLY.
1. Let � be a valid Meta context and ∃z :P a candidate declaration in �, where P has
the form ∀z1 :A1 : : :∀zn :An:xM1 : : : Mm (m; n¿0) and � ` P : s holds where s is any
sort (including Extern). This operation applies if there is a universal declaration
w :Q such that either w is one of z1; : : : ; zn or w :Q occurs to the left of this

226 A. Felty / Theoretical Computer Science 232 (2000) 187–229

candidate declaration in �, Q has the form ∀y1 :Q1 : : :∀yq :Qq:yN1 : : : Np (p; q¿0),
and � ` Q : s holds. Let h1; : : : ; hq be variables that do not occur in �. Let �0 be
the context

∃h1 : ∀ �zn : �An:Q1;
∃h2 : ∀ �zn : �An:[h1z1 : : : zn=y1]Q2;

...

∃hq : ∀ �zn : �An:[h1z1 : : : zn=y1; : : : ; hq−1z1 : : : zn=yq−1]Qq:
Choose a j such that j¿0. For i=1; : : : ; j, let si be either Prop or Type. Let
H1; : : : ; Hj, K1; : : : ; Kj, hq+1; : : : ; hq+j be variables that do not occur in �. For i=1;
: : : ; j, let �i be the following context

∃Hi : ∀ �zn : �An:si;
∃Ki : ∀ �zn : �An:Hiz1 : : : zn→ s;

∀ �zn : �An:L= ∀ �zn : �An:∀u :Hiz1 : : : zn:Kiz1 : : : znu
∃hq+i : ∀ �zn : �An:Hiz1 : : : zn

where if i=1, L is the term [h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]yN1 : : : Np and if i¿1,
L is the term Ki−1z1 : : : zn(hq+i−1z1 : : : zn). If r=0, let �′ be the context

∀ �zn : �An:[h1z1 : : : zn=y1; : : : ; hqz1 : : : zn=yq]yN1 : : : Nn= ∀ �zn : �An:xM1 : : : Mm:
Otherwise, let �′ be the context

(∀ �zn : �An:Kjz1 : : : zn(hq+jz1 : : : zn)=∀ �zn : �An:x M1 : : : Mm):

Let � be the context �0; �1; : : : ; �j; �′. Let � be the substitution:

{〈z; �; � �zn : �An:w(h1z1 : : : zn) : : : (hq+jz1 : : : zn)〉}:
2. Let � be a valid search context and ∃z :P a candidate declaration in �, where P
has the form ∀z1 :A1 : : :∀zn :An:s′ (n¿0) and s′ is Type or Extern. Let s be the
sort such that � ` s : s′. Let � be the substitution {〈z; 〈〉; � �zn : �An:s〉}.

3. Let � be a valid search context and ∃z :P a candidate declaration in �, where P
has the form ∀z1 :A1 : : :∀zn :An:s′ (n¿0) and s′ is any sort. Let s be Prop or Type
and let � be the context

∃h : ∀ �zn : �An:s; ∃k : ∀ �zn : �An:hz1 : : : zn→ s′:

Let � be the substitution {〈z; �; � �zn : �An:∀u : hz1 : : : zn:kz1 : : : znu〉}.
To prove completeness of SetVar+, in the following lemma we show that every op-

eration that can be performed on a standard context in P has a corresponding operation
or set of operations on search contexts in SetVar+. The lemma is stated using standard

A. Felty / Theoretical Computer Science 232 (2000) 187–229 227

contexts. For a standard context �, when applying operations of SetVar+, � is viewed
as the context such that every existential declaration of the form ∃z :A is replaced by
(〈〉; z; A) and every constraint P=Q is replaced by (〈〉; P; Q).

Lemma 24. Let � be a valid Meta context such that the types of universal variables
in declarations are Prop or Type but not Extern. If � is the result of applying a
search operation in P; then it is either the case that subsequent operations to ��
always lead to a failure context or there is a series of operations in SetVar+ with
substitutions �1; : : : ; �n such that the normal forms of �� and (�1 ◦ · · · ◦ �n)� are the
same context.

Proof. Let 〈〈〉; z; Q〉 be the candidate declaration to which the operation in P is applied.
� has the form �′; 〈〈〉; z; Q〉; �′′. For the case when the operation applied is the �rst
operation of P, Q has the form

∀z1 :A1 : : :∀zn :An:xM1 : : : Mm:
Let � be the substitution resulting from the application of the �rst operation. In SetVar+,
we can �rst apply INTRO n times with substitutions �1; : : : ; �n where for i=1; : : : ; n, �i
is

{〈z′i−1; ((z1 :A1; : : : ; zi :Ai); z′i ; ∀zi+1 :Ai+1 : : :∀zn :An: xM1 : : : Mm)〉}
where z is z′0 and z

′
1; : : : ; z

′
n are new variables. We obtain the context

�′; ((z1 :A1; : : : ; zn :An); z′n; xM1 : : : Mm); �
′′:

We �rst consider the case when j of the �rst operation of P is 0. If x is w or an exis-
tential variable, then we apply BACKCHAIN in SetVar+ to obtain substitution �′ where the
context � in the tuple in � is the same as �� in �′. In particular, if �′ is the substitution
{〈z′n; �;M 〉} for some term M , then � is the substitution {〈z; ��;M 〉}. Note that ��′ is
{〈z′n; ��;M 〉} and thus ��′ di�ers from � only in the name of the variable it binds. We
show that (�1 ◦ · · · ◦ �n ◦ �′)� is the same context as ��. By Lemma 9, (�1◦· · ·◦�n◦�′)�
is �′�n · · · �1�, and so by Lemma 5, �′�n · · · �1� is ��′(�n · · · �1�). By a simple induction
on n, we can show that for i=1; : : : ; n, the context �i · · · �1� is �′; 〈〈〉; z′i ; Q〉; [z′i =z]�′′.
Thus, ��′(�n · · · �1�) is �′; ��; [M=z′n]([z

′
n=z]�

′′). Since [M=z′n]([z
′
n=z]�

′′) is just [M=z]�′′,
it is easy to see that this context is also �� and thus (�1 ◦ · · · ◦ �n ◦ �′)� is the same
context as ��.
For the case when j=0 and x is universal and di�erent from w (which is allowed

in P), it is easy to see that the resulting context leads to a failure context; once
the existential variables that remain in the constraint that gets added by applying the
substitution are fully instantiated, this constraint will relate two terms that are not
��-convertible.
For the case when j¿0, the �rst operation of P corresponds to a series of n appli-

cations of INTRO, followed by the SPLIT operation in SetVar+. Similar reasoning can be
applied to show that �� is (�1 ◦ · · · ◦ �n)�.

228 A. Felty / Theoretical Computer Science 232 (2000) 187–229

Similarly, the cases for the second and third operations of P correspond to a series
of applications of INTRO followed by an application of PROD or POLY, respectively.

Theorem 25 (Completeness). Let � be a valid Meta context without existential vari-
ables or constraints such that the types of universal variables in declarations are Prop
or Type but not Extern. Let A be a normal well-typed term in �. If there exists a
derivation of �; ∃z :A in P; then there is a derivation of �; (〈〉; z; A) in SetVar+.

Proof. We prove the following stronger statement. Let � be an arbitrary normal valid
search context such that the types of universal variables in declarations are Prop or
Type but not Extern. If �� has a derivation in P, then � has a derivation in SetVar+.
The proof is by induction on the length of a derivation in P. The desired theorem
follows directly.

5. Conclusion

We have shown how to adapt Bledsoe’s method for generating maximal solutions for
set variables to the Calculus of Constructions and proved its correctness. In addition, we
have discussed the operation of the procedure on various sublanguages. The procedure
presented here has been implemented as a set of tactics within an interactive tactic-style
theorem prover. These tactics can be combined to automate the search procedure for CC
so that it works e�ciently on the class of theorems involving existential quanti�cation
over sets. It can also be used as a tactic in Coq to provide some automation for this
class of theorems.
We have adapted and generalized results from Bledsoe [3]. The basic rules and

combining rules for conjunction were adapted fairly directly, while the combining rules
for disjunction were handled in a distributed manner. The remaining rules in [3] are
quite specialized and involve substitution instances expressing a function applied n
times to x as fn(x). These rules should also be straightforward to add to the procedure
here, though their addition would require adding some axioms to the context to express
fn since it cannot be expressed directly in CC. The procedure is structured in such a
way that adding more rules for maximal solutions is achieved by simply adding new
clauses to the SETVAR operation.
We have shown how one procedure designed for a higher-order logic can be carried

over to the type theory setting. There are many other interesting procedures worth
investigation. Bledsoe and Feng give a more general set of rules for maximal solutions
in [4]. This procedure, however, relies heavily on resolution techniques which may be
di�cult to adapt to our setting. Another procedure for automating the instantiation of
set variables is the Z-match inference rule in [1], which should be possible to adapt
to our setting fairly directly. In addition, many other theorem proving techniques in a
variety of domains have been developed for both higher-order logic and higher-order
type theory that would be interesting to investigate and adapt to aid proof search in
the other setting.

A. Felty / Theoretical Computer Science 232 (2000) 187–229 229

Acknowledgements

The author would like to thank the anonymous reviewers for numerous helpful
suggestions.

References

[1] S.C. Bailin, D. Barker-Plummer, Z-match: an inference rule for incrementally elaborating set
instantiation, J. Automated Reasoning 11(3) (1993) 391–428.

[2] H. Barendregt, Introduction to generalized type systems, J. Functional Programming 1(2) (1991)
124–154.

[3] W.W. Bledsoe, A maximal method for set variables in automatic theorem proving, Machine Intelligence
9 (1979) 53–100.

[4] W.W. Bledsoe, G. Feng, SET-VAR, J. Automated Reasoning 11(3) (1993) 293–314.
[5] A. Church, A formulation of the simple theory of types, J. Symbolic Logic 5 (1940) 56–68.
[6] R.L. Constable et al., Implementing Mathematics with the Nuprl Proof Development System, Prentice-

Hall, Englewood Cli�, NJ, 1986.
[7] T. Coquand, G. Huet, The calculus of constructions, Inform. Comput. 76(2=3) (1988) 95–120.
[8] C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-Mohring, C. Muñoz, C. Murthy,

C. Parent, A. Sa��bi, B. Werner, The Coq Proof Assistant reference manual, Tech. Report, INRIA, 1995.
[9] G. Dowek, D�emonstration Automatique dans le Calcul des Constructions, Ph.D. Thesis, Universit�e Paris

VII, December 1991.
[10] G. Dowek, A complete proof synthesis method for the cube of type systems, J. Logic Comput. 3(3)

(1993) 287–315.
[11] G. Dowek, T. Hardin, C. Kirchner, Higher-order uni�cation via explicit substitutions, in: 10th Ann.

Symp. on Logic in Computer Science, 1995, pp. 366–374.
[12] A. Felty, Encoding the calculus of constructions in a higher-order logic, in: 8th Ann. Symp. on Logic

in Computer Science, June 1993, pp. 233–244.
[13] A. Felty, Implementing tactics and tacticals in a higher-order logic programming language, J. Automated

Reasoning 11(1) (1993) 43–81.
[14] A. Felty, Proof search with set variable instantiation in the calculus of constructions, in: 13th Internat.

Conf. on Automated Deduction, Springer, Berlin, Lecture Notes in Computer Science, 1996, pp. 658–
672.

[15] M.J.C. Gordon, T.F. Melham, Introduction to HOL – A Theorem Proving Environment for Higher Order
Logic, Cambridge University Press, Cambridge, 1993.

[16] R. Harper, F. Honsell, G. Plotkin, A framework for de�ning logics, J. ACM 40(1) (1993) 143–184.
[17] W.A. Howard, The formulae-as-type notion of construction, 1969, in: To H. B. Curry: Essays in

Combinatory Logic, Lambda Calculus, and Formalism, Academic Press, 1980, New York, pp. 479–
490.

[18] G. Huet (Ed.), A uniform approach to type theory, Logical Foundations of Functional Programming,
Addison Wesley, Reading, MA, 1990.

[19] L. Magnusson, The implementation of ALF: a proof editor based on Martin-L�of ’s monomorphic type
theory with explicit substitution, Ph.D. Thesis, Chalmers University of Technology=G�oteborg University,
January, 1995.

[20] P. Martin-L�of, Intuitionistic Type Theory, Studies in Proof Theory Lecture Notes, BIBLIOPOLIS,
Napoli, 1984.

[21] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform proofs as a foundation for logic programming,
Ann. Pure Appl. Logic 51 (1991) 125–157.

[22] C. Muñoz, A calculus of substitutions for incomplete-proof representation in type theory, Ph.D. Thesis,
Universit�e Paris 7, INRIA Research Report RR-3309 (English version), 1997.

[23] L.C. Paulson, Isabelle: A Generic Theorem Prover, Lecture Notes in Computer Science, vol. 828,
Springer, Berlin, 1994.

