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Abstract. Proof-carrying code provides a mechanism for insuring that a host,
or code consumer, can safely run code delivered by a code producer. The host
specifies a safety policy as a set of axioms and inference rules. In addition to a
compiled program, the code producer delivers a formal proof of safety expressed
in terms of those rules that can be easily checked. Foundational proof-carrying
code (FPCC) provides increased security and greater flexibility in the construc-
tion of proofs of safety. Proofs of safety are constructed from the smallest possi-
ble set of axioms and inference rules. For example, typing rules are not included.
In our semantic approach to FPCC, we encode a semantics of types from first
principles and the typing rules are proved as lemmas. In addition, we start from
a semantic definition of machine instructions and safety is defined directly from
this semantics. Since FPCC starts from basic axioms and low-level definitions,
it is necessary to build up a library of lemmas and definitions so that reasoning
about particular programs can be carried out at a higher level, and ideally, also
be automated. We describe a high-level organization that involves Hoare-style
reasoning about machine code programs. This organization is presented using a
detailed example. The example, as well as illustrating the above mentioned ap-
proach to organizing proofs, is designed to provide a tutorial introduction to a
variety of facets of our FPCC approach. For example, it illustrates how to prove
safety of programs that traverse input data structures as well as allocate new ones.

1 Introduction

In our first presentation of the semantic approach to foundational proof-carrying code
(FPCC) [2], we encoded a semantics of types and proved typing rules as lemmas from
the basic definitions. We also gave a direct encoding of machine semantics from which
we built several layers of definitions so that reasoning about programs was similar to
reasoning using Hoare-style program verification rules. This work extended the original
proof-carry code (PCC) work [13] which stated typing rules as axioms and generated
a safety theorem using a verification condition generator (VCG). Both the axioms and
the VCG were parts of the system that had to be trusted.
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In FPCC, much progress has been made in a variety of directions since our original
work. Type systems that are currently handled are more sophisticated and include con-
travariant recursive types [3] and mutable references [1]. Also, larger machine instruc-
tions sets have been encoded [9]. In addition, foundational versions of typed assembly
languages (TAL) [10] have been developed for use in FPCC systems (e.g. [6, 14, 15]).
Also, an alternative syntactic approach has been explored [8].

Although we presented an example in our first account [2], it was not large enough
to illustrate the structure of proofs of safety in general, or demonstrate the style of rea-
soning that is used to build such proofs. This paper attempts to fill this gap. Although
the example is larger, we keep the semantics simple. We only require the simple se-
mantics of types and the same simple set of machine instructions as in our first account.
Because any FPCC system is built in layers so that reasoning about particular programs
is done at a fairly high level, this example could be carried over fairly directly to current
FPCC systems which use machine instruction sets for real machines and more complex
type systems. Like our previous work, we adopt the semantic approach to FPCC here.
A more detailed comparison to syntactic approaches is future work.

The example presented here is a machine language program which reverses a list of
integers. This example is complex enough to require recursive data types. It takes a list
as input, and the computation includes traversing this input list as well as building a new
one. The latter operation requires allocating new memory along the way. In addition,
the program uses most of the instructions available in our simple instruction set.

After presenting the example program in Sect. 2, we present the typing lemmas in
Sect. 3, followed by the encoding of machine instruction semantics. We present the
machine semantics in two steps. As a first step, we prove the safety of our example
program with respect to a set of Hoare-style program verification rules for machine
instructions given in Section 4. Using such rules is fairly similar to the use of a VCG
in the original PCC framework [13], but provides a slightly higher level of security.
In original PCC, the safety proof is a proof of the formula output by the VCG; the
VCG program must be trusted. Here, the proof steps which apply the Hoare-style rules
are encoded as part of the safety proof. We must trust these rules because they are a
part of our basic safety policy, but this should be simpler than trusting a VCG program.
Roughly, using the Hoare rules corresponds to recording the primitive steps of the VCG
in the proof so that they can be later checked. After presenting these rules, we discuss
the safety proof of our example program.

Sect. 5 presents the second step in encoding machine instruction semantics. Here,
we follow the approach of Appel and Michael [9]. We start with a direct encoding of ma-
chine instructions as a step relation relating one machine state to another, and we prove
a theorems stating that safety follows from “progress” and “preservation” lemmas. We
do not derive the Hoare rules of Sect 4, but we build up a library of lemmas which pro-
vides reasoning similar in style to using such rules. Describing both approaches here
allows us to compare them. In particular, our example, discussed again in Sect. 6 pro-
vides enough detail to illustrate how the two styles of reasoning correspond. It would
be interesting to take this work a step further and derive Hoare-style rules from the di-
rect step-relation encoding. Hamid and Shao [7], in fact, derive a version of Hoare-style



rules in the context of reasoning using TAL in a syntactic FPCC system. Perhaps their
approach could be carried over to our setting.

The proof discussed in Sect. 6 has been fully formalized in Coq [5]. We began by
adopting and modifying some of the basic definitions in the Coq libraries used in Hamid
et. al.’s syntactic approach to FPCC [8]. Most of the proof was done interactively, but
we discuss its automation in Sect. 7, where we also discuss other issues and related
work.

2 Example

We assume a representation of integer lists where the empty list uses one memory lo-
cation and is just a tag whose value is � . If the list is non-empty, then three consecutive
memory locations are used. The first contains the tag value � . The second contains an
integer, and the third contains a pointer to the rest of the list. We assume there are ���
registers, denoted ��� to �	��
 . We introduce our set of machine instructions by directly
presenting the reverse program in Fig. 1. We assume that register ��� has value � and


����
ST ��������� ����� � ��� store � at ������� �
���

ADDC �! � � ����� � store ��� ’s value in �! 
���"
ADDC � � � � � � � 
 increase � � by 



���#
LD �!$ � � �%����&'� ��� load tag of list ��& into �!$
��	(
BEQ ���!$ � ��� ��
�
)( jump to point after loop end
���*
LD ��+ � � �%����&'� 
�� load head of list ��& into ��+
���,
LD � & � � �%��� & � "�� load tail of list � & into � &
���-
ADDC ��. � � ������� 
�� ��. gets value 



���/
ST ��������� ����� � ��. store this value in ������� �
���0
ST ����� � � 
���� � � + store head in ����� � � � 



	
��
ST ����� � � "���� � �  store �  (new tail) in ����� � � � "


	
�

ADDC �! � � ����� � store ��� ’s current value in �! 
	
�"
ADDC ��� � � ����� # update allocation pointer �!� by #
	
�#
BEQ ��� � � � � ��
��	# jump back to loop start
	
�(
ADDC � & � � ���  � ��� � & gets value of �  
	
�*
JMP �!1 return

Fig. 1. A Program for Reversing a List

that input register � 
 contains a list of integers. We also assume that there is a set of
consecutive memory locations (unbounded) that are unallocated, and the first location
in this set is given by the value of an allocation pointer whose value is stored in �32 .
The program allocates new memory and increases the value of the allocation pointer
as needed. The first 3 lines of the program perform the initialization steps; an empty
list is stored at the memory location pointed to by the allocation pointer. Register �34
stores the reversed list as it is built, and is initialized to point to the new empty list.
Lines 103-113 contain the main loop of the program. First, the tag of the next location
in the input list is loaded into ��5 and checked. If it is � , then the program jumps to the



point after the loop (line 114), puts the result in ��
 , and jumps to some designated return
point stored in ��� . Otherwise the body of the loop is executed. In this case, the next 3
memory locations starting at the allocation pointer are used to store the new list. The
tail of the new list is assigned to the value of � 4 , which is a pointer to the reversed list as
constructed so far, and � 4 is updated to point to the new beginning of the reversed list.
Finally, the allocation pointer is increased by 3, and control returns to the beginning of
the loop. In addition to the instructions used in this program, our simple programming
language also includes a MOV instruction, and another branching instruction BGT which
compares two values and branches if the first is greater than the second.

To prove safety, the precondition of this program must include our assumptions
�!��� � and that ��
 contains a list of integers. We write this latter assumption as the typ-
ing judgment

� ��
�� ��� 	�
���
������������ . Typing judgments depend on the contents of memory
and the set of currently allocated locations; in particular all memory locations used to
represent a list must be allocated. We leave the exact specification of this set unspec-
ified here, but assume that it is a subset of all memory locations occurring before the
allocation pointer � 2 . To indicate this dependence, memory � and allocation pointer � 2
are given explicitly as subscripts to the typing judgment.

The precondition of this program must include additional information that is part
of the loop invariant needed to prove safety of the program. For instance, the policy
on readable memory locations is needed. We assume that all memory locations after a
particular location ����� ��� are readable, expressed as the formula ������� �"! and defined as
follows:

������� �"!#�$�&%('*) � ',+-����� ���/.10�2��435�76"��2 � '��8�9)
We assume that the memory locations that we are permitted to write to are a subset
of the readable locations. In particular, we assume they are all locations starting at the
allocation pointer � 2 and that the allocation pointer � 2 is greater than ����� ��� :

� � 2 +:����� ���;��<=%('*) � ',+ � 2 .?> ���@���76"��2 � '��8�")
The loop invariant also includes �A�7BC2 2ADE�@� � � � � which states that the return location is
indeed safe. The complete precondition is stated as the precondition of the first line of
code (line ����� ), defined as formula F 
 �)� in Fig. 2.

G & � � �IHKJ�LNM�O;PRQ �����RSUT8V@W3�9V �XQZY4[]\ � [ S ���_^a`�� M V@Wcb Led � [ � �fQQ TgW5h d d"i4M V ���!1 �fQ ��� � �jQ ����& � kjl m 
Rn�o V LNMqp V �G & �  �sr�tetvu"wqx4y{z � � 
G & � + �IHKJ�LNM�O;PRQ ��� �/| 
 SUT;VqW3��V �EQ}Y7[~\ � [ S � � ^�` � M VqWcb Led � [ � �EQ
TgW5h d d9i�M V ���!1 �XQ ��� � ��Q ����& � kjl m 
�n�o V L�M�p V �XQ
���! � kjl m 
Kn�o V L�M�p V �EQ=z�d Wc��Wcb L�d ����& �G & &  �sr�tetvu"wqx4y{z � � #G & & . � TgW5h d d9i�M V ��� 1 �XQ ��� & � k�l m 
 n�o V L�M�p V �XQ ���  � kjl m 
 n�o V L�M�p V �G & & $ � TgW5h d d9i�M V ���!1 �XQ ����& � k�l m 
�n�o V L�M�p V �

Fig. 2. Preconditions for Selected Lines of Code



Fig. 2 also includes preconditions of some other lines of code in the program. In
general, we write F�� to denote the precondition of line � of the code. In addition to
the precondition of the entire program, we must have preconditions of all of the jump
points, in this case lines �	��� and ��� � . The precondition of line �	��� is the loop invari-
ant. When executing the loop body and when exiting it, we must know the type of
register � 4 , which stores the intermediate results, i.e., the reversed list as it is being
constructed. This typing judgment appears in both F 
 ��� and F 
)
�� . Because line �	��� is
a load instruction, F 
 ��� contains the requirement that the load is from a readable loca-
tion. Everything else in F�
 �)� comes from the precondition and remains invariant when
executing the loop body. In this example, we also include a precondition for the last
line of the program F�
)
 5 . Much of the information provided in Fig. 2, including the typ-
ing information, can be generated automatically by a certifying compiler [13]. We call
such compiler-generated formulas hints to distinguish from those we calculate later. To
handle allocation correctly, we also need to know which lines in the program modify
the allocation pointer. Lines F�
 ��4 and F�
 
 4 provide this information; in particular, the
register serving as the allocation pointer and the amount it is increased at a given line is
stated.

3 Types

We present the typing rules that are used in the proof of safety of the example program.
We leave out the definitions and lemmas needed to prove these rules. We simply note
that we require most of the definitions of types and type constructors and lemmas about
them that were presented in our earlier work [2].

We define a valid type to be any type � for which the following two rules hold.

' � ��� � � �	� ��
 �
':� �
� ��������e� � �

' � ��� � � %(D ) � � D(�j.���� � DC�
' � �]� ��� �

In these rules � is an arbitrary allocation predicate specifying the set of allocated ad-
dresses. In our example, � � '�� �v� � �A����������'�� � 2 � . The expression ��� 
! "$#&%
denotes the memory � modified so that location



has value

#
. Integers and integer

lists are both valid types [2].
The remaining typing rules we use in proving safety of our program are given in

Fig. 3. They are stated in terms of lists of arbitrary type � .

4 Machine Semantics as Hoare-Style Rules

Fig. 4 contains a set of Hoare-style rules for our machine instructions. Unlike the typ-
ing rules in the previous section, we take these rules as axioms. As mentioned earlier,
although we must trust them, they provide more security than a VGC. The first rule is
used to prove safety of a program with respect to a precondition ' ��2 . We assume the
program is a sequence of machine instructions ending with a JMP to a safe return point.
Note that there is one rule for each machine instruction and that these rules are axioms.



[ � kjl � tNM�p V ��� � ��r�t n � ��� � �%� [ ���� �
�%� [ � 
���� kjl � �[ � kjl � tNM�p V ��� � ��r�t n � ��� � �%� [ ���� �

��� [ � "	��� kjl � tNMqp V ��� �[ � k�l � t�M�p V)��� � ��r�t n � ��� �z�d W ��Wcb Led � [ �[ � kjl � tNM�p V ��� � ��r�t n � ��� � �%� [ ���� �z�d Wc��Wcb Led � [ � 
��
[ � kjl � tNM�p V ��� � ��r�t n � ��� � �%� [ ���� �z�d Wc��Wcb Led � [ � "��

��r�t n � ��� � �%� [ � � � � � [ � z�d Wc��Wcb Led � [ �
��� [ � � kjl � tNM�p V ��� �

��� [ � 
���� kjl � �
�%� [ � "���� kjl � tNM�p V ��� � �%� [ � � 
��r�t n � ��� �

� � [ �� � [ � 
��� � [ � "��
z�d W ��Wcb Led � [ �z�d Wc��W b Led � [ � 
��z�d Wc��W b Led � [ � "��

��� [ � � kjl � tNM�p V ��� �

Fig. 3. Typing rules for integer lists

H/z	� ^ G &�
 G &
���'&�
 G  �� \ \g\ 
 G�� ��� � 
 G���� &
� G���� & ^ITgW5h d d9i�M V)��� ���������
� �
T r�!�� � H/z	��" �#� &%$ \ \ \ $ � � $ JMP � � ��'&(&()


 G+* ��, � O%- ��.�/�� ADDC ��. � � ��, � O 
 G � 021'3
 G+* O�- ��.�/�� MOV ��. � � O 
 G ��'&(&

 G+* � ,	4 � � ,�5 - ��.�/�� ADD ��. � � � ,	4 � � ,�5 
 G �

6
087
 G k29vm;: � JMP �<
 G �
=�> �


3����,?4A@ ��,B5AC G�D �XQ �#E�����,?4�@ ��,�5 � C G � � BGT ����,?4F@ ��,�5 �EO 
 G �
= �%G


3��� ,?4 � � ,B5 C G D �XQ ��� ,?4 �� � ,�5 C G � � BEQ ��� ,?4 � � ,B5 �fO 
 G �
H &
 G+* �%��� , � O��	- ��.�/ Q z�d Wc��Wcb L�d ��� , � O�� � LD ��. � � ����� , � O�� 
 G � �I�


 G+* � * ��.�� O2JC ��,;/ - �K/ Q ` � M V@Wcb L�d ����. � O�� � ST �%����. � O���� � ��,L
 G �
� C �<M 
 �2M �'�N
�O M � O M CPORQ 0S7

H T �%&

 � �'�U
'OV�

Fig. 4. Hoare-style rules for machine instructions



A proof of safety is built by starting with the postcondition F���� 
 and applying the
rule corresponding to statement

� � to obtain F�� . Then F�� is used as the postcondition of
statement

� ��� 
 to compute F���� 
 , etc. For any statement
�
	

( � ��� �&
 ), if there is an
associated hint F 	 , this hint is used as the postcondition of statement

� 	 � 
 . Let F �	 be the
formula obtained by applying the axiom for statement

� 	
using postcondition F 	 � 
 . At

this point the 
������ � ��� rule is used, resulting in proof obligation F 	 . F �	 . The formula
F � in rules ����� and ����� is the precondition of the statement at location � . Requiring hints
for all jump points insures that such a formula always exists when applying the proof
strategy just described.

The �5���������X� � hints also generate proof obligations. The hint F 	 tells us how to mod-
ify the postcondition of

�
	
. If F 	 � 
 is the postcondition computed by applying the

appropriate axiom, and F �	 � 
 is obtained from F 	 � 
 because of the �5���������X� � hint, the
we have proof obligation F �	 � 
 . F 	 � 
 . We will see how to use the � ������� �E� � hints to
modify postconditions for our example program in Sect. 5.

Finally, we also have the proof obligations that appear as the first and last premise
in the !#"%$&���(' rule.

We can modify the !#"%$&���(' rule so that the program includes a postcondition ���c�A�
and the final premise states F�� . � �A�7BC2 2�DE�q� � ���/< ���c�A�8� . We use this version of the
!#"%$&���)' rule in our proof, so that in addition to safety, we prove that the output reversed
list does indeed have type �q
��������A� .

5 Encoding Machine Semantics Directly

We define the type *,+.- to be the type of the set of 32 registers ��� to �	��
 . /10�032 is
defined to be the set of natural numbers. For simplicity, we do not build in fixed-size
words, though this can and has been done in various PCC systems (for example [9]).
We write 45+�6 to represent the function type

� /70c0#2 " /10�0#2X� . In particular, memory
is modelled as a function from machine addresses to machine values. Similarly register
banks are functions from registers to values; *,+.-%8��:9�+ denotes the function type

� *,+)- "
/70c0#2f� .

We define a machine state to be a triple of the form
�<;>=3?@= �E��� where

;
is a register

bank (of type *A+.-�8��:9�+ ),
?

is a memory (of type 4B+�6 ), and �E� is a /70c0#2 . We define
a step relation that relates two machine states, one before execution and one after ex-
ecution of a particular instruction. We write

�(;C=D?@= �(�  "E; � =3? � = �(� � � to denote this
relation, and

�<;>=3?@= �E�  "GF7; � =3? � = �E� � � to denote the reflexive transitive closure of
this operation.

Machine instructions are encoded as 32-bit machine integers. These integers are
decoded into machine instructions by extracting information from specific bits. The
step relation is defined by extracting the instruction at line �(� in

?
, decoding it, and

changing the machine state according to the semantics of the particular instruction.
We leave out the details, which can be found in our earlier work [2]. We note that

what we have described so far is the part of our formalization in Coq where we have
adopted and modified some basic definitions from Hamid et. al. [8].



Following Michael and Appel [9], we define �A�7BC2 , � ����� ��2���� , and � ��2���2�� 
 ��� � ��

predicates as follows, and prove the !#"%$&� F rule below.

�A�7BC2 �<;>=3?@= �E���K�v�&% ; � =3? � = �(� � ) � �<;>=3?@= �E�  "GF ; � =D? � = �E� � �_.� ; � � =D? � � = �(� � � ) �<; � =3? � = �(� �  " ; � � =D? � � = �E� � � � %� ����� ��2���� � F5
 
 �K�v�&% ;>=3?@= �(��) � F5
 
(�(;>=3?@= �(���/.� ; � =D? � = �E� � ) �<;>=3?@= �E�  " ; � =D? � = �E� � � %� ��2���2	� 
 ��� �@��
 � F5
 
 �K�v�&% ;>=3?@= �(� =#; � =D? � = �E� � ) F 
 
C�<;>=3?@= �E���_.�<;>=3?@= �E�  " ; � =D? � = �E� � �_.sF5
 
(�(; � =D? � = �E� � �
F 
 
C�<;>=3?@= �E��� � ����� ��2���� � F 
 
 � � ��2���2�� 
 ��� � ��
 � F5
 
 � !#"%$&� F�A�7BC2 �<;>=3?@= �E���

The �A�7BC2 predicate expresses the fact that execution of safe programs don’t get stuck,
for example, trying to execute a load from a non-readable location or a store to a non-
writable location. Note that �A�7BC2 is now a predicate on a machine state. The code
is in

?
and �(� points to the first instruction. In the definitions of � ����� ��2���� and� ��2���2�� 
 ��� � ��
 , F5
 
 is a predicate which takes a machine state

�<;>=3?@= �E��� as an ar-
gument.

Finally, we define �A�7BC2 2�DX�@� as follows:

�A�7BC2 2�DX�@� � '����v�&% ;C=D?@= �(��) � �E��� '-. ���4BC2 �<;>=D?@= �E�A�8�")

6 Example Revisited

It can be seen from the formalization discussed in the previous section that we start
from a fairly low-level encoding of the machine semantics and end with the high-level
derived rule !#"%$&� F . Reasoning using this rule corresponds closely to reasoning using
the Hoare-style rules of Sect. 4. In the new setting, a proof of safety starts by applying
!#"%$&� F . To do so, we need a predicate ��
 
 which expresses a program invariant. ��
 
 will
have one clause for every line of the program stating what is true at the point when that
line is executed. For the lines for which we already have hints, we use those hints fairly
directly. We modify them to become predicates over a register bank and memory. If

;
is the function representing a register bank, we abbreviate

; � ���@� as
;
� . We write

?
for memory functions. Using this encoding, we modify the formulas given in Fig. 2 to
obtain the predicates in Fig. 5.

We must actually make one more modification. We must add information to the
invariant so that we can show that this program does not include self-modifying code.
This information is not needed in the proof using the Hoare-style rules of Sect. 4. In
these rules, there is an implicit separation of code from data in memory because there is
no connection between the statement part of judgments and the memory. In our new en-
coding, we define the program using a predicate 9{� �A� ��2 
(�)? � which states that decoding
the instruction at line �	��� gives instruction �	��� as defined in Fig. 1, and similarly for all
the lines of code in the program. If there was overlap between the code and data parts of
memory, we would not be able to prove safety. To make explicit that there is no overlap,
we add the formula ����� ����� �	����� to F�
 �)� and F	
 ��� . It then becomes part of the loop



G & � � ��� "�� � � � HKJ�LNM�O;PRQ ��� � S T8V@W3�9V �XQZY4[]\ � [ S�� � ^�` � M VqWcb Led � [ � �EQQ TgW5h d d"i4M V ��� 1 �XQ � � � �_Q ��� & � � l � 
 n�o V L�M�p V �G & � +���� "�� � � � HKJ�LNM�O;PRQ ��� � | 
 SUT8V@W3��V �XQZY7[~\ � [ S�� ��^a`�� M V@Wcb Led � [ � �XQ
TgW5h d d9i�M V)��� 1 �XQ � � � ��Q ��� & � � l � 
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Fig. 5. Clauses of the invariant that come from hints

invariant, and since all of the store instructions are inside the loop, we can prove that
9{� �A� ��2 
(�)? � remains invariant even while

?
is changing. The formula ����� ��� � �������

does not appear in Fig. 5, and we continue to leave it out of the invariant clauses that
we present below. Although it is important to the proof, it is not important to the rest of
the presentation, and it is easy to prove that it remains a constant at each step.

The full predicate ��
 
 has the following form:

��
 
C�<;>=D?@= �E�A�K�$� � � 9{� �A� ��2 
 ? ��<� �(�R� �	���R< F�
 �)� �(;>=3? �8�	��
�
�
 � �E�~� ����
�< F	
)
 5 �<;>=3? �;� % �
�A�7BC2 �(;C=D?@= �(���

The second clause of ��
 
 ’s top-level disjunction is used when the program counter
gets the value of � � . The definition of �A�7BC2 2�DX�@� is used directly to prove this case. The
clauses for lines of code that are not defined in Fig. 5 can be automatically calculated by
simply applying the rules in Sect. 4. As we have stated, we do not prove the Hoare rules
as lemmas from our new encoding of machine semantics. Instead, we apply them by
hand to get ��
 
 . It would be easy and much better to write a program to automatically
generate them. Note that such a program would not be part of the trusted code; if an
invariant is incorrect, it would not be possible to prove the program safe. To illustrate,
some of these remaining clauses of ��
 
 are given in Fig. 6. Given a memory function?

, we write
? � � 
  " ' 
 = )�)�) = ���  " ' � % to denote a new function which is the same

as
?

except that for �]� � = )�)A) = 
 , the new function maps address � � to value ' � . We
write 0�2��435�76"��2 ��� ' 
 = )�)A) = ' ����� to abbreviate 0�2��43��76"��2 � ' 
A�7<�
�
�
g<=0�2��435�76"��2 � ' �E� , and
similarly for > ���q���76"��2 .

First, consider F�
 
 � which is the precondition for the statement
�
BEQ

� ����� �	�����	���5� .
We applied the ����� rule to obtain F�
 
 � from F	
)
�� . Note that the precondition in this rule
has a true and a false case. We only need the true case here, so we can take as a pre-
condition simply F � , which in our case is F 
 �)� . In addition, we need to consider the fact
that the statement at line ���	� follows a line which increased the allocation pointer ��2
by � . We must modify F 
 ��� to account for this increase. Our signal to do so comes from
the hint F 
)
 4 in Fig. 2, which we repeat (for documentation purposes only) in Fig. 6
just before the definition of F 
 
 4 . In particular, we must subtract � from the expression; 2�� � in F�
 ��� to obtain

�<; 2�� � +-����� ���8� in F	
)
 � .
To obtain F	
)
 4 , we simply apply the " ����� rule to F�
 
 � , replacing

; 2 with
; 2�� � .

Most invariant clauses are obtained from such simple rule applications. F3
 
)
 is also
obtained by a simple application of " � ��� .
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Fig. 6. More clauses of the invariant.



Next, consider F�
 
 � which is the precondition for
�
ST � � � 2 � �5���v� �	4�� . We obtain

F	
 
 � by first replacing the memory expression
?

which appears as a subscript to the
typing judgments by

? � ; 2 � �  " ; 4 % , and then adding a new > ���q���76"��2 conjunct.
Working backward, F 
 ��� back through F 
 ��5 are obtained by straightforward appli-

cations of the appropriate rules. We omit the details, showing only the last in the series,
F 
 ��5 . We then obtain F 
 � � by applying the ����� rule. This brings us back to F 
 ��� which
was already given in Fig. 5. Note that at the point F 
 �)� was generated as a hint, the
allocation pointer had to be taken into account; in this case, the increment by � at line
�	��� means we decremented

; 2 by � to obtain
�(; 2�� � + ����� ���8� in F	
 ��� . Finally, F	
 �)4

and F	
 ��
 are also obtained by straightforward rule applications.
We show that our example program is safe whenever precondition F3
 �)� holds for the

initial register bank and memory. We must add the fact that the program counter starts
at line �	��� and that 9{���A� ��2 
(�)? ��� holds. Thus, the safety theorem is stated:

% ; � =3? � = �E��� ) � �E����� �����R< 9{� �A� ��2 
E�)? � < F	
 �)� �<; � =3? ���8�j. �A�7BC2 �(; � =3? � = �(�����9)
To prove this theorem, we apply the !#"%$&� F rule, which means we must show that

��
 
(�(; � =3? � = �E� � � , � ����� ��2���� � ��
 
 � , and � ��2���2�� 
 ��� � ��
 �
��
 
 � hold under the assump-

tions �E� � � ����� , 9{���A� ��2 
C�(? � � , and F 
 �)� �(; � =3? � � . ��
 
C�<; � =D? � = �E� � � is a disjunction,
and we prove the first disjunct, and the proof is immediate. Since �(�	� � ����� , show-
ing ��
 
C�(; � =3? � = �(����� reduces to showing that 9{���A� ��2 
C�(? ��� and that F�
 � � �<; � =D? ��� . To
show progress, we must show that no matter which line we are at in the program, there
is a next step. This is straightforward, and includes proving 0�2��43��76"��2 and > ���@���76"��2
subgoals for load and store instructions. These follow immediately from the fact that
the preconditions of all such instructions contain the necessary 0�2��435�76"��2 and > ���@���76"��2
facts.

Proving � ��2���2�� 
 ��� � ��
 �
��
 
 � is where Hoare-style reasoning takes place. We have

a case for each line of the program; for �E�&� �	��� = )A)�) = ��� � , under the assumption
that F5
 
 � �<;>=3? � and

�<;>=D?@= �  " ; � =D? � = �E� � � hold, we show that F5
 
 ��� 
 �(; � =3? � = �(� � �
holds. For the cases where we calculated F 
 
 � from F 
 
 ��� 
 by a straightforward ap-
plication of one of the Hoare-style axioms, the proof is immediate. The step relation
encodes the same information as the corresponding Hoare rule, so all the work was
done when we applied the rule by hand to determine the right F 
 
 � to include in F5
 
 .
More reasoning is needed for the cases when F5
 
 � comes from a hint. The subgoals we
must prove correspond to the proof obligations that were described earlier. Consider the
formulas in Fig. 7. Formula F �	 is obtained from formula F 	 � 
 by an application of the
Hoare axiom for the statement at line � . Note that there is one such clause in Fig. 7 for
every line of code for which we started out with a hint. The proof obligations we are
left with are to show that F�
 � �#. F �
 � � , F	
 �)�=. F �
 �)� , and F�
)
��#. F �
)
�� . The third one
is straightforward. The second one is the most complex. The first and second together
require all of the typing rules in Fig. 3. This reasoning corresponds to applications of
the 
 � � � � �%� rule in the proof using the Hoare-style rules.

7 Discussion

The complete proof is approximately 3000 lines of Coq script. Roughly half of that is
the foundational part and the other half is the proof of safety of the example program.
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Fig. 7. Clauses that form proof obligations

The latter part could be fully automated. In fact, in our first prototype system, we used
the typing rules in Sect. 3 and the Hoare-style rules in Sect 4 as axioms. Thus the sys-
tem was not yet foundational, but instead concentrated on handling allocation of data
structures correctly. This prototype was implemented in

�
Prolog [11, 12], and proofs

of safety of a variety of examples, including the list reverse program presented here,
were constructed fully automatically. Since the typing rules have since been derived,
and since reasoning using the !#"%$&� F rule corresponds to reasoning using the Hoare-style
rules, the proof we generated automatically is similar to the proof done by hand in Coq.
In fact, our motivation for doing the Coq proof was to study the similarities and dif-
ferences in the two styles of reasoning to gain an understanding of how to automate
proofs using only the foundational rules. Most of the proof search involves determining
which typing rules to apply and fairly straightforward reasoning about arithmetic equal-
ities and inequalities, which can easily be handled by a system with simple but efficient
rewriting capabilities. Proving that 9{���A� ��2 
C�(? � is an invariant, which was not part of
our original automated proof, involves simple but numerous subgoals which followed
from simple arithmetic rules.

Our example program is one representative from a large class of programs that could
be proved safe with the same kind of automated proof search. Although we did not
include the basic definitions, our ��
������ �A� type was defined using a library of definitions
for a wide variety of type constructors. Any programs manipulating data structures built
from such type constructors fit into this class.

PCC systems that use foundational versions of TAL go even further in the direction
of easily automated safety proofs. They essentially reduce such proofs to type checking.
Safety in such a setting is limited to what is expressible in TAL. Chang et. al. [4] argue
that because there exist a variety of code verification strategies, it is better to use a
verifier that is best suited to the code verification strategy. Most examples of safety
policies have been simple. In fact, our example does not use a safety policy any more
sophisticated than what can be expressed in TAL. But when extending such policies to
include more complex properties, other strategies besides TAL may become important.
Our approach to automating proofs should provide more flexibility in handling a variety
of strategies. This is another subject of future work.
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