
Formal Meta-level Analysis Framework for
Quantum Programming Languages

Mohamed Yousri Mahmoud1 Amy P. Felty2

School of Electrical Engineering and Computer Science
University of Ottawa, Ottawa, Canada

Abstract

The design and development of quantum programming languages (QPLs) is an important and active area of
quantum computing. This paper addresses the problem of developing a standard methodology for verifying
a QPL against major quantum computing concepts. We propose a framework dedicated to the meta-level
analysis of QPLs, in particular, functional quantum languages. To this aim, we choose the Hybrid system
as the tool in which to build our framework. Hybrid is a logical framework that supports higher-order
abstract syntax, on top of which we develop an intuitionistic linear specification logic used for reasoning
about QPLs. We provide a formal proof of some important meta-theoretic properties of this logic, and in
addition, showcase a number of examples that can be tackled under the proposed framework.

Keywords: Quantum Lambda Calculus, Linear Logic, Hybrid, Coq

1 Introduction

Quantum computing has the potential to radically change the way computing is

done. The existence of large-scale quantum machines would increase computa-

tional power exponentially and provide unbreakable security systems [4]. Quantum

programming languages (QPLs) are an integral element required for achieving suc-

cessful quantum machines, as they introduce quantum concepts at a high-level,

allowing better understanding of quantum aspects and increasing access to research

in quantum domains. QPLs were initiated by Knill [11] who provided a number of

conventions to express quantum algorithms (i.e., quantum pseudo-code). The devel-

opment of QPLs has evolved for both imperative languages, e.g., [16] and [19], and

functional languages, e.g., [24] and [18]. QPLs are based on the QRAM computation

model: the quantum state or data is stored in a RAM and the program is a sequence

of primitive quantum operations (or controls) that update such a global quantum

1 Email: myousri@uottawa.ca
2 Email: afelty@uottawa.ca

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 338 (2018) 185–201

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.10.012

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:myuserid@mydept.myinst.myedu
mailto:couserid@codept.coinst.coedu
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.10.012
https://doi.org/10.1016/j.entcs.2018.10.012
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hybrid HOAS

OL Syntax

Mechanized Meta-theory of OL (e.g., type safety, preservation, progress,
soundness)

OL Types

Intuitionistic Linear
S. L.

OL Operational
Semantics

Fig. 1. Formal meta-level analysis framework for QPLs

state [11]. There is a trade-off between offering a high-level quantum language

and capturing the full range of quantum aspects, e.g., no-cloning and superposition

properties. Accordingly, it is crucial, when developing a QPL, to ensure that the

proposed language, the computational model, and the operational semantics (as

well as the type system if any) is practical, in terms of how the language respects

the quantum properties and how it deals with quantum non-determinism (i.e., a

quantum storage unit can hold both the zero and one values at the same time) and

the measurement process (i.e., determining the exact value of a storage unit based

on some probabilities). In this paper, we introduce a formal framework that aims to

standardize meta-level analysis of quantum languages. Such a framework can help

a language designer to focus on enhancing the language specification itself, leaving

many of the details of correctness checking to the proposed framework. As a result,

it becomes easier to make changes to the language as it evolves and study the effect

of these changes, updating only the parts of proofs that are affected at each step.

Our concern in this paper is with functional quantum programming languages

which typically map to quantum lambda calculi [20]. The major difference that a

quantum calculus provides with respect to ordinary lambda calculus is that it ad-

dresses resource limitations: a quantum variable (i.e., quantum bit) is not duplicable

(i.e., no cloning) and should be consumed only once and cannot be erased. This

makes linear logic a good candidate for modeling the operational semantics for both

typed and untyped quantum lambda calculi. To avoid involving the user in low-level

details of language formalization, e.g., variable binding and substitution, we opt to

use the Hybrid system [9], a two-level logical framework that supports higher-order

abstract syntax (HOAS), implemented in both the Coq and Isabelle/HOL proof

assistants. Figure 1 illustrates the design of our proposed framework for meta-

level analysis of QPLs. OL stands for object language, which is the programming

language subject to analysis. OL syntax contains the encoding of all possible ex-

pressions of a language (which often includes expressions that are not correct with

respect to a well-formedness or other kind of judgment such as typing or evaluation).

The use of Hybrid involves defining a specification logic (SL). An SL is developed

independently from any OL, but is customizable through a parameter for atomic

predicates used to express OL judgments, e.g., typing and evaluation rules. An

SL is generally the formalization of a sequent calculus. We choose to implement

intuitionistic linear logic which is well-suited to modeling the QRAM computation

model that allows both intuitionistic resources (i.e., controls) and linear resources

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201186

(i.e., quantum data).

The middle block defines the syntax and basic properties of the types supported

by an OL. Of course, this block is not included in the case of untyped quantum

lambda calculi. QPL designers often choose to define untyped calculi to capture

the maximum amount of quantum features (i.e., to build a quantum Turing complete

language), which could be sacrificed by adding certain type systems. Nevertheless,

the proposed framework supports both Turing complete and incomplete QPLs. The

formalized syntax and semantics are then used to reason about the OL, e.g., proving

subject reduction (type soundness) or Turing completeness.

We are implementing the proposed framework in Coq [13]. This paper presents

completed work that builds on earlier (unpublished) work [12] where we formalize

the Proto-Quipper language [18] along with some of its meta-theory. Here, we

generalize the ideas from that case study to develop a general framework, focusing

on two main ideas: generalizing the SL and providing a more complete and general

set of meta-level properties that can be reused by many OLs, and illustrating its

use on two different QPLs, namely Proto-Quipper and Q [24]. Although the work

on Q is in its early stages, it illustrates the general nature of the framework. The

rest of the paper discusses each box of Figure 1 in more detail.

2 Encoding OL Syntax in Hybrid

In this paper, we use the version of Hybrid that is implemented as a Coq library.

The purpose of the first file in this library (Hybrid.v) is to provide support for

expressing the syntax of OLs. At the core is a type expr that encodes a de Bruijn

representation of lambda terms. It is defined inductively in Coq as follows:

Inductive expr: Set :=

| CON: con -> expr

| VAR: var -> expr

| BND: bnd -> expr

| APP: expr -> expr -> expr

| ABS: expr -> expr.

Here, VAR and BND represent bound and free variables, respectively, and var and

bnd are defined to be the natural numbers. The type con is a parameter to be filled

in when defining the constants used to represent an OL. The library then includes

a series of definitions used to define the operator lambda of type (expr → expr) →
expr, which provides the capability to express OL syntax using HOAS. Expanding

its definition fully down to primitives gives the low-level de Bruijn representation,

which is hidden from the user when reasoning about meta-theory. In fact, the user

only needs CON, VAR, APP, and lambda to define operators for OL syntax. Two

other predicates from the Hybrid library will appear in the proof development,

proper : expr → Prop and abstr : (expr → expr) → Prop (where Prop is the type

of Coq propositions). The proper predicate rules out terms that have occurrences

of bound variables that do not have a corresponding binder (dangling indices). The

abstr predicate is applied to arguments of lambda and rules out functions of type

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 187

(expr → expr) that do not encode object-level syntax.

We now give two examples filling in the middle right box in Figure 1.

Example 1. The following is a segment of the context-free grammar of Proto-

Quipper [18], a typed QPL. We will use this example to explain general concepts

about quantum lambda calculus:

T ::= qubit | T1 ⊗ T2

A ::= qubit | bool | A1 ⊗A2 | A1 � A2 | !A | Circ(T1, T2)

t ::= q | ∗ | 〈t1, t2〉
a ::= x | q | (t, C, a) | True | False | 〈a1, a2〉 | a1a2 | λx.a |

if a1 then a2 else a3 |
let 〈x, y〉 = a1 in a2

The above grammar consists of two parts, the language types and expressions.

We have two sorts of types, the quantum types T , and the general type A which

allows typing of complex constructs. Type T is a subset of type A. The bang

operator ! is used to create duplicable types from linear types. The arrow type

� is used for functions (i.e., lambda abstraction), ⊗ for typing the tensor product

of two expressions, and Circ(T1, T2) for typing a circuit expression (t, C, a). This

expression reads as follows: the circuit C has an input t of type T1 and produces an

output a of type T2. Note that the input and the output types are quantum types.

Similar to types, Proto-Quipper has two sorts of expression: the pure quantum

expressions t that include quantum bits and the tensor product of such qubits, and

the general expressions a. The quantum circuit construct is considered a non-pure

quantum expression since it allows for the output a to have a general expression

sort. Nevertheless, this expression has to evaluate to an expression of quantum type.

This condition is enforced by means of typing and reduction rules. Note that if we

enforce the output expression to be of the pure quantum sort, then this language

will not allow circuits to do any kind of computation, and thus the circuit construct

loses its meaning and its main expressive power.

The lambda abstraction is the key expression of this language, and provides a

way to distinguish between regular and quantum lambda calculi. For an expression

λx.a, the bound variable x typically appears linearly (i.e., only one instance) in a.

In Proto-Quipper, the linearity of the bound variable is controlled using the type

system, i.e., if the domain of the bound variable is of linear type (i.e., not preceded

by bang operator) then x occurs once in a; if it is duplicable (i.e., preceded by bang)

then x appears zero or more times in a.

Another important expression that is unique to the quantum lambda calculus

is the let-statement. To highlight the difference with the usual let-statement in

functional languages, we note that let 〈x, y〉 = a1 in a2 is not equivalent to:

let x = fst a1 in let y = snd a1 in a2.

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201188

The main objective of the let-statement here is to allow for extracting the variables

x and y at the same time with one access to the expression a1. The reason for this is

to respect the linearity constraint on the expression a1; note that using fst and snd

requires multiple accesses to a1. Proto-Quipper’s typing system ensures the valid

construction of the let-statement in this language by enforcing a1 to have linear

tensor type. This way of destructing an expression whose type is a tensor product

appears in quantum lambda calculi in general, but may take different styles, as we

will see in the next example.

One more way in which this language differs from the regular lambda calculus

is the inclusion of quantum variables q. Q is a countably infinite set of all possible

quantum variables. These variables are linear by definition and their type is im-

plicitly known (i.e., qubit), and thus it is not specified explicitly in Proto-Quipper

programs.

For this object language, the type con is instantiated with the type Econ, im-

plemented as:

Inductive Econ: Set :=

Qvar: nat -> Econ | qPROD: Econ | qAPP: Econ | qABS: Econ |

qIF: Econ | qLET: Econ | Crcons: nat -> Econ.

This definition provides a constant for each possible term in Proto-Quipper (i.e., in

the language defined by the grammar a given above). Natural numbers are used to

identify quantum variables and circuits since they are both isomorphic to the set of

natural numbers. We do not represent term variables explicitly since they appear

as bound variables in the HOAS representation of OL terms. Using these constants,

we then define the OL expressions. For example, function application is defined as

follows:

Definition App: qexp -> qexp -> qexp :=

fun e1:qexp => fun e2:qexp => (APP (APP (CON qAPP) e1) e2).

The type qexp is the type expr discussed earlier with the parameter con instantiated

with Econ for this OL. To understand the above definition, it may help to view the

Hybrid APP constructor as an expressions concatenator, in this case, forming a list

containing e1 and e2. The first element of this “list” is (CON qAPP), which provides

an “annotation” indicating the kind of expression. This pattern is also seen in the

formal definition of the tensor product, which is a binary operator like application.

The definition only differs in the annotation, in this case (CON qPROD):

Definition Prod: qexp -> qexp -> qexp :=

fun e1:qexp => fun e2:qexp => (APP (APP (CON qPROD) e1) e2).

The next example is lambda abstraction where we can see clearly the use of

HOAS:

Definition Fun : (qexp -> qexp) -> qexp :=

fun f:qexp -> qexp => (APP (CON qABS) (lambda (fun x => f x))).

This example shows how HOAS deals with bound variables using functions of the

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 189

meta-level logic (which is Coq here), where f above has type qexp -> qexp and the

bound variable x in the Coq function fun x => f x represents the bound variable

in the Proto-Quipper lambda expression. Note the use of the lambda operator. As

mentioned earlier, expanding its definition fully down to primitives gives the low-

level de Bruijn representation, which is hidden from the user, and does not appear

in further proof development. There is another restriction needed in order for this

expression to be a valid representation of a Proto-Quipper lambda abstraction. We

must rule out Coq functions of type (qexp → qexp) that do not encode Proto-

Quipper expressions. This check will be enforced using the abstr predicate when

defining the prog clauses expressing OL semantics.

The general question of “valid” representation (also known as the representa-

tional adequacy) of the syntax of OLs is important and must be addressed for each

OL considered. In particular, we must show that there is a bijection between the

terms of the OL as specified by its grammar and the representation in a formal

system (in this case Hybrid as implemented in Coq). Representational adequacy

for the lambda calculus as an OL in Hybrid is discussed in [1] and proved in detail

in [7]. Issues specific to adequacy proofs when using Hybrid are discussed in [9]

and [10]. Proto-Quipper contains the lambda calculus as a sub-language, and rep-

resentational adequacy for the full language is a straightforward extension of these

other results. Adequacy of the representation of inference rules for OL judgments

is also important. Such proofs are mainly carried out as pencil-and-paper proofs,

because they involve both informal and formalized representations of syntax. For

Hybrid, an important part of such proofs include a formal result, which we call

internal adequacy theorems (see [10]). An example will be discussed in the next

section.

The following definition is the formalization of the let-statement which is more

complicated than the previous examples:

Definition Let: (qexp -> qexp-> qexp) -> qexp -> qexp :=

fun f:qexp -> qexp -> qexp => fun e1:qexp =>

(APP (CON qLET)

(APP (lambda (fun x => (lambda (fun y => f x y)))) e1)).

The lambda operator in Hybrid only supports lambda abstraction with a single

bound variable. It does not directly support binding on a product of two variables,

which is the case in the let-statement. One solution is to consider the product as a

single bound variable, however, this requires the use of the fst and snd operations,

which we want to avoid because, as discussed above their use violates the linearity

constraint. Instead, we simply use cascading occurrences of lambda (two of them in

this case) in a curried fashion where the expression is unfolded using two functions

(i.e., two lambda abstractions). This representation respects the linearity condition.

Example 2. The following is an example of a segment of the context-free grammar

of Q [24], an untyped QPL:

a ::= x | r | 〈a1, a2, ..., an〉 | λ!x.a | λx.a | λ〈x1, x2, ..., xn〉.a

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201190

where r refers to quantum variables, 〈a1, a2, ..., an〉 is a tensor product of n Q expres-

sions (or a linear pattern). A major difference between Q and Proto-Quipper is that

Q allows three types of lambda abstraction: over linear variables where the bound

variable appears in the function body only once, over duplicable variables where

bound variables may appear zero or more times, and over the tensor pattern of n

elements. The distinction between the first two kinds is made in Proto-Quipper us-

ing its type system, but the third type is not supported in Proto-Quipper. However,

we believe that it is sufficient to encode function abstraction over a tensor pattern

using the same encoding technique that was used to represent the let-statement of

Proto-Quipper, where λ〈x1, x2, ..., xn〉.a is expanded to:

λy0.let 〈x1, y1〉 = y0 in let 〈x2, y2〉 = y1 in · · · let 〈xn−1, xn〉 = yn−2 in a

This conversion guarantees that x1, . . . , xn and y0, . . . , yn−2 appear linearly in the

body of the expression as long as x1, . . . , xn appear linearly in the original expres-

sion. This representation assumes that a two-operand let will be added to the Q

representation. The adequacy of such a conversion must be proved to ensure that

the expressions are equivalent and the language’s expressiveness does not change.

In contrast to Proto-Quipper, the definition of con for Q will include two distinct

constants for the two abstractions, namely LABS and IABS. It also has constants

qPROD and Qvar as before. The third type of abstraction does not have a dedicated

constant as we decided to encode it using the let-statement (i.e., qLET). Linear and

intuitionistic abstraction are defined using an HOAS representation as follows:

Definition LAbs: (qexp -> qexp) -> qexp :=

fun f:qexp -> qexp => (APP (CON LABS) (lambda (fun x => f x))).

Definition IAbs: (qexp -> qexp) -> qexp :=

fun f:qexp -> qexp => (APP (CON IABS) (lambda (fun x => f x))).

Note that at the syntax level both lambda abstractions are the same except for the

constant annotation. The real difference will be imposed in the encoding of the OL

semantic rules as we will see in the next section. Note also the difference between

the definition of Fun from Proto-Quipper which contains (lambda f) and the two

definitions here, which contain (lambda (fun x => f x)). The two terms are η-

equivalent; in general, terms in Hybrid are equivalent up to η-conversion, which

means that either form can be used to encode such OL expressions.

3 Encoding the SL and OL Inference Rules

The sequents of the intuitionistic linear logic we adopt as an SL (bottom left of

Figure 1) have the form Γ;Δ �Π G, where G is a formula, Γ is an intuitionistic

context of formulas (a set of formulas), Δ is a linear context (a multiset of formulas),

and Γ and Δ contain only atomic formulas. The restriction to atomic formulas is

sufficient for the examples we have considered so far, and simplifies reasoning using

Hybrid. In [3], an intuitionistic SL is defined that allows more general formulas in

contexts. If this kind of generality is needed in future case studies in our framework,

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 191

l init
Γ;A � A

i init
Γ, A; . � A

�-R
Γ;Δ � �

Γ;Δ1 � B Γ;Δ2 � C ⊗-R
Γ;Δ1,Δ2 � B ⊗ C

Γ;Δ � B Γ;Δ � C
&-R

Γ;Δ � B&C

Γ, A; Δ � B ⇒-R
Γ;Δ � A ⇒ B

Γ;Δ, A � B
�-R

Γ;Δ � A � B

Γ;Δ � B[y/x] ∀-R
Γ;Δ � ∀x.B

Γ, A,A; Δ � B
Contraction

Γ, A; Δ � B

Γ, A1; Δ � B
Weakening

Γ, A1, A2; Δ � B

A ←− [G1, . . . , Gm][G′1, . . . , G′n] ∈ [Π]

Γ; . � Gi (i = 1, . . . ,m)

Γ;Δi � G′i (i = 1, . . . , n)
bc

Γ;Δ1 . . .Δn � A

Fig. 2. MALL sequent rules

it should be straightforward to extend our linear SL using the same approach as

in that paper. Π is a set of formulas (also called clauses) expressing the inference

rules of an OL, which we omit when presenting the sequent rules because it is fixed

for each OL and does not change within a proof. They can be considered as a fixed

subset of Γ. In particular, we are interested in the MALL fragment of intutionistic

linear logic, which includes the connectives ⊗ for multiplicative conjunction, & for

additive conjunction, � for linear implication, ⇒ for intuitionistic implication, and

� for the universal resource consumer.

The sequent rules of this logic are presented in Figure 2 (where · represents an
empty context). Note that the “;” is used to separate the linear context from the

intuitionistic one whereas the “,” is used to append a hypothesis to a context. We

now discuss the rules from top to bottom. There are two initial rules, the linear

rule (l init) strictly prohibits the existence of any hypothesis inside Δ except A,

and does not care about the contents of Γ. The intuitionistic rule (i init) strictly

requires an empty linear context, whereas A should be in the intuitionistic context.

We can use ⊗ if its operands can be proven linearly at the same time, i.e., they do

not share linear resources. On the other hand, additive conjunction is used when the

operands are sharing the linear resources. Because they both consume all resources,

only one of them can be made available at a time. The implication rules (⇒-R and

�-R) vary based on which context the antecedent A comes from. The ∀-R rule

has the usual proviso that y does not appear in Γ, Δ, or B. The usual rules for

contraction and weakening apply only to the intuitionistic context.

In the bc rule, [Π] represents all possible instances of clauses in Π (clauses with

instantiations for all variables quantified at the outermost level). Clauses are not

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201192

arbitrary formulas, but have the restricted form shown by the first premise of this

rule. Applying this rule in a backward direction corresponds to backchaining on a

clause in Π, instantiating the universal quantifiers so that the head of the clause

matches A. There is one hypothesis for each subgoal, both linear and intutionistic.

There are a number of formalizations of linear logic, e.g., [5] in Abella and [15,23]

in Coq. The main purpose of these formalizations is handling the meta-analysis of

different fragments of linear logic. In contrast, we use linear logic as an intermediate

logic in which to study object languages such as QPLs. Our objective is broader

since it includes both. In particular, we prove meta-level theorems about linear logic

and gear our choice of theorems toward those that are useful in analyzing any QPL.

Our formalization is inspired by the work in [9], which implements ordered intu-

itionistic linear logic as a specification logic in the Isabelle/HOL version of Hybrid,

where it is used to study a continuation-machine presentation of the operational se-

mantics of a functional language, which is much simpler than the QPLs considered

here.

In our implementation, formulas of the SL are defined as an inductive type oo.

This definition introduces constants for each connectives of the SL:

Inductive oo: Set :=

| atom: atm -> oo

| T: oo

| Conj: oo -> oo -> oo

| And: oo -> oo -> oo

| Imp: atm -> oo -> oo

| lImp: atm -> oo -> oo

| All: (expr con -> oo) -> oo.

where the atom constructor accepts an atomic formula of type atm and casts it into

an SL formula. The type atm is defined for each object language and typically in-

cludes predicates such as typeof and is exp, where the former is a binary predicate

relating a QPL expression and its type and the latter is a unary well-formedness

predicate. The constructor T corresponds to the universal consumer, Conj corre-

sponds to multiplicative conjunction, and And to additive conjunction. The type

constructors Imp and lImp corresponds to intuitionistic and linear implication, re-

spectively, where in both cases, the formula on the left must be an atom. The All

constructor takes a function as an argument, and thus the bound variable in the

quantified formula is encoded using lambda abstraction in Coq.

The SL sequent rules are then formalized as an inductive predicate seq of type

list atm -> list atm -> oo -> Prop. The first list of atoms refers to the intu-

itionistic context, whereas the second list contains linear atoms. Below are some

examples of sequent rules formalized in the seq definition:

Inductive seq: list atm -> list atm -> oo -> Prop :=

| l init: forall (A:atm) (IL:list atm), seq IL [A] (atom A)

| i init: forall (A:atm) (IL:list atm),

In A IL -> seq IL nil (atom A)

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 193

| s tt: forall (IL LL:list atm), seq IL LL T

| m and: forall (B C:oo) (IL L L1 L2:list atm),

split L L1 L2 -> seq IL L1 B -> seq IL L2 C ->

seq IL L (Conj B C)

| a and: forall (B C:oo) (IL L: list atm),

seq IL LL B -> seq i IL L C -> seq IL L (And B C)

| s bc: forall (A: atm) (IL LL: list atm) (lL iL: list oo) (b: oo),

prog A iL lL ->

splitseq L [] iL -> splitseq IL LL lL ->

seq IL LL (atom A)

In this set of rules, we do not include structural rules for intuitionistic contexts,

such as weakening and contraction. They will be proved admissible later as part of

the meta-theorems about this sequent calculus that will be important to include to

help users reason about OLs.

Notice that we use the type list to model logical contexts. Using a list to model

sets, where duplication does not matter and order has no meaning, is convenient for

representing the intuitionistic context. In particular, the Coq type list can behave

as sets without the need to impose restrictions on them. However, this does not work

directly for the linear context where duplication does matter, though order does not

(i.e., as in multisets). For this case, we must add a restriction to make lists behave

implicitly as multisets. This restriction appears in the multiplicative conjunction

rule where we connect the linear contexts for the sequents with conclusions B and

C using the split predicate. In particular, in split L L1 L2, list L is “split”

into the two lists L1 and L2. This predicate can be viewed as a multiset union

operator since it preserves the number of occurrences of each element inside L1 and

L2 without necessarily maintaining the order of appearance in L. For example, the

split of [A;B;C] can be [A;B] and [C], [C] and [A;B], [A] and [C;B], or [B]

and [C;A]. Later, we will state a meta-level structural theorem expressing that this

predicate works as required, and does not affect provability. Alternatively, we could

have used the existing multiset library in Coq. However, we found this library

too weak for our purposes, and not rich enough in comparison to the list library.

Since it was not our focus to build a library for multisets, we chose the “implicit”

definition using lists.

Another important thing we want to highlight: in the s bc rule, the predicate

splitseq is used to check the provability of a list of subgoals. The predicate

splitseq is used twice; one for the intuitionistic subgoals iL under the empty

linear context, the other one for the linear subgoals lL. The predicates seq and

splitseq are defined using Coq’s mutual induction. One can look at splitseq as

a generalization of seq, where a list of goals are proved instead of just one. The

splitseq predicate is defined with the help of the split predicate, which ensures

that the union of the linear contexts used to prove the subgoals respect the multiset

behavior.

To keep things simple here, we omit an additional natural number argument

to the seq predicate that allows proofs by induction over the height of a sequent

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201194

derivation. The reader is referred to [13] for full details.

The backchaing rule also depends on the inductive predicate prog of type atm ->

list oo -> list oo -> Prop, which encodes the inference rules of an OL (such as

its operational semantics). The formula (prog A IL L) reads as follows: an atom

A (the conclusion of an inference rule of the OL) is true in an OL if we can prove

each member of the list of intuitionistic subgoals IL and of the linear subgoals LL

(together representing the premises of an OL rule). Examples will be given later

for our two QPLs.

The implementation of the SL is significantly generalized from that in [12] in

the sense that we have proved more meta-theoretic properties. Since these prop-

erties can be applied to any OL, this allows for a more complete validation of OL

properties. For example, in addition to proving that weakening and contraction are

admissible, we have proved the admissibility of cut rules for both intuitionistic and

linear contexts. The intutionistic rule is formalized as follows:

Lemma seq cut aux: forall (a:atm) (b:oo) (IL L:list atm),

seq IL L b -> seq (remove eq dec a IL) [] (atom a) ->

seq (remove eq dec a IL) L b.

The theorem states that if we remove all instances of the hypothesis a from the list

of intuitionistic hypotheses IL, and a is found to be provable under the new list of

hypotheses, then eliminating a does not affect the provability of b. Note that the

remove (a Coq list operation) requires a proof of the decidability of equality at type

atm as an argument.

On the other hand, the linear version of the cut elimination rule allows the

removal of only one instance of the linear resource a:

Lemma seq cut linear: forall (a:atm) (b:oo) (IL L L’:list atm),

seq IL L b -> seq IL L’ (atom a) ->

seq IL (L’ ++ remove one eq dec a L) b).

We have defined the remove one function (it is not available in the Coq list library)

to remove just one copy of a given formula from a list. Note that ++ is the Coq

notation for the list append operator.

The admissibility of weakening over the intuitionistic context is stated as follows:

Theorem seq weakening cor: forall (b:oo) (il il’ ll:list atm),

seq il ll b ->

(forall a :atm, In a il -> In a il’) ->

seq il’ ll b.

It important to highlight that our version of linear logic is not ordered, i.e., the order

in which the resources appear inside the linear context does not affect provabilty.

This is a significant difference with respect to the linear logic SL defined in [9].

To insure that the formalized logic does respect this condition, we have proved

the exchange property of the linear context (i.e., the linear context behaves as a

multiset), stated as follows:

Theorem seq exchange cor: forall (b:oo) (il ll’ ll:list atm),

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 195

seq il ll b ->

(forall a, count occ eq dec ll a = count occ eq dec ll’ a) ->

seq il ll’ b.

where the count occ operation counts the number of occurrences of an element

in a given list. For two linear contexts ll and ll’ that have same number of

occurrences of each atom, the order they appear in the list does not matter; they

are exchangeable in any valid proof in the formalized SL. The proof of this theorem

involves numerous lemmas related to the definitions of count occ and remove one,

i.e., related to the multiset behavior of the linear context.

The following two examples illustrate the middle left box in Figure 1.

Example 3. Continuing Example 1, the Proto-Quipper typing judgment has the

form Γ;Q � a : A. In this sequent, Γ is a finite set of typing declarations of the

form x : A where x is a variable and A is a type (A may have the form !C or not).

Q is a quantum context containing a finite set of quantum variables, typically the

free quantum variables in a. The following are two examples (out of four) of the

Proto-Quipper lambda abstraction typing rules:

Γ, x : A;Q � b : B
λ1Γ;Q � λx.b : A � B

Δ, x : !A;Q � b : B
λ2Δ; . � λx.b : !A � B

In rule λ1, for a Proto-Quipper expression b whose types is B and linearly dependent

on variable x (i.e., x appears only once in b) whose linear type is A, the lambda

abstraction over x then yields a function of type (A � B). This rule is then encoded

as part of the prog clauses dedicated to the Proto-Quipper language as follows:

| lambda1l: forall (T1 T2:qtp) (E:qexp -> qexp),

abstr E -> validT (bang T1) -> validT T2 ->

prog (typeof (Fun (fun x => E x)) (arrow T1 T2)) []

[(All (fun x:qexp => Imp (is qexp x)

(lImp (typeof x T1) (atom (typeof (E x) T2)))))]

Here, the type qtp encodes Proto-Quipper types (whose definition was omitted from

Example 1), and validT checks for certain well-formedness conditions of elements

of this type, such as ruling out two consecutive occurrences of bang. The typeof

predicate is a constructor of the inductively defined type atm, which associates an

expression with its type, and is qexp is a constructor of atm used to annotate well-

formed expressions. As mentioned earlier, the abstr predicate rules out functions

of type qexp -> qexp that do not encode OL syntax. In this clause, lImp is used

to ensure that the bound variable x is linear in the body of the function E, i.e., this

assumption will go into the linear context. Note also the use of Imp; well-formedness

assumptions are always part of the intuitionistic context in our formalization. Fi-

nally, note that the subgoal occurs in the list of linear subgoals. This is because

the type of the whole expression Fun (fun x => E x) is linear; it may also con-

tain quantum variables, which can each only occur once. The list of intuitionistic

subgoals is empty.

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201196

[C, a] → [C ′, a′]
cond

[C, if a then b else c] → [C ′, if a′ then b else c]

ifT
[C, if True then b else c] → [C, b]

ifF
[C, if False then b else c] → [C, c]

Fig. 3. The if-statement reduction rules

Note that the type oo defined earlier along with all its constructors, such as

atom, encode a general version of formulas that must be instantiated for each OL.

The constant atom appearing in the prog clauses such as the one above is the

instantiated version for Proto-Quipper.

The following prog clause encodes the λ2 rule, i.e., the non-linear bound variable

case:

| lambda1i: forall (T1 T2:qtp) (E:qexp -> qexp),

abstr E -> validT (bang T1) -> validT T2 ->

prog (typeof (Fun (fun x => E x)) (arrow (bang T1) T2)) []

[(All (fun x:qexp => Imp (is qexp x)

(Imp (typeof x (bang T1)) (atom (typeof (E x) T2)))))]

Note the use of Imp (the second occurrence in the above clause) because the type of

the bound variable is duplicable. The subgoals, however, must still be linear as the

function body can still depend on quantum variables. In contrast, these conditions

are required to be in the list of intutionistic subgoals when the function body is

non-linear, i.e., it does not contain linearly typed variables, in particular, quantum

variables.

Figure 3 shows an example of the reduction rules of Proto-Quipper, in particular,

for the if-statement. The term [C, a] is a circuit closure, where a is a Proto-Quipper

expression that depends on the quantum variables produced by the circuit C, i.e.,

the outputs of the circuit. The corresponding formal presentation of these rules are

as follows:

| ifr: forall C C’ b b’ a1 a2,

valid c C (If b a1 a2) -> valid c C’ (If b’ a1 a2) ->

~(is value b) ->

prog (reduct C (If b a1 a2) C’ (If b’ a1 a2))

[atom (reduct C b C’ b’);

atom (is qexp a1); atom (is qexp a2)] []

| truer: forall C a1 a2,

valid c C (If (CON TRUE) a1 a2) ->

prog (reduct C (If (CON TRUE) a1 a2) C a1)

[atom (is qexp a1); atom (is qexp a2)] []

| falser: forall C a1 a2, valid c C (If (CON FALSE) a1 a2) ->

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 197

prog (reduct C (If (CON FALSE) a1 a2) C a1)

[atom (is qexp a1); atom (is qexp a2)] []

where reduct is a constructor of atm that encodes →, and thus associates an expres-

sion with its reduced expression, and valid c ensures that a circuit closure [C,a]

forms a valid closure, i.e., the quantum variables of a belong to the output of circuit

C. Note that the rule ifr is only applicable if b is not a value; otherwise this rule

could be applied an infinite number of times without achieving any progress. One

of the other two rules is applied when b is a value, i.e., it represents the boolean

True or False.

Returning to the issue of adequacy, internal adequacy theorems mentioned ear-

lier generally state that if a particular OL judgment is provable, then all of the terms

in this judgment are well-formed. In particular, the well-formedness judgment for

an OL, such as is qexp for Proto-Quipper, must only hold for terms of type qexp

that represent OL terms. We omit the details, since we have not described the

rules for is qexp here, and instead describe it informally. Using this judgment, we

can prove internal adequacy for the typeof judgment, for example. This particular

theorem states that if a sequent of the form seq iL lL (atom (typeof M T)) is

provable then the sequent seq iL [] (atom (is qexp M)) is also provable, un-

der an assumption about the form of the contexts iL and lL. In other words, if iL

and lL are well-formed contexts and M can be proven to inhabit a type T, then M

is a well-formed Proto-Quipper expression in context iL. (See [10] for examples of

internal adequacy for simpler OLs.)

Example 4. We choose to illustrate the Q language by considering well-formedness

of terms of the form λx.a and λ!x.a from Example 2. Let Γ and Δ be contexts of

intuitionistic and linear term variables, respectively. The term λx.a (respectively

λ!x.a) is well-formed in Γ;Δ if a is well-formed in Γ, x; Δ (respectively Γ;Δ, x). The

prog clauses for these lambda expressions are as follows:

| lambda1: forall (M:qexp -> qexp), abstr M ->

prog (is qexp (LAbs M)) []

[All (fun x:qexp => lImp (is qexp x) (atom (is qexp (M x))))]

| lambda2: forall (M:qexp -> qexp), abstr M ->

prog (is qexp (IAbs M)) []

[All (fun x:qexp => Imp (is qexp x) (atom (is qexp (M x))))]

Note the difference between the two rules: linear implication is used to define the

linear lambda abstraction (which enforces the requirement that the function body

contain one copy of x), whereas intuitionistic implication is used to define intuition-

istic lambda abstraction, which allows multiple copies of x or even zero occurrences.

Now, we conclude our formalization by showing an example meta-theorem,

namely subject reduction (or type soundness). The following statement represents

an abbreviated form of this theorem for the Proto-Quipper language, using the

definitions provided earlier:

Theorem subject reduction: forall IL LL C C’ a a’,

seq IL [] (atom (reduct C a C’ a’)) ->

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201198

seq IL LL (atom (typeof a A)) ->

seq IL LL (atom (typeof a’ A)).

It is abbreviated because certain conditions on the contexts IL and LL that are

required for adequacy are omitted. This theorem states that if an expression a

produced by a quantum circuit C reduces to an expression a’ produced by a quantum

circuit C’, then the reduced expression maintains the same type as the original

expression. For an untyped programming language, the corresponding statement

of the above theorem will be slightly different, where the typeof atoms will be

replaced by is qexp atoms. Progress theorems are another type of property that is

important for QPLs to satisfy. Proving such a property for Proto-Quipper is part of

our immediate future work. This theorem along with subject reduction will result

in a formalization of the principal results in [18].

4 Conclusion

We have proposed a meta-level analysis framework for functional QPLs implemented

using the Hybrid system with a linear specification logic. The framework provides

a standard way to tackle common components and concepts of QPLs, e.g., opera-

tional semantics and type safety. Formalization examples of the Proto-Quipper and

Q languages have been presented to show the practical potential of the proposed

system.

Future work includes carrying out a more complete formalization of these lan-

guages in addition to others, e.g., [8,17,21]. Formalizing multiple examples will help

to improve our framework. In particular, it will involve building infrastructure that

decreases the amount of work required for an average user to handle a complete

formalization. The QWIRE language in [17], for instance, is implemented in Coq

and is expressive enough to include languages like Proto-Quipper. The work in

that paper focuses on proving properties of quantum programs and program trans-

formations, such as proving that a program meets its formal specification. Our

framework will provide a platform in which to also study the meta-theory of this

language. Another direction of future work is to expand our framework to provide

support for reasoning about particular programs and operations on them.

Our plans for future work also include generalizing the SL. The logic program-

ming approach we use was first introduced in the FOλΔIN logic [14], and is also

used in other Hybrid SLs, e.g., [9,10]. An alternative is to use a more general fo-

cusing style as introduced in [2], and used to implement e.g., the formalization of

a generalized intuitionistic SL in Hybrid [3] as well as the classical linear logic in

[23]. The former was inspired by the an earlier formalization of the same logic in

Abella [22]. The latter adopts the parametric approach to HOAS [6]. It would be

interesting to implement the same linear logic in Hybrid, which uses a more direct

style of HOAS, and then compare the two.

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 199

References

[1] Ambler, S., R. L. Crole and A. Momigliano, Combining higher order abstract syntax with tactical
theorem proving and (co)induction, in: 15th International Conference on Theorem Proving in Higher-
Order Logics (TPHOLs), Lecture Notes in Computer Science (2002), pp. 13–30.

[2] Andreoli, J.-M., Logic programming with focusing proofs in linear logic, Journal of Logic and
Computation 2 (1992), pp. 297–347.

[3] Battell, C. and A. Felty, The logic of hereditary Harrop formulas as a specification logic for Hybrid, in:
11th Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP) (2016),
pp. 3:1–3:10.

[4] Brassard, G., C. Crepeau, R. Jozsa and D. Langlois, A quantum bit commitment scheme provably
unbreakable by both parties, in: 34th Annual Symposium on Foundations of Computer Science, 1993,
pp. 362–371.

[5] Chaudhuri, K., L. Lima and G. Reis, Formalized meta-theory of sequent calculi for substructural logics,
in: Postproceedings of the 11th Workshop on Logical and Semantic Frameworks with Applications
(LSFA 2016), Electronic Proceedings in Theoretical Computer Science 332 (2017), pp. 57–73.

[6] Chlipala, A., Parametric higher-order abstract syntax for mechanized semantics, in: 13th ACM
SIGPLAN International Conference on Functional Programming (ICFP), 2008, pp. 143–156.

[7] Crole, R. L., The representational adequacy of Hybrid, Mathematical Structures in Computer Science
21 (2011), pp. 585–646.

[8] Dı́az-Caro, A. and G. Dowek, Simply typed lambda-calculus modulo type isomorphisms, CoRR
arXiv/1501.06125 (2014).

[9] Felty, A. P. and A. Momigliano, Hybrid: A definitional two-level approach to reasoning with higher-order
abstract syntax, Journal of Automated Reasoning 48 (2012), pp. 43–105.

[10] Felty, A. P., A. Momigliano and B. Pientka, The next 700 challenge problems for reasoning with higher-
order abstract syntax representations: Part 2—a survey, Journal of Automated Reasoning 55 (2015),
pp. 307–372.

[11] Knill, E., Conventions for quantum pseudocode, Technical Report LAUR-96-2724, Los Alamos National
Laboratory (1996), https://www.osti.gov/scitech/servlets/purl/366453.

[12] Mahmoud, M. Y. and A. P. Felty, Formalization of metatheory of the Quipper quantum
programming language in a linear logic (2017), http://www.site.uottawa.ca/~afelty/dist/
HybridProtoQuipper17.pdf.

[13] Mahmoud, M. Y. and A. P. Felty, Quantum programming language Coq scripts (2017), https:
//bitbucket.org/snippets/myousri/Gj7qX.

[14] McDowell, R. and D. Miller, Reasoning with higher-order abstract syntax in a logical framework, ACM
Transactions on Computational Logic 3 (2002), pp. 80–136.

[15] Olivier Laurent, YALLA: an LL library for Coq (2017), https://perso.ens-lyon.fr/olivier.
laurent/yalla/.

[16] Ömer, B., “A Procedural Formalism for Quantum Computing,” Master’s thesis, Technical University
of Vienna (1998).

[17] Rand, R., J. Paykin and S. Zdancewic, QWIRE practice: Formal verification of quantum circuits in
Coq, in: Postproceedings of the 14th International Conference on Quantum Physics and Logic (QPL
2017), Electronic Proceedings in Theoretical Computer Science 266, 2018, pp. 119–132.

[18] Ross, N. J., “Algebraic and Logical Methods in Quantum Computation,” Ph.D. thesis, Dalhousie
University (2015), CoRR arXiv:1510.02198 [quant-ph].

[19] Sanders, J. W. and P. Zuliani, Quantum programming, in: 5th International Conference on Mathematics
of Program Construction (MPC), Lecture Notes in Computer Science (2000), pp. 80–99.

[20] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classial control,
Mathematical Structures in Computer Science 16 (2006), pp. 527–552.

[21] Vizzotto, J. K., B. Calegaro and E. K. Piveta, A double effect λ-calculus for quantum computation, in:
17th Brazilian Symposium on Programming Languages (SBLP), Lecture Notes in Computer Science
(2013), pp. 61–74.

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201200

https://www.osti.gov/scitech/servlets/purl/366453
http://www.site.uottawa.ca/~afelty/dist/HybridProtoQuipper17.pdf
http://www.site.uottawa.ca/~afelty/dist/HybridProtoQuipper17.pdf
https://bitbucket.org/snippets/myousri/Gj7qX
https://bitbucket.org/snippets/myousri/Gj7qX
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://perso.ens-lyon.fr/olivier.laurent/yalla/

[22] Wang, Y., K. Chaudhuri, A. Gacek and G. Nadathur, Reasoning about higher-order relational
specifications, in: 15th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming (PPDP) (2013), pp. 157–168.

[23] Xavier, B., C. Olarte, G. Reis and V. Nigam, Mechanizing linear logic in Coq, in: Postproceedings of
the 12th Workshop on Logical and Semantic Frameworks with Applications (LSFA 2017), Electronic
Proceedings in Theoretical Computer Science, 2018.

[24] Zorzi, M., On quantum lambda calculi: a foundational perspective, Mathematical Structures in
Computer Science 26 (2016), pp. 1107–1195.

M.Y. Mahmoud, A.P. Felty / Electronic Notes in Theoretical Computer Science 338 (2018) 185–201 201

	Introduction
	Encoding OL Syntax in Hybrid
	Encoding the SL and OL Inference Rules
	Conclusion
	References

