Generalization and Reuse of Tactic Proofs

Amy Felty and Douglas Howe*

AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA.

Abstract. A tactic proofis a tree-structured sequent proof where steps
may be justified by tactic programs. We describe a prototype of a generic
interactive theorem-proving system that supports the construction and
manipulation of tactic proofs containing metavariables. The emphasis is
on proof reuse. Examples of proof reuse are proof by analogy and re-
construction of partial proofs as part of recovering from errors in defini-
tions or in proof strategies. Our reuse operations involve solving higher-
order unification problems, and their effectiveness relies on a proof-
generalization step that is done after a tactic is applied. The prototype
is implemented in AProlog.

1 Introduction

Most interactive theorem proving systems support some notion of “high-level”
proof, although this is usually informal. Often it is a textual transcript of the
commands that were used to direct the prover. It can also be a composite tactic
program formed by combining all the individual tactics used to prove a theorem.
Informal or not, in practice such objects serve as explanations of formal proofs
and as the basis for useful proof-manipulating operations.

One general way to directly support high-level proof objects is to extend
tree-structured sequent proofs so that a step in a sequent proof can be justified
either by an inference rule of the implemented logic, or by a program e whose
execution produces a partial proof that justifies the inference, providing steps
that lead from the antecedent sequents of the inference to the concluding sequent.

Because most interactive proofs are conducted top-down, we restrict the pro-
gram e to consist of a program €', called a tactic, together with an input goal
g. We call proofs where steps may be justified by tactics factic proofs. If we
also require that g be identical to the conclusion g’ of the inference justified by
a tactic, then this proof structure is the same as that of Nuprl [1]. We do not
make this restriction because it is incompatible with the use of metavariables in
proofs.

The focus of this paper is the reuse of tactic proofs. One obvious example
of proof reuse is proof by analogy, where an existing proof is adapted to a new
theorem. A more common application in interactive systems is in error recovery.
During the course of a proof it is often necessary to make a change that affects

* To appear in Proceedings of the Fifth International Conference on Logic Programming
and Automated Reasoning.

the part of the proof that has already been built. Such a change might be to
the statement of the goal, to a definition the proof depends on, to an induction
hypothesis or to a previous step in the proof. The problem is to recover as much
of the existing (partial) proof as possible after such a change.

One way to reuse proof steps after a change is to replay them. In the setting
of tactic proofs, this can be done by reconstructing the proof tree by successively
reapplying all the tactics in a top-down fashion.

There are two problems with this approach. First, it can be time consuming.
Second, it is not a robust procedure for many of the kinds of local changes typical
in error recovery. As a simple example, suppose a step in the proof used a tactic
that just repeatedly applied &-introduction until no conjunctions remained in
the succedent of the goal sequent. In particular, suppose the tactic refined the
goal - ¢1 & ¢2 & P3 to the three subgoals F ¢y, F ¢2, and - ¢3.

Now suppose that ¢; has been changed to ¢4 & ¢5. When the replay of
the steps in the original proof gets to the above tactic step, the goal is now
F (¢s & ¢5) & ¢2 & ¢3. Rerunning the tactic produces subgoals - ¢4, - @5,
F ¢2, and - ¢3. In order to continue replay, we need to know that the subproofs
for the last two of the original three subgoals should be used for the last two of
the new subgoals. In this simple case it is obvious how to make this association,
but in general, when there can be other changes, it is not.

The basic idea underlying our solution to this problem is simple, and involves
relaxing the requirement on how a tactic relates to the step it justifies. In the
above example, the step is determined by the execution of the tactic: the tactic,
when applied to the goal, produces a proof tree whose concluding sequent, or
conclusion, is the goal, and whose non-axiomatic leaf sequents, or premises, are
the subgoals. However, the proof produced by the tactic may justify many more
inferences than the one that is determined this way. For example, if the proof
is the obvious one involving just &-introduction rules, then the identity of the
formulas ¢; is irrelevant.

We capture this kind of generality by performing proof generalization, mak-
ing use of metavariables in proofs. Inference rules of the logic are implemented
as schemas with metavariables in a manner very similar to what is found in
Isabelle [10]. A rule schema justifies any inference which can be obtained by
instantiating metavariables in the schema. When a tactic produces a proof us-
ing these rule schemas, we can generalize to find a “minimal” proof using these
schemas. We then allow this tactic to justify any step corresponding to an in-
stance of this minimal proof.

Consider again the &-introduction example. The generalization of the proof
produced by the tactic has conclusion H - A & B & C and premises H | A,
H F B, and H |- C. Instantiating H to the empty hypothesis list and A, B,C
to ¢1, P2, ¢3 yields the original inference. When a conjunct is added as above,
the same tactic step can be used by taking A to be ¢4 & ¢5. The number of
subgoals remains the same.

This example also shows a tradeoff we have made between generality and
intelligibility. After the conjunction is added, in the step where repeated &-

introduction is applied, there will be a subgoal where another &-introduction
could be applied. In other words, it may appear as though the tactic did not
progress as far as it might have, since if we reran the tactic on the new goal there
would be four subgoals instead of three. The situation is worse when tactics
explicitly refer to components of the sequent. For example, if the tactic is E1im
1, which applies &-elimination to the first hypothesis, then the generalized step
is simply the &-elimination rule. This means that the proof could be modified so
that the eliminated hypothesis is the second one. However, explicit references to
hypothesis numbers is typically regarded as bad style since it makes proof replay
much less robust. We believe that the &-introduction example is more typical.
In any case, the original input goal for the tactic is retained, so when reading a
proof it is still possible to precisely understand the connection between a tactic
and the step it justifies.

We have implemented a prototype of an interactive theorem proving system
based on these ideas. The system includes a command interface for building and
viewing tactic proofs. We have also implemented a reuse command that attempts
to reuse a proof when the statement of the root goal is changed.

AProlog [9] is both the implementation language and the tactic programming
language in our system. Using ML as an implementation language would give us
a greater degree of control over unification and metavariable instantiation, but
a substantial amount of work would be required to implement AProlog’s built-in
support for metavariables, variable-binding and backtracking.

The design of our system is generic, in the sense that it can easily accommo-
date most logics that can be specified in the general style of LF [5]. The exact
style of encoding of logics in our system is very similar to [3], except that we
have made a commitment to sequent-calculus presentations.

The next section describes the structure of proofs in our system and gives a
somewhat abstract account of proof generalization and reuse. This is followed
by an example session with our prover, a section giving some implementation
details and, finally, a conclusion discussing some extensions and giving a few
further comparisons with related work.

2 Proofs

This section gives a simplified account of the proof data-structure. A few of the
more important differences between this account and the implementation are
given at the end of the section.

Two of the principle constituents of proofs are goals and tactics. Goals are
intended to be sequents in the logic being implemented (the “object logic”), and
tactics are programs from some programming language. To make the presenta-
tion simple, and to keep the description here close to what has been implemented,
we assume that both goals and tactics are represented as terms in the simply-
typed A-calculus. In our implementation, object logics are encoded using A-terms
and tactics are programs in AProlog, a language whose programs are all A-terms.

Let A be the set of terms of the typed A-calculus over some set of base types
and some set of constants. We identify afBn-equal terms. Thus, if there is a
substitution ¢ such that o(e) = o(e’), then e and e’ have a higher-order unifier.
We distinguish a base type and define the set of goals to be the set of all terms
in A of this type.

Metavariables in this setting are simply the free variables of a goal. We will
use capital letters to stand for metavariables. Ordinary variables in our represen-
tation are bound by A-abstractions. See the implementation section for details
on this representation.

A proof is a tree of goals where each node has associated with it a justi-
fication. The justification says how the goal can be inferred from its children.
We will describe the kinds of justifications below. For now, assume that for any
justification j there is an associated pair s(j) = (g,9), called a step, where g is a
goal and g is a sequence g1, ..., gn (n > 0) of goals. g is the conclusion of the step
(9,9), and g;, 1 < i < n, is the i** premise of the step. Define concl(s(j)) = g
and prem;(s(7)) = ¢i, 1 < 1 < n. We place the following restriction on proofs.
Let g be a node in the tree, let j be its associated justification, and let g be
the sequence of children of g (in left-to-right order). Write s(j) = (¢',7'). We
require that there be a substitution o such that o(¢’) = g and o(g’') = g (using
the obvious extension of substitution to sequences of goals).

Thus s(j) can be thought of as a rule schema, with premises g’ and conclu-
sion g’, and the valid instances of the schema are obtained by substituting for
metavariables. For example, one of the allowed justifications in our implementa-
tion of first-order logic is the constant and_i (for &-introduction), and

s(endi) = (H-A&B, (HF A, HF B)),
which corresponds to the rule schema

HFA HFB
H& A& B.

Note that proof trees are preserved under instantiation: if o is a substitution,
p is a proof, and o(p) is obtained by replacing every goal g in p by o(g) (and
keeping the same associated justifications), then o(p) is a proof.

There are three kinds of justifications. One corresponds to primitive rules
of the object logic and one to tactics. There is also a justification jprem, where
$(jprem) is (G,()). This corresponds to a trivial “rule” which infers any goal
from no premises. Goals in a proof tree that have jprem as their justification are
called premises of the proof. Thus proof trees represent incomplete proofs in the
object logic. The root goal of a proof is called its conclusion.

Justifications corresponding to inference rules of the object logic are repre-
sented as a set R C A of constants called rule names. For each r € R there is an
associated step s(r).

The third form of justification is the tactic justification. Tactics are repre-
sented as a subset T of A. A tactic is a program that takes a goal as argument
and, if it produces an output, returns a proof and a substitution. For each goal

g and tactic e € T such that e produces an output on input g, there is a justifi-
cation je g.

Let p be the proof returned by e on input g. One possibility for s(je,g)
is to take the conclusion and premises of p [4]. Since proofs are closed under
instantiation, any instance of this step is sound. However, this is restrictive. If
there is a proof p' of which p is an instance, then the step derived from p' is also
sound and is more general. So, we define s(je 4) to be a “minimal” p' having p
as an instance. We call p’ a generalization of p.

We can cast the problem of finding this generalization p’ as a unification
problem. For each node u in p, let j* be its associated justification. Without
loss of generality, we may assume that s(j*) and s(j¥) have no metavariables in
common when u # v. To find a minimal p’, we find a minimal unifier ¢ such
that

o(prem(s(j*)) = o(conel (s(;"))
for all nodes u and v of p such that v is the i** child of u. We then obtain p'
from p by replacing the goal at each node u by o(concl(s(3*))).

In general, most-general higher-order unifiers do not exist, and so the defini-
tion of s(je,g) is under-specified. The implementation computes generalizations
by solving the above unification problems. The exact choice of ¢ is implementa-
tion dependent.

The generalization step in the definition of s(je,4) is exploited in the proce-
dure for proof reuse. This procedure reuses the existing justifications in a proof
tree to justify a tree with different goals. The particular reuse procedure we
have implemented is almost identical to the generalization procedure. The only
substantial difference is that we also require that

o(g) = o(concl(s(37)))

where r is the root of the (sub-) proof we wish to reuse and g is the new root
goal we want to reuse the proof for.

Proof trees are typically extended by refining a premise with a tactic. Tactic
refinement works as follows. Let g be a premise of a proof p, and suppose that
the tactic e with argument g returns a proof p’ and a substitution o. Let g' be
the conclusion of p' and let g’ be the sequence of premises of p’. If ¢’ = o(g), then
the refinement of p at g using e is obtained from o(p) by replacing the premise
justification of o(g) by jeg, and adding, as children of o(g), nodes gi,..., g,
each with jprem as its justification.

For example, if g is - X = 0 and if e is a tactic that instantiates X with 0,
we might have o(X) =0, 0= 0for ¢’, and (- 0 = 0) for g'. The act of refining
will replace X by 0 in the entire proof, and produce a new premise -0 =0 as a
child of the old premise.

The most important difference between the implementation and the above
account of tactics in proofs is that in the implementation, the logic variables
of AProlog are used for metavariables. This means that tactics do not need
to explicitly return a substitution; instantiation of metavariables is part of the
execution of a tactic.

The justifications associated with the nodes of a proof are stored along with
the goals in the implemented proof data structure. A tactic justification j. g is
implemented as a tuple containing the text of the program e along with the
goal g. Also, to avoid having to recompute the application of e on g every time
5(je,g) is needed, we also put into the tuple the justification tree that results from
erasing the goals from the proof produced by e on input g. The justification tree
is all that is needed to perform the generalization step for s(je 4). The tactic and
its argument are retained in addition to the justification tree because they are
informative to a user.

3 An Example Session

The following session illustrates interaction with our system, including refine-
ment commands, navigation within a proof, as well as the reuse command. We
attempt to prove the simple formula (pbV ga) & (pa D ra) & (ra D ¢b) D Jz qz
from first-order logic. The example is contrived, though it illustrates the main
operations. The tactics used here implement the basic inference rules of a sequent
calculus. The lines beginning with “!:” are for user input. All metavariables are
printed as capital letters.
We begin the session by entering the following query to AProlog.

prove ((p b or g a) and (p a imp r a) and (r a imp q b)
imp (exists X\ (q X))).

This results in a prompt for input. The user supplies the commands to run
the intro tactic and then and_e* _tac to eliminate the conjunctions in the hy-
pothesis, using the next command in between to go to the next premise in the
tree.

!: tactic intro.
Address:
|- (p b or ga) and (p a imp r a) and (r a imp g b)
imp exists X\ (g X)
By tactic intro
(pborgqa) and (p a imp r a) and (r a imp q b) |- exists X\ (g X)

!: next.

Address: 1

(pborgqa) and (p a imp r a) and (r a imp q b) |- exists X\ (g X)
By 7

!: tactic and_e*_tac.

Address: 1

(pborgqa) and (p a imp r a) and (r a imp q b) |- exists X\ (g X)
By tactic and_e*_tac

(pborqgqa) and (p a imp r a) and (r a imp q b), p b or q a,
(paimpr a) and (r aimpgqb), paimpr a, raimpqb

|- exists X\ (q X)

After running each tactic, the node of the proof is redisplayed. The output above
shows the address of the node of the proof being displayed (a list of integers,
empty in the first case), followed by the goal at the node, its justification, fol-
lowing the word By and the subgoals of the node.

In displaying the remainder of the session, we leave off the hypotheses that
are not important, and sometimes leave out the output of navigation commands.
Continuing the proof, the user applies a tactic that applies several inference rules.

!: next.

Address: 1 1

pborga,paimpr a, rainmpqb [- exists X\ (q X)
By 7

!: tactic (then or_e_tac (then intro (try close_tac))).
Address: 1 1

pborga,paimpr a, rainmpqb [- exists X\ (q X)
By tactic then or_e_tac (then intro (try close_tac))
pb,paimpra, raimpqb |-qT

Here the proof was split into two branches by eliminating the disjunction and the
second was completed. Note that introducing an existential quantifier introduces
a metavariable T which can be filled in later.

At this point, the user realizes that the original goal had an error. The b
in (p b) should have been an a. Our command language includes a transform
command to transform one proof to another. It takes as an argument the trans-
formation predicate. The reuse predicate copies the structure of the current
proof to build a proof of the new formula.

!': root.
!': transform
(reuse ((p a or q a) and (p a imp r a) and (r a imp q b))
imp (exists X\ (q X)).
!': next.
Address: 1 1 1
pa, paimpra, raimpqb |-qT
By 7

The operation succeeds and one subgoal remains. The proof is completed with
the (repeat backchain) tactic.

!: tactic backchain.

Address: 1 1 1

pa, paimpra, raimpqb |-qT
By tactic backchain

!: next.

No next premise: Proof Complete!

The application of reuse in this example works as follows. Let ¢ be the
argument given to reuse. At the point reuse is applied, the current proof has
four nodes, u1, ua, us and ug, with u; the parent of u;;41, 1 <7 < 3. Call the

corresponding justifications j;. j1, j2 and j3 are tactic justifications, and u4 is a
premise. Let s(j;) = (gi,(hsi)), 1 < ¢ < 3. The reuse procedure uses AProlog’s
built-in unification to compute a unifier o solving the equations

¢=g1, h1 =92, ha=g3, ha=0G.

The new proof has the same justifications, but its goals are, from root to leaf,
U(gl)a 0-(92)a U(g3)a and U(G)

Reuse employs proof generalization in computing the steps s(j;). For exam-
ple, consider j3. This corresponds to the tactic and_e*_tac. The justification
tree stored in j; consists of a three node tree with rule name and_e as the jus-
tification at the root and at the only child of the root, followed by jprem at the
leaf. This justification will justify any inference using exactly two consecutive
applications of the &-elimination rule. The steps for the two rule justifications

are (g1, (k1)) and (g2, (h2)), where

gi = H‘iaAi & B‘iaH; F Ci

1 = 1,2. The generalization procedure attempts to compute a unifier ¢ for the
equation hy = g (the equation involving the premise is trivial). The result of
computing s(j2) is then (o(g1), o(h2)).

A complication here is that this unification problem gives rise to unification
constraints. AProlog will compute a substitution that is not a unifier, and leave
some equations as constraints on further instantiation of metavariables. The
main cause of constraints is our representation of hypothesis lists using function
composition (as is done in Isabelle) so that higher-order unification can be used to
handle metavariables standing for subsequences of hypothesis lists. For example,
H; and H] above are of functional type and range over hypothesis lists. These
constraints are not a major problem for us because we always immediately use
the result of generalization in some more specific context, as in the reuse example
above where unification involves the goal ¢. See Section 4 for the precise form
of the step associated with the &-elimination rule.

4 Implementation

This section describes the implementation of our system. It starts with a brief
account of the implementation language.

4.1 AProlog

AProlog is a partial implementation of higher-order hereditary Harrop (hohh)
formulas [9] which extend positive Horn clauses in essentially two ways. First,
they allow implication and universal quantification in the bodies of clauses, in
addition to conjunctions, disjunctions, and existentially quantified formulas. In
this paper, we only consider the extension to universal quantification. Second,

they replace first-order terms with the more expressive simply typed A-terms
and allow quantification over predicate and function symbols. The application
of A-terms is handled by 3-conversion, while the unification of A-terms is handled
by higher-order unification.

The terms of the language are the terms of A where the set of base types
includes at least the type symbol o, which denotes the type of logic programming
propositions. In this section, we adopt the syntax of AProlog. Free variables
are represented by tokens with an upper case initial letter and constants are
represented by tokens with a lower case initial letter. Bound variables can begin
with either an upper or lower case letter. A-abstraction is represented using
backslash as an infix symbol.

Logical connectives and quantifiers are introduced into A-terms by introduc-
ing suitable constants with their types. In particular, we introduce constants for
conjunction (,), disjunctions (;), and (reverse) implication (:-) having type o
-> o —> o. The constant for universal quantification (pi) is given type (4 ->
o) —> o for each type replacing the “type variable” A. A function symbol whose
target type is o, other than a logical constant, will be considered a predicate. A
A-term of type o such that the head of its §7-long form is not a logical constant
will be called an atomic formula. A goal is a formula that does not contain im-
plication. A clause is a closed formula of the form (pi x,\...(pi x,\(4:- G)))
where G is a goal formula and A is an atomic formula with a constant as its
head. In presenting clauses, we leave off outermost universal quantifiers, and
write (4:- G).

Search in AProlog is similar to that in Prolog. Universal quantification in
goals (pi x\G) is implemented by introducing a new parameter ¢ and trying to
prove [¢/x]G. Unification is restricted so that if G contains logic variables, the
new constant ¢ will not appear in the terms eventually instantiated for those
logic variables.

AProlog permits a degree of polymorphism by allowing type declarations to
contain type variables (written as capital letters). It is also possible to build new
types using type constructors. Two examples used in our implementation are
list and pair, along with the standard constructors nil and :: for lists and p
for pairs. The map function on lists, for example, is defined as followed.

type map (4 ->B -> 0) -> list A -> list B -> o.
map F nil nil.
map F (A::L) (B::M) :- F A B, map FL M.

Several non-logical features of AProlog are used in our implementation. We
use the cut (!) operator to eliminate backtracking points. For example, we imple-
ment var and notvar predicates for variable tests using ! and fail. In addition,
we use a primitive make_abs described in [4] which takes any term and replaces
all logic variables with A-bindings at the top-level. It has type A -> abs 4 —>
list mvar -> o where abs is a type constructor introduced for this purpose
and the third argument is a list containing all of the logic variables in the or-
der they occurred in the term. We use this operation to “freeze” the degree of
instantiation of a term as well as to implement a match procedure. In order to

correctly freeze a term, this operation also freezes a record of any unification
constraints on the logic variables occurring in the term. In our match procedure
the pattern may contain variables with constraints, however the instance may
not. An explicit check is included in the implementation, causing match to fail
when this requirement is not met. To avoid any problems in our implementation,
we make the restriction that logic variables in proofs cannot contain constraints.
This is not a severe restriction since, in practice, any constraints that arise get
solved before calling the primitive proof construction operations.

4.2 Encoding Logics

As in [3], an object logic is encoded by giving a set of constants with their types
to specify the syntax and a set of clauses specifying the inference rules. Simi-
lar encodings are also given in [10, 5]. We introduce the types form, seq, and
prule name for formulas, sequents, and primitive rule names, respectively. To
represent hypothesis lists of sequents we introduce a type 1form and an an ele-
ment constructor e of type form -> (1form -> 1lform). Lists of formulas have
type (l1form -> 1lform). The following constants are provided for the specifica-
tion of object logics.

type |- (1form -> 1lform) -> form -> seq.
type aseq (4 -> seq) -> seq.
type prule def prulename -> seq -> list seq —-> o.

The predicate prule_def associates a (sequent version of a) step with each rule
name. A-abstracted sequents are also sequents: the constructor aseq converts a
term x\ (S x) into a sequent. In a sequent, aseq x\(S x), the bound variable
x represents a new object level variable whose scope is the sequent (S x).

To specify first-order logic, we introduce the type tm for first-order terms, con-
stants and, or, and imp of type form -> form -> form, and constants forall
and exists of type (tm -> form) -> form. The following prule_def clauses
specify some of the rules of a sequent calculus for intuitionistic logic.

prule def close (|- (u\ (H1 (e A (H2 uw)))) A) nil.
pruledef and i (|- H (A and B)) ((|- H A)::(|- H B)::nil).
pruledef imp i (|- H (A imp B)) ((|- (u\ (e & (H u))) B)::nil).
pruledef foralli (|- H (forall 4)) ((aseq (x\ (|- H (4 x))))::nil).
prule def existsi (|- H (exists 4)) ((|- H (A T))::nil).
pruledef and e (|- (u\ (H1 (e (A4 and B) (H2 u)))) C)

((I- (u\ (H1 (e (A and B) (e A (e B (H2 u)))))) C)::nil).

Note the use of A-abstraction and the aseq constructor to represent the eigenvari-
able condition on the all-introduction rule. In contrast, the exists-introduction
rule introduces a new logic variable T for the substitution term.

4.3 Proofs and Tactics

Below are the basic types and operations for our implementation of proofs.

10

kind goal type.

type bgoal (1 seq -> 1 seq) -> seq -> goal.
type agoal (A -> goal) -> goal.

kind step type.

type step goal -> list goal -> step.

kind proof type.

kind just type.

type just_step just -> step -> o.

type aproof (4 -> proof) -> proof.

type one_stepproof step -> just -> proof -> o.
type composeproofs proof -> list proof -> proof -> o.
type prem_just just -> o.
type prule_just prule name -> just -> o.
type tactic_to_just (goal -> proof -> o)
-> goal -> proof -> just -> o.

These are intended to form abstract data types and an abstract interface for
Jjustifications and proofs. All of our operations for building and modifying proofs
do so via the above operations.

The |-, aseq, and prule_def constants defined earlier are also part of the
abstract data types. The type goal is the type of goals. Goals are essentially
sequents. They also have an additional argument, a list of sequents, which pro-
vides more flexibility in using derived rules as is done in Isabelle. We do not use
this feature here, so we omit operations which use it. A-abstracted goals are also
goals. The type step and the constructor step implement the steps of Section 2.

The predicate just_step translates a justification to a step. It is defined by
case analysis on the three kinds of justifications discussed in Section 2. There is
one constructor for each kind of justification. In addition, the type jtree and
two constructors are introduced for building justification trees, which form a
part of tactic justifications.

type prem just.

type prule prule name -> just.

type trule abs (pair (goal -> proof -> o) goal) -> jtree -> just.
kind jtree type.

type jtree just -> list jtree -> jtree.

type ajtree (4 -> jtree) -> jtree.

Tactic justifications have three parts. The first is a tactic, which is a predi-
cate of type goal -> proof -> o, and the second is the tactic argument. These
two form an “abstracted” pair. Since the logic variables of AProlog are used for
metavariables, we cannot simply directly store the tactic argument in the jus-
tification because subsequent instantiations of metavariables in the proof might
change it. So, when a tactic justification is created, the components have their
logic variables “abstracted out”, i.e., bound by A-abstractions, to prevent them
from being instantiated by further proof operations. The make_abs operation de-
scribed earlier is used for this purpose. The third component of a tactic justifica-
tion is the justification tree. A justification tree is either a pair of a justification
and a list of justification trees, or it is a A-abstracted justification tree where,

11

as in sequents and goals, A-abstracted variables represent object level variables.
In the current implementation, because primitive rules do not take arguments,
there can be no metavariables in justification trees.

The implementation of just_step, along with its auxiliary predicates is as
follows.

just_step prem (step G nil).
just_step (prule N) S :- prulestep N S.
just_step (trule TacAp JT) S :- tacticstep JT S.
prulestep N (step G Gs) :-
pruledef N S Ss, seq.goal S G, map seq.-goal Ss Gs.
type alist (A -> list B) -> list B.
tactic_step JT (step G Gs) :- jtreeprems G JT AGs, map_lam AGs Gs.
jtreeprems (agoal G) (ajtree JT) (alist Gs) :-
pi x\ (jtreeprems (G x) (JT x) (Gs x)).
jtreeprems G (jtree J JTs) (G::nil) :- J = prem, !.
jtreeprems G (jtree J JTs) Prems :-
just step J (step G Gs), map3 jtreeprems Gs JTs Gss,
map map_lam Gss Gssl, flatten Gssl Prems.

The predicate seq_goal is used by prule_step to translate a sequent to a goal.
The predicate jtree prems is used by tactic_step and performs the general-
ization step described in Section 2 on the input justification tree, but instead
of building the proof, retains only the final conclusion and premise goals. Since
there may be more than one way to unify the premise of one step with the con-
clusion of the next, the first solution found by AProlog will be the one chosen,
and subsequent unifiers will be enumerated upon backtracking. However, for our
example object logic, there will always be a single unifier at each step, though
it will have possibly many constraints on it. Subsequent unification or match-
ing with a specific step generally solves these constraints. An alist constructor
and two list operations map_lam and flatten are used in these predicates. Ab-
straction over goals and justification trees is mapped to abstraction over a list of
goals. The abstractions are pushed inward to each goal in the list by the map_lam
predicate. The flatten predicate is the usual list operation to flatten a list of
lists to a single list.

The definition of proofs as well as the one_step_proof predicate and its
auxiliary operation goal _prem are defined below.

type proof goal -> just -> list proof -> proof.
one _stepproof (step G Gs) J (proof G J Ps) :-
just_step J S, match S (step G Gs), map goal prem Gs Ps.
goal prem (bgoal L S) (proof (bgoal L S) prem nil).
goal prem (agoal G) (aproof P) :- pi x\ (goalprem (G x) (P x)).

Proofs are built using the proof constructor whose arguments are a goal, a
justification, and the subproofs at the child nodes. This constructor is hid-
den. Three ways of building proofs are provided to the user. One is to use
aproof to turn an abstracted proof into a proof. The second way to build
proofs is to construct a one-step proof from a step and a justification. The query

12

(one_step_proof S J P) computes the step corresponding to the justification
J, checks that the step S=(step G Gs) is an instance, then produces a proof
whose root has goal G and justification J, and whose children are premises with
goals from the list Gs. The premises may use the aproof constructor. This would
be the case if, for example, J were the justification for the rule forall_ i. For
instance, the query:

one_step_proof (step (bgoal (|- (u\ u) (forall x\ (q x))))
((agoal x\ (bgoal (|- (u\ u) (q x))))::nil)) (prule foralli) P

returns the following value for P:

(proof (bgoal (|- (u\ u) (forall x\ (q x)))) (prule forall.i)
((aproof x\ (proof (bgoal (|- (u\ u) (q x))) prem nil))::nil)).

The final way to construct proofs is with compose_proofs which attaches the
members of a list of proofs at the premises of another proof. We do not show its
implementation here. It is used in the implementation of then, a combinator for
sequencing tactics. Some care was taken with this operation in order to make
tactics efficient. In particular, it produces a variant representation of a proof
that delays actual computation of the composition. Often the actual composition
never needs to be performed, and when it does, it will usually be in the context
of other delayed compositions, and grouped compositions can be handled much
more efficiently.

There is one predicate for constructing each of the three kinds of justifica-
tions.

prem_just prem.
prule_just R (prule R).
tacticto_just T G P (trule Tachp JT) :-
var JT, !, makeabs (p T G) TacAp MVars, T G P, proof_jtree P JT.
proof_jtree (aproof P) (ajtree JT) :- !,
pi x\ (proof_jtree (P x) (JT x)).
proof_jtree (proof G J Ps) (jtree J JTs) :- map proof_jtree Ps JTs.

The tactic_to_just operation first uses make_abs to freeze the metavariables
in the tactic and goal. Then, the tactic is run on the the goal, returning the
tactic’s proof from which the corresponding justification tree is extracted using
the proof_jtree operation.

This completes the description of the implementation of the operations de-
fined by the abstract interface. These operations are used to implement tactics
and tacticals for refinement. The first two below are the operations for both tac-
tic and primitive rule operations. Their implementations are fairly simple. We
omit the definition of prems which computes the premises of a proof.

type tacticrefine (goal -> proof -> o) -> goal -> proof -> o.
type prulerefine prulename -> goal -> proof -> o.
tacticrefine T G P :- tacticto_just T G TPf J,

prems TPf Gs, one_step_proof (step G Gs) J P.
prule refine R G P :- prule_just R J,

just_step J (step G Gs), one_stepproof (step G Gs) J P.

13

Tacticals are implemented similarly to those in [3]. The main difference is
the use of compose proofs in the implementation of then to provide a way to
compose our proof structures via the operations in the abstract interface.

maptac T (agoal G) (aproof P) :- !, pi x\ (maptac T (G x) (P x)).
maptac TGP :- T G P.
then T1 T2 G P :- T1 G P1, prems P1 Gs,

map (maptac T2) Gs Ps, composeproofs P1 Ps P.

Tactics are secure in the sense that proofs are built and checked only via the
primitive operations of the abstract interface. A simple example is the imple-
mentation of close_tac.

closetac G P :- prulerefine close G P.

The reuse operation illustrated in Section 3 has the following simple imple-
mentation, whose core is the use of the jtree_proof operation.

reuse A P NewP :- proof_jtree P JT,
jtreeproof (bgoal (u\ u) (|- (u\ uw) A4)) JT NewP.
jtreeproof (agoal G) (ajtree JT) (aproof P) :- !,
pi x\ (jtreeproof (G x) (JT x) (P x)).
jtreeproof G (jtree J JTs) P :- prem_just J, !, goal prem G P.
jtreeproof G (jtree J JTs) P :-
juststep J (step G Gs), one_stepproof (step G Gs) J TopP,
map3 jtree proof Gs JTs Ps, compose proofs TopP Ps P.

The implementation of jtree_proof is similar to jtree prems above except
that it takes an input goal and builds a proof instead of simply computing a
list of premises. The input goal is necessary in order to avoid unification con-
straints that might otherwise be generated by just_step in the third clause
above. This operation can be viewed as simultaneously performing generaliza-
tion (via just._step) and specialization of the conclusion of each step to a given
input goal.

5 Discussion

Although the programs in this paper make extensive use of many of the higher-
order features of AProlog, such features are used in a fairly limited way. For
example, quantification over both functions and predicates is at most second-
order. Operationally, the unification problems that arise in executing these pro-
grams are similar in nature to those encountered in [3] and are all fairly simple.
The most significant departure is the just_step operation which results in uni-
fiers with possibly many constraints. However, as mentioned, these constraints
generally are immediately solved by subsequent unifications.

The reuse operation was illustrated on an example that involved a minor
change in the original sequent, allowing us to reuse the entire proof. Several other
useful operations can be implemented directly using proof generalization via the

14

jtree_proof operation and minor modifications. For example, proof generaliza-
tion provides a simple operation to backup or undo proofs during refinement.
In particular, a user can designate a subproof to be deleted, and jtree _proof
with the original root goal as input can be used to construct a new proof. Any
instantiations done by steps in the deleted subtree will not be present in the new
proof. More complicated operations can be defined by combining generalization
with replay.

Our implementation generalizes a system we described in [4]. That system
supported a variety of undo procedures provided that proofs were constructed
by a given collection of operations including refinement by tactics, pruning, and
instantiation and reinstantiation of metavariables in proofs. By a simple modifi-
cation, our reuse operation can be added to this collection. To do so, additional
data must be stored in tactic justifications and reuse must be modified to update
this data as it builds a new proof.

Isabelle [10] and Coq [2] have metavariables and support tactic-style theorem-
proving, but refinement trees are implicit, and operations on these trees are
limited. This also applies to KIV [6], even though it explicitly supports a form
of refinement trees. In contrast to ALF [8] and Coq, our system only supports
simple types for metavariables. If the object logic has a richer type system, then
types must be represented explicitly, for example as predicates in the object
logic.

References

1. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

2. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-
Mohring, and B. Werner. The coq proof assistant user’s guide. Technical Report
154, INRIA, 1993.

3. A. Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11(1):43-81, August 1993.

4. A. Felty and D. Howe. Tactic theorem proving with refinement-tree proofs and
metavariables. In Twelfth International Conference on Automated Deduction.
Springer-Verlag Lecture Notes in Computer Science, June 1994.

5. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, January 1993.

6. M. Heisel, W. Reif, and W. Stephan. Tactical theorem proving in program verifi-
cation. In M. Stickel, editor, Tenth Conference on Automated Deduction, volume
449 of Lecture Notes in Computer Science, pages 117-131. Springer-Verlag, 1990.

7. C. Horn. The Oyster Proof Development System. University of Edinburgh, 1988.

8. L. Magnussan. Refinement and local undo in the interactive proof editor ALF.
In Informal Proceedings of the 1993 Workshop on Types for Proofs and Programs,
1993.

9. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

10. L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361-385. Academic Press, 1990.

15

