
Generalization and Reuse of Tactic ProofsAmy Felty and Douglas Howe?AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA.Abstract. A tactic proof is a tree-structured sequent proof where stepsmay be justi�ed by tactic programs. We describe a prototype of a genericinteractive theorem-proving system that supports the construction andmanipulation of tactic proofs containing metavariables. The emphasis ison proof reuse. Examples of proof reuse are proof by analogy and re-construction of partial proofs as part of recovering from errors in de�ni-tions or in proof strategies. Our reuse operations involve solving higher-order uni�cation problems, and their e�ectiveness relies on a proof-generalization step that is done after a tactic is applied. The prototypeis implemented in �Prolog.1 IntroductionMost interactive theorem proving systems support some notion of \high-level"proof, although this is usually informal. Often it is a textual transcript of thecommands that were used to direct the prover. It can also be a composite tacticprogram formed by combining all the individual tactics used to prove a theorem.Informal or not, in practice such objects serve as explanations of formal proofsand as the basis for useful proof-manipulating operations.One general way to directly support high-level proof objects is to extendtree-structured sequent proofs so that a step in a sequent proof can be justi�edeither by an inference rule of the implemented logic, or by a program e whoseexecution produces a partial proof that justi�es the inference, providing stepsthat lead from the antecedent sequents of the inference to the concluding sequent.Because most interactive proofs are conducted top-down, we restrict the pro-gram e to consist of a program e0, called a tactic, together with an input goalg. We call proofs where steps may be justi�ed by tactics tactic proofs. If wealso require that g be identical to the conclusion g0 of the inference justi�ed bya tactic, then this proof structure is the same as that of Nuprl [1]. We do notmake this restriction because it is incompatible with the use of metavariables inproofs.The focus of this paper is the reuse of tactic proofs. One obvious exampleof proof reuse is proof by analogy, where an existing proof is adapted to a newtheorem. A more common application in interactive systems is in error recovery.During the course of a proof it is often necessary to make a change that a�ects? To appear in Proceedings of the Fifth InternationalConference on Logic Programmingand Automated Reasoning.



the part of the proof that has already been built. Such a change might be tothe statement of the goal, to a de�nition the proof depends on, to an inductionhypothesis or to a previous step in the proof. The problem is to recover as muchof the existing (partial) proof as possible after such a change.One way to reuse proof steps after a change is to replay them. In the settingof tactic proofs, this can be done by reconstructing the proof tree by successivelyreapplying all the tactics in a top-down fashion.There are two problems with this approach. First, it can be time consuming.Second, it is not a robust procedure for many of the kinds of local changes typicalin error recovery. As a simple example, suppose a step in the proof used a tacticthat just repeatedly applied &-introduction until no conjunctions remained inthe succedent of the goal sequent. In particular, suppose the tactic re�ned thegoal ` �1 & �2 & �3 to the three subgoals ` �1, ` �2, and ` �3.Now suppose that �1 has been changed to �4 & �5. When the replay ofthe steps in the original proof gets to the above tactic step, the goal is now` (�4 & �5) & �2 & �3: Rerunning the tactic produces subgoals ` �4, ` �5,` �2, and ` �3. In order to continue replay, we need to know that the subproofsfor the last two of the original three subgoals should be used for the last two ofthe new subgoals. In this simple case it is obvious how to make this association,but in general, when there can be other changes, it is not.The basic idea underlying our solution to this problem is simple, and involvesrelaxing the requirement on how a tactic relates to the step it justi�es. In theabove example, the step is determined by the execution of the tactic: the tactic,when applied to the goal, produces a proof tree whose concluding sequent, orconclusion, is the goal, and whose non-axiomatic leaf sequents, or premises, arethe subgoals. However, the proof produced by the tactic may justify many moreinferences than the one that is determined this way. For example, if the proofis the obvious one involving just &-introduction rules, then the identity of theformulas �i is irrelevant.We capture this kind of generality by performing proof generalization, mak-ing use of metavariables in proofs. Inference rules of the logic are implementedas schemas with metavariables in a manner very similar to what is found inIsabelle [10]. A rule schema justi�es any inference which can be obtained byinstantiating metavariables in the schema. When a tactic produces a proof us-ing these rule schemas, we can generalize to �nd a \minimal" proof using theseschemas. We then allow this tactic to justify any step corresponding to an in-stance of this minimal proof.Consider again the &-introduction example. The generalization of the proofproduced by the tactic has conclusion H ` A & B & C and premises H ` A,H ` B, and H ` C. Instantiating H to the empty hypothesis list and A;B;Cto �1; �2; �3 yields the original inference. When a conjunct is added as above,the same tactic step can be used by taking A to be �4 & �5. The number ofsubgoals remains the same.This example also shows a tradeo� we have made between generality andintelligibility. After the conjunction is added, in the step where repeated &-2



introduction is applied, there will be a subgoal where another &-introductioncould be applied. In other words, it may appear as though the tactic did notprogress as far as it might have, since if we reran the tactic on the new goal therewould be four subgoals instead of three. The situation is worse when tacticsexplicitly refer to components of the sequent. For example, if the tactic is Elim1, which applies &-elimination to the �rst hypothesis, then the generalized stepis simply the &-elimination rule. This means that the proof could be modi�ed sothat the eliminated hypothesis is the second one. However, explicit references tohypothesis numbers is typically regarded as bad style since it makes proof replaymuch less robust. We believe that the &-introduction example is more typical.In any case, the original input goal for the tactic is retained, so when reading aproof it is still possible to precisely understand the connection between a tacticand the step it justi�es.We have implemented a prototype of an interactive theorem proving systembased on these ideas. The system includes a command interface for building andviewing tactic proofs. We have also implemented a reuse command that attemptsto reuse a proof when the statement of the root goal is changed.�Prolog [9] is both the implementation language and the tactic programminglanguage in our system. Using ML as an implementation language would give usa greater degree of control over uni�cation and metavariable instantiation, buta substantial amount of work would be required to implement �Prolog's built-insupport for metavariables, variable-binding and backtracking.The design of our system is generic, in the sense that it can easily accommo-date most logics that can be speci�ed in the general style of LF [5]. The exactstyle of encoding of logics in our system is very similar to [3], except that wehave made a commitment to sequent-calculus presentations.The next section describes the structure of proofs in our system and gives asomewhat abstract account of proof generalization and reuse. This is followedby an example session with our prover, a section giving some implementationdetails and, �nally, a conclusion discussing some extensions and giving a fewfurther comparisons with related work.2 ProofsThis section gives a simpli�ed account of the proof data-structure. A few of themore important di�erences between this account and the implementation aregiven at the end of the section.Two of the principle constituents of proofs are goals and tactics. Goals areintended to be sequents in the logic being implemented (the \object logic"), andtactics are programs from some programming language. To make the presenta-tion simple, and to keep the description here close to what has been implemented,we assume that both goals and tactics are represented as terms in the simply-typed �-calculus. In our implementation, object logics are encoded using �-termsand tactics are programs in �Prolog, a language whose programs are all �-terms.3



Let � be the set of terms of the typed �-calculus over some set of base typesand some set of constants. We identify ���-equal terms. Thus, if there is asubstitution � such that �(e) = �(e0), then e and e0 have a higher-order uni�er.We distinguish a base type and de�ne the set of goals to be the set of all termsin � of this type.Metavariables in this setting are simply the free variables of a goal. We willuse capital letters to stand for metavariables. Ordinary variables in our represen-tation are bound by �-abstractions. See the implementation section for detailson this representation.A proof is a tree of goals where each node has associated with it a justi-�cation. The justi�cation says how the goal can be inferred from its children.We will describe the kinds of justi�cations below. For now, assume that for anyjusti�cation j there is an associated pair s(j) = (g; g), called a step, where g is agoal and g is a sequence g1; : : : ; gn (n � 0) of goals. g is the conclusion of the step(g; g), and gi, 1 � i � n, is the ith premise of the step. De�ne concl (s(j)) = gand premi(s(j)) = gi, 1 � i � n. We place the following restriction on proofs.Let g be a node in the tree, let j be its associated justi�cation, and let g bethe sequence of children of g (in left-to-right order). Write s(j) = (g0; g0). Werequire that there be a substitution � such that �(g0) = g and �(g0) = g (usingthe obvious extension of substitution to sequences of goals).Thus s(j) can be thought of as a rule schema, with premises g0 and conclu-sion g0, and the valid instances of the schema are obtained by substituting formetavariables. For example, one of the allowed justi�cations in our implementa-tion of �rst-order logic is the constant and i (for &-introduction), ands(and i) = (H ` A & B; (H ` A; H ` B));which corresponds to the rule schemaH ` A H ` BH ` A & B:Note that proof trees are preserved under instantiation: if � is a substitution,p is a proof, and �(p) is obtained by replacing every goal g in p by �(g) (andkeeping the same associated justi�cations), then �(p) is a proof.There are three kinds of justi�cations. One corresponds to primitive rulesof the object logic and one to tactics. There is also a justi�cation jprem, wheres(jprem) is (G; ()). This corresponds to a trivial \rule" which infers any goalfrom no premises. Goals in a proof tree that have jprem as their justi�cation arecalled premises of the proof. Thus proof trees represent incomplete proofs in theobject logic. The root goal of a proof is called its conclusion.Justi�cations corresponding to inference rules of the object logic are repre-sented as a set R � � of constants called rule names. For each r 2 R there is anassociated step s(r).The third form of justi�cation is the tactic justi�cation. Tactics are repre-sented as a subset T of �. A tactic is a program that takes a goal as argumentand, if it produces an output, returns a proof and a substitution. For each goal4



g and tactic e 2 T such that e produces an output on input g, there is a justi�-cation je;g.Let p be the proof returned by e on input g. One possibility for s(je;g)is to take the conclusion and premises of p [4]. Since proofs are closed underinstantiation, any instance of this step is sound. However, this is restrictive. Ifthere is a proof p0 of which p is an instance, then the step derived from p0 is alsosound and is more general. So, we de�ne s(je;g) to be a \minimal" p0 having pas an instance. We call p0 a generalization of p.We can cast the problem of �nding this generalization p0 as a uni�cationproblem. For each node u in p, let ju be its associated justi�cation. Withoutloss of generality, we may assume that s(ju) and s(jv) have no metavariables incommon when u 6= v. To �nd a minimal p0, we �nd a minimal uni�er � suchthat �(premi(s(ju)) = �(concl (s(jv))for all nodes u and v of p such that v is the ith child of u. We then obtain p0from p by replacing the goal at each node u by �(concl (s(ju))).In general, most-general higher-order uni�ers do not exist, and so the de�ni-tion of s(je;g) is under-speci�ed. The implementation computes generalizationsby solving the above uni�cation problems. The exact choice of � is implementa-tion dependent.The generalization step in the de�nition of s(je;g) is exploited in the proce-dure for proof reuse. This procedure reuses the existing justi�cations in a prooftree to justify a tree with di�erent goals. The particular reuse procedure wehave implemented is almost identical to the generalization procedure. The onlysubstantial di�erence is that we also require that�(g) = �(concl (s(jr )))where r is the root of the (sub-) proof we wish to reuse and g is the new rootgoal we want to reuse the proof for.Proof trees are typically extended by re�ning a premise with a tactic. Tacticre�nement works as follows. Let g be a premise of a proof p, and suppose thatthe tactic e with argument g returns a proof p0 and a substitution �. Let g0 bethe conclusion of p0 and let g0 be the sequence of premises of p0. If g0 = �(g), thenthe re�nement of p at g using e is obtained from �(p) by replacing the premisejusti�cation of �(g) by je;g, and adding, as children of �(g), nodes g01; : : : ; g0neach with jprem as its justi�cation.For example, if g is ` X = 0 and if e is a tactic that instantiates X with 0,we might have �(X) = 0, ` 0 = 0 for g0, and (` 0 = 0) for g0. The act of re�ningwill replace X by 0 in the entire proof, and produce a new premise ` 0 = 0 as achild of the old premise.The most important di�erence between the implementation and the aboveaccount of tactics in proofs is that in the implementation, the logic variablesof �Prolog are used for metavariables. This means that tactics do not needto explicitly return a substitution; instantiation of metavariables is part of theexecution of a tactic. 5



The justi�cations associated with the nodes of a proof are stored along withthe goals in the implemented proof data structure. A tactic justi�cation je;g isimplemented as a tuple containing the text of the program e along with thegoal g. Also, to avoid having to recompute the application of e on g every times(je;g) is needed, we also put into the tuple the justi�cation tree that results fromerasing the goals from the proof produced by e on input g. The justi�cation treeis all that is needed to perform the generalization step for s(je;g). The tactic andits argument are retained in addition to the justi�cation tree because they areinformative to a user.3 An Example SessionThe following session illustrates interaction with our system, including re�ne-ment commands, navigation within a proof, as well as the reuse command. Weattempt to prove the simple formula (pb _ qa) & (pa � ra) & (ra � qb) � 9x qxfrom �rst-order logic. The example is contrived, though it illustrates the mainoperations. The tactics used here implement the basic inference rules of a sequentcalculus. The lines beginning with \!:" are for user input. All metavariables areprinted as capital letters.We begin the session by entering the following query to �Prolog.prove ((p b or q a) and (p a imp r a) and (r a imp q b)imp (exists X\ (q X))).This results in a prompt for input. The user supplies the commands to runthe intro tactic and then and e* tac to eliminate the conjunctions in the hy-pothesis, using the next command in between to go to the next premise in thetree.!: tactic intro.Address:|- (p b or q a) and (p a imp r a) and (r a imp q b)imp exists X\ (q X)By tactic intro(p b or q a) and (p a imp r a) and (r a imp q b) |- exists X\ (q X)!: next.Address: 1(p b or q a) and (p a imp r a) and (r a imp q b) |- exists X\ (q X)By ?!: tactic and e* tac.Address: 1(p b or q a) and (p a imp r a) and (r a imp q b) |- exists X\ (q X)By tactic and e* tac(p b or q a) and (p a imp r a) and (r a imp q b), p b or q a,(p a imp r a) and (r a imp q b), p a imp r a, r a imp q b|- exists X\ (q X) 6



After running each tactic, the node of the proof is redisplayed. The output aboveshows the address of the node of the proof being displayed (a list of integers,empty in the �rst case), followed by the goal at the node, its justi�cation, fol-lowing the word By and the subgoals of the node.In displaying the remainder of the session, we leave o� the hypotheses thatare not important, and sometimes leave out the output of navigation commands.Continuing the proof, the user applies a tactic that applies several inference rules.!: next.Address: 1 1p b or q a, p a imp r a, r a imp q b |- exists X\ (q X)By ?!: tactic (then or e tac (then intro (try close tac))).Address: 1 1p b or q a, p a imp r a, r a imp q b |- exists X\ (q X)By tactic then or e tac (then intro (try close tac))p b, p a imp r a, r a imp q b |- q THere the proof was split into two branches by eliminating the disjunction and thesecond was completed. Note that introducing an existential quanti�er introducesa metavariable T which can be �lled in later.At this point, the user realizes that the original goal had an error. The bin (p b) should have been an a. Our command language includes a transformcommand to transform one proof to another. It takes as an argument the trans-formation predicate. The reuse predicate copies the structure of the currentproof to build a proof of the new formula.!: root.!: transform(reuse ((p a or q a) and (p a imp r a) and (r a imp q b))imp (exists X\ (q X)).!: next.Address: 1 1 1p a, p a imp r a, r a imp q b |- q TBy ?The operation succeeds and one subgoal remains. The proof is completed withthe (repeat backchain) tactic.!: tactic backchain.Address: 1 1 1p a, p a imp r a, r a imp q b |- q TBy tactic backchain!: next.No next premise: Proof Complete!The application of reuse in this example works as follows. Let � be theargument given to reuse. At the point reuse is applied, the current proof hasfour nodes, u1, u2, u3 and u4, with ui the parent of ui+1, 1 � i � 3. Call the7



corresponding justi�cations ji. j1; j2 and j3 are tactic justi�cations, and u4 is apremise. Let s(ji) = (gi; (hi)), 1 � i � 3. The reuse procedure uses �Prolog'sbuilt-in uni�cation to compute a uni�er � solving the equations� = g1; h1 = g2; h2 = g3; h3 = G:The new proof has the same justi�cations, but its goals are, from root to leaf,�(g1), �(g2), �(g3), and �(G).Reuse employs proof generalization in computing the steps s(ji). For exam-ple, consider j2. This corresponds to the tactic and_e*_tac. The justi�cationtree stored in j2 consists of a three node tree with rule name and e as the jus-ti�cation at the root and at the only child of the root, followed by jprem at theleaf. This justi�cation will justify any inference using exactly two consecutiveapplications of the &-elimination rule. The steps for the two rule justi�cationsare (g1; (h1)) and (g2; (h2)), wheregi = Hi; Ai & Bi;H0i ` Cihi = Hi; Ai & Bi; Ai; Bi;H0i ` Ci;i = 1; 2. The generalization procedure attempts to compute a uni�er � for theequation h1 = g2 (the equation involving the premise is trivial). The result ofcomputing s(j2) is then (�(g1); �(h2)).A complication here is that this uni�cation problem gives rise to uni�cationconstraints. �Prolog will compute a substitution that is not a uni�er, and leavesome equations as constraints on further instantiation of metavariables. Themain cause of constraints is our representation of hypothesis lists using functioncomposition (as is done in Isabelle) so that higher-order uni�cation can be used tohandle metavariables standing for subsequences of hypothesis lists. For example,Hi and H0i above are of functional type and range over hypothesis lists. Theseconstraints are not a major problem for us because we always immediately usethe result of generalization in some more speci�c context, as in the reuse exampleabove where uni�cation involves the goal �. See Section 4 for the precise formof the step associated with the &-elimination rule.4 ImplementationThis section describes the implementation of our system. It starts with a briefaccount of the implementation language.4.1 �Prolog�Prolog is a partial implementation of higher-order hereditary Harrop (hohh)formulas [9] which extend positive Horn clauses in essentially two ways. First,they allow implication and universal quanti�cation in the bodies of clauses, inaddition to conjunctions, disjunctions, and existentially quanti�ed formulas. Inthis paper, we only consider the extension to universal quanti�cation. Second,8



they replace �rst-order terms with the more expressive simply typed �-termsand allow quanti�cation over predicate and function symbols. The applicationof �-terms is handled by �-conversion, while the uni�cation of �-terms is handledby higher-order uni�cation.The terms of the language are the terms of � where the set of base typesincludes at least the type symbol o, which denotes the type of logic programmingpropositions. In this section, we adopt the syntax of �Prolog. Free variablesare represented by tokens with an upper case initial letter and constants arerepresented by tokens with a lower case initial letter. Bound variables can beginwith either an upper or lower case letter. �-abstraction is represented usingbackslash as an in�x symbol.Logical connectives and quanti�ers are introduced into �-terms by introduc-ing suitable constants with their types. In particular, we introduce constants forconjunction (,), disjunctions (;), and (reverse) implication (:-) having type o-> o -> o. The constant for universal quanti�cation (pi) is given type (A ->o) -> o for each type replacing the \type variable" A. A function symbol whosetarget type is o, other than a logical constant, will be considered a predicate. A�-term of type o such that the head of its ��-long form is not a logical constantwill be called an atomic formula. A goal is a formula that does not contain im-plication. A clause is a closed formula of the form (pi x1\ : : : (pi xn\(A:- G)))where G is a goal formula and A is an atomic formula with a constant as itshead. In presenting clauses, we leave o� outermost universal quanti�ers, andwrite (A:- G).Search in �Prolog is similar to that in Prolog. Universal quanti�cation ingoals (pi x\G) is implemented by introducing a new parameter c and trying toprove [c=x]G. Uni�cation is restricted so that if G contains logic variables, thenew constant c will not appear in the terms eventually instantiated for thoselogic variables.�Prolog permits a degree of polymorphism by allowing type declarations tocontain type variables (written as capital letters). It is also possible to build newtypes using type constructors. Two examples used in our implementation arelist and pair, along with the standard constructors nil and :: for lists and pfor pairs. The map function on lists, for example, is de�ned as followed.type map (A -> B -> o) -> list A -> list B -> o.map F nil nil.map F (A::L) (B::M) :- F A B, map F L M.Several non-logical features of �Prolog are used in our implementation. Weuse the cut (!) operator to eliminate backtracking points. For example, we imple-ment var and notvar predicates for variable tests using ! and fail. In addition,we use a primitive make abs described in [4] which takes any term and replacesall logic variables with �-bindings at the top-level. It has type A -> abs A ->list mvar -> o where abs is a type constructor introduced for this purposeand the third argument is a list containing all of the logic variables in the or-der they occurred in the term. We use this operation to \freeze" the degree ofinstantiation of a term as well as to implement a match procedure. In order to9



correctly freeze a term, this operation also freezes a record of any uni�cationconstraints on the logic variables occurring in the term. In our match procedurethe pattern may contain variables with constraints, however the instance maynot. An explicit check is included in the implementation, causing match to failwhen this requirement is not met. To avoid any problems in our implementation,we make the restriction that logic variables in proofs cannot contain constraints.This is not a severe restriction since, in practice, any constraints that arise getsolved before calling the primitive proof construction operations.4.2 Encoding LogicsAs in [3], an object logic is encoded by giving a set of constants with their typesto specify the syntax and a set of clauses specifying the inference rules. Simi-lar encodings are also given in [10, 5]. We introduce the types form, seq, andprule name for formulas, sequents, and primitive rule names, respectively. Torepresent hypothesis lists of sequents we introduce a type lform and an an ele-ment constructor e of type form -> (lform -> lform). Lists of formulas havetype (lform -> lform). The following constants are provided for the speci�ca-tion of object logics.type |- (lform -> lform) -> form -> seq.type aseq (A -> seq) -> seq.type prule def prule name -> seq -> list seq -> o.The predicate prule def associates a (sequent version of a) step with each rulename. �-abstracted sequents are also sequents: the constructor aseq converts aterm x\(S x) into a sequent. In a sequent, aseq x\(S x), the bound variablex represents a new object level variable whose scope is the sequent (S x).To specify �rst-order logic, we introduce the type tm for �rst-order terms, con-stants and, or, and imp of type form -> form -> form, and constants foralland exists of type (tm -> form) -> form. The following prule def clausesspecify some of the rules of a sequent calculus for intuitionistic logic.prule def close (|- (u\ (H1 (e A (H2 u)))) A) nil.prule def and i (|- H (A and B)) ((|- H A)::(|- H B)::nil).prule def imp i (|- H (A imp B)) ((|- (u\ (e A (H u))) B)::nil).prule def forall i (|- H (forall A)) ((aseq (x\ (|- H (A x))))::nil).prule def exists i (|- H (exists A)) ((|- H (A T))::nil).prule def and e (|- (u\ (H1 (e (A and B) (H2 u)))) C)((|- (u\ (H1 (e (A and B) (e A (e B (H2 u)))))) C)::nil).Note the use of �-abstraction and the aseq constructor to represent the eigenvari-able condition on the all-introduction rule. In contrast, the exists-introductionrule introduces a new logic variable T for the substitution term.4.3 Proofs and TacticsBelow are the basic types and operations for our implementation of proofs.10



kind goal type.type bgoal (l seq -> l seq) -> seq -> goal.type agoal (A -> goal) -> goal.kind step type.type step goal -> list goal -> step.kind proof type.kind just type.type just step just -> step -> o.type aproof (A -> proof) -> proof.type one step proof step -> just -> proof -> o.type compose proofs proof -> list proof -> proof -> o.type prem just just -> o.type prule just prule name -> just -> o.type tactic to just (goal -> proof -> o)-> goal -> proof -> just -> o.These are intended to form abstract data types and an abstract interface forjusti�cations and proofs. All of our operations for building and modifying proofsdo so via the above operations.The |-, aseq, and prule def constants de�ned earlier are also part of theabstract data types. The type goal is the type of goals. Goals are essentiallysequents. They also have an additional argument, a list of sequents, which pro-vides more 
exibility in using derived rules as is done in Isabelle. We do not usethis feature here, so we omit operations which use it. �-abstracted goals are alsogoals. The type step and the constructor step implement the steps of Section 2.The predicate just step translates a justi�cation to a step. It is de�ned bycase analysis on the three kinds of justi�cations discussed in Section 2. There isone constructor for each kind of justi�cation. In addition, the type jtree andtwo constructors are introduced for building justi�cation trees, which form apart of tactic justi�cations.type prem just.type prule prule name -> just.type trule abs (pair (goal -> proof -> o) goal) -> jtree -> just.kind jtree type.type jtree just -> list jtree -> jtree.type ajtree (A -> jtree) -> jtree.Tactic justi�cations have three parts. The �rst is a tactic, which is a predi-cate of type goal -> proof -> o, and the second is the tactic argument. Thesetwo form an \abstracted" pair. Since the logic variables of �Prolog are used formetavariables, we cannot simply directly store the tactic argument in the jus-ti�cation because subsequent instantiations of metavariables in the proof mightchange it. So, when a tactic justi�cation is created, the components have theirlogic variables \abstracted out", i.e., bound by �-abstractions, to prevent themfrom being instantiated by further proof operations. The make abs operation de-scribed earlier is used for this purpose. The third component of a tactic justi�ca-tion is the justi�cation tree. A justi�cation tree is either a pair of a justi�cationand a list of justi�cation trees, or it is a �-abstracted justi�cation tree where,11



as in sequents and goals, �-abstracted variables represent object level variables.In the current implementation, because primitive rules do not take arguments,there can be no metavariables in justi�cation trees.The implementation of just step, along with its auxiliary predicates is asfollows.just step prem (step G nil).just step (prule N) S :- prule step N S.just step (trule TacAp JT) S :- tactic step JT S.prule step N (step G Gs) :-prule def N S Ss, seq goal S G, map seq goal Ss Gs.type alist (A -> list B) -> list B.tactic step JT (step G Gs) :- jtree prems G JT AGs, map lam AGs Gs.jtree prems (agoal G) (ajtree JT) (alist Gs) :-pi x\ (jtree prems (G x) (JT x) (Gs x)).jtree prems G (jtree J JTs) (G::nil) :- J = prem, !.jtree prems G (jtree J JTs) Prems :-just step J (step G Gs), map3 jtree prems Gs JTs Gss,map map lam Gss Gss1, flatten Gss1 Prems.The predicate seq goal is used by prule step to translate a sequent to a goal.The predicate jtree prems is used by tactic step and performs the general-ization step described in Section 2 on the input justi�cation tree, but insteadof building the proof, retains only the �nal conclusion and premise goals. Sincethere may be more than one way to unify the premise of one step with the con-clusion of the next, the �rst solution found by �Prolog will be the one chosen,and subsequent uni�ers will be enumerated upon backtracking. However, for ourexample object logic, there will always be a single uni�er at each step, thoughit will have possibly many constraints on it. Subsequent uni�cation or match-ing with a speci�c step generally solves these constraints. An alist constructorand two list operations map lam and flatten are used in these predicates. Ab-straction over goals and justi�cation trees is mapped to abstraction over a list ofgoals. The abstractions are pushed inward to each goal in the list by the map lampredicate. The flatten predicate is the usual list operation to 
atten a list oflists to a single list.The de�nition of proofs as well as the one step proof predicate and itsauxiliary operation goal prem are de�ned below.type proof goal -> just -> list proof -> proof.one step proof (step G Gs) J (proof G J Ps) :-just step J S, match S (step G Gs), map goal prem Gs Ps.goal prem (bgoal L S) (proof (bgoal L S) prem nil).goal prem (agoal G) (aproof P) :- pi x\ (goal prem (G x) (P x)).Proofs are built using the proof constructor whose arguments are a goal, ajusti�cation, and the subproofs at the child nodes. This constructor is hid-den. Three ways of building proofs are provided to the user. One is to useaproof to turn an abstracted proof into a proof. The second way to buildproofs is to construct a one-step proof from a step and a justi�cation. The query12



(one step proof S J P) computes the step corresponding to the justi�cationJ, checks that the step S=(step G Gs) is an instance, then produces a proofwhose root has goal G and justi�cation J, and whose children are premises withgoals from the list Gs. The premises may use the aproof constructor. This wouldbe the case if, for example, J were the justi�cation for the rule forall i. Forinstance, the query:one step proof (step (bgoal (|- (u\ u) (forall x\ (q x))))((agoal x\ (bgoal (|- (u\ u) (q x))))::nil)) (prule forall i) Preturns the following value for P:(proof (bgoal (|- (u\ u) (forall x\ (q x)))) (prule forall i)((aproof x\ (proof (bgoal (|- (u\ u) (q x))) prem nil))::nil)).The �nal way to construct proofs is with compose proofs which attaches themembers of a list of proofs at the premises of another proof. We do not show itsimplementation here. It is used in the implementation of then, a combinator forsequencing tactics. Some care was taken with this operation in order to maketactics e�cient. In particular, it produces a variant representation of a proofthat delays actual computation of the composition. Often the actual compositionnever needs to be performed, and when it does, it will usually be in the contextof other delayed compositions, and grouped compositions can be handled muchmore e�ciently.There is one predicate for constructing each of the three kinds of justi�ca-tions.prem just prem.prule just R (prule R).tactic to just T G P (trule TacAp JT) :-var JT, !, make abs (p T G) TacAp MVars, T G P, proof jtree P JT.proof jtree (aproof P) (ajtree JT) :- !,pi x\ (proof jtree (P x) (JT x)).proof jtree (proof G J Ps) (jtree J JTs) :- map proof jtree Ps JTs.The tactic to just operation �rst uses make abs to freeze the metavariablesin the tactic and goal. Then, the tactic is run on the the goal, returning thetactic's proof from which the corresponding justi�cation tree is extracted usingthe proof jtree operation.This completes the description of the implementation of the operations de-�ned by the abstract interface. These operations are used to implement tacticsand tacticals for re�nement. The �rst two below are the operations for both tac-tic and primitive rule operations. Their implementations are fairly simple. Weomit the de�nition of prems which computes the premises of a proof.type tactic refine (goal -> proof -> o) -> goal -> proof -> o.type prule refine prule name -> goal -> proof -> o.tactic refine T G P :- tactic to just T G TPf J,prems TPf Gs, one step proof (step G Gs) J P.prule refine R G P :- prule just R J,just step J (step G Gs), one step proof (step G Gs) J P.13



Tacticals are implemented similarly to those in [3]. The main di�erence isthe use of compose proofs in the implementation of then to provide a way tocompose our proof structures via the operations in the abstract interface.maptac T (agoal G) (aproof P) :- !, pi x\ (maptac T (G x) (P x)).maptac T G P :- T G P.then T1 T2 G P :- T1 G P1, prems P1 Gs,map (maptac T2) Gs Ps, compose proofs P1 Ps P.Tactics are secure in the sense that proofs are built and checked only via theprimitive operations of the abstract interface. A simple example is the imple-mentation of close tac.close tac G P :- prule refine close G P.The reuse operation illustrated in Section 3 has the following simple imple-mentation, whose core is the use of the jtree proof operation.reuse A P NewP :- proof jtree P JT,jtree proof (bgoal (u\ u) (|- (u\ u) A)) JT NewP.jtree proof (agoal G) (ajtree JT) (aproof P) :- !,pi x\ (jtree proof (G x) (JT x) (P x)).jtree proof G (jtree J JTs) P :- prem just J, !, goal prem G P.jtree proof G (jtree J JTs) P :-just step J (step G Gs), one step proof (step G Gs) J TopP,map3 jtree proof Gs JTs Ps, compose proofs TopP Ps P.The implementation of jtree proof is similar to jtree prems above exceptthat it takes an input goal and builds a proof instead of simply computing alist of premises. The input goal is necessary in order to avoid uni�cation con-straints that might otherwise be generated by just step in the third clauseabove. This operation can be viewed as simultaneously performing generaliza-tion (via just step) and specialization of the conclusion of each step to a giveninput goal.5 DiscussionAlthough the programs in this paper make extensive use of many of the higher-order features of �Prolog, such features are used in a fairly limited way. Forexample, quanti�cation over both functions and predicates is at most second-order. Operationally, the uni�cation problems that arise in executing these pro-grams are similar in nature to those encountered in [3] and are all fairly simple.The most signi�cant departure is the just step operation which results in uni-�ers with possibly many constraints. However, as mentioned, these constraintsgenerally are immediately solved by subsequent uni�cations.The reuse operation was illustrated on an example that involved a minorchange in the original sequent, allowing us to reuse the entire proof. Several otheruseful operations can be implemented directly using proof generalization via the14



jtree proof operation and minor modi�cations. For example, proof generaliza-tion provides a simple operation to backup or undo proofs during re�nement.In particular, a user can designate a subproof to be deleted, and jtree proofwith the original root goal as input can be used to construct a new proof. Anyinstantiations done by steps in the deleted subtree will not be present in the newproof. More complicated operations can be de�ned by combining generalizationwith replay.Our implementation generalizes a system we described in [4]. That systemsupported a variety of undo procedures provided that proofs were constructedby a given collection of operations including re�nement by tactics, pruning, andinstantiation and reinstantiation of metavariables in proofs. By a simple modi�-cation, our reuse operation can be added to this collection. To do so, additionaldata must be stored in tactic justi�cations and reusemust be modi�ed to updatethis data as it builds a new proof.Isabelle [10] and Coq [2] have metavariables and support tactic-style theorem-proving, but re�nement trees are implicit, and operations on these trees arelimited. This also applies to KIV [6], even though it explicitly supports a formof re�nement trees. In contrast to ALF [8] and Coq, our system only supportssimple types for metavariables. If the object logic has a richer type system, thentypes must be represented explicitly, for example as predicates in the objectlogic.References1. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.2. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The coq proof assistant user's guide. Technical Report154, INRIA, 1993.3. A. Felty. Implementing tactics and tacticals in a higher-order logic programminglanguage. Journal of Automated Reasoning, 11(1):43{81, August 1993.4. A. Felty and D. Howe. Tactic theorem proving with re�nement-tree proofs andmetavariables. In Twelfth International Conference on Automated Deduction.Springer-Verlag Lecture Notes in Computer Science, June 1994.5. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journalof the ACM, 40(1):143{184, January 1993.6. M. Heisel, W. Reif, and W. Stephan. Tactical theorem proving in program veri�-cation. In M. Stickel, editor, Tenth Conference on Automated Deduction, volume449 of Lecture Notes in Computer Science, pages 117{131. Springer-Verlag, 1990.7. C. Horn. The Oyster Proof Development System. University of Edinburgh, 1988.8. L. Magnussan. Re�nement and local undo in the interactive proof editor ALF.In Informal Proceedings of the 1993 Workshop on Types for Proofs and Programs,1993.9. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-tion for logic programming. Annals of Pure and Applied Logic, 51:125{157, 1991.10. L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logicand Computer Science, pages 361{385. Academic Press, 1990.15


