Encoding the Calculus of Constructions in a Higher-Order Logic*

Amy Felty
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974 USA

Abstract

We present an encoding of the calculus of construc-
tions (CC) in a higher-order intuitionistic logic (I)
n a direct way, so that correct typing in CC corre-
sponds to intuitionistic provability in a sequent calcu-
lus for . In addition, we demonstrate a direct corre-
spondence between proofs in these two systems. The
logic T is an extension of hereditary Harrop formu-
las (hh) which serve as the logical foundation of the
logic programming language A Prolog. Like hh, T has
the uniform proof property, which allows a complete
non-deterministic search procedure to be described in a
straightforward manner. Via the encoding, this search
procedure provides a goal directed description of proof
checking and proof search in CC.

1 Introduction

The motivations for encoding the Calculus of Con-
structions [4] in a higher-order logic are twofold. First,
it is well-known that in CC, types can be viewed as
formulas and terms as proofs in an intuitionistic logic
(in a manner similar to that described in Howard [11]).
We want to provide some insight into the correspon-
dence between these two languages by providing a di-
rect encoding of one into the other. Second, we are
interested in proof search in CC. The encoding pro-
vides a high-level description of a search procedure
based on logic programming.

Intuitively, the correspondence between CC types
and formulas in higher-order logic is fairly direct. A
functional type P — @ corresponds to an implica-
tion in higher-order logic. Taking this idea further,
introductions and eliminations of the type arrow in
type derivations correspond directly to the introduc-
tion and elimination rules for implication in higher-

*In Proceedings of the 8th Annual IEEE Symposium on Logic
in Computer Science, June 1993. (©1993 by the Institute of
Electrical and Electronics Engineers, Inc. All rights reserved.

order logic. More generally, a type in CC has the
structure (z: P)@ where P and @ are types and z is
a variable of type P bound in this expression. (The
arrow form is an abbreviation for the case when the
variable z does not appear in @.) This more general
form can be viewed as a formula where z is universally
quantified in Q. However, the analogy that applied to
introduction and elimination of implication is not as
direct for universal quantification. In the elimination
rule, for example, from the assumption V@ we can
conclude that any instance [R/z]Q holds as long as
R has the same type as z. In higher-order logic, this
type is a simple type. In the corresponding CC rule,
the variable z and term R can have arbitrary CC type.
Although CC types include the types of the simply-
typed A-calculus, they also include much more. As a
result of this mismatch, although the main ideas are
rather simple, carrying out the full formalization of the
correspondence between these two languages is more
difficult than one might expect. The encoding pre-
sented here is an extension of an encoding in Felty [8]
of the Logical Framework (LF) in a slightly less ex-
pressive logic than the one used here. Although LF
types are more expressive than simple types, they are
less expressive than CC types. Correctly handling the
polymorphism of CC requires a significant extension
over the LF encoding.

In our encoding, types will correspond to predicates
over terms. Informally, the CC type (z: P)@ repre-
sents a functional type in the following sense: if f is a
function of this type, and R is a term of type P, then
fR (f applied to R) has the type @ where all occur-
rences of z are replaced by R. Such term/type pairs
will be mapped to universally quantified implications,
e.g., f:((z:P)Q) is mapped to Vz ([z: P] D [fz : Q])
(where the double brackets denote the encoding oper-
ation). In CC, types can appear inside terms. If we
prefix the above formula with a A-abstraction over f,
we obtain a representation of a type which, as we will
see, can then occur inside encoded terms.

The behavior of the search procedure suggested by

the encoding is similar to the complete procedure for
CC presented in Dowek [5]. One way in which our pro-
cedure differs is that in order to implement an auto-
mated version, Dowek’s procedure would require uni-
fication on CC terms to solve constraints that arise
during search. In our procedure, terms are encoded
as simply-typed A-terms, and thus unification on such
terms is all that is required.

In addition to providing a search procedure, the en-
coding presented here provides a framework in which
to study how theorem proving techniques designed for
one system can be applied to proof search in the other.
For example, some early work by Bledsoe [2] develops
techniques for automatic discovery of substitutions for
set variables, a class of higher-order variables. Study-
ing these techniques via the encoding may provide in-
sight into further automating search in CC and into
Bledsoe’s technique itself. In the other direction, ad-
ditional insight into automating theorem proving in
higher-order logic might be gained by studying the be-
havior of search procedures for CC such as Dowek’s [5]
via the encoding.

In the next two sections we present the two lan-
guages we are concerned with. In Section 2 we present
the meta-logic Z, and in Section 3 we present the Cal-
culus of Constructions. Then in Section 4 we present
the encoding of CC into Z. We discuss its correctness
in Section 5. In Section 6 we describe an implemen-
tation of a search procedure based on the encoding,
and finally in Section 7 we conclude and discuss fu-
ture work.

2 A Higher-Order Meta-Logic

The types and terms of Z are essentially those of
the simple theory of types [3]. We assume a fixed set
of primitive types, which includes at least the sym-
bol o, the type for propositions. Function types are
constructed using the binary infix symbol —; if 7
and o are types, then so is 7 — o. The type con-
structor — associates to the right. The order of a
primitive type is 0 while the order of a function type
Ty — -+ — Ty, — To, where n > 0 and 79 is primitive,
is one greater than the maximum order of 74,...,7,.

For each type 7, we assume that there are denu-
merably many constants and variables of that type.
Simply typed A-terms are built in the usual way us-
ing constants, variables, applications, and abstrac-
tions. Equality between A-terms is taken to mean
Bn-convertibility. We shall assume that the reader is
familiar with the usual notions and properties of sub-
stitution and «, B8, and 7 conversion for the simply

typed A-calculus. See Hindley and Seldin [10] for a
fuller discussion of these basic properties. If z is a
variable and ¢ is a term then [t/z] denotes the oper-
ation of substituting ¢ for all free occurrences of =z,
systematically changing bound variables in order to
avoid variable capture.

A constant or variable pof typen —» -+ —> 7 — o0
is called a predicate constant or variable. An atomic
formula is a term of type o of the form pt; ...t, where
p is a predicate constant or variable. The predicate p
is the head of this atomic formula. The logical con-
nectives are defined by introducing suitable constants
as in Church [3]. The constants A (conjunction) and
D (implication) are both of type 0 — 0 — o, and Y,
(universal quantification) is of type (1 — o) — o, for
each type 7. The expression V,(Az t) is written simply
as ¥,z t or Vz ¢t when the type 7 can be inferred from
context.

Intuitionistic provability for Z can be given in
terms of sequent calculus proofs. A sequent is a pair
P — B, where P is a finite (possibly empty) set
of formulas and B is a formula. The set P is this
sequent’s antecedent and B is its succedent. The ex-
pression B, P denotes the set P U {B}. This notation
is used even if B € P. The inference rules for sequents
are presented in Figure 1. The following provisos are
also attached to the two inference rules for quantifier
introduction: in V-R ¢ is a constant of type 7 that
does not occur free in the lower sequent, and in V-L ¢
is a term of type 7.

A proofof the sequent P — B is a finite tree con-
structed using these inference rules such that the root
is labeled with P — B and the leaves are labeled
with initial sequents, that is, sequents P’ — B’
such that B’ € P’. The non-terminals in such a tree
are instances of the inference figures in Figure 1. Since
we do not have an inference figure for 8n-conversion,
we shall assume that in building a proof, two formu-
las are equal if they are B7n-convertible. In a sequent
P — B, we say that the formulas in P are assump-
tions and B is a goal. If this sequent has a proof, we
write P Fr B and say that goal B is provable from
assumptions P.

Definition 1 Let P be a finite set of T formulas. The
expression |P| denotes the smallest set of pairs (G, D)
of finite sets of formulas G and formula D, such that

e If D € P then (0, D) € |P].

o If (G,D; A D;) € |P| then (G,D1) € |P| and

e If (G,V,zD) € |P| then (G, [t/z]D) € |P| for all
terms ¢t of type T.

B,C,P — A L P — B c,P — A L [t/z]B,P — AVL
B/\C,P—)A/\' BOC,P — A B V.ze B,P — A
P — B P —C B,p — C P — [¢/z]B
P — BArC R P — B5C- R P — V,oB 'R

Figure 1: Left and Right Introduction Rules for 7

e If (G,G D D) € |P| then (G U{G}, D) € |P|.

This inference system has the uniform proof prop-
erty as defined in Miller et al. [12] and described by
the following theorem.

Theorem 2 Let P be a finite set of formulas and let
B be a formula. The sequent P — B has a proof
if and only if it has a proof in which every sequent
containing a non-atomic formula as its succedent is
the conclusion of a right introduction rule.

Proof: The proof is by induction on the height of an
arbitrary proof. The cases for the left rules use the fol-
lowing three lemmas proved by induction on the struc-
ture of the formula in the succedent. (1) If there is a
uniform proof of B,C,P — A, then there is a uni-
form proof of BAC,P — A. (2) If there are uni-
form proofs of P —» B and C,P — A, then there
is a uniform proof of B D C,P — A. (3) If there is
a uniform proof of [t/z]B,P — A, then there is a
uniform proof of V,2z B, P — A.

Based on this property, we can describe the follow-
ing high-level non-deterministic search procedure for
proofs in this logic. This procedure is described by
the following operations. Here G is a goal which we
are trying to prove from the set of assumptions P.

AND: If G is G; A G5 then try to show that both G,
and G; follow from P.

AUGMENT: If Gis D D G' then try to show that
G’ follows from P U {D}.

GENERIC: If G is V,z G’ then pick a new constant
c of type 7 and try to show [¢/z]G".

BACKCHAIN: If G is atomic and there is a pair
(G,G) € |P|, then attempt to prove each of the
formulas in G from P. If G is empty, then we are
done.

We say that a subformula occurs positively (nega-
tiely) in a formula if it occurs on the left of an even

(odd) number of implications. In the logic of kh [12],
which serves as the logical foundation of the logic pro-
gramming language AProlog, all atomic formulas oc-
curring positively in assumptions or negatively in goals
cannot have a variable at the head. The further re-
striction that atomic formulas are not allowed to con-
tain occurrences of D is imposed. Allowing variables
at the head as well as occurrences of D in atomic for-
mulas as we do provides a significant extension to the
logic. However, in hh, goal formulas can also be of the
form G1V Gs and 3.z G. The properties stated here
do not extend if we permit these connectives in goal
formulas.

In Miller et al. [12], it was shown that unification
can be used to implement the BACKCHAIN operation
for hh and is sufficient for determining substitutions.
However, because we allow variables at the head of
arbitrary atomic subformulas in Z, unification is no
longer enough. Consider the following subset of |P|
obtained by modifying the third clause of Definition 1.

Definition 3 Let P be a finite set of closed Z formu-
las. Here, we assume the variables bound by universal
quantifiers in each formula are distinct. The expres-
sion |P|o denotes the smallest set of pairs (G, D) of
finite sets of formulas G and formula D, such that

e If D € P then (§, D) € |Plo.

e If (G, D1 A D) € |P|o then (G, D1) € |Plo and
<gaD2> S |P|0

o If (G,V,2D) € |P|o then (G, D) € |Plo.
e 1f(G,G D D) € [Plo then (GU{G}, D) € [Plo.

Informally, an implementation of BACKCHAIN for hh
can be described as follows. Choose a pair (G, A} in
|Plo such that A is atomic. Replace all free variables
with logic variables in A and attempt to unify A with
the current atomic goal G. If unification succeeds,
apply the resulting substitution to the formulas in G
and attempt to prove each of them. Since A in the
chosen pair is atomic, it will have the form pt; ...%,.

In hh, p must be a constant and thus any substitu-
tion of variables will result in an atomic formula. In
T, however, if p is a variable, and A does not unify
with the goal, we still have to consider substitutions
that transform A into a non-atomic formula G, and
then consider the set |{G}|o. For example, consider
a substitution for p that transforms A to an implica-
tion B O A’ where A’ is atomic. We must now con-
sider pairs in |[{B D A’}|o where the second element
is atomic, in this case just ({B}, A"}, and try to unify
A with A’. If successful B becomes an additional sub-
goal that must be proven along with the formulasin G.
Otherwise, we have to continue repeating the proce-
dure. Thus, in Z, we have additional non-determinism
caused by having to “guess” at least the part of the
substitution that determines the logical structure of
the formula we are backchaining on before unification
can be used. In Section 6, we discuss a modification
which eliminates this non-determinism, and results in
an incomplete but still powerful search procedure. We
discuss how this incompleteness affects the complete-
ness of proof search for encoded CC.

3 The Calculus of Constructions

The syntax of terms of the Calculus of Construc-
tions (CC) is given by the following grammar.

Type | Prop |z | PQ | [z: P]Q | (z: P)Q

Here z is a syntactic variable ranging over variables,
and P and @ are syntactic variables ranging over
terms. We assume a denumerable set of CC variables.
The variable is bound in the expressions [z: P]Q and
(z:P)Q. The former binding operator corresponds to
the usual notion of A-abstraction, while the latter cor-
responds to abstraction in dependent types. We write
P — @ for (z: P)Q when z does not occur in Q.

Terms that differ only in the names of bound vari-
ables are identified. If z is an object-level variable
and N is an object then [N/z] denotes the operation
of substituting N for all free occurrences of z, system-
atically changing bound variables in order to avoid
variable capture.

The following four kinds of assertions are derivable
in the CC type theory.

F T context (T is valid context)

'K :Type (K isatypeinT)
'-A:K (A has type K in T')
'-M:A (M has proposition A in I')

For the latter three assertions, we say that K, A, or
M, respectively, is a well-typed term in T'. These as-
sertions separate terms into three levels. Here K and
L range over terms at the first level called types, which
appear in expressions on the left in the second kind of
judgment. A and B range over second-level expres-
sions called families, which appear on the left in the
third kind of assertion. Finally, M and N range over
third-level expressions called objects, which appear on
the left in the fourth kind of assertion. The constant
Type forms a 0-level class with a single element. We
say that Type is a kind. Only a subclass of families
can appear on the right in derivable assertions of the
fourth kind. We call terms in this subclass proposi-
tions. Propositions also correspond to the subclass of
families that occur on the left in derivable assertions of
the third kind in the special case when K is Prop. In
addition, I' ranges over contexts. The empty context
is denoted by {). We will use P, @, and R to range
over arbitrary objects, families, and types. Although
the inference rules will not be presented in a way that
distinguishes the three levels of terms, we make them
explicit here so that we may later discuss their cor-
responding notions in the encoding into Z. We write
I' « for an arbitrary assertion of one of the later
three forms above, where a is called a CC judgment.
In deriving an assertion of this form, we always assume
that we start with a valid context T'.

CC has the property that all well-typed terms are
strongly normalizing. The notion of #7n-conversion is
defined by the rules in Figure 2. The (n) rule has
the proviso that the variable z cannot appear free in
P. We write P =g Q if P =g, @ has a derivation
that doesn’t use the (n) rule. We say that a term is
primitive if it is Type, Prop or a proposition that is
Bn-convertible to a term of the form =P, ... P, where
n > 0 and z is a variable. All well-typed terms have
unique G-normal and Bn-normal forms. In addition,
they have unique Bn-long forms [5]. In particular, the
Bn-long form of a term is the 7-long form of its Bn-
normal form. A term in fB7-long form has the form
[1:P1]- (2 Pul(y1: Q1) - (Ym : @m)(2R1.. . Rp)
where n,m,p > 0, z is a variable, Prop, or Type,
(zR1...Rp) has primitive proposition, type, or kind,
and Pi,..., Pn,Q1,...,@m, Ry, ..., Ry are in Bn-long
form. We write S(P) and fBnl(P) to denote the S-
normal and Bn-long forms, respectively, of an arbi-
trary term P.

We present a version of the typing rules of CC such
that the terms in any derivable assertion are in G-
normal form. These rules are given in Figure 3. In
these rules, s, s1, and s3, are either Type or Prop.

([=: RIP)Q =gy [@/2]P (8)

[@: R|Pz =gy P ()

Py =g, P> Q1 =py Q2
(¢-ABS
[z : P1]Q1 =pq [: P2]Q2)
Py =g, P> Q1 =gy Q2 (£.PROD)

(2: P1)Q1=pn (z: P2)Q2

Py =g, P> Q1 =py Q2
CONG
P1Q1 =gy P2Q2)

P =g, P (REFL)

p Q
0= D P (SYM)

=y Q

=gp R
ki TRANS
P ()

R
n @

Figure 2: Bn-Convertibility in CC

In (INTRO), (PROD), and (ABS), we assume that the
variable z does not already occur as the left hand side
of a context item in I". Items introduced into con-
texts by (LEMMA) will be called context lemmas. A
derwation in CC of the assertion I' F o is a finite
tree constructed using these inference rules with root
'k @. It can be shown that for a given derivation of
an arbitrary assertion I' - P : @ using the usual pre-
sentation of CC, e.g., Coquand and Huet [4], there is
a corresponding derivation of B(T') F B(P) : B(Q) and
also of Anl(T) F Bnl(P) : Anl(Q) with the same basic
structure using the rules in Figure 3. Here, 8(T') rep-
resents the context with every right hand side of a pair
introduced by (INTRO) replaced by its S-normal form,
and both the left and right of every context lemma
replaced by their S-normal forms. Bni(T') is defined
similarly for 8n-long forms.

A canonical derivation in CC is a derivation such
that (1) every occurrence of (INIT) is followed by a
series of applications of (APP) such that the term on
the right in the conclusion of the last one is a prim-
itive proposition or type, and (2) every left premise
of (APP) is either the conclusion of (INIT) or (APP).
It can be shown that any derivable assertion has a

F () context (EMPTY-CTX)

F T context 'FP:s (INTRO)
F T, z: P context
F T context TFP:Q (LEMMA)

F T, P:@Q context

'k Prop: Type (PROP-TYPE)

I{D'_Q%F (INIT)
LhPio (m:PF)g;iF 9% (prop)
Prfin Lol Qs DeREPiQ g
AP BTG

Figure 3: CC Typing Rules

canonical derivation. In addition, all terms in judg-
ments in such derivations are not only in B-normal
form, but also in fBn-long form. However, given an
arbitrary derivable assertion, there is not necessarily
a canonical assertion with the same basic structure.!
Because of the restricted form of canonical derivations,
we “lose” some proofs. We can, in a sense, gain them
back using a technique similar to that used for LF
in Felty [8]. Given an arbitrary derivation of T I «,
we can define a function which “reads off” a series
of context lemmas A. It is then possible to obtain
a canonical derivation of the same basic structure of
I'AlF a.

In this paper, we will only consider canonical
derivations. By restricting CC in this way, we ob-
tain an inference system whose proofs correspond di-
rectly to those we can build using our search proce-
dure. Each uniform proof in Z built from encoded
assumptions has a corresponding canonical derivation
in CC of similar structure, and vice versa.

1We do not give a precise definition of “same basic structure”
here, though it is possible to do so. An example of a proof
transformation that does not preserve “same basic structure” is
cut-elimination.

4 Encoding the Calculus of Construc-
tions

Given an assertion I' F «, the encoding we present
here will map T to a set of assumptions and map a to a
goal to be proven from these assumptions. Such an en-
coding operates on judgment pairs. We will also need
to define a translation of CC terms to simply-typed
A-terms. These two encodings are defined mutually
recursively since encoding a proposition or type of the
form (z: P)Q will require introducing a new variable,
say f, encoding the judgment f : ((z: P)Q), and ab-
stracting over f. The resulting formula is a statement
describing properties of an arbitrary term of this type.

Here, we assume the variables of CC are divided
into six denumerable sets, two for each of the three
levels of terms: objects, families, and types. For ob-
jects, these sets will be denoted V! and V2. We assume
all free object variables in the assertion to be encoded
are in V!. The translation will choose variables from
V2 when it needs “new” object variables. Similarly,
we have sets V}, V]%, V!, and V2.

In this section, since we encode CC in Z, we con-
sider 7 as the metalanguage. We introduce meta-level
type ob which will be the type of encoded CC objects.
We assume a fixed bijective mapping p, from variables
of V! and V? to meta-variables of type ob. We will
also assume a fixed bijective mapping p; from vari-
ables of V} and V]% to meta-variables of type ob — o.
CC families will be mapped to predicates over objects.
Finally, we assume a mapping p; from type variables
to meta-variables of type (0b — 0) — o. CC types
will correspond to “predicates over predicates over”
objects. The union of these three mappings will be
denoted p. For readability in our presentation, these
mappings will often be implicit. A variable z will
represent both a CC variable and its corresponding
meta-variable given by p. It will always be clear from
context which is meant.

There are four kinds of applications in CC, an ob-
ject applied to an object, an object to a family, a
family to an object, and a family to a family. Sim-
ilarly there are four kinds of abstraction, where the
abstracted variable is either an object or family and
the resulting term is either an object or family. To
encode such terms, we introduce a constant for each
kind of application and abstraction. We also intro-
duce constants for the CC constants Prop and Type.
These constants and their types are given in Figure 4.
Note that the types of the constants in the figure are
all of order three or less. The order of the types here
corresponds directly to the number of levels of terms,

in this case three with a level 0 containing only the
constant Type. It should be possible to extend the
encoding presented here to generalized type systems
(GTS) as in Barendregt [1]. Such systems may have
any number of levels. The number of levels corre-
sponds directly to the maximum order of the types of
the constants introduced to encode terms.

We are now ready to define the encoding of CC
terms. We denote the encoding of term P as {P}.
We denote the encoding of judgment P:Q as [P:Q].
The encoding on terms is defined in Figure 5. We use
syntactic variables to denote the class to which each
CC term belongs. Here, f is an object variable from
V2 and g is a family variable from V2. We assume that
the variables chosen during the translation of a single
term are all distinct. It is easy to see that objects are
mapped to terms of type ob, families to terms of type
ob — o, and types to terms of type (ob — 0) — o.
This encoding also has the following property.

Lemma 4 Given CC terms P and @, and variable z,

[(Q)/=)(P) = ([Q/=]P).

The translations of CC context items and judg-
ments to Z formulas is defined in Figure 6. It is a
partial function since it is defined by cases and unde-
fined when no case applies. It will in fact always be de-
fined on valid context items and judgments. Note the
direct mapping of ()-abstraction in CC to instances of
universal quantification and implication in Z formu-
las, as discussed earlier. In the first two clauses of the
definition, the bound variable is mapped to a variable
at the meta-level bound by universal quantification.
In the third conjunct, the left hand side of the impli-
catlon asserts the fact that the bound variable has a
certain proposition or type, while the right hand side
contains the translation of the body of the proposition
or type which may contain occurrences of this bound
variable. The base case occurs when there is no lead-
ing ()-abstraction on the left, resulting in an atomic
formula. The following property follows from the def-
initions of the encodings on terms and judgments.

Lemma 5 Let P and @ be CC terms such that [P :
Q] is well-defined and doesn’t use the first clause of
the definition in Figure 6. Then [P : Q] = ({Q) {P)).

The convertibility relation for encoded CC terms
can be expressed as a set of Z formulas. We intro-
duce the following three binary predicates which will
be used to express convertibility at the levels of ob-

prop : (ob —0) > o typ :
GPoo : 0b — 0b — ob abs,, :
apos : 0b — (0b — 0) — ob absy, :
apso : (0b — 0) — ob — ob — o absoys :
apg : (0b — 0) = (0b — 0) = 0b — 0 absg :

(
(
(
(
(

(ob — 0) = 0) =

ob—)ob)—)(ob—)o)—)ob

(ob — 0) — ob) — ((0b — 0) — 0) — ob

ob — (ob — 0)) = (b —>0) > 0b— 0

(b — 0) = (0b = 0)) = ((6b = 0) > 0) 2 0b— 0

Figure 4: Constants for Encoding CC Terms

(=) = p(=)
(Type) = typ
{Prop = prop

=
[NP e e P e

(M = (apos (M) (B))
(AN) = (apo (4) (N))
(AB) = (apg (4) (B))

([AIM) = (absoo Az.(M) (A))
([z:K]M) = (abspo dz.{M) (K})
([z:A]B) = (absos Az.(B) (A))
([z:K]B}) := (absg Az.{B) (K}))
{(z:A)B) = Xf.[f:(z:A4)B]
{(z:K)BY = Mf[f:(z:K)B]
{(z: ALY = Ag.g:(z:A)L]
{(z:K)L) = Xg.[g:(z:K)L]

Figure 5: Encoding CC Terms

jects, families, and types.

conv, : ob — 0b — o
convy : (0b — 0) — (ob—0) > 0
convy : ((ob — 0) = 0) = ((ob—0) 5 0) =0

The T formulas expressing convertibility for families
are given in Figure 7. In this figure and the next, we
leave of outermost quantifiers and assume universal
quantification over all free variables written as cap-
ital letters (possibly with subscripts). The first two
formulas encode the () rule. Since we only consider
canonical derivations, the encoded terms will always
be in 7-long form, and so we do not include formulas
for the (n) rule. We next have two formulas encod-
ing (CONG), two formulas encoding (¢-ABS), and two
formulas encoding (¢-PROD). The last three formulas
encode reflexivity, symmetry, and transitivity. Con-
vertibility for objects is similar except that there are
no formulas corresponding to the two for (¢-PROD),
while convertibility for types includes only two such
formulas together with formulas expressing reflexivity,
symmetry, and transitivity. The following theorem ex-
presses the correctness for this specification.

Lemma 6 Let A and B be families, and P be the set
of formulas encoding convertibility for families given
in Figure 7 together with those for convertibility for
objects and types. Then A =g B if and only if
P — (convy {A) {B)) has a sequent proof.

Proof: This lemma is proved by induction on a
derivation of A =g B and Lemma 5. The induction

is simultaneous with similar statements for the other
two convertibility relations. The proofs are an exten-
sion of those given in Felty [7] for a specification of
convertibility for LF.

A few remaining assumptions in Z are necessary in
order to have a direct correspondence between deriv-
ability in CC and provability in Z. We include the
formulas in Figure 8. The first formula expresses the
(PROP-TYPE) rule. The next four formulas express
the (PROD) rule at the level of propositions and types.
The remaining four rules provide §-conversion for en-
coded CC terms appearing in both goals and assump-
tions. While an 7 proof may contain nodes with terms
representing CC terms that are not necessarily in G7-
long form, the corresponding node in the canonical
CC derivation will contain the corresponding 8n-long
form. There are no explicit formulas for the (INIT),
(ABS), and (APP) rules. These rules are what we are
encoding directly by translating context items. As a
result of this translation, the (ABS) rule, for example,
corresponds directly to applications of the A-R, V-R
and D-R inference rules for 7.

5 CC Derivations as Z Proofs

In this section, we state the theorems and sketch
the proofs showing that for any canonical derivation
in CC, there is a corresponding proof in Z. We then
discuss the correspondence in the reverse direction.

We say that T is a pre-contezt if for every pair P:Q

[[z:R)P:(z:R)Q]

[R:s:1] AVz ([[:n:R]]D [[Qisz]]) AV ([[iﬂiR]]D [[PiQ]])

[P:(z:R)Q] := [R:s1i]AVz ([[m:R]]D [[Q:sz]]) AV ([[m:R]]D [[PmQ]])
where P has no leading []-abstraction.
[P:Q] := {Q){P) where @ has no leading ()-abstraction.

Figure 6: Translating CC Context Items and Judgments

(convy (apg (absg B K) A) (B A))
(convy (apso (abses B A) M) (B M))
(convy A1 Az) A (convy By By) D (co
(convy A1 Az) A (conv, N1 N3) D (
V(convy Biz Bax) A (convy A1 A
V(convy Biz Baz) A (convy K1 K

nvy (apg A1 Bi1) (apg A2 Bs))
convy (apso A1 N1) (apso Az N2))
) D (convy (absos B1 A1) (absop By A3))
) D (convy (absg By K1) (absg Bz K3))

(convy A1 Az) A (convy By By) D (convy)\f ((prop A1) AVz(A1z D (prop B1)) AVe(Aiz D (B1 (apeo [2))))
Af.((prop A2) AVz(Azz D (prop Bz)) AVz(Axz D (B2 (apoo [2)))))

(convy A1 Az) A (convy K1 Kj) D (convy)\f ((typ K1) AVe(Kiz D (prop A1)) AVe(Kiz D (A1 (apo f 2))))
Af.((typ K2) AVa(Kaz D (prop Az)) AVe(Kaz D (A2 (apos [)))))

(convy P P)

(convy @ P) D (convy P Q)
(convg P R) A(convy R Q) D (convy P Q)

Figure 7: Convertibility for Propositions

(typ prop)

(prop A) AVz(Az D (prop B) D (prop Af.((prop A) AVz(Az D (prop B)) AVz(Az D (B (ape. f z))))))
(typ K) AVz(Kz D (prop B) O (prop Af.((typ K) AVe(Kz D (prop B)) AVz(Kz D (B (apos f 2))))))
(prop A) AVe(Az D (typ L) D (typ Ag.((prop A) AVz(Az D (typ L)) AVe(Az D (L (apso g 2))))))

(typ K) AVz(Kz D (typ L) D (typ Ag.((typ K) AVa(Kz D (typ L)) AVa(Kz D (L (apg g 2))))))
(convy K L) A (convy A BYALB D KA

(convy A B) A (conv, M NYABN D AM

(convy K LY A (convy ABYALBA(KADG)D G

((

convg A B) A (conve, M NYABNA(AM DG)D G

Figure 8: Formulas Expressing Some CC Typing and Conversion Rules

in T, [P : Q] is well-defined. We write [I'] to denote
the set containing [P : Q] for every P:Q in T.

In this section, we write Poc to denote the set of
assumptions containing the formulas in Figures 7 and
8 as well as the convertibility formulas for objects and
types discussed but not shown.

Lemma 7 Let P, Q, P', @', and R be CC terms
such that P =g, P’ and Q =g, @', and [P : Q] is

well-defined. Let z be a variable and T’ a pre-context.
1. Pee, [T k1 [P : Q] iff Poc, [T] Fr ({Q) (P')).

2. If Pce,[I] Fr [([R/z]P) ([R/z]Q)], then
Peoo, [I]Fr [(R)/=][P : Q].

3. Pcc, [[F]], [[:1: : Q]] I—I A iﬂPCC, [[F]], [[:I: : Q’]] I—I A,
for any Z formula A.

4. Pee, [T F1 [P : Q] iff Pee, [T 1 [P : Q.

Proof: (1) and (2) are proved by induction on the
structure of @. (3) follows directly from the fact that
the last two formulas in Figure 8 are in Pec. (4) is
proved by induction on a derivation of @ =g, Q'.

Theorem 8 Let I" be a valid context and let P and
Q@ be CC terms. If ' - P : @ has a canonical deriva-
tion in CC, then Pec, [I] — [P : @] has a sequent
proof in .

Proof: The theorem follows from Lemmas 4, 5, 6,
and 7, and induction on the height of a canonical CC
derivation. It illustrates directly how to construct an
T proof from a CC derivation.

The correspondence in the reverse direction is not
as direct. In fact, there are actually “too many” T
proofs, not all of which correspond directly to CC
derivations. The extra proofs result from the last four
formulas of Figure 8 which allow too much freedom in
the conversion of terms. If we restrict the way these
subformulas are used so that CC terms are always re-
duced to normal form, we obtain a direct correspon-
dence in this direction also. More specifically, consider
the backwards construction of a sequent proof of an
encoded assertion. For all rules except the V-L rule,
whenever all encoded CC terms appearing in formu-
las in the conclusion are in normal form, those in the
premises are also in normal form. We can enforce a
normal-form invariant by requiring that all terms in
the premise of an application of V-L get immediately
normalized. We must also augment the specification
of conversion with formulas defining when a term is in
normal form.

One way to formalize this correspondence is to
modify the definition of the encoding so that sub-
goals for normalization are placed everywhere they are
needed in the assumptions and the goal. To do so re-
quires dividing the encoding of judgments into two
mutually recursive functions, one for encoding goals
and the other for encoding assumptions. In particu-
lar, normalization formulas must always occur posi-
tively in goals and negatively in assumptions so that
they always appear as goals and never as assumptions.
However, having two functions complicates the encod-
ing of CC terms since whenever families occur inside
terms, there must be both a positive and a negative
version. Although this complicates the encoding tech-
nically, it adds no new difficulty to the proofs of the
correspondence between Z proofs and CC derivations.
In fact, this correspondence can be proven by extend-
ing the proof in Felty [7], where both positive and
negative encodings are used to encode the LF type
theory. The specification for terms in normal form for
LF given there can also be extended directly to CC.

6 Implementing a Search Procedure

We consider two examples taken from Dowek [5].
First, we start with the following context.

T:Prop

R:T — T — Prop

eq:T — T — Prop

antisym: (z:T)(y:T)(Rz y) > (Ry z) = (eqz y)
a:T

b:T

u:(Rab)

v:(Rba)

Using the inference rules of Figure 3, we can prove that
the object (antisym a b u v) has proposition (eq a b).
The encoded version of this type judgment is:

(apso (apso ega) b
(@Poo (8Poo (8Poo (GPoo antisym a) b) u) v))

which has a simple proof from the encoded context
shown below.

(prop T)

Ve((T =) > Vy((T y) D (prop (apso (apso R z) y))))
Va((T =) > Vy((T y) D (prop (apso (apso €q z) y))))
Ve ((T 2) D Vy((T y) > Vw((apso (apso R 2) y w) D
Vz((apso (apso Ry) & 2) D

(apso (apso eq) y
(a'poo (a'poo (a'poo (a'poo
antisym z) y) w) 2))))))

a)
b)
apso (apso R a) b u)
apso (apso R b) a v)

T
T

P

For illustration purposes in this and the next exam-
ple, when using the second clause of the definition of
the encoding in Figure 6, we leave off the first two
conjuncts, i.e., we used only Vz ([z: R] D [Pz : Q]).
(The additional conjuncts provide assumptions that
are not needed in these examples.)

As a slightly more complex example, consider the
following context.

A:Prop

B:Prop

I:Prop — Prop
uw:(P:Prop)((I P) — P)
v:(I (A — B))

w:A

In CC, we can show that the object (v (A — B) v w)
has proposition B. To do so, the proposition P in
the fourth context item must be instantiated with the

functional term (A — B). By the encoding on terms,
{A — B) is:

Af.((prop A) A
Ve(Az D (prop B)) AVz(Az D (B (apoo [)))).

We write Q below to abbreviate this term. Thus, in
Z, we must prove (B (apoo (apPoo (apor u Q) v) w))
from the following assumptions.

(prop A)
(prop B)
VP((prop P) D (prop (apg I P)))
VP((prop P) D
Vz((apg I P 2) D (P (apoo (apos u P) 2))))
(apg I Q v)
(A w)

We can begin the corresponding sequent proof in 7 by
applying V-L to the fourth assumption and instantiat-
ing P with Q. The rest of the proof follows easily.
Using the search procedure for 7 described in Sec-
tion 2, we can implement a search procedure for CC
encoded judgments. We can use such a procedure for
both type checking and proof search in CC. For type
checking, both terms in a judgment are given and the
search is straightforward. The head of the CC term
to be type checked completely determines which as-
sumption to use in backchaining. In the first example,
the head of the object in the original goal is antisym,
and so the formula for antisym (the fourth formula
in the encoded context above) is the one that must

be used by the BACKCHAIN operation. In the Z for-
mulas in the above examples, we call the rightmost
atomic formula the head subformula. In an interpreter
that uses logic variables to determine substitutions,
the variables z,y, z, w in the head subformula of the
antisym assumption can be replaced by logic variables
My, M3, M3, M4 which get instantiated to a, b, u, v, re-
spectively, upon unification with the goal. The result-
ing subgoals are (T a), (T b), (apso (apso R a) bu), and
(apso (apso R b) a v), which follow immediately. Type
checking the second example is not as simple. The
head u of the CC term in the goal determines which as-
sumption to use as before, but we cannot simply unify
the head subformula (P (apoo (apos u P) 2)))) with the
goal (B (apoo (apoo (apor u Q) v) w)). In this case, we
need to instantiate P with @ to obtain a non-atomic
subformula. In general, for type checking encoded CC
judgments, the logical structure needed in an instan-
tiation of a variable head is completely determined
by the CC term. Here, the fact that u in the goal
is applied to one more argument than » in the head
subformula of the assumption indicates that we need
one universal quantifier over one implication where the
right subformula is atomic. In general, if the goal has
n extra arguments, the substitution must result in a
formula of the form Vz1(Gy1 D -+ V&, (Gn D 4)---)
where A is atomic. In addition, the n extra argu-
ments in the goal determine what the structure of the

subgoals G4, ..., G, should be.

Proof search in CC corresponds to stating a propo-
sition or type and searching for an object or family
that inhabits it. In this case, we start with a logic
variable to represent the object or family we want to
find and fill it in incrementally using unification during
BACKCHAIN steps on assumptions. For example, we
could start with the goal (aps, (apso eq @) b M) with
M alogic variable. Using BACKCHAIN on the antisym
assumption with new logic variables M1, M, M3, My,
the variable M gets partially instantiated to the term
(a'poo (a'poo (a'poo (a'poo Gntié‘ym Ml) Mz) M3) M4) It
is not until further BACKCHAIN steps that these vari-
ables get instantiated to a, b, u, v, respectively, com-
pleting the search.

Although this example is simple, the second exam-
ple and search in general is much more complicated.
We list several problems and discuss ways of overcom-
ing them.

One problem, as discussed in Section 2, is that the
BACKCHAIN operation needed for Z is highly non-
deterministic. Consider again the second example
above, this time starting with the goal (B M) where
M is a logic variable. We need to introduce a substi-

tution for P that transforms the head subformula to a
non-atomic formula, but we have no indication of what
this substitution should be. However, we can modify
the interpreter so that it provides a procedure that
is incomplete, but behaves like the transitively com-
plete search procedure for CC given in Dowek [5]. In-
formally, a procedure is transitively complete if when
trying to prove a typing assertion I' - P : @), it is pos-
sible to prove a series of typing “lemmas” eventually
leading to the desired result, i.e., there are provable
assertions

I‘"Pl:Ql
[Pi:QiF Py : Q2

D,P:Q1,...,Ppn:QntP:@Q

where n > 0. The modification to our procedure
can be described simply as follows: don’t restrict the
BACKCHAIN to work on atomic formulas, always at-
tempt BACKCHAIN before any of the other search op-
erations, and always use unification to attempt to
unify the current goal with the head subformula of
an assumption. In the second example above, one
lemma must be proved before we can prove that
(v (A — B) v w) has proposition B, namely that
(v (A — B) v) has proposition 4 — B. In terms of
search, this means that we must find a proof of A —+ B
before finding a proof of B. Finding a proof of A — B
means solving the subgoal (prop A) A Vz((A z) D
(prop B)) AVz((A z) D (B (M'z))) where M' is a
logic variable. Instead of applying the AND, GENERIC
and AUGMENT operations, we directly unify the for-
mula with (P (apoo (apos u P) z)))). There is one so-
lution and the remaining subgoals are solved trivially,
instantiating M’ to Az.(@poo (aPoo (apoy u Q) v) z).
We then add the solved subgoal as an assumption:
(prop A) AVz((A z) D (prop B)) A

Ve((A z) D (B (apoo (apoo (apos u Q) v) z))).
The goal (B M) is now easily solved by backchaining
on the third conjunct of this assumption, obtaining
(apoo (@Poo (apoy u Q) v) w) for logic variable M.

In general, the proofs that cannot be discovered
without first proving a lemma are those that need to
use a context item of the form @ : (z1: P1)---(2n :
P,)(vS1...8¢) where v is a variable, and the term to
be substituted for this variable is a proposition (or
abstraction over a proposition) that is not primitive.
Induction principles for example are expressed in this
form. As in Dowek [5], our procedure handles the
case when a goal directly represents the property to
be proved by induction, but not the case when a gen-
eralization of the induction hypothesis is needed.

Even with the modified procedure, extra control is
likely to be needed to decide which assumptions to
use in backchaining at each step. It will often be the
case that more than one can be applied. One way to
provide such control is to implement a tactic style in-
teractive theorem prover which allows a user to guide
search step by step as well as incorporate some heuris-
tic search procedures. An example of such a system
for CC is Coq [6]. A AProlog implementation of tac-
tic style search is presented in Felty [9]. Using this
implementation, a tactic theorem prover for encoded
CC can be directly implemented. In such a theorem
prover, it is possible for a user to supply generalized
induction hypotheses and other hints directly when
needed. In addition, in a tactic theorem prover, it may
often be possible to provide specialized procedures for
finding such hypotheses automatically.

Finally, although the examples here didn’t show
it, when one of the last four formulas in Figure 8 is
needed, there is much non-determinism in choosing
terms that are On-equivalent. However, as discussed
in the previous section, we actually want to work with
terms in normal form. If the specification of conver-
sion in Figure 7 is replaced by a normalization proce-
dure, this non-determinism will be eliminated.

7 Conclusion and Future Work

We have demonstrated the formal correspondence
between two distinct languages by presenting an en-
coding of one in the other. As mentioned, this en-
coding provides a framework in which to study how
theorem proving techniques designed for one system
can be applied to proof search in the other. We
have discussed in some detail the search procedure
for the encoded language, CC, that is derived from a
search procedure for the meta-logic Z. In addition, we
mentioned several other theorem proving techniques
worth further investigation such as those of Bledsoe
and Dowek. Although developed exclusively for one
of the two languages, such techniques may be able to
aid in providing automatic support for search in the
other language. One technique of interest that has
not yet been mentioned is unification. Studying uni-
fication of CC terms as reflected in the higher-order
logic setting, for example, should provide additional
insight into this complex but important operation.

We have not considered the possibility of translat-
ing T formulas into CC. We consider here the subset of
T without conjunction. (Any formula in T can in fact
be mapped to an equivalent set of Z formulas that do

not contain conjunction.) This translation is particu-
larly simple, mainly because any simple type is also a
type in CC. Let P be a set of assumptions and G a
goal. We build a CC context I' as follows. First, for
each constant ¢ of type 7 appearing in the formulas
in P and in G, add ¢ : 7' to T where 7’ is 7 with all
occurrences of o replaced by Prop. Second, for each
formula D € P, introduce a new constant k not used
in the translation to this point. Add to the end of
T’ the CC pair k : D' where D' is essentially D with
B D C written as (z:B)C, Y,z B written as (z:7)B,
and all occurrences of o replaced by Prop. In G, make
the same replacements for implication, universal quan-
tifiers, and occurrences of o to obtain a CC term G'.
Then, proving the sequent P — G in T corresponds
to finding a term P such that T'+ P : G' has a type
derivation in CC.

As mentioned earlier, the encoding presented here
should extend directly to generalized type systems so
that the number of levels of terms in a type system cor-
responds directly to the maximum order of the types
of constants used to encode terms. In Felty [7], an en-
coding is given for the LF type theory with an encod-
ing on terms similar to the one presented here. Both
the number of levels in LF and the maximum order
of types of constants in the encoding is two. A more
direct encoding where constants for application and
abstraction are not needed is presented in Felty [8].
There, application and abstraction in LF are encoded
directly as application and abstraction in the meta-
language. Furthermore, each LF variable is mapped
to a constant of the metalanguage such that the order
of the LF type and the corresponding simple type are
exactly the same. Although the simple type may have
less information, it captures the basic structure of the
LF type. Such types can be of arbitrary order. We
cannot, however, give such a direct encoding of CC in
T in the same way. In particular, a variable f of poly-
morphic type in CC cannot be mapped to a constant
f of the simply-typed A-calculus. There is no simple
type that can capture the structure of a polymorphic
type. However, such a direct encoding should be pos-
sible in a higher-order logic that extends Z so that the
terms of the logic are the terms of the polymorphic
A-calculus.

References

[1] Hank Barendregt. Introduction to generalized
type systems. Journal of Functional Program-

ming, 1(2):124-154, April 1991.

[2] W. W. Bledsoe. A maximal method for set vari-
ables in automatic theorem proving. Machine In-

telligence, 9:53-100, 1979.

[3] Alonzo Church. A formulation of the simple the-
ory of types. Journal of Symbolic Logic, 5:56-68,
1940.

[4] Thierry Coquand and Gérard Huet. The calculus
of constructions. Information and Computation,

76(2/3):95-120, February/March 1988.

[5] Gilles Dowek. Démonstration Automatique
dans le Calcul des Constructions. PhD thesis,
L’Université Paris VII, December 1991.

[6] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard
Huet, Christine Paulin-Mohring, and Benjamin
Werner. The coq proof assistant user’s guide.
Technical Report 134, INRIA, December 1991.

[7] Amy Felty. Specifying and Implementing Theo-
rem Provers in a Higher-Order Logic Program-
ming Language. PhD thesis, University of Penn-
sylvania, Technical Report MS-CIS-89-53, Au-
gust 1989.

[8] Amy Felty. Encoding dependent types in an in-
tuitionistic logic. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 215—
251. Cambridge University Press, 1991.

[9] Amy Felty. Implementing tactics and tacticals in
a higher-order logic programming language. Jour-
nal of Automated Reasoning, To appear.

[10] J. Roger Hindley and Jonathan P. Seldin. Intro-
duction to Combinatory Logic and Lambda Cal-
culus. Cambridge University Press, 1986.

[11] William A. Howard. The formulae-as-type no-
tion of construction, 1969. In To H. B. Curry:
Essays in Combinatory Logic, Lambda Calculus,
and Formalism, pages 479-490. Academic Press,
1980.

[12] Dale Miller, Gopalan Nadathur, Frank Pfenning,
and Andre Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and

Applied Logic, 51:125-157, 1991.

