
IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Interactive Theorem Proving with Temporal
Logic

Amy Felty, Laurent Théry

N˚ 2804
Février 1996

PROGRAMME 2

Interactive Theorem Proving with Temporal LogicAmy Felty �, Laurent Théry ��Programme 2 � Calcul symbolique, programmation et génie logicielProjet CroapRapport de recherche n�2804 � Février 1996 � 41 pagesAbstract: In this paper, we present a theorem prover for linear temporal logic.Our goal is to extend the capabilities of existing interactive and automatic systemsfor verifying temporal properties of software and hardware systems. We focus onincreasing the e�ectiveness of user interaction in such systems. In particular, weextend the techniques of proof by pointing and point and shoot for mouse-drivenproof construction in �rst-order logic to temporal logic. In addition, we show howto generate text from proofs by extending a previously given translation for �rst-order logic to the temporal operators. Our theorem prover implements an inferencesystem for temporal logic that we have de�ned. The inference rules of this systemare more intuitive than the rules commonly given for temporal logics and thus theyare better suited to our goals. We present this inference system and prove that it issound and complete with respect to a known system.Key-words: interactive theorem proving, linear temporal logic, proof by pointing,textual presentation (Résumé : tsvp)�Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974 USAfelty@research.att.com��Laurent.Thery@inria.fr
Unité de recherche INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65

Preuves Interactives en Logique TemporelleRésumé : Ce papier présente un démonstrateur de théorèmes pour la logique tem-porelle linéaire. Notre but est d'étendre les possibilités des démonstrateurs actuelspour véri�er les propriétés temporelles des systèmes logiciels et matériels. Nousnous intéressons ici à augmenter la pertinence de l'interaction homme-machine dansces systèmes. En particulier nous étendons à la logique temporelle la technique depreuve par sélection développée pour la logique du premier ordre. Nous montronsaussi comment générer du texte à partir des preuves ainsi construites. Notre démons-trateur utilise un système de règles d'inférence que nous avons dé�ni. Ces règles sontplus intuitives que celles usuellement proposées pour la logique temporelle et doncplus adaptées à nos objectifs. Nous présentons notre système de règles d'inférenceet prouvons qu'il est correct et complet.Mots-clé : preuve interactive, logique temporelle, preuve par sélection, présen-tation textuelle

Interactive Theorem Proving with Temporal Logic 31 IntroductionTemporal logics are widely used in veri�cation of algorithms and systems in whichreasoning about time is important for ensuring correctness. These logics are mainlyused to formalize and express properties about future or possible behaviors in suchsystems. For example, linear temporal logics have been successfully used to expressand prove properties of concurrent and reactive systems (e.g., [10]). In this paper,we present a system that implements one such logic, the modal logic S4.3 with thetwo standard modal operators (always) and � (eventually), whose semantics givea linear interpretation to time.In order to formally verify large-scale complex systems, it will be important tohave sophisticated veri�cation tools that can integrate a variety of interactive andautomatic techniques. In this paper, we concentrate on the interactive componentof such veri�cation systems. We show how techniques for interactive proof searchdeveloped for �rst-order logic can be extended to S4.3. We focus in particular onthree aspects of e�ective interaction. First, the basic inference rules should corres-pond to intuitive proof steps. Second, it is important to provide simple operations(e.g. via mouse interaction) that have a direct and intuitive correspondence to theapplication of some combination of these basic inferences. For example, when thereis an assumption of the form A _B, a mouse click on B might direct the system tobreak the proof into two cases, one with A as an assumption, and the other with Bas an assumption, and in addition indicate that the second case should become the�current subgoal�, i.e., the one that all subsequent operations will be applied to un-less otherwise speci�ed. Third, it should be easy for the user to understand the proofat all points during and after its construction, and thus good proof presentation iscrucial in such systems.The theorem prover and graphical interface of our system are implemented astwo separate components. The theorem prover uses the tactic-style theorem provingenvironment implemented in the higher-order logic programming language �Prolog,as described in [6]. A simple tactic theorem prover for backward step-by-step proofconstruction is obtained from a direct speci�cation of the inference rules of the desi-red logic. The inference system for S4.3 that we use is one that we have designed withour goals for e�ective interaction in mind. We begin with Gentzen's sequent calcu-lus for �rst-order intuitionistic logic restricted to the propositional case presented in[13]. For classical logic, instead of using a multiple conclusion sequent calculus, weadd a rule for excluded middle to the single conclusion system for intuitionistic logic.We then add rules for the temporal operators and show that the resulting systemis sound and complete with respect to the multiple conclusion system given in [8].RR n�2804

4 Amy Felty, Laurent ThéryWe choose a sequent system since it is easy to map to interactive backward proofsteps. We choose a single conclusion sequent calculus because proofs are generallymore intuitive than those in multiple conclusion calculi.The graphical interface of our system is implemented in Centaur [3]. In parti-cular, we build on an existing interface for the theorem prover obtained from the�rst-order intuitionistic logic speci�cation mentioned above. First, we extend thetechniques of proof by pointing and point and shoot described in [2] to associateoperations to mouse clicks on temporal formulas. Second, we extend techniques forgenerating textual explanations from proofs. To do so, we de�ne a natural deductioninference system which is better-suited than the sequent calculus to the generationof readable text. We extend the mapping of natural deduction proofs to pseudo-English given in [4] for �rst-order logic by illustrating how to map the inferencerules for the modal operators to fragments of text. Proof construction in our systemproceeds by incrementally �lling in such text.In order to integrate both sequent and natural deduction proofs in the theoremprover, we show that our single conclusion sequent calculus has a direct mapping toour natural deduction system. We do so by introducing an intermediate inferencesystem that builds fragments of natural deduction proofs within sequent proofs, andproving that both sequent and natural deduction proofs can easily be extracted. Ourtheorem prover is a direct implementation of this proof system and builds both kindsof proofs simultaneously. This implementation extends a similar one for �rst-orderintuitionistic logic in [5].In the next section, we present our sequent calculus for S4.3 and show that it issound and complete with respect to Goré's system. In Section 3, we present a naturaldeduction system for S4.3 and show that it is sound and complete with respect toour sequent calculus. Section 4 illustrates proof construction in our system, andpresents the extensions of proof by pointing and point and shoot to temporal logic.Section 5 shows how to map the temporal rules to text. In Section 6, we presenta complete example illustrating interaction with the system, and in Section 7, weconclude. The proofs of the theorems in Sections 2 and 3 are given in the appendix.2 A Sequent Calculus for S4.3Figure 1 contains a complete set of inference rules for a sequent calculus for S4.3,which we call S. In this system a sequent is written � ` A where � is a set of formulascalled the assumptions or context, and A is a formula. Following convention, we writeA;� to denote the set � [fAg, and �;�0 to denote the set � [�0. In addition, �INRIA

Interactive Theorem Proving with Temporal Logic 5initial : A;� ` A excl-mid : � ` A _ :A^ left : A;B;� ` CA ^B;� ` C ^ right : � ` A � ` B� ` A ^B_ left : A;� ` C B;� ` CA _B;� ` C _ right1 : � ` A� ` A _B_ right2 : � ` A� ` A _B� left : � ` A B;� ` CA � B;� ` C � right : A;� ` B� ` A � B:left : � ` A:A;� `? :right : A;� `?� ` :Acut : � ` A A;� ` C� ` C ? right : � `?� ` Aweaken : � ` A�;�0 ` A �right : � ` A� ` �A�left : A1;�A2; : : : ;�An; � ` C � � � �A1; : : : ;�An�1; An; � ` C�A1; : : : ;�An; � ` Cleft : A;� ` CA;� ` C right : � ` A� ` AIn �left , C is either of the form �A or ?.Figure 1: The S sequent calculus for S4.3is a set of formulas such that each formula is of the form A or :�:A. In S4.3, forany formula A, the following dual equivalences hold: (1) A is equivalent to :�:Aand (2) �A is equivalent to : :A. We call a tree built from the rules in Figure 1an S-proof.The formula ? has a special status in S. This formula can only occur in proofson the right in a sequent. Furthermore, it must occur alone; it must not be asubformula of any other formula.RR n�2804

6 Amy Felty, Laurent ThéryEach of the rules of this sequent calculus can be given an intuitive reading.These readings will be re�ected directly in the generation of text from proofs. Mostof the propositional rules are straightforward. The ^ right rule for example statesthat if A and B each hold from the assumptions �, then we can conclude A ^ Bholds under the same assumptions. Many of the readings of the left rules are givenin the backwards direction and involve reasoning in a forward direction from theassumptions. The ^ left rule for example states that if we have as an assumptionA^B, then we can add to our assumptions both A and B separately. The _ left ruleinvolves reasoning by cases; the formula C holds under the assumptions A _ B and� if it holds under the two cases: A and �, and B and �. We give interpretationsto the modal rules that involve reasoning about time. If we interpret a sequentto mean that the conclusion holds from the assumptions at the present time, thenthe interpretations of �right and left have simple readings. The �right rule statesthat if A holds now, then A eventually holds. The left rule reads that from theassumption that A always holds, we can conclude that A holds now. The other twoare slightly more complicated. The right rule states that if A holds from a set ofassumptions that all hold all the time, then A holds all the time. The �left ruleinvolves reasoning by cases from a set of one or more assumptions that all eventuallyhold. The cases are broken down according to which one holds ��rst�. In particular,there are n premises where n � 1, and for i = 1; : : : ; n, premise i is the case where Aiholds �rst. First here does not mean strictly before all others. There may be othersthat hold at the same time, though none can hold before. In addition, in order forthis reasoning to be valid, all other assumptions used in the reasoning must hold allthe time, and the conclusion must either be of the form �A or ?.To show that this inference system is sound and complete, we show that the setof provable sequents is exactly those that are provable in the S 0 inference systemin Figure 2. S 0 is a multiple-conclusion sequent calculus for S4.3 presented in [8].A sequent is written � ` � where � and � are both sets of formulas. S 0 does notcontain inference rules for the modal operator � . However, using the equivalencebetween the pre�xes � and : :, we express and prove the correctness of S as follows.Theorem 1 Given a set of formulas � and a formula C, let �0 and C 0 be � andC, respectively, with all occurrences of � replaced by : :. The sequent � ` C isprovable in S if and only if �0 ` C 0 (or �0 ` ; when C is ?) is provable in S 0.The S 0 system has the cut-free property, i.e., any sequent provable in S 0 has aproof without any occurrences of the cut rule (see [8]). The cut-free property doesnot hold for the S system, but it can be shown that only limited use of the cut ruleis needed, as expressed by the following theorem. INRIA

Interactive Theorem Proving with Temporal Logic 7initial : A ` A weaken : � ` ��;�0 ` �;�0^ left : A;B;� ` �A ^B;� ` � ^ right : � ` A;� � ` B;�� ` A ^B;�_ left : A;� ` � B;� ` �A _B;� ` � _ right : � ` A;B;�� ` A _B;�� left : � ` A;� B;� ` �A � B;� ` � � right : A;� ` B;�� ` A � B;�:left : � ` A;�:A;� ` � :right : A;� ` �� ` :A;�cut : � ` A;� A;� ` �� ` � left : A;� ` �A;� ` �right : � ` A1; A2; : : : ; An � � � � ` A1; : : : ; An�1; An� ` A1; : : : ; AnFigure 2: The S 0 multiple-conclusion sequent calculus for S4.3Theorem 2 Given a set of formulas � and a formula C, let �0 and C 0 be � and C,respectively, with all occurrences of � replaced by : :. If the sequent �0 ` C 0 (or�0 ` ; when C is ?) is provable in S 0 without cut, then � ` C has a proof in S suchthat in all occurrences of the cut rule, the left premise is a direct consequence of theexcl-mid rule.3 A Natural Deduction Presentation of S4.3Figure 3 contains a complete set of rules for a natural deduction inference systemfor S4.3, which we call N . The rules are presented in the style of [12]. Formulasin parentheses are used to indicate the discharge of assumptions. In � intro, forexample, any occurrence of the formula A as a leaf in the tree above B is dischargedby the application of the rule. The brackets in intro and � elim rules also denotedischarge; all formulas in brackets are discharged by the rule application. In addition,the brackets denote a restriction on proofs: the formulas in brackets must be theRR n�2804

8 Amy Felty, Laurent Théry^ elim1 : A ^BA ^ elim2 : A^ BB ^ intro : A BA ^B excl-mid : A _ :A_ elim : A _B (A)C (B)CC _ intro1 : AA _B _ intro2 : BA_ B� elim : A A � BB � intro : (A)BA � B:elim : A :A? :intro : (A)?:A ? elim : ?Aelim : AA �intro : A�A intro : B1 � � � Bn [B1; : : : ; Bn]AA�elim : �A1 � � � �An B1 � � � Bm �A1;�A2; : : : ;�An;B1; : : : ; Bm �C � � ���A1; : : : ;�An�1; An;B1; : : : ; Bm �CCIn �elim , C is either of the form �A or ?.Figure 3: The natural deduction inference system N for S4.3only formulas that occur as leaves in the subtree above the premise in which theyoccur. Note that in intro and � elim, n > 0 and m � 0. A proof in N of aformula C from a set of assumptions � is a tree constructed from the inference rulesof Figure 3 such that every formula that occurs as a leaf and is not discharged byany rule application is either of the form A _ :A or occurs in �. We call such aproof an N -proof.The combination sequent and natural deduction inference system that we im-plement in our theorem prover is the system M given in Figure 4. It is the sameas system S except that fragments of N -proofs occur on the left in sequents. Wedenote such proofs using �, possibly subscripted. To further denote that the formulathat occurs at the root of such a proof is A, we write �A . For sets of such proofs,we write 	, again possibly subscripted. A formula alone on the left of a sequentdenotes a one-node N -proof. In contrast, only formulas, not proofs, occur on theINRIA

Interactive Theorem Proving with Temporal Logic 9right in sequents of M. We write 	 to denote a set of proofs such that the rootformula of each has pre�x or :�:. Note for example, that the proof of B in theright premise of � left is built from a one-node proof of A and the proof of A � Bthat occurs in the conclusion. In the � right rule, the formula A � B occurs in theconclusion, while in the premise the one-node proof A occurs on the left and theformula B occurs on the right. In �left , arbitrary proofs occur on the left in theconclusion, while only one-node proofs appear in the premises. Note that in buildinga proof top-down, the N -proofs in the conclusion appear to come out of nowhere.However, if we consider the bottom-up construction of proofs, the application of leftrules can be viewed as the construction of new assumptions by forward reasoningfrom existing assumptions. The N -proofs record the proofs of this forward reaso-ning. In the case of the �left rule, this record is dropped when continuing the proofsof the premises. Technically, these proofs are needed to de�ne the function whichextracts N -proofs from M-proofs, a function which is de�ned recursively over thestructure of M-proofs. For the �left rule, the N -proofs occurring in the conclusionare not needed (and in fact must not be there) in order to extract N -proofs fromthe premises. For the same reason, there are N -proofs occurring in the conclusionsof the :left and _ left rules which do not occur in the premises.The correspondence between the sequent system S and the mixed system Mcan be made formal by de�ning two functions that take a proof in one to a proof inthe other by simply replacing each rule application in one system by an applicationof the corresponding rule in the other system. The function Ŝ from M to S canbe de�ned to be the operation that simply erases N -proofs on the left of sequentsby replacing each proof with the formula at its root. The function S from S toM can be de�ned by starting at the root and replacing each formula A on theleft of the sequent with some N -proof whose root is A and proceeding upwardreplacing formulas in the premises with the corresponding proofs built using theproof fragments in the conclusion. To make this de�nition precise, the set of N -proofs replacing the formulas on the left of the root sequent is given as an explicitargument to S. As a result, the function application S(�;) is only well-de�nedif the set of formulas on the left at the root of S-proof � is the same as the set offormulas occurring at the roots of the N -proofs 	. The following theorem is thenproved by a simple inductive argument on proof trees.Theorem 3 Let 	 be a set of N -proofs and let � be the set of formulas that occurat the root of the proofs in 	. Let C be a formula. If � is a proof of 	 ` C in M,then Ŝ(�) is a proof of � ` C in S. Conversely, if �0 is a proof of � ` C in S,RR n�2804

10 Amy Felty, Laurent Théryinitial : �A ;	 ` A excl-mid : 	 ` A_ :A^ left : �A ^ BA ; �A ^ BB ;	 ` C�A ^ B ;	 ` C ^ right : 	 ` A 	 ` B	 ` A ^B_ left : A;	 ` C B;	 ` C�A _ B ;	 ` C _ right1 : 	 ` A	 ` A _B_ right2 : 	 ` A	 ` A _B� left : 	 ` A A �A � BB ;	 ` C�A � B ;	 ` C � right : A;	 ` B	 ` A � B:left : 	 ` A�:A ;	 `? :right : A;	 `?	 ` :Acut : 	 ` A A;	 ` C	 ` C ? right : 	 `?	 ` Aweaken : 	 ` A	;	0 ` A �right : 	 ` A	 ` �A�left : A1;�A2; : : :�An; B1; : : : Bm ` C � � � �A1; : : : ;�An�1; An; B1; : : : Bm ` C�1�A1 ; : : : �n�An ; �01B1 ; : : : �0mBm ` Cleft : �AA ;	 ` C�A ;	 ` C right : 	 ` A	 ` AIn �left , C is either of the form �A or ?.Figure 4: The mixed inference system M: sequent rules with natural deductionfragments INRIA

Interactive Theorem Proving with Temporal Logic 11then S(�0;) is a proof of 	 ` C in M. Furthermore, if 	 contains only one-nodeproofs, then S(Ŝ(�);) = � and Ŝ(S(�0;) = �0.The soundness and completeness of M follow directly from this theorem.The correspondence betweenN andM is not as direct. However, one direction�converting proofs in M to proofs in N�is fairly direct. This is the direction weare interested in. In particular, our theorem prover builds proofs in M and weextract natural deduction proofs so that we can map them to text. We consideronly proofs in M such that in all occurrences of the cut rule, the left premiseis a direct consequence of the excl-mid rule. Let assumps be the function thatmaps an N -proof � to the set of formulas containing all formulas occurring asleaves in � that are neither of the form A _ :A nor are discharged by any ruleapplication. We extend this function to operate on sets of N -proofs as follows:assumps(f�1; : : : ;�ng) := assumps(�1)[� � �[assumps(�n). We de�ne the functionN̂ that maps anM-proof of 	 ` C to an N -proof of C from assumps() recursivelyfrom the root upward, with a case for each inference rule. An M-proof ending with^ right , for example, as shown on the left below is mapped to the N -proof on theright below whose last inference is an application of ^intro.^ right : �1 �2	 ` A ^ B) N (�1) N (�2)A ^ BHere, �1 is a proof of the sequent 	 ` A and �2 is a proof of 	 ` B. The cases forthe other right rules are all de�ned by a similar recursion on the premises followed byan application of the corresponding intro rule. The one-nodeM-proof of 	 ` A_:Ais mapped directly to the one-nodeN -proof A_:A. The remaining rules are slightlymore complicated and the mapping is given in Figure 5. In this �gure, �;�1, etc.,are assumed to be proofs of the premises of the speci�ed rule. The sequents atthe root of these proofs are assumed to be of the appropriate form (see Figure 4).The following theorem expresses the correctness of the translation of M-proofs toN -proofs as de�ned by the function N̂ .Theorem 4 Let C be a formula and 	 be a set of N -proofs. If � is an M-proof of	 ` C, then N̂ (�) is an N -proof of C from assumps().Although arbitrary applications of cut are not necessary for the completeness ofM, it is important in practice to allow them in interactive theorem proving. Ourimplementation handles such applications by: (1) applying the function N̂ to theleft premise 	 ` A to obtain an N -proof � of A from assumps(), (2) modifyingRR n�2804

12 Amy Felty, Laurent Théry
initial : �A ;	 ` A) �A^ left : ��A ^ B ;	 ` C) N̂ (�)_ left : �1 �2�A _ B ;	 ` C) �A_ B N̂ (�1) N̂ (�2)C� left : �1 �2�A � B ;	 ` C) N̂ (�1) �A � BB:left : ��:A ;	 `?) N̂ (�) �:A?cut : 	 ` A_ :A �	 ` C) N̂ (�)weaken : �	;	0 ` A) N̂ (�)�left : �1 � � � �n�1�A1 ; : : : ; �n�An ; �01B1 ; : : : ; �0mBm ` C)�1�A1 � � � �n�An �01B1 � � � �0mBm N̂ (�1) � � � N̂ (�n)Cleft : ��A ;	 ` C) N̂ (�)Figure 5: The function N̂ for transforming mixed-rule proofs to natural deductionproofs INRIA

Interactive Theorem Proving with Temporal Logic 13the proof of the right premise A;	 ` C by modifying the proofs of 	 to replace alloccurrences of A as a leaf with �, (3) applying N̂ to the resultingM-proof.We do not consider a translation of N -proofs to M-proofs here. However, wenote that it is possible to de�ne a translation on normal proofs (see [12]) in thepropositional intuitionistic fragment of N that does not use the cut rule, therebyillustrating the correspondence between cut-free sequent proofs and normal naturaldeduction proofs for this fragment.4 Proof ConstructionInteractive proof construction is most often done in a backward direction. The usersets a goal and then, applying the rules of the logic, tries to reduce it to alreadyknown theorems or axioms. The technique of proof by pointing described in [2]provides a means of giving proof directions by selecting subexpressions of goals. Ithas been proved sound and complete for classical logic. In what follows, we explainhow the technique can be extended to our sequent system for S4.3, and we givesome examples of proofs of temporal properties. We describe proof search using theS system, although as already stated, our theorem prover implements theM systemwhich also builds N -proofs of the assumptions.4.1 Proof by PointingThe main idea of proof by pointing is that each rule in the sequent presentation canbe seen as a way of breaking down a term. The term to break is in the conclusion ofthe rule, either the conclusion of the sequent or one of its assumptions. The resultis presented by the subterms of the term reappearing in the premises. For example,the ^right rule: � ` A � ` B� ` A ^Bcan be seen as breaking a conjunction, putting the left part in the �rst premise andthe right one in the second premise. We can express this more graphically by thefollowing two rules where in the �rst, the user has clicked on A, and in the secondon B: � ` A � ` B� ` A ^B� ` A � ` B� ` A ^ BRR n�2804

14 Amy Felty, Laurent ThéryFigure 6 presents the boxed rules for the usual connectives of propositional classicallogic. Selecting a subexpression can be understood as a command to bring the^ left1 : A ; B;A ^B;� ` CA ^B;� ` C ^ right1 : � ` A � ` B� ` A ^B^ left2 : A; B ; A ^B;� ` CA ^ B ;� ` C ^ right2 : � ` A � ` B� ` A^ B_ left1 : A ; A _B;� ` C B;A _B;� ` CA _ B;� ` C _ right1 : � ` A� ` A _B_ left2 : A;A _B;� ` C B ; A _B;� ` CA _ B ;� ` C _ right2 : � ` B� ` A _ B� left1 : A � B;� ` A B;A � B;� ` CA � B;� ` C � right1 : A ;� ` B� ` A � B� left2 : A � B;� ` A B ; A � B;� ` CA � B ;� ` C � right2 : A;� ` B� ` A � B:left : � ` A: A ;� `? :right : A ;� `?� ` : AFigure 6: Proof by pointing rules for propositional classical connectivessubexpression to the surface of the sequent. It only makes sense if we have the twofollowing properties:1. Well foundedness: the box in the premises is more �immediate� than theformula it came from in the conclusion. This property ensures termination asthe propagation of the selection moves toward the surface.2. Uniqueness: given a goal and a selection, there is at most one rule that isapplicable. This property ensures determinism.These two properties hold for the rules of Figure 6. Here, more �immediate� meansthat the formula in the premises is smaller than the formula it came from in theINRIA

Interactive Theorem Proving with Temporal Logic 15conclusion. Furthermore we have a property of completeness: any subformula can bereached by recursive application of the rules. Given a selection, we can then inducean algorithm that performs a series of rule applications. We display each step of thealgorithm with a �!� representing application of a rule from Figure 6. We do notindicate which rule since it will always be clear from context. An overline over asequent is used to indicate that a branch of the proof has been completed using theinitial rule. In addition, the propagation of the selection is displayed by underliningthe selected subterm. As an example, a selection on z in the leftmost formula belowgives: ` x ^ y � z _ t ! x ^ y ` z _ t ! x ^ y ` zwhich consists of an application of � right followed by _right1 . All the rules ofFigure 6 are instances of rules of S where the formula the rule is applied to in theleft rules is repeated in the premises. To get proof by pointing in our system, weonly have to give boxed versions for the remaining rules.AlwaysDeriving the rule for proof by pointing for is straightforward:A ; A;� ` CA ;� ` CWe reach the formula A in A by selecting A. The right rule can also be boxed asfollows: � ` A� ` ABecause the context has to contain formulas of a certain form, by adding this proofby pointing rule, the properties of termination and determinism are preserved, butwe lose the property that we can reach any formula by selecting it. To recapturethis property, we use the fact that there exists a canonical way of transformingany context into a context by removing assumptions that don't have as theiroutermost operator with the weaken rule. For example:A; B;C; D ` E ! B; D ` E ! B; D ` EIn the following we will represent the combination of weaken and the application ofthis rule as a single step of the algorithm:A; B;C; D ` E ! B; D ` EWith these two rules, we can begin to prove some basic properties.RR n�2804

16 Amy Felty, Laurent ThéryExample 1: ` x � xProof: Click on x in the left part of the implication.` x � x ! x ` x ! x; x ` xExample 2: ` x � xProof: Click on x in the right part of the implication.` x � x ! x ` x ! x ` xExample 3: ` (x ^ y) � x ^ yProof: Click on x in the right part of the implication.` (x ^ y) � x ^ y ! (x ^ y) ` x ^ y !(x ^ y) ` x(x ^ y) ` y ! (x ^ y) ` x(x ^ y) ` yThe �rst goal is solved by selecting the x of the assumption.(x ^ y) ` x ! x ^ y; (x ^ y) ` x ! x; y; x ^ y; (x ^ y) ` xFor the second goal we have to follow the same path, �rst select y in the goal:(x ^ y) ` y ! (x ^ y) ` yand then in the assumption.(x ^ y) ` y ! x ^ y; (x ^ y) ` y ! x; y; x ^ y; (x ^ y) ` yEventuallyThe � left rule gives the following boxed rules.A1; : : : ;�An; � ` �C � � � �A1; : : : ; Ai ; : : : ;�An; � ` �C � � � �A1; : : :; An; � ` �C�A1; : : : ;� Ai ; : : : ;�An; � ` �CA1; : : : ;�An; � ` ? � � � �A1; : : : ; Ai ; : : : ;�An; � ` ? � � � �A1; : : :; An; � ` ?�A1; : : : ;� Ai ; : : : ;�An; � ` ?With these two rules, it is easy to see that we can reach any subterm in an assumptionwith � as its outermost operator. The problem of having a context with only � andINRIA

Interactive Theorem Proving with Temporal Logic 17assumptions is solved by the weaken rule as before. In addition, when the conclusionof the sequent is not a � formula we can always apply the ? right rule:� ` ?� ` CHere is a simple example:A;�B;C; D ` E ! �B; D ` E ! �B; D ` ? ! B; D ` ?As for , in the following we will merge applications of weaken, ? right, and �leftinto a single step of the algorithm.The �right rule has a direct correspondence to the boxed rule:� ` C� ` � CWith these rules, we can prove the temporal properties that are dual to those of theprevious section.Example 4: ` x � �xProof: Click on x in the right part of the implication.` x � �x ! x ` �x ! x ` xExample 5: ` ��x � �xProof: Click on �x in the left part of the implication.` ��x � �x ! ��x ` �x ! �x ` �xExample 6: ` �x _ �y � �(x _ y)Proof: Click on x in the left part of the implication.` �x _ �y � �(x _ y) ! �x _ �y ` �(x _ y) !�x;�x _ �y ` �(x _ y)�y;�x _ �y ` �(x _ y) ! x ` �(x _ y)�y;�x _ �y ` �(x _ y)Note that the extra assumptions disappear in the �rst goal of the last step due to anapplication of weaken before applying �left . The �rst goal is solved by a selectionon the x of the conclusion.x ` �(x _ y) ! x ` x _ y ! x ` xThe second goal is solved by two selections on y, �rst the one of the �rst assumption:�y ` �(x _ y) ! y ` �(x _ y)then the one of the conclusion.y ` �(x _ y) ! y ` x _ y ! y ` yRR n�2804

18 Amy Felty, Laurent ThéryConversionsIn S4.3, for any formula A, :�A is equivalent to :A and : A is equivalent to �:A.We have found it useful in practice to replace a formula of one of these forms with itsequivalent during proof construction. In S, it is possible to derive rules that performthis operation on a formula of any one of these four forms in the assumptions or onthe right of a sequent. Two examples are as follows::A;� ` C:�A;� ` C �:A;� ` C: A;� ` CThese are examples of rules where it is impossible to directly use proof by pointing;they deal with transforming rather than breaking down. For this reason, we treatthem as terminal rules (rules with no box in the premises) and use the principle ofpoint and shoot to trigger them. Point and shoot simply allows multiple terminalrules by having multiple kind of selections. Graphically we di�erentiate terminalrules by indexing the box with a key. Operationally the user simultaneously selectsthe subterm and strikes the key. The key indicates what rule to apply, and possiblywhat rule to attempt after applying the desired rule (the shoot operation). In thiscase, the shoot rule is an attempt to apply initial to complete the proof:A ;� ` A ! A;� ` AA;� ` A ! A;� ` AWe can now add our shift selection::�A s ;� ` C ! :A;� ` C: A s ;� ` C ! �:A;� ` CWe illustrate these rules with two examples:Example 7: ` :�:x � :: xProof: Click on : x in the right part of the implication with the shift selection.` :�:x � :: xs ! :�:x ` :: xs ! :�:x;: xs` ? ! :�:x;�:x ` ?Click on �:x in the �rst assumption.:�:x;�:x ` ? ! :�:x;�:x ` �:xExample 8: ` : :x � ::�x INRIA

Interactive Theorem Proving with Temporal Logic 19Proof: Click on :�x in the right part of the implication with the shift selection.` : :x � ::�xs ! : :x ` ::�xs ! : :x;:�xs` ? ! : :x; :x ` ?Click on the :x in the �rst assumption.: :x; :x ` ? ! : :x; :x ` :xExcluded MiddleThe method proposed in [2] for introducing excluded middle into the point and shootalgorithm is by a higher-order theorem:8P: P _ :PThen the cut rule is used to extend the possibility of adding a theorem to theassumptions. Operationally, the user selects some subformula A, and then clicks onthe :P of the excl-mid rule. A _ :A will be added as an assumption. Given a goal� ` C and a theorem T we have:� ` C ! T ;� ` CUsing this rule, we can re�ne the two previous examples.Example 9: :�:x ` xProof: Click on the :P of excluded middle with x as a witness and the shiftselection::�:x ` x ! x _ : xs;:�:x ` x !x; x _ : x;:�:x ` x: xs; x _ : x;:�:x ` x ! �:x; x _ : x;:�:x ` xClick on the �:x in the third assumption, which applies the ? right rule, followedby the :left rule:�:x; x _ : x;:�:x ` x ! �:x; x _ : x;:�:x ` �:xExample 10: : :x ` �xProof: Click on the :P of excluded middle with �x as a witness and the shiftselection.: :x ` �x ! �x _ :�xs;: :x ` �x !RR n�2804

20 Amy Felty, Laurent Théry�x;�x _ :�x;: :x ` �x:�xs;�x _ :�x;: :x ` �x ! :x;�x _ :�x;: :x ` �xClick on the :x in the third assumption.:x;�x _ :�x;: :x ` �x ! :x;�x _ :�x;: :x ` :xNote that the last rule is :right . It includes an implicit application of ? right.WeakeningFinally the last rule we add concerns weaken. In [2], there was no explicit way ofapplying this rule since it was always done implicitly just before completing the proofwith initial. In our system, having an explicit weaken is important as the � left rulegenerates as many subgoals as assumptions with � as outermost operator. Applyingweaken or not may change the structure of the proof. We simply implement weakenas a terminal rule: A d;� ` C ! � ` C4.2 ExamplesWe have already given some examples in the previous section. We complement themwith the proofs of two other classic properties.Example 11: ` (x � y) � �x � �yProof: Click on x in the right part of the top implication.` (x � y) � �x � �y ! (x � y) ` �x � �y !(x � y);�x ` �y ! (x � y); x ` �yClick on x in the right part of the �rst assumption.(x � y); x ` �y ! x � y; (x � y); x ` �y ! x � y; (x � y); x ` xy; x � y; (x � y); x ` �yOnly one subgoal is left, we can solve it by selecting the y in the conclusion.y; x � y; (x � y); x ` �y ! y; x � y; (x � y); x ` yExample 12: ` � (x _ y) � �x _ �y INRIA

Interactive Theorem Proving with Temporal Logic 21Proof: Click on �x _ �y in the right part of the top implication.` � (x _ y) � �x _ �y ! � (x _ y) ` �x _ �yClick on the :P of excluded middle with �x as a witness and the shift selection.� (x _ y) ` �x _ �y ! �x _ :�xs;� (x _ y) ` �x _ �y !�x;�x _ :�x;� (x _ y) ` �x _ �y:�xs;�x _ :�x;� (x _ y) ` �x _ �y ! �x;�x _ :�x;� (x _ y) ` �x _ �y:x;�x _ :�x;� (x _ y) ` �x _ �yThe proof of the �rst subgoal is trivial.�x;�x _ :�x;� (x _ y) ` �x _ �y ! �x;�x _ :�x;� (x _ y) ` �xFor the second goal, we �rst select �y.:x;�x _ :�x;� (x _ y) ` �x _ �y ! :x;�x _ :�x;� (x _ y) ` �yNow we do a case analysis selecting x of the third assumption.:x;�x _ :�x;� (x _ y) ` �y ! :x; x _ y ` �y ! x; :x; x _ y ` �yy; :x; x _ y ` �yBoth cases are trivial:x; :x; x _ y ` �y ! :x; x; :x; x _ y ` �y ! :x; x; :x; x _ y ` xy; :x; x _ y ` �y ! y; :x; x _ y ` y5 Proof PresentationIn the previous section, proof by pointing illustrated a simple way of locally construc-ting a proof. In this section, we discuss the display of overall proofs. There are twoimportant reasons to do so:1. To present the �nal result. The �nal proof �explains� why the fact holds.2. To aid in the construction of the proof. Displaying the incomplete proof givesa global view of the proof process.RR n�2804

22 Amy Felty, Laurent ThéryA natural solution is to represent the sequent proof that we build as a tree. Fromour experiments we have found that displaying trees doesn't scale up. Proof treesrapidly become unmanageable not only because of their length but also because oftheir width. In [4], an alternative is described that proposes a textual presentationof natural deduction proofs in a pseudo-natural language. In natural deduction thecombination of the inferences only deals with a single formula: the conclusion of thesequent. Generating a text in pseudo-natural language is then made easier.The text is generated by translation. With each rule of the natural deductionsystem is associated a textual pattern. For example, the two translation rules for^intro and � intro are the following:�1A �2BA ^B . -� �1A �-� �2B �Altogether we have A ^B�BA � B . Assume A (i)��B �We have proved A � Bwhere recursive calls are marked with square brackets. In addition to the directapplication of such rules, a set of optimizations is performed on the text to removeirrelevant information such as unused assumption numbers or immediate references.As for proof by pointing, for S we have to extend the rules presented for the classicallogic in [4] to the temporal rules.AlwaysWe �rst give the elim rule:�AA . � �A�In particular AThe intro rule is a bit more complicated. The general layout is given in Figure 7.Special cases have been developed when n is 0 or 1:�AA . ��A�So A INRIA

Interactive Theorem Proving with Temporal Logic 23�1B1 �AA . � �1B1 �In the context: B1(h1)��A�So we deduce AExample 1: ` x � xProof: Assume x (1)By (1) we have xIn particular xExample 2: ` x � xProof: Assume xIn the context x(1)By (1) we have xSo we deduce xExample 3: ` (x ^ y) � x ^ yProof: Assume (x ^ y)-In the context (x ^ y) (1)By (1) we have (x ^ y)In particular we have x ^ yWe have xSo we deduce x-In the context (x ^ y) (1)By (1) we have (x ^ y)In particular we have x ^ yWe have ySo we deduce yAltogether we have x ^ yEventuallyThe general rule for �elim is given in Figure 7. Special cases can be easily derived.For example, when there is no assumption and only one � assumption, we use:
RR n�2804

24 Amy Felty, Laurent Théry�1�A �2�C�C . � �1�A�If we have A (i)� �2�C �So we deduce �CFor �intro, the rule is much simpler to explain:�A�A . ��A�Obviously we have �AExample 4: ` x � �xProof: Assume x (1)By (1) we have xObviously we have �xExample 5: ` ��x � �xProof: Assume ��xIf we have �x (1)By (1) we have �xSo we deduce �xExample 6: ` �x _ �y � �(x _ y)Proof: Assume �x _ �ySo we have two cases� Suppose �xIf we have x (1)By (1) we have xObviously we have x _ yObviously we have �(x _ y)So we deduce �(x _ y)� Suppose �yIf we have y (1)By (1) we have yObviously we have x _ yObviously we have �(x _ y)So we deduce �(x _ y)We have �(x _ y) in both cases, so �(x _ y) INRIA

Interactive Theorem Proving with Temporal Logic 25Note that the two subproofs in this example are similar. We could optimize thetext to proof procedure so that it would note the similarity, and avoid writing outthe details of the second case. Although this case is simple, the general problem of�nding similarities while abstracting from di�erences is a di�cult one, but one thatmust be addressed if larger proofs are to be readable. Note that it is often possibleto replace duplicate proofs by lemmas.ConversionsConversions are handled by the simple concatenation of the converted term.�: A�:A . � �: A�, so �:A�:�:A . � �:�A�, so :A6 An ExampleNow that we have de�ned the two principles (proof by pointing and textual presen-tation), we are going to merge them into a single environment. Using the mixedsystem M, we can simultaneous build the proof in sequent style while showing thenatural deduction equivalent. We illustrate how the combination works with theproof of the property: (x � y) _ (y � x):This proof is done by contradiction; as we don't have the DeMorgan laws we needto apply excluded middle to each of the two components of the disjunction.Using Excluded Middle, (x � y) _ : (x � y)So we have two cases:� Suppose (x � y) (1)Obviously (x � y) _ (y � x)� Suppose : (x � y) (2)Using Excluded Middle, (y � x) _ : (y � x)So we have two cases:RR n�2804

26 Amy Felty, Laurent Théry
�1B1 � � � �nBn �AA . � �1B1 �. . .� �nBn �Altogether we have the context:B1(h1). . .Bn(hn)Where��A�So we deduce A

�1�A1 � � � �n�An �01B1 � � � �0mBm �001�C � � � �00n�C�C .
� �01B1 �. . .� �0mBm �Altogether we have the context:B1(h1). . .Bm(hm)Also� �1�A1 �. . .� �n�An �So we have the di�erent cases� Assume A1 (i1), . . . , and �An (in)� �001�C �. . .� Assume �A1 (i1), . . . , and An (in)� �00n�C �In all the possible cases, we have �C, so �CFigure 7: Textual rules for always introduction and eventually eliminationINRIA

Interactive Theorem Proving with Temporal Logic 27� Suppose (y � x) (3)Obviously (x � y) _ (y � x)� Suppose : (y � x) (4)Prove: (x � y) _ : (x � y)We have (x � y) _ (y � x) in both cases (3) and (4)We have (x � y) _ (y � x) in both cases (1) and (2)We are left with one goal, under the two assumptions (2) and (4). They are insidea box to show that the user can select inside them. The next step is to transformthe assumptions into � assumptions and apply the �elim rule.Using Excluded Middle, (x � y) _ : (x � y)So we have two cases:� Suppose (x � y) (1)Obviously (x � y) _ (y � x)� Suppose : (x � y) (2)Using Excluded Middle, (y � x) _ : (y � x)So we have two cases:� Suppose (y � x) (3)Obviously (x � y) _ (y � x)� Suppose : (y � x) (4)We have:By (2), : (x � y), so �:(x � y)By (3), : (y � x), so �:(y � x)So we have the di�erent cases:� Assume :(x � y) (5) and �:(y � x) (6)Prove: a contradiction� Assume �:(x � y) (6) and :(y � x) (7)Prove: a contradictionIn all possible cases, we have a contradiction, so (x � y) _ (y � x)We have (x � y) _ (y � x) in both cases (3) and (4)We have (x � y) _ (y � x) in both cases (1) and (2)We now have two goals, that are symmetrical, so in the following we concentrate onthe current one.RR n�2804

28 Amy Felty, Laurent Théry� Assume :(x � y) (5) and �:(y � x) (6)Prove: a contradictionTo prove a contradiction, we �rst select the y of the assumption 5.� Assume :(x � y) (5) and �:(y � x) (6)Assume x (7)Prove yWe have proved x � yBy (5), there is a contradictionAssumptions 6 and 7 are clearly contradictory. To show the contradiction we selectthe x in assumption 6.� Assume :(x � y) (5) and �:(y � x) (6)Assume x (7)In the context x(8)If we have :(y � x)(9)Assume y (10)Prove xWe have proved y � xBy (9) there is a contradictionBy (6) we deduce a contradiction, so yWe have proved x � yBy (5), there is a contradictionWe end the proof by selecting the x of assumption 8.� Assume :(x � y) (5) and �:(y � x) (6)Assume x (7)In the context x(8)If we have :(y � x)(9)Assume yBy (8) we have xWe have proved y � x INRIA

Interactive Theorem Proving with Temporal Logic 29By (9) there is a contradictionBy (6) we deduce a contradiction, so yWe have proved x � yBy (5), there is a contradictionFigure 8 gives the overall proof that can be performed with 10 clicks.7 ConclusionThe system we have described has a very simple and convivial user-interface withthe following properties:� The proof process is presented as the re�nement of pseudo-English text.� All the proof steps are input simply by using the mouse to make selections onformulas in this text.The temporal calculus we use has been carefully designed to be as natural as pos-sible. This calculus has been proved sound and complete. Our implementation hasbene�ted from the use of a generic theorem prover. We were able to quickly andeasily specify the inference rules and obtain a tactic-style theorem prover for goal-directed proof using these rules. The interface was also built with a generic toolkit inwhich all the features of the user-interface (window, layout, interaction) are handledby a separate process, and thus we were able to reuse a large part of an existinginterface.So far, we have considered S4.3. The techniques presented here should extendfairly directly to various related and more expressive logics. For example, extendingthe interface and explanation capabilities to logics with additional operators such asO (next) and U (until) should be straightforward.In [1], the Isabelle theorem prover [11] is used to implement a class of modal logicsthat includes many logics similar to S4.3. The inference systems used in this workare natural deduction systems in which formulas are explicitly labelled with possibleworlds, using a Kripke-style semantics. Isabelle contains a speci�cation languagethat is essentially a subset of the higher-order logic implemented in �Prolog. Thus,the Isabelle speci�cations of labelled deduction systems can be directly mapped tospeci�cations in �Prolog and used to implement a simple tactic theorem proversimilar to the one presented in this paper. The techniques of proof by pointing andpoint and shoot could also be adapted to this kind of inference system. It wouldRR n�2804

30 Amy Felty, Laurent Thérybe interesting to see if the possible world annotations could be used to improve orprovide alternate explanations. Initial work towards this goal can be found in [7],where a labelled sequent inference system similar to the natural deduction systemsin [1] is used, and a simple mapping of inference rules to text is given. Conversely,our S4.3 speci�cation could be speci�ed directly in Isabelle. In doing so, we wouldbene�t from the built-in theorem proving support in the Isabelle system, which ismore extensive than what is available in our tactic theorem proving environment in�Prolog.With our current system, we are still quite far from verifying algorithms. Thusfar, the system has only been used to prove simple temporal properties. In thatrespect, the simplicity of the user-interface makes it an ideal tool to learn andexperiment with temporal logics, aiding the user in both understanding temporallogic reasoning as well as understanding proofs as they are constructed. In order totackle more realistic problems, a necessary step is to introduce some automation inour system so that users only concentrate on the general architecture of the proofwhile the system automatically proves details. Incorporating the extra theoremproving power of Isabelle, or building our interface on top of Isabelle instead of�Prolog would provide an important step in that direction. However, for largealgorithms more signi�cant automation is needed. Incorporating more powerfuldecision procedures as well as model checking are both candidates in the futureextension of the system.Model checkers are fully automatic and e�ective for verifying �nite state auto-mata. Much work has gone into pushing the boundaries of the size of problemsthat can be handled, so that such techniques have been applied successfully to theautomatic veri�cation of a large class of systems and algorithms. However, althoughthe boundaries continue to be pushed, there will always be a limit to the size ofthe problems that such methods can handle. In addition, they are limited to �-nite spaces. By integrating such techniques within a theorem proving environment,it should be possbile to increase the class of algorithms for which veri�cation ispractical, including for example those that are parameterized by the number ofcomponents or processors, or have in�nite data domains. To do so, powerful andintuitive interaction is essential.The Stanford Temporal Prover (STeP) [9] is one system that is working towardsthe goal of broadening the class of algorithms that can be veri�ed. STeP integratesa variety of diverse components. Although they are not directly connected to eachother, two such components include an interactive prover and a model checker. Thetechniques presented here could be integrated directly into the interactive prover.INRIA

Interactive Theorem Proving with Temporal Logic 31References[1] D. Basin, S. Matthews, and L. Viganò. A modular presentation of modal logicsin a logical framework. In Proceedings of the 1995 Isabelle Users Workshop,1995.[2] Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In Theoretical Aspects ofComputer Software, volume 789 of Lecture Notes in Computer Science, pages141�160, 1994.[3] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, andV. Pascual. Centaur: the system. In Third Symposium on Software DevelopmentEnvironments, 1988. (Also appears as INRIA Report no. 777).[4] Y. Coscoy, G. Kahn, and L. Théry. Extracting text from proofs. In TypedLambda Calculus and its Applications, 1995.[5] A. Felty. A logic program for transforming sequent proofs to natural deductionproofs. In P. Schroeder-Heister, editor, Proceedings of the 1989 InternationalWorkshop on Extensions of Logic Programming, pages 157�178. Springer-VerlagLNCS, 1991.[6] A. Felty. Implementing tactics and tacticals in a higher-order logic programminglanguage. Journal of Automated Reasoning, 11(1):43�81, 1993.[7] A. Felty and G. Hager. Explaining modal logic proofs. In Proceedings of theIEEE 1988 International Conference on Systems, Man, and Cybernetics, Aug.1988.[8] R. Goré. Cut-free Tableau and Sequent Systems for Propositional Normal ModalLogics. PhD thesis, University of Cambridge, 1992. (Also appears as TechnicalReport no. 257).[9] Z. Manna et al. STeP: the Stanford Temporal Prover. Technical Report STAN-CS-TR-94-1518, Stanford University, 94.[10] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and ConcurrentSystems: Speci�cation. Springer-Verlag, 1992.[11] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LectureNote in Computer Science. Springer-Verlag, 1994.RR n�2804

32 Amy Felty, Laurent Théry[12] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.[13] M. E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland, 1969.

INRIA

Interactive Theorem Proving with Temporal Logic 33Using Excluded Middle, (x � y) _ : (x � y)So we have two cases:� Suppose (x � y) (1)Obviously (x � y) _ (y � x)� Suppose : (x � y) (2)Using Excluded Middle, (y � x)_ : (y � x)So we have two cases:� Suppose (y � x) (3)Obviously (x � y) _ (y � x)� Suppose : (y � x) (4)We have:By (2), : (x � y), so �:(x � y)By (3), : (y � x), so �:(y � x)So we have the di�erent cases:� Assume :(x � y) (5) and �:(y � x) (6)Assume x (7)In the context x (8)If we have :(y � x) (9)Assume yBy (8) we have xWe have proved y � xBy (9) there is a contradictionBy (6) we deduce a contradiction, so yWe have proved x � yBy (5), there is a contradiction� Assume �:(x � y) (10) and :(y � x) (11)Assume y (12)In the context y (13)If we have :(x � y) (14)Assume xBy (13) we have yWe have proved x � yBy (14) there is a contradictionBy (10) we deduce a contradiction, so xWe have proved y � xBy (11), there is a contradictionIn all possible cases, we have a contradiction, so (x � y) _ (y � x)We have (x � y)_ (y � x) in both cases (3) and (4)We have (x � y) _ (y � x) in both cases (1) and (2)Figure 8: A complete exampleRR n�2804

34 Amy Felty, Laurent ThéryA Proofs of Theorems 2.1, 2.2, and 3.2Theorem 2.1. Given a set of formulas � and a formula C, let �0 and C 0 be � andC, respectively, with all occurrences of � replaced by : :. The sequent � ` C isprovable in S if and only if �0 ` C 0 (or �0 ` ; when C is ?) is provable in S 0.Proof. We prove the following more general theorem:Given a set of formulas � and formulas C1; : : : ; Cn, where n � 0, let �0; C 01; : : : ; C 0nbe �; C1; : : : ; Cn, respectively, with all occurrences of � replaced by : :. The sequent� ` C1_� � �_Cn (or � `? when n is 0) is provable in S if and only if �0 ` C 01; : : : ; C 0nis provable in S 0.Theorem 1 expresses the special case when n is 0 or 1. We �rst consider the forwarddirection. The proof is by induction on the height of the S-proof. Most cases followdirectly by the induction hypothesis and an application of the corresponding rule inS 0. We consider the remaining cases below.Case: initial. Since ? cannot occur on the left in an S-proof, we need only considerthe one-node proof � ` C1 _ � � � _ Cn where n > 0. Since C1 _ � � � _ Cn 2 �, weknow that C 01 _ � � � _ C 0n 2 �0. For i = 1; : : : n, we have C 0i ` C 0i in S 0 by initial,and �0; C 0i ` C 01; : : : ; C 0n by weaken. Thus by a series of applications of _left , we candeduce �0; C 01 _ � � � _ C 0n ` C 01; : : : ; C 0n.Case: excl-mid. We have the one-node S-proof � ` A _ :A. We have two cases:either n = 2, C1 is A, and C2 is :A; or n = 1 and C1 is A _ :A. In either case, webuild the following proof in S 0. A0 ` A0 weaken�0; A0 ` A0 :right�0 ` A0;:A0For the case when n = 2, we are done. For the case when n = 1, we apply the _rightrule to obtain an S-proof of �0 ` A0 _ :A0.Case: _ right . The premise is of the form � ` C1 _ : : : _ C 0i for some i, 0 < i < n.By the induction hypothesis, �0 ` C 01; : : : ; C 0i is provable in S 0. By weaken,�0 ` C 01; : : : ; C 0n is provable in S 0.Case: ? right. By the induction hypothesis, �0 ` ; is provable in S 0. By weaken,�0 ` C 01; : : : ; C 0n is provable in S 0.Case: right. C1 is A and n = 1. � has the form A1; : : : ; Am;:�:B1; : : : ;:�:Bpwhere m; p � 0. A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p ` A0 is provable in S 0 byINRIA

Interactive Theorem Proving with Temporal Logic 35the induction hypothesis . By weaken, the following is provable:A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p; ::B01; : : : ; ::B0p ` A0:For any formula B, the sequent B ` ::B is provable by :left followed by :right.By taking B to be ::B01 and applying weaken, the following holds:A01; : : : ; A0m;:: ::B02; : : : ;:: ::B0p; ::B01; : : : ; ::B0p ` :: ::B01:With this sequent as the left premise and the sequent above as the right, we canapply cut to get the following provable sequent:A01; : : : ; A0m;:: ::B02; : : : ;:: ::B0p; ::B01; : : : ; ::B0p ` A0:By repeated applications of weaken and cut, the following sequent is provable:A01; : : : ; A0m; ::B01; : : : ; ::B0p ` A0:By applying right, the following also holds:A01; : : : ; A0m; ::B01; : : : ; ::B0p ` A0:Now, we can repeatedly apply :right and :left to obtain a proof of the followingsequent. A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p ` A0:Case: �left . The formula on the right of the sequent at the root is either? (and thusn = 0) or �C (and thus n = 1). We consider the latter case. The former is similarand slightly simpler. � has the form �D1; : : : ;�Dr; A1; : : : ; Am;:�:B1; : : : ;:�:Bpwhere r > 0 and m; p � 0. By the induction hypothesis applied to the �rst premise,the following sequent is provable in S 0.D01;: :D02; : : : ;: :D0r; A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p ` : :C 0:By repeatedly applying :left and :right , the following holds::: :C 0; A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p ` :D01;:: :D02; : : : ;:: :D0r:By applying weaken and cut as in the previous case, the following can be shown tohold: :C 0; A01; : : : ; A0m; ::B01; : : : ; ::B0p ` :D01;:: :D02; : : : ;:: :D0r:RR n�2804

36 Amy Felty, Laurent ThéryFor any formula B, the sequent ::B ` B is also provable. Using this result, theabove sequent, weaken, and cut, the following is provable::C 0; A01; : : : ; A0m; ::B01; : : : ; ::B0p ` :D01; :D02; : : : ; :D0r:Similarly, by applying the induction hypothesis and the above reasoning to the otherr � 1 hypotheses, we can show that the following sequents hold::C 0; A01; : : : ; A0m; ::B01; : : : ; ::B0p ` :D01;:D02; :D03; : : : ; :D0r...:C 0; A01; : : : ; A0m; ::B01; : : : ; ::B0p ` :D01; : : : ; :D0n�1;:D0rWe can now apply right with these r sequents as premises to obtain::C 0; A01; : : : ; A0m; ::B01; : : : ; ::B0p ` :D01; : : : ; :D0r:By :left and :right, we obtain the desired result:: :D01; : : : ;: :D0r; A01; : : : ; A0m;:: ::B01; : : : ;:: ::B0p ` : :C 0:Case: �right. C1 is �A and n = 1. By the induction hypothesis �0 ` A0 is provablein S 0. We build the following proof to obtain the desired result.�0 ` A0 :left:A0;�0 ` left:A0;�0 ` :right�0 ` : :A0We now consider the backward direction. We begin with an S 0-proof, and buildthe corresponding S-proof. The proof is again by induction, in this case on theheight of the S 0-proof. The �rst three cases below are fairly simple. As in the proofabove several cases follow from the induction hypothesis followed by an applicationof the corresponding rule in S. These include ^left , _left , and left. The other casesall follow by slightly more complicated reasoning from sequents known to hold bythe induction hypothesis, with additional assumptions of the form A _ :A. Theseassumptions are then eliminated by applications of cut with an instance of excl-midas the left premise. We show four such cases: :left , :right , cut, and right. The:left and :right rules are the only cases that have two subcases.Case: initial. Here, n = 1 and we have the one-node S 0-proof C 01 ` C 01. Clearly,C1 ` C1 is provable by initial in S. INRIA

Interactive Theorem Proving with Temporal Logic 37Case: weaken. � has the form �1;�2, and the premise of this application of weakenis �01 ` C 01; : : : ; C 0i where 0 � i � n. By the induction hypothesis, �1 ` C1_� � �_Ci isprovable in S. By weaken and repeated applications of _right2 , �1;�2 ` C1_� � �_Cnis provable in S.Case: _ right. C1 has the form A _ B. By the induction hypothesis, � ` A _ B _C2 _ : : : _ Cn is provable in S which is what we want to show.Case: :left . � has either the form :A;�0 or �A;�0.In the �rst case, by the induction hypothesis, �0 ` A _ C1 _ � � � _ Cn is provablein S. For any formulas A;C and set of formulas �, if � ` A _ C is provable in S,it is straightforward to construct a proof of (A _ C) _ :(A _ C);:A;� ` C withoutusing applications of cut (other than those already in the proof of � ` A_C). Thenby cut, :A;� ` C is provable. Taking C to be C1 _ � � � _Cn and � to be �0, we geta proof of :A;�0 ` C1 _ � � � _ Cn from �0 ` A _ C1 _ � � � _ Cn.In the second case, by the induction hypothesis, �0 ` :A _ C1 _ � � � _ Cn isprovable in S. For any formulasA;C and set of formulas �, if � ` :A_C is provablein S, it is straightforward to construct a proof of (:A_C)_:(:A_C);�A;� ` Cwithout using applications of cut (other than those already in the proof of � `:A _C). Then by cut, �A;� ` C is provable. Taking C to be C1 _ � � � _Cn and �to be �0, we get a proof of �A;�0 ` C1 _ � � � _ Cn from �0 ` :A _ C1 _ � � � _ Cn.Case: :right. C1 has the form :A or �A.In the �rst case, by the induction hypothesis, A;� ` C2 _ � � � _Cn is provable inS. For any formulas A;C and set of formulas �, if A;� ` C is provable in S, it isstraightforward to construct a proof of A_:A;� ` :A_C without using applicationsof cut (other than those already in the proof of A;� ` C). Then by cut, � ` :A_Cis provable. Taking C to be C2 _ � � � _ Cn, we get a proof of � ` :A _ C2 _ � � � _ Cnfrom A;� ` C2 _ � � � _ Cn.In the second case, by the induction hypothesis, :A;� ` C2_� � �_Cn is provablein S. For any formulas A;C and set of formulas �, if :A;� ` C is provable in S, itis straightforward to construct a proof of �::A_:�::A; :A_: :A;� ` �A_Cwithout using applications of cut (other than those already in the proof of :A;� `C). Then by cut, � ` �A _ C is provable. Taking C to be C2 _ � � � _ Cn, we get aproof of � ` �A _ C2 _ � � � _ Cn from :A;� ` C2 _ � � � _ Cn.Case: cut. Let A be the cut formula. By the induction hypothesis, � ` A _ C1 _� � � _ Cn and A;� ` C1 _ � � � _ Cn are provable in S. For any formulas A;C and setof formulas �, if � ` A _ C and A;� ` C are provable in S, it is straightforwardto construct a proof of A _ :A;� ` C without using applications of cut (other thanthose already in the proofs of � ` A _ C and A;� ` C). Then by cut, � ` C isRR n�2804

38 Amy Felty, Laurent Théryprovable. Taking C to be C1 _ � � � _ Cn, we get a proof of � ` C1 _ � � � _ Cn from� ` A _ C1 _ � � � _ Cn and A;� ` C1 _ � � � _ Cn.Case: right. For i = 1; : : : ; n, Ci has the form Ai. By the induction hypothesis,the following sequents are provable in S:� ` A1 _ A2 _ � � � _ An (a1)...� ` A1 _ � � � _ An�1 _An (an)We want to show that � ` A1 _ � � � _ An is provable in S. For any formula A,we can build the following proof in S.A ` A leftA ` A :left:A; A `? �left�:A; A `?By applying weaken followed by n � 2 applications of _left to n � 1 copies of theabove proof with A2; : : : ; An as A, we get an S-proof of the sequent on the top rightbelow, which we then build on to get a proof of sequent (b).A1 ` A1 :left:A1; A1 `? �:A2; : : : ;�:An; A2 _ � � � _ An; � `? _left:A1;�:A2; : : : ;�:An; A1 _ A2 _ � � � _ An; � `? (b)In this proof and what follows, instances of weaken are left implicit. In the proofabove for example, both premises of _left must be followed by weaken before _leftcan be applied. By :left from sequent (a1), :(A1 _ A2 _ � � � _ An); � `? holds.Then by _left from this sequent and (b), the following holds::A1;�:A2; : : : ;�:An; (A1 _ A2 _ � � � _ An) _ :(A1 _ A2 _ � � � _ An); � `? :Then by excl-mid and cut, we have :A1;�:A2; : : : ;�:An; � `? (c1): By similarreasoning from sequents (a2) to (an), the following sequents are all provable in S.:A1;�:A2; : : : ;�:An; � `? (c1)...�:A1; : : : ;�:An�1;:An; � `? (cn) INRIA

Interactive Theorem Proving with Temporal Logic 39We can now apply �left to get �:A1; : : : ;�:An; � `?, followed by ? right to get�:A1; : : : ;�:An; � ` A1 _ � � � _ An (d).For any formulaA, we can build the S-proof below. In addition to leaving weakenimplicit, we omit the left premise of the cut rule. It is always the consequence ofexcl-mid. A ` A :A ` :A �right:A ` �:A :left:�:A;:A `? ? right:�:A;:A ` A _left:�:A;A _ :A ` A cut:�:A ` A right:�:A ` A (e)We now build the following S-proof. The sequent on the top right is obtained bytaking A to be A1 in the proof of (e).�:A1; : : : ;�:An; � ` A1 _ � � � _ An (d) :�:A1 ` A1 _right:�:A1 ` A1 _ � � � _ An _left�:A1 _ :�:A1;�:A2; : : : ;�:An; � ` A1 _ � � � _ An cut�:A2; : : : ;�:An; � ` A1 _ � � � _ AnBy similar reasoning, taking A to be A2 through An in the proof of (e), we get anS-proof of � ` A1 _ � � � _ An.Theorem 2.2. Given a set of formulas � and a formula C, let �0 and C 0 be � andC, respectively, with all occurrences of � replaced by : :. If the sequent �0 ` C 0(or �0 ` ; when C is ?) is provable in S 0 without cut , then � ` C has a proof in Ssuch that in all occurrences of the cut rule, the left premise is a direct consequenceof the excl-mid rule.Proof. The proof proceeds exactly as the proof of the converse of Theorem 1 abovewithout the case for the cut rule. In all other cases in this proof, no applications ofcut other than those whose left premise is the consequence of excl-mid are introducedin the S-proof.Theorem 3.2. Let C be a formula and 	 be a set of N -proofs. If � is an M-proofof 	 ` C, then N̂ (�) is an N -proof of C from assumps().Proof. The proof is a fairly simple induction on the height of �. All of the cases forthe right rules follow directly from the induction hypothesis and the correspondingintro rule of N . We show the � right rule to illustrate. We present the remainingcases except for :left since it is similar to � left and left since it is similar to ^left .RR n�2804

40 Amy Felty, Laurent ThéryCase: initial. We have �C 2 	. � is a proof of C from assumps(�). Sinceassumps(�) � assumps(), we have our result.Case: excl-mid. C has the form B _ :B which is provable in N from any set ofassumptions.Case: � right. C has the form A � B. Let �0 be the M-proof of the premise.By the induction hypothesis N̂ (�0) is an N -proof of B from fAg [assumps(). By� intro, we obtain a proof of A � B from assumps().Case: ^left . 	 has the form �A ^ B ;	0. Let �0 be the proof of the premise. Let	0 be the set of N -proofs on the left of the sequent at the root of �0. Then 	0is �A ^ BA ; �A ^ BB ;	0. By the induction hypothesis, N̂ (�0) is an N -proof of C fromassumps(0). Clearly assumps(0) is the same set of formulas as assumps(), andthus we have our result.Case: _left . 	 has the form �A _ B ;	0. Let �1 and �2 be the proofs of the pre-mises. Since assumps(�) � assumps(), we know that � is a proof of A _ Bfrom assumps(). By the induction hypothesis N̂ (�1) is an N -proof of C fromfAg [assumps(0) and N̂ (�2) is an N -proof of C from fBg [assumps(0). Since	0 � 	, N̂ (�1) is a proof of C from fAg [assumps() and N̂ (�2) is a proof of Cfrom fBg [assumps(). By an application of _left , we obtain a proof of C fromassumps().Case: � left. 	 has the form �A � B ;	0. Let �1 be the proof of the left pre-mise. Since assumps(�) � assumps(), we know that � is a proof of A � Bfrom assumps(). By the induction hypothesis, N̂ (�1) is an N -proof of A fromassumps(0). Since 	0 � 	, N̂ (�1) is a proof of A from assumps(). By anapplication of � elim, we obtain a proof of C from assumps().Case: cut. Let A _ :A be the formula on the right of the sequent in the leftpremise and let �2 be the proof of the right premise. By the induction hypothesis,N̂ (�2) is an N -proof of C from assumps(A _ :A) [assumps(). By de�nition,assumps(A _ :A) = ;. Thus, N̂ (�2) is an N -proof of C from assumps().Case: weaken. 	 has the form 	1;	2. Let �0 be the proof of the premise. By theinduction hypothesis, N̂ (�0) is an N -proof of C from assumps(1). Since 	1 � 	,N̂ (�0) is a proof of C from assumps().Case: �left . 	 has the form �1�A1 ; : : : ; �n�An ; �01B1 ; : : : ; �0mBm . Let �1; : : : ;�n be theproofs of the premises. The sets of formulasassumps(�1); : : : ; assumps(�n); assumps(�01); : : : ; assumps(�0m) INRIA

Interactive Theorem Proving with Temporal Logic 41are all contained in assumps(). Thus we know that for i = 1; : : : ; n, �i is an N -proof of �Ai from assumps() and for i = 1; : : : ;m, �0i is an N -proof of Bi fromassumps(). By the induction hypothesis, we know the following:N̂ (�1) is an N -proof of C from A1;�A2; : : : ;�An; B1; : : : ; Bm...N̂ (�n) is an N -proof of C from �A1; : : : ;�An�1; An; B1; : : : ; BmThus by an application of �elim, we obtain a proof of C from assumps().

RR n�2804

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

