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a)Abstra
tStati
 type systems in programming languages allow many errors to be dete
ted at 
ompiletime that wouldn't be dete
ted until runtime otherwise. Dependent types are more expres-sive than the type systems in most programming languages, so languages that have themshould allow programmers to dete
t more errors earlier. In this paper, using the Twelf sys-tem, we show that dependent types in the logi
 programming setting 
an be used to ensurepartial 
orre
tness of programs whi
h implement theorem provers, and thus avoid runtimeerrors in proof sear
h and proof 
onstru
tion. We present two examples: a ta
ti
-styleintera
tive theorem prover and a union-�nd de
ision pro
edure.1 Introdu
tionMany theorem proving systems implement ta
ti
s and ta
ti
als, whi
h provide 
ex-ible goal-dire
ted proof sear
h. Ta
ti
s redu
e goals to subgoals, while ta
ti
als areprimitives for 
ombining ta
ti
s into larger ones that 
an perform multiple proofsteps. They also allow programming of proof sear
h strategies. Some of the �rstprovers using this style of proof sear
h (e.g. LCF (Gordon et al., 1979) and HOL(Gordon & Melham, 1993)) were written in ML, whose pattern mat
hing, ex
ep-tion handling, and polymorphi
 type system are useful in writing ta
ti
s 
on
isely.Felty (1993) showed that Lambda Prolog's (Nadathur & Miller, 1988) higher-orderuni�
ation, ba
ktra
king, and polymorphi
 type system provided a more expres-sive notation for writing ta
ti
s and ta
ti
als. Spe
i�
ally, higher-order abstra
tsyntax is more useful and expressive than ML pattern mat
hing, ba
ktra
king ismore 
on
ise than ex
eption handling, but Lambda Prolog's prenex-polymorphi
type system is essentially similar to ML's.In this paper we will dis
uss the advantages of a dependent type system over ML-style polymorphism for writing theorem provers. Dependent types 
ould be used in afun
tional language (su
h as ML) or a logi
-programming language (su
h as LambdaProlog); we use the logi
-programming language Twelf (Pfenning & S
h�urmann,1999). This means that the style of prover we illustrate is similar to those presented



2 Appel and Feltyby Felty (1993), but the issue of ML-style types vs. dependent types is orthogonalto the issue of ML-style or Prolog-style 
ontrol and data stru
tures. A de
ade ofexperien
e with ta
ti
al Felty's prover has shown that this te
hnique is expressiveand powerful, and 
ould be used as the 
ore of a full intera
tive theorem proversimilar in strength to many existing provers su
h as HOL and Isabelle that havebeen used in a variety of large-s
ale appli
ations; we expe
t that the dependentlytyped variant of Felty's approa
h would s
ale just as well.A problem in the implementation of theorem provers (ta
ti
al and other) is thatthey may have bugs. That is, the \proof" 
onstru
ted by the prover may not bevalid. There are at least two ways that industrial-strength theorem provers defendagainst invalid proofs:� Edinburgh LCF (and Isabelle (Paulson, 1994), HOL, et
.) have an unforgeableabstra
t data type theorem. An attempt by a prover to 
onstru
t an invalidproof will be dete
ted at run time when some (privileged) proof-
onstru
torfun
tion dete
ts mismat
hed arguments.� Coq (Barras et al., 1998) (and Elf, Twelf, et
.) require provers to 
onstru
tproof witnesses that 
an be 
he
ked (in prin
iple) by a small and reliabletype-
he
ker that's independent of any (
omplex, unreliable) theorem prover.Provers in Coq and Twelf have usually been written in ML (Caml and Stan-dard ML, respe
tively); although ea
h of these systems 
ontains a depen-dently typed language (fun
tional and logi
-programming, respe
tively), thatlanguage is meant for des
ribing obje
ts in the obje
t logi
, and not as alanguage for programming provers.But in ea
h 
ase, bugs in the ta
ti
s (or other proof-sear
h algorithm) will bedete
ted only when the ta
ti
s are exe
uted: either when they attempt to use a proof
onstru
tor with bad arguments, or when a proof witness fails the type-
he
ker.Stati
 type systems (su
h as ML's) have the advantage over dynami
 type systems(su
h as Lisp's) that many errors are dete
ted mu
h earlier, without needing to runthe program on an adequate sample of test 
ases. The languages in whi
h theabove-des
ribed theorem provers are implemented { Standard ML, Caml, LambdaProlog{ all have stati
 
he
king. But ML-style polymorphism is not strong enoughto 
at
h all programming errors.We had experien
e in building a 
ompli
ated ta
ti
al prover prototype (in LambdaProlog) for a proof-
arrying 
ode appli
ation (Appel & Felty, 2000). We had a 
olle
-tion of 
ompli
ated, ad-ho
 ta
ti
s (as required by G�odel's in
ompleteness theorem,any suÆ
iently powerful prover will be 
ompli
ated and ad-ho
). As we maintainedthe prover, from time to time we found that it built invalid proofs; to debug, wehad to do runtime tra
ing of appropriately stripped-down test 
ases to isolate theproblem.As we will show, using a dependently typed programming language 
an yield apartial 
orre
tness (i.e., soundness) guarantee for a theorem prover: if the implemen-tation type-
he
ks, then any proof (or subproof) that it builds will be valid. Thereis no total 
orre
tness (i.e., 
ompleteness) guarantee: that is, the prover might still
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tness of Theorem Provers 3in�nite-loop or be in
omplete in some other way { i.e., fail with a run-time ex
eption(in ML) or ba
ktra
king failure (Prolog).The sour
e 
ode for all our examples 
an be found atwww.
s.prin
eton.edu/~appel/prover/.2 LF and TwelfThe logi
al framework LF (Harper et al., 1993) allows the spe
i�
ation of logi
s, andimplementations of LF su
h as Twelf (Pfenning & S
h�urmann, 1999) allow 
he
kingof proofs in those logi
s. Another view of LF/Twelf is that it is a higher-orderdependently typed logi
-programming language: Prolog, with higher-order abstra
tsyntax (as in Lambda Prolog), well-s
oped dynami
 
lauses, and a dependent typesystem. We will make use of both views of LF/Twelf: we will spe
ify an obje
tlogi
 (e.g., �rst-order logi
 or higher-order logi
), and we will also do Prolog-likeprogramming of the prover ta
ti
s.The Twelf (Pfenning & S
h�urmann, 1999) implementation of LF has (partial)type inferen
e, proof sear
h (i.e., Prolog-style ba
ktra
king), and 
onstraint domains(e.g., the theory of the rational numbers). Twelf has a distinguished type type,the type of all types (and the type of logi
-programming goals). A 
onstru
torde
laration de
lares an axiom or inferen
e rule of a logi
, or a logi
-programmingdata-
onstru
tor, or a logi
-programming 
lause. A de�nition 
an be used to makea theorem, a lemma, or a de�ned fun
tion or predi
ate. 1An obje
t logi
. We will use Twelf to write theorem provers. We begin by de�ningoperators and axioms of an obje
t logi
: here we use �rst-order logi
, whi
h isen
oded by the Twelf de
larations in Figure 1. Everything we do in this paper alsoworks for higher-order and other logi
s; but we wish to simplify the presentation.The de
laration i : type de
lares the type i of individuals (over whi
h the quan-ti�ers range), and o : type de
lares the type of logi
al formulas (booleans). The
onstant pf is a dependent type 
onstru
tor: for any formula A, pf (A) is a type;we interpret this type to mean, \proofs of the formula A." That is, if p has typepf (false imp true), then p must be a proof of false imp true.The %use de
laration brings in the (built-in) theory of the rational numbers, with
onstants 0, 1, 2, 3/2, 248/83, and so on, and operators +, �, > , �. Though wedon't need the full power of the rationals { we use numbers only to index elementsof our hypothesis list { this is Twelf's preferred number system, so it's simplest tojust use it. We de�ne a datatype 
onstru
tor 
onst : rational ! i to inje
t rational
onstants into our logi
's element type.We de�ne in�x operators imp, and, and or to 
onstru
t formulas. The proof-
onstru
tor and i (and-introdu
tion) 
an be read as, \fun
tion taking a proof of Aand returning (fun
tion taking a proof of B and returning a proof of A and B)."Thus if p1 : pf (A) and p2 : pf (B), then and i p1 p2 : pf (A and B).1 Or even a logi
-programming 
lause justi�ed by a proof, though we won't use that 
apabilityin this paper.



4 Appel and Feltyi : type :o : type :pf : o ! type :%use inequality/rationals :
onst : rational ! i :imp : o ! o ! o : %in�x right 10 imp :imp i : (pf A ! pf B)! pf (A imp B) :imp e : pf (A imp B) ! pf A ! pf B :and : o ! o ! o : %in�x right 12 and :and i : pf A ! pf B ! pf (A and B) :and e1 : pf (A and B) ! pf A :and e2 : pf (A and B) ! pf B :or : o ! o ! o : %in�x right 11 or :or i1 : pf A ! pf (A or B) :or i2 : pf B ! pf (A or B) :or e : pf (A or B) ! (pf A ! pf C) ! (pf B ! pf C) ! pf C :forall : (i ! o) ! o :forall i : (fx : ig pf (A x)) ! pf (forall A) :forall e : pf (forall A) ! fx : ig pf (A x) :exists : (i ! o) ! o :exists i : fx : igpf (A x) ! pf (exists A) :exists e : pf (exists A) ! (fx : ig pf (A x) ! pf B) ! pf B :false : o :false e : pf false ! pf A :Fig. 1. First-order logi
.The proof-
onstru
tor imp i (impli
ation-introdu
tion) 
an be read as, \fun
tiontaking (fun
tion from proof of A to proof of B) and returning proof of (A imp B)."Twelf's fun
tion notation uses square bra
kets for lambda, thus ([p℄ and i p p) isa fun
tion with formal parameter p and result (and i p p). Alternately, we 
anread imp i[p : pf A℄ Q(p) to mean, assuming A is true (with proof p), then theexpression Q(p) is a proof of B; thus A imp B.In the following lemma, represented as a Twelf de�nition, we apply imp i to thisfun
tion to get the proof in the body of the de�nition.lemma1 : pf (A imp (A and A)) = imp i ([p : pf A℄ and i p p) : 2As in most presentations of lambda-
al
ulus, the lambda (square bra
kets) has asynta
ti
 s
ope that extends as far as possible to the right; Twelf 
an re
onstru
t2 Unbound 
apitalized variables are impli
tly universally quanti�ed, so Twelf would internallyre
onstru
t this de�nition tolemma1 : fA : og pf (A imp (A and A)) = [A : o℄ imp i ([p : pf A℄ and i p p) :where the 
urly bra
es 
onstru
t dependent types: the type of lemma1 is, in e�e
t, \fun
tionfrom formula (
all it A) to proofs of A imp (A and A)."



Corre
tness of Theorem Provers 5the type of the fun
tion argument; and our and binds tighter than imp; so we 
ouldalso write lemma1 : pf (A imp A and A) = imp i [p℄ and i p p :Using this style of de�nition and proof, we introdu
e some useful de�nitions andlemmas: not : o ! o = [A℄ A imp false :not i : (pf A ! pf false) ! pf (not A) = imp i :not e : pf (not A) ! pf A ! pf false = imp e :true : o = not false :true i : pf (true) = not i [p℄ p :Notational de�nitions in Twelf are like type abbreviations in ML: the type-
he
ker
an freely expand them when type-
he
king. Furthermore, the type-
he
ker's uni�eruses rules of beta-eta equivalen
e. Thus, the proof of the true-introdu
tion ruletrue i must have type pf (true) whi
h is equivalent (by de�nition) to pf (not false);the right-hand-side of true i is not i [p℄ p whose type is indeed pf (not false). Notethat even though not i is de�ned to be imp i, it is really the spe
ial 
ase where theB in imp i is instantiated with false.These de�nitions { in
luding the proofs of the lemmas not i ; not e ; true i { aretype-
he
ked by the system, so they 
an't be invalid. This means that we don'treally need a prover at all; we 
ould just write proofs by hand (as de�nitions) and
he
k them in Twelf's type-
he
ker; and in fa
t su
h a method 
an be quite e�e
tiveand useful (Appel, 2000).However, we wish to automate: we will write a program to produ
e proofs semi-automati
ally or automati
ally, guided by ta
ti
al hints. Sin
e Twelf's support forintera
tive I/O is minimal, in the prototype we do \intera
tive" ta
ti
al proving byediting proof-s
ripts.3 A theorem prover using ta
ti
s and ta
ti
alsOur prover manipulates goals, whi
h are data stru
tures of the form h1 ; ::: ; hn ` h,where ea
h of the hi is a hypothesis, represented as a formula with atta
hed proof.For h1 ; ::: ; hn we assume that the proof is already 
onstru
ted. The 
on
lusion his also a formula with atta
hed proof; typi
ally we have not yet found the proof, soits \atta
hed proof" is an uninstantiated logi
 variable.The Twelf de
larations for su
h data stru
tures are as follows. hyp is the type ofa single hypothesis, and hyps is a list of hypotheses:hyp : type :hyps : type :An individual hypothesis is a pair of some formula A and a proof of that formula;we de
lare the nonasso
iative in�x 
onstru
tor by to 
onstru
t su
h formula/proof



6 Appel and Feltypairs: by : fA : og pf (A) ! hyp : %in�x none 5 by :argument 1 argument 2 resultThis is a dependently typed 
onstru
tor. Thus, (true by true i) is well typed, but(false by true i) is ill typed, even though false is a formula and true i is a proof {it's the wrong type of proof.In order to write A by P instead of by A P, we de
lare by as an in�x operator(nonasso
iative, binding tightness 5) using the %in�x de
laration shown above.To make hypothesis lists we de
lare two 
onstru
tors for hyps, where our 
ons isan in�x 
omma:nil : hyps :; : hyp ! hyps ! hyps : %in�x right 4 ; :Now we 
an de
lare the goal type with its in�x 
onstru
tor `3.goal : type :` : hyps ! hyp ! goal : %in�x none 3 ` :& : goal ! goal ! goal : %in�x right 2 & :allp : (pf A ! goal) ! goal :alli : (i ! goal) ! goal :tt : goal :In addition to the basi
 goal h1 ; ::: ; hn ` h we have 
ompound goals G1&G2 torepresent the 
ase where the use of a ta
ti
 results in several subgoals (remainingproof obligations). The empty goal tt is the identity for & and indi
ates no remain-ing proof obligations. As we will explain later, we need separate 
onstru
tors allpand alli be
ause Twelf is not a polymorphi
 language. This implementation of goals
an be viewed as the Twelf version of a similar implementation in Lambda Prolog(Felty, 1993). The programs whi
h manipulate them, in parti
ular the ta
ti
als andthe mapta
 program below, are similar also. They do not make any essential use ofdependent types, and thus do not 
ontribute to the partial 
orre
tness of our ta
-ti
s. It is mainly the type of the by 
onstru
tor introdu
ed above that is importantfor guaranteeing partial 
orre
tness of our ta
ti
s.Ta
ti
s. A ta
ti
 is a pro
edure whi
h takes a goal as input and returns subgoalsthat remain to be proven. We �rst show some simple ta
ti
s that implement theappli
ation of inferen
e rules and lemmas, and later show some more 
omplex ta
ti
swhi
h perform some proof sear
h. We �rst need the type ta
 of ta
ti
 names, andthen we de�ne the names of some ta
ti
s:3 Identi�ers in the real Twelf system must be written in ASCII, of 
ourse, so we use the symbol|- for `.



Corre
tness of Theorem Provers 7ta
 : type :initial ta
 : ta
 :and r ta
 : ta
 :and l ta
 : rational ! ta
 :imp r ta
 : ta
 :imp l ta
 : rational ! ta
 :We de�ne ta
ti
 as the interpreter relation for the logi
 program; that is, theexpression ta
ti
 T G1 G2 is a logi
-programming goal that applies the ta
ti
named T to the proof obligation G1, resulting in remaining proof obligations G2.ta
ti
 : ta
 ! goal ! goal ! type :Finally, we de�ne 
lauses for the ta
ti
 relation. Generally, there are one or two
lauses for ea
h ta
ti
-name. Examples are:t1 : ta
ti
 initial ta
 (Hs ` A by P) tt  nth item N (A by P) Hs :t2 : ta
ti
 and r ta
 (Hs ` (A and B) by (and i P1 P2))(Hs ` A by P1 & Hs ` B by P2) :t3 : ta
ti
 imp r ta
 (Hs ` (A imp B) by (imp i P1))(allp [p2 : pf A℄(A by p2 ; Hs ` B by (P1 p2))) :t9 : ta
ti
 (and l ta
 N) (Hs ` C by P)((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs ` C by P)  nth item N ((A and B) by Q) Hs :t11 : ta
ti
 (imp l ta
 N) (Hs ` C by P)((Hs ` A by P2) & ((B by (imp e P1 P2)) ; Hs ` C by P))  nth item N ((A imp B) by P1) Hs :The lines t1 ; t2 ; ::: 
an be understood as logi
-programming 
lauses, where isused instead of the Prolog or Lambda Prolog :-. Thus, the rule t1 might be writtenin Lambda Prolog asta
ti
 initial_ta
 (Hs |- (A by P)) tt :-nth_item N (A by P) Hs.where the data 
onstru
tors |- and by are in�x (of 
ourse, in Lambda Prolog thetype-
he
ker 
an't 
he
k soundness of the ta
ti
).The operational interpretation of a Prolog 
lause H :- G1; G2; G3 or a Twelf
lause H  G1  G2  G2 is, �rst mat
h the head H against the 
urrent goal.If that mat
hes, try and satisfy subgoal G1; if that mat
hes, satisfy subgoal G2,and so on. Twelf, like Prolog, uses ba
ktra
king (so that if G2 fails, then a di�erentway of satisfying G1 is tried, and so on).The supporting 
lauses for nth item N H Hs are straightforward (typed) Prolog,and de�ne the relation that the Nth item of Hs is pre
isely H :



8 Appel and Feltynth item : rational ! hyp ! hyps ! type :nth item1 : nth item 1 H1 (H1 ; Hs) :nth itemN : nth item N H1 (H2 ; Hs)  nth item (N � 1) H1 Hs :Thus, initial ta
 mat
hes a goal Hs ` A by P if there exists an N su
h that thehypothesis A by P is the Nth item of Hs (in Isabelle this is 
alled assume ta
).We 
an let Prolog ba
ktra
king �nd the right N for initial ta
 be
ause the sub-goals are trivial, but for and l ta
 it would be unwise to rely on this, be
auseand l ta
 has nontrivial subgoals. Therefore the user must supply a number whenusing and l ta
, but has the option of supplying a Prolog uni�
ation variable, whi
h
auses nth item to do a ba
ktra
king sear
h for an assumption of the form A and B.The ta
ti
 implementation of most of the right introdu
tion rules of our obje
tlogi
 is straightforward. The input goal 
ontains the 
on
lusion paired with itsproof, and the output goal 
ontains the hypotheses paired with their proofs. Ifthere is more than one subgoal, they are 
onne
ted by &, as in and r ta
. Ruleswhi
h use nested impli
ation or quanti�
ation in Twelf su
h as imp i and forall i inFigure 1 must use one of the all goal 
onstru
tors in their ta
ti
 implementations.For example, the argument to imp i is a fun
tion from proofs of A to proofs ofB. In the ta
ti
 version (t3 above), the use of allp introdu
es a bound variable p2to represent an arbitrary proof of A whi
h gets paired with A and added to theassumption list Hs of the subgoal.The ta
ti
s for the left introdu
tion rules are implemented so that they performforward proof from hypotheses. An argument is given to indi
ate the position in thehypothesis list of the hypothesis to whi
h the rule should be applied. The partialproofs are 
onstru
ted and added to the hypothesis lists of the subgoals.For ea
h of the left introdu
tion rules, we provide a se
ond version of the ta
ti
whi
h removes the hypothesis to whi
h the spe
i�ed rule is applied when formingthe subgoal. For example, for and-elimination, we have:t10 : ta
ti
 (and l ta
R N) (Hs1 ` C by P)((A by (and e1 Q)) ; (B by (and e2 Q)) ; Hs2 ` C by P)  nth and rest N ((A and B) by Q) Hs1 Hs2 :where nth and rest is a logi
-programming predi
ate whi
h �nds the Nth formulain Hs1 and returns the set of hypotheses Hs2 with the Nth one removed. Su
hta
ti
s are useful in writing automated proof sear
h pro
edures so that they 
anavoid repeatedly applying the same rule to the same hypothesis.More ta
ti
s. Using these general prin
iples, it's easy to implement a large varietyof ta
ti
s. Here we show three more:forall r ta
 : ta
 :forall l ta
 : rational ! ta
 :resolve2 ta
 : (pf A1 ! pf A2 ! pf B) ! ta
 :



Corre
tness of Theorem Provers 9t7 : ta
ti
 forall r ta
 (� ` (forall A) by (forall i P))(alli [t : i℄(� ` (A t) by (P t))) :t17 : ta
ti
 (forall l ta
 N) (� ` C by P)(((A X) by (forall e Q X)) ; � ` C by P)  nth item N ((forall A) by Q) � :t25 : ta
ti
 (resolve2 ta
 (Thm : pf A1 ! pf A2 ! pf B))(� ` B by (Thm P1 P2))(� ` A1 by P1 & � ` A2 by P2) :To prove a universally quanti�ed formula 8x:A(x), forall r ta
 introdu
es an alligoal; then 
lause m4 (shown below) will dynami
ally 
reate an atom of type i, sothat the subgoal, in e�e
t, is to prove A with the new atom substituted for x. Thesubstitution is handled entirely by the Twelf metalogi
 (the same would be true inLambda Prolog).To make use of a universally quanti�ed hypothesis, forall l ta
 uses the argumentN to sele
t the Nth hypothesis from the assumptions, whi
h must be of the formforall A (equivalently, forall [x℄ A(x)). A logi
 variableX is introdu
ed to instantiatethe bound variable in A. It 
an later be uni�ed with a term that is needed to
omplete the proof. Then A X is uni�ed with the hypothesis in the goal formula;although this is higher-order uni�
ation (whi
h is unde
idable in general), extensiveexperien
e with the use of similar ta
ti
s in Lambda Prologhas found them to work�ne in pra
ti
e. We 
an also write a version of this ta
ti
 that allows the user toprovide the instantiation term X at the time the ta
ti
 is applied. We do this byadding X to the �rst argument as follows:forall l ta
x : rational ! i ! ta
 :t17x : ta
ti
 (forall l ta
x N X) (� ` C by P)(((A X) by (forall e Q X)) ; � ` C by P)  nth item N ((forall A) by Q) � :We have also shown an example of a resolution ta
ti
. Given some theorem Tof the form, pf (A1) ! pf (A2) ! pf (B), the ta
ti
 resolve2 ta
T mat
hes agoal B and produ
es subgoals A1 and A2. A minor disadvantage of doing this in awell typed way is that we need a di�erent ta
ti
 for 2-premise theorems than for3-premise theorems, and so on. Note that the user need not type in a proof termfor the Thm argument dire
tly. Instead, the name of a previously de�ned Twelfde
laration whi
h expresses a lemma 
an be given, as long as it has the right type.By Twelf de�nition expansion, this name is equivalent to the term it abbreviates.Ta
ti
als. Ta
ti
als implement basi
 
ontrol me
hanisms whi
h allow simple ta
ti
sto be 
ombined into more 
omplex ones, and 
an be used as a programming languageto implement sear
h pro
edures. Most ta
ti
als assume the input goal is a basi
goal (
onstru
ted using ` in our prover). In the logi
 programming setting, we �rstimplement a mapta
 ta
ti
al whi
h applies ta
ti
s to 
ompound goals, redu
ing



10 Appel and Feltythem to basi
 goals before passing them on to other ta
ti
als and ta
ti
s.mapta
 : ta
 ! goal ! goal ! type :m1 : mapta
 T tt tt :m2 : mapta
 T (InG1 & InG2) (OutG1 & OutG2)  mapta
 T InG1 OutG1  mapta
 T InG2 OutG2 :m3 : mapta
 T (allp InG) (allp OutG)  fpg mapta
 T (InG p) (OutG p) :m4 : mapta
 T (alli InG) (alli OutG)  ftg mapta
 T (InG t) (OutG t) :m5 : mapta
 T (Hs ` A by P) OutG  ta
ti
 T (Hs ` A by P) OutG :This ta
ti
al redu
es the goal to subgoals in a manner 
onsistent with the meaningof the top-level goal 
onstru
tor. In the 
lauses for the all 
onstru
tors, the quan-ti�
ation within goals is transferred to quanti�
ation in Twelf. For example, allpquanti�es over proofs in the obje
t logi
; in the m3 
lause, p is introdu
ed as anarbitrary proof to repla
e the bound variable in InG. After 
ompletion of the Twelfsubgoal, OutG is also an abstra
tion over p.Sin
e mapta
 has the same type as ta
ti
, we 
ould have dispensed with mapta
and writtenm1; ::: ; m4 as 
lauses for ta
ti
; but this would allow the user less 
ontrolof how and when the ta
ti
s are applied.Some 
ommon ta
ti
als found in most ta
ti
-style theorem provers are imple-mented in Twelf with the following 
lauses.idta
 : ta
 :then : ta
 ! ta
 ! ta
 : %in�x left 2 then :orelse : ta
 ! ta
 ! ta
 : %in�x left 2 orelse :repeat : ta
 ! ta
 :try : ta
 ! ta
 :
omplete : ta
 ! ta
 :ta
ti
al1 : ta
ti
 idta
 G G :ta
ti
al2 : ta
ti
 (T1 then T2) InG OutG  ta
ti
 T1 InG MidG  mapta
 T2 MidG OutG :ta
ti
al3 : ta
ti
 (T1 orelse T2) InG OutG  ta
ti
 T1 InG OutG :ta
ti
al4 : ta
ti
 (T1 orelse T2) InG OutG  ta
ti
 T2 InG OutG :ta
ti
al5 : ta
ti
 (repeat T) InG OutG  ta
ti
 ((T then (repeat T)) orelse idta
) InG OutG :ta
ti
al6 : ta
ti
 (try T) InG OutG  ta
ti
 (T orelse idta
) InG OutG :ta
ti
al7 : ta
ti
 (
omplete T) InG tt  ta
ti
 T InG OutG  goalredu
e OutG tt :The idta
 ta
ti
al returns the goal un
hanged and is used mainly in programmingsear
h strategies for ending a series of multiple proof steps. The then ta
ti
al per-forms the 
omposition of ta
ti
s. The orelse ta
ti
al is also useful in programmingsear
h strategies and allows 
hoi
e of ta
ti
s. The repeat ta
ti
al repeatedly applies
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tness of Theorem Provers 11a ta
ti
 until it 
an no longer be applied and is de�ned in terms of the others. Thetry ta
ti
al prevents failure of the given argument ta
ti
 by using idta
 when ta
ti
T fails. Finally the 
omplete ta
ti
al tries to 
ompletely solve the given goal. Ituses goalredu
e (not shown) to simplify 
ompound goal expressions by removingo

urren
es of tt from them. For example, applying multiple ta
ti
s 
ould result ingoal stru
tures su
h as (allp ([x℄tt & tt)) whose only subgoals are tt and so shouldredu
e to tt. 4 A more intri
ate ta
ti
An important property of a ta
ti
al prover is that it is extensible, so that its users
an write their own ta
ti
s. It is in the 
he
king of user-de�ned ta
ti
s that thedependent type system is parti
ularly useful. To illustrate, we will show a spe
ializedta
ti
 of the kind that some user might write.Suppose we have a sum-of-produ
ts assertion,C = (A11 ^A21 ^ A31 ^ >) _(A12 ^A22 ^ >) _(A13 ^A23 ^ A33 ^ A43 ^ >) _?and we want to prove C implies D, where we know Ai1 ` D, Ai2 ` D, Ai3 ` D, fora parti
ular i. To handle this we 
an write a ta
ti
 sumprod(i).This kind of situation 
omes up, for example, in proving properties of a programthat fet
hes from an ML-style sum-of-produ
ts datatype. Suppose some value xbelongs to an ML datatype that has three 
onstru
tors (disjun
ts), whi
h takevalues that are all re
ords (of 3 elements, 2 elements, and 4 elements, respe
tively).We would like to fet
h and use the 2nd re
ord �eld even before doing the 
ase-analysis that tells us whi
h disjun
t applies. To do this \hoist" operation, we needto prove that the se
ond �eld exists (in ea
h disjun
t) and has the right properties.The sumprod ta
ti
 will be useful in su
h proofs. But 
learly it's a very spe
ializedsituation { therefore this ta
ti
 will be user-de�ned, not provided by default.We start with two preliminary lemmas. The spe
ialized subta
ti
s of sumprodwill apply these spe
ialized lemmas:or imp : pf (A imp C) ! pf (B imp C) ! pf ((A or B) imp C) =[p1 : pf (A imp C)℄ [p2 : pf (B imp C)℄imp i [p3 : pf (A or B)℄or e p3 ([p4 : pf A℄ imp e p1 p4) ([p5 : pf B℄ imp e p2 p5) :and imp: pf (B imp D) ! pf (A and B imp D) =[p1 : pf (B imp D)℄ imp i [p2 : pf (A and B)℄ imp e p1 (and e2 p2) :We start with an auxiliary ta
ti
 prodn(j) that 
onverts the goal Hs ` (A1^A2^:::^An ^ >)! D to the goal Aj ; Hs ` D.



12 Appel and Feltyprodn: rational ! ta
 :t136 : ta
ti
 (prodn 1) (Hs ` A and As imp D by (imp i [p℄ P (and e1 p)))(allp [p℄ (A by p ; Hs ` D by P p)) :t137 : ta
ti
 (prodn N) (Hs ` A and As imp D by and imp P) G  ta
ti
 (prodn (N � 1)) (Hs ` As imp D by P) G :Finally, the ta
ti
 sumprod(i) transforms the goal Hs ` (WiVj Aij) ! D to thegoal (Ai1 ; Hs ` D)& :::&(Ain ; Hs ` D):sumprod: rational ! ta
 :t134 : ta
ti
 (sumprod N) (Hs ` false imp D by (imp i false e)) tt :t135 : ta
ti
 (sumprod N)(Hs ` (A or As) imp D by (or imp P1 P2)) (G1 & G2)  ta
ti
 (prodn N) (Hs ` A imp D by P1) G1  ta
ti
 (sumprod N) (Hs ` As imp D by P2) G2 :To see how the dependent type system ensures that we got this right, let's examinethe type
he
king of rule t135. As re
onstru
ted by Twelf's type
he
ker, we have,t135 :{N:rational} {Hs:hyps} {As:o} {D:o} {P2:pf (As imp D)} {G2:goal} {A:o}{P1:pf (A imp D)} {G1:goal}ta
ti
 (sumprod N) (Hs |- As imp D by P2) G2-> ta
ti
 (prodn N) (Hs |- A imp D by P1) G1-> ta
ti
 (sumprod N) (Hs |- A or As imp D by or_imp P1 P2) (G1 & G2).Here we have expli
it metalevel quanti�
ation (using 
urly bra
es) of all the im-pli
itly quanti�ed logi
al variables N ; Hs ; As ; D ; et
. The type of P1 was inferredfrom the expression A imp D by P1: it must be pf (A imp D). Therefore the useof P1 in the expression or imp P1 P2 type
he
ks.But suppose we had mistakenly written the rule t135 withA or As imp D by and imp P2 :Then this rule wouldn't type-
he
k, and Twelf would report the error,Type mismat
hExpe
ted: pf (`A or `As imp `D)Found: pf (X1 and `As imp `D)When writing ta
ti
s su
h as this (but quite a bit messier) in Lambda Prolog, wefound that mismat
hes between ta
ti
s and the lemmas that they apply were oneof the two 
ommon sour
es of errors in the prover; su
h errors do not impede us inTwelf. The other kind of error { in
ompleteness via in�nite loops or ba
ktra
kingfailure { 
ontinues to be bothersome, of 
ourse: dependent types do not save usthere.
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tness of Theorem Provers 135 Union-FindNot only ta
ti
al provers, but also other de
ision pro
edures 
an be dependentlytyped to ensure partial 
orre
tness. For example, in de
ision pro
edures for equality,the standard eÆ
ient union-�nd algorithm with path 
ompression (Aho et al., 1974)is often used to represent equivalen
e 
lasses.For ea
h equivalen
e 
lass, the algorithm maintains a 
anoni
al representative.As new equalities are learned (from some other sour
e), the algorithm is instru
ted(by a union a b 
ommand) to merge the two equivalen
e 
lasses to whi
h a andb belong. To query the data stru
ture, the �nd a B 
ommand seeks the 
anoni
alrepresentative of the 
lass to whi
h a belongs, and uni�es it with B. In the 
ontextof our theorem prover, �nd must also produ
e a proof that a = b.We have implemented a union-�nd prover in Twelf. Assuming that the logi
-programming engine eÆ
iently indexes atomi
 dynami
 
lauses4, it should run inO(N �(N)), where �(N) is the inverse A
kermann fun
tion.In our example, we add an equality primitive == to the logi
, along with someaxioms. Union-�nd will maintain and query 
anoni
al representatives of equivalen
e
lasses: ==: i ! i ! o : %in�x none 20 == :re
 : pf (A == A) :symm : pf (A == B) ! pf (B == A) :trans : pf (A == B) ! pf (B == C) ! pf (A == C) :Some of the important 
onstru
tors and predi
ates used in this example arede
lared as follows.`: hyps ! pf A ! goal : %in�x none 3 ` :union : pf (X == Y ) ! hyps :�nd : fxgfygpf (x == y) ! hyps :
anoni
al : i ! type :Assume we have a fun
tion f and some primitive equality fa
ts:f : rational ! i :u35 : pf (f 3 == f 5) :u79 : pf (f 7 == f 9) :u75 : pf (f 7 == f 5) :�nd2 : pf (A == B) ! pf (C == B) ! pf (A == C) =[pAB℄[pCB℄ trans pAB (symm pCB) :A typi
al query that our union-�nd 
an answer is,union u35 ; union u79 ; union u75 ; �nd (f 9) X P9 ; �nd (f 3) X P3 ; nil` f 9 == f 3 by �nd2 P9 P3 :4 Dynami
 
lauses will be explained in this se
tion. Twelf does not index dynami
 
lauses, so areal test of our program's eÆ
ien
y has not yet been performed.



14 Appel and FeltyIn this prover, the \hypotheses" to the left of the turnstile ` are treated as 
om-mands to the union-�nd engine. Asso
iated with ea
h 
ommand is a proof: union P(where P is a proof of A == B) is a 
ommand to union the sets to whi
h A and Bbelong. �nd X Y P is a 
ommand to �nd the 
anoni
al representative of X , unifyit with Y , and 
onstru
t a proof that X == Y ; this proof is then uni�ed withP. Thus, by the time nil is rea
hed, the proof to the right of the turnstile in ourexample, �nd2 P2 P3, must be a proof of f 9 == f 3.How 
ould su
h a query fail? In our example, the only possible point is wherethe 
ommand �nd (f 3) X P3 is exe
uted: here, X has already been instantiatedto the 
anoni
al representative of f 9, so if that is not the same as the 
anoni
alrepresentative of f 3, the �nd 
ommand will fail and ba
ktra
k. In this example,su
h failure does not o

ur.Our program introdu
es dynami
 
lauses of the form 
anonX Z Pxz to indi
atethat Z is the 
anoni
al representative of X , with proof Pxz:
anon : fx : igfy : ig pf (x == y) ! type :That is, these 
lauses of the Prolog program will be 
reated at runtime by theexe
ution of other 
lauses. Standard Prolog has assert and retra
t to add anddelete 
lauses to/from the fa
t database; both LambdaProlog and Twelf have adynami
ally s
oped version of this feature, in whi
h dynami
ally added 
lauses areautomati
ally removed when the goals 
ontaining them 
omplete su

essfully, orwhen ba
ktra
king o

urs. A Twelf 
lause su
h as
 : expr1  fd : expr2g expr3 :would operate as follows: if the top-level goal mat
hes expr1, then the subgoalbe
omes fd : expr2g expr3; to satisfy this subgoal, �rst the 
lause d : expr2 isadded to the fa
t database, then the subgoal expr3 is tried. On
e expr3 su

eedsor fails, the dynami
 
lause d : expr2 is removed.Our program has 16 
lauses and 13 
onstru
tor de
larations. Instead of showingthe whole program, we will show just one 
lause to illustrate the use of dependenttypes. The following 
lause \exe
utes" a 
ommand �nd X Y P in the 
ase that Xmaps in exa
tly two steps to Y ; in this 
ase, path-
ompression is performed:�nd ta
2 : �nd X Y P ; Hs ` H  
anon X Z Pxz  
anon Z Y Pzy  
anoni
al Y  ! fd : 
anon X Y (trans Pxz Pzy)g Hs ` H :The �rst line mat
hes the �nd 
ommand; lines 2 and 3 mat
h the 
ase that Xlinks to Y in two steps, with proofs Pxz and Pzy respe
tively; line 4 
he
ks that Yis its own 
anoni
al representative. Then there is a Prolog \
ut" (!), to prevent otherinterpretations of the �nd 
ommand from mat
hing5. Then a new atomi
 
lause is5 We are using a version of Twelf with \
ut"; the standard distribution does not have this oper-ation.
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tness of Theorem Provers 15added to the global database, stating that Y is the 
anoni
al representative of Xwith proof trans Pxz Pzy ; �nally, the remaining 
ommand-list Hs is exe
uted. Theold 
lause 
anon X Z Pxz is still there, but by 
areful use of 
uts, the algorithmwill never have o

asion to use it.When �nd ta
2 adds a new 
lause to the global database, the dependent type ofthe 
anon 
onstru
tor ensures that it must be with a valid proof. When a proof Pis returned after a set of 
ommands Hs ` Aby P, the dependent type of ` ensuresthat it proves the theorem that is 
laimed. The 
orre
tness of �nd ta
2 and similar
lauses is guaranteed stati
ally. 6 Related WorkUsing dependent types in proofs was not possible in the 
orresponding LambdaProlog version of our ta
ti
-style theorem prover. Lambda Prolog, however, haspolymorphi
 types, whi
h Twelf does not, and these types provide some advan-tages in a Lambda Prolog implementation of ta
ti
s and ta
ti
als. For example, inLambda Prolog, only one version of the goal 
onstru
tor for universal quanti�
ationis needed: all : (A ! goal) ! goal :where A is a type variable that 
an be instantiated with any type. Thus, the im-plementation of the goal 
onstru
tors and ta
ti
als does not have to 
hange whenwe 
hange obje
t logi
s. In 
ontrast, in Twelf, one all 
onstru
tor is needed forea
h type that needs to be quanti�ed. Twelf also does not allow quanti�
ation overpredi
ates. In Lambda Prolog, ta
ti
s 
an be implemented as predi
ates taking twogoals as arguments, whi
h means that ta
ti
als would have predi
ate arguments.To illustrate, if this were possible in Twelf, there would no longer be a need for theta
ti
 
onstru
tor and the type goal ! goal ! type would be
ome the de�nitionof the type ta
. Some of the 
ode would look like:ta
 = goal ! goal ! type :t1 : initial ta
 (Hs ` A by P) tt  nth item N (A by P) Hs :ta
ti
al2 : then T1 T2 InG OutG  T1 InG MidG  T2 MidG OutG :Polla
k (1995) dis
usses the use of dependent types in LCF-style provers to avoidthe need for validations. As a �rst step, a modi�
ation of the unforgeable abstra
tdata type theorem is presented. The new data type makes the stru
ture of thetheorem expli
it in the ML type, resulting in a more informative type. Then, amore expressive metalanguage with dependent types is proposed. When taking thisstep, the notion of ta
ti
 is modi�ed; a ta
ti
 in this setting be
omes the statementof a derived or admissible rule along with its proof in the LEGO system (Polla
k,1994). Applying the ta
ti
 means applying the new rule as a lemma. Programmingde
ision pro
edures for proving subgoals is also mentioned, but example programsare not given.
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Bride (2001) presents an implementation of �rst-order uni�
ation using a de-pendently typed fun
tional language derived from the LEGO system. The languageis a strongly normalizing type theory, so he is able to establish termination. Bove(1999) also programs uni�
ation in a dependently typed fun
tional language. Sheuses Martin-L�of's type theory as a programming language and works within the theALF system (Altenkir
h et al., 1994). She also establishes termination. In addition,she provides a methodology for extra
ting a Haskell program from the type theoryversion. It would be interesting to 
ompare these programs to a dependently typedlogi
-programming implementation of the same algorithm.7 Con
lusionWe have shown how dependent types 
an guarantee partial 
orre
tness of ta
ti
sin a ta
ti
-style theorem prover written in Twelf. We have also shown that otherproof strategies su
h as de
ision pro
edures 
an bene�t similarly from the use ofdependent types. In both of these examples, the fa
t that obje
t-level proofs were
onstru
ted and returned as a result of proof sear
h was a 
ru
ial element of theprogram. By using dependent types to represent su
h proofs, it is not possible towrite ta
ti
s or other proof pro
edures that 
onstru
t proofs that will not 
he
kwhen submitted to a proof 
he
ker.Both Coq and Twelf 
ontain dependently typed languages intended for des
ribingobje
t-logi
 terms. The designers of these systems didn't really intend that large-s
ale programs written in these \little" languages would be exe
uted within Coq orTwelf. We have demonstrated that there's a signi�
ant software-engineering advan-tage to using the little language in Twelf instead of programming in ML, whi
h isthe surrounding implementation's language. The same demonstration 
ould prob-ably have been done using Coq's obje
t language, a dependently typed fun
tionallanguage (as 
ontrasted with Twelf's dependently typed Prolog-like language).Although the ta
ti
al prover dis
ussed in this paper is just a prototype, we are
on�dent that these te
hniques will s
ale to full-size provers and de
ision pro
e-dures. We have used similar te
hniques in other dependently typed proof-manipulationprograms in Twelf, and the dependent types assist, not impede, program develop-ment. Referen
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