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Abstract
Access control is an information security process which guards protected resources against unauthorized access, as specified
by restrictions in security policies. A variety of policy languages have been designed to specify security policies of systems.
In this paper, we introduce a certified policy language, called TEpla, with formal semantics and simple language constructs,
which we have leveraged to express and formally verify properties about complex security goals. In developing TEpla, we
focus on security in operating systems and exploit security contexts used in the Type Enforcement mechanism of the SELinux
security module. TEpla is certified in the sense that we have encoded the formal semantics and machine-checked the proofs
of its properties using the Coq Proof Assistant. In order to express the desired properties, we first analyze the behavior of
the language by defining different ordering relations on policies, queries, and decisions. These ordering relations enable us
to evaluate how algorithms for deciding whether or not requests are granted by policies will react to changes in policies and
queries. The machine-checked mathematical proofs guarantee that TEpla behaves as prescribed by the semantics. TEpla is a
crucial step toward developing certifiably correct policy-related tools for Type Enforcement policies.

Keywords Access control · Policy languages · Formal methods

1 Introduction

Access control as a securitymechanism is concernedwith the
management of access requests to resources. To determine if
a request is allowed, it is checked against a set of authoriza-
tion rules which are written in a particular policy language
dependent on the type of access control available in the under-
lying computer system.Access control policy languages have
an essential role in expressing the intended access autho-
rization to regulate requests to resources. Security policy
languages used to develop security policies significantly
affect this process, mainly because the policy developers’
understanding of the semantics of the languages has a direct
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effect on the way they write policies. Formal semantics can
tremendously improve the use of a language by constructing
a precise reference for the underlying language. Semantic-
related tools which analyze or reason about specifications
written in the language require formal semantics to process
the language correctly.Moreover, the implementation of such
tools can be verified,which is another important consequence
of formal semantics.

We propose a small and certifiably correct policy lan-
guage, TEpla. The design of TEpla is motivated, on the one
hand by the necessity of supporting features of real policy
languages (like those of SELinux) and on another hand by
the necessity of staying generic, thus amenable to capture var-
ious types of security policies and relations between them.
TEpla can provide ease of use, analysis, and verification of
its properties. By certified policy language, wemean a policy
language with formal semantics and formally verified math-
ematical proofs of important properties, which reflects the
concept of certification in formal methods communities and
programming languages [1]. One of our goals is to avoid
language-introduced errors (i.e., errors that are introduced
to IT systems due to multiple contradictory interpretations
of policies). Ease of reasoning and analysis of policies is
facilitated by a clear specification of TEpla’s behavior and
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semantics as it satisfies important formal properties designed
for this purpose [2]. In addition to these properties, TEpla
is flexible enough for defining complex security constraints
through introducing user-defined predicates. This enables
security administrators to define various security goals in
security policies. We analyze the language’s behavior by
defining different ordering relations on policies, queries, and
decisions. These ordering relations enable us to evaluate how
language decisions react to changes in policies and queries.
See, for example, the non-decreasing property of TEpla poli-
cies discussed in Sect. 4.3.

In order to keep the core of the language simple, we
focus on developing a new certified policy language for
the Type Enforcement mechanism, which is a subset of the
SELinux security module [3] implemented in Linux distri-
butions. Type Enforcement exploits the security context of
resources to regulate accesses. The security context is a set of
allowable values for particular attributes assigned to system
resources.

SELinux is a linux security module (LSM) that enables
security developers to define security policies. It implements
the mandatory access control (MAC) [4] strategy, which
allows policy writers to express whether a subject can per-
form an operation on an object, e.g., whether an SELinux
process can perform a read or write on a file or socket.

We carried out a study [5] on policy languages, which
proposes solutions for dealing with the many gaps for using
policy languages with informal semantics, mainly focusing
on the SELinux policy language in particular, and gaps in
developing verified security policies in general. TEpla is an
important step in closing these gaps. We believe that the
same development paradigm used for TEpla can be adopted
to develop other verified policy languages, such as one for
AppArmor [6] or one for full SELinux, thus providinghigher-
trust policy languages for Linux.

As mentioned earlier, TEpla also provides additional lan-
guage constructs that allow security administrators to encode
different security goals in policies as user-defined predicates.
Using this mechanism, administrators can express a variety
of conditions, thus significantly increasing the flexibility over
the language’s built-in conditions. However, there are some
conditions that policywriters need to verify about their predi-
cate definitions in order to ensure that their defined predicates
are compatible with TEpla properties. Note that our proof
development uses no axioms; we require all conditions to be
proved.

We use the Coq Proof Assistant [7, 8] (version 8.16) to
develop machine-checked mathematical proofs for TEpla’s
properties. The Coq development of TEpla contains approx-
imately 4700 lines of script and is available in an online
appendix [9]. This appendix also contains a mapping from
names used in this paper to names used in the Coq code.

In Sect. 2, we describe the TEpla language structures
and their meaning, including rules, decisions, queries, con-
straints, and policies. A constraint can be considered as an
additional form of a policy rule, which takes a user-defined
predicate as an argument. This section also defines ordering
relations on TEpla decisions, policies, and queries. In Sect. 3,
we present the Coq encoding of the syntax and semantics of
TEpla. In Sect. 4, we discuss the main properties that we
have proved about TEpla, and Sect. 5 concludes the paper.
Appendix 1 contains the full BNF grammar of TEpla.

This paper is an extended version of [10]. The work
presented here also appears in the Ph.D. thesis of the first
author [11], and the reader can find further details there.

2 Infrastructure of TEpla

The main element in a system is a resource, which can be
either a subject or an object, as described in the previous sec-
tion. In fact, a resource can act as a subject in some contexts
and an object in others. In many policy languages, including
TEpla, resources have attributes. As mentioned, the values
of these attributes form the security context of the resources.
The main building block of TEpla is type which is the core
language concept in TEpla’s syntax and semantics. This sec-
tion outlines the key language concepts of TEpla. In the next
section, we go a bit deeper and go through the overall mecha-
nized formalization of infrastructure of TEpla using the Coq
Proof Assistant.

2.1 Overview

Virtually all language constructs and semantics of TEpla
revolve around the concept of type. One of the main design
decisions in developingTEpla is to develop a policy language
that is easy to comprehend, which is attained by keeping
the core of language simple and basing it on the concept of
type. This feature and the provided insights into TEpla pol-
icy behaviors, presented by the formal properties of TEpla,
contribute to having a correct common understanding of the
language for developing and analyzing security policies. It
also provides certain guarantees. In TEpla, the security con-
text is the values of an attribute called basic type. Each
resource is assigned one basic type, providing it with an
identity in the same way as done in SELinux. For exam-
ple, consider two resources of a system called file_web and
port_protocol. We can assign, for instance, the values of the
basic type attribute to bemail_t andhttp_t, respectively.

TEpla allows policy developers to group basic types
of resources together to form a group type, providing
a single identifier for a group of resources. We group
together basic types when there exists a conceptual rela-
tionship among them. For example, we can group together
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the basic types mentioned above to form the group type
{mail_t,http_t}, here represented as a set. Basic and
group types together form thenotionof a type. Thusmail_t,
http_t, and {mail_t,http_t} are all examples of types.

SELinux uses the terminology source and destination to
mean subjects and objects, and domain and type to classify
their types, respectively. Here, we continue to use subject and
object and we use type to classify both.

Two other central data types in TEpla include object
class and permitted action. Object classes specify possible
instances of all resources of a certain kind, such as files, sock-
ets, and directories. In particular, primarily, this grouping is
used to define a set of permitted actions for each group (i.e.,
object class). Permitted actions specify the actions that sub-
jects are authorized to perform on objects. Permitted actions
can range from being as simple as reading data, sharing data,
or executing a file [12].

2.2 Language

As mentioned above, the primitive attributes include type,
Object Class, Permitted Action. Note that the concept of type
is different fromObjectClass because the former act as labels
for elements of computer systems (single element or aggre-
gate group of elements for identifying them), which are for
identifying elements in a system; however, the latter deter-
mines the category of objects to which each element belongs.
TEpla uses permitted actions defined in access rules to autho-
rize queries, and we assume that the security framework of
the system controls, instead of the policy language, whether
or not performing an action on an object class is allowed;
however, we leave this feature (i.e., defining a valid set of
permitted actions for each object class) as futurework. These
data types provide a straightforward syntax for policy writ-
ers. The BNF grammar of TEpla is defined in Appendix 1 in
Fig. 3. In the following sections, we denote the terms which
are used in the BNF grammar inside parentheses after the
name of the language constructs.

2.3 Access decisions

TEpla has a three-valued decision set for access requests
including NotPermitted, Permitted, and UnKnown. The Not-
Permitted decision is for denying an access request, and
the Permitted decision for granting an access request. The
UnKnown decision arises from conflicts in policies. Con-
flicts are caused by rendering a decision for access requests
in a part of security policies that is different from an already
taken decision according to other policy statements. More
specifically, when the result is UnKnown, it is the job of
the administrators to fix it, using their discretion. Refin-
ing TEpla’s policies or revisiting the security framework of
the system are two possible options for administrators to
address this issue. In TEpla, policies have two parts: rules
(TErules) and constraints (TEconstraints). That is, TEpla
policies (TEpolicy) consist of a pair of a TErules sequence
and a TEcontraints sequence (see Sects. 2.4 and 2.6). Con-
straints add conditions on the rules that may replace a
decision obtained from considering only the rules alone.

Security policies in TEpla allow administrators to express
access permissions aswell as security conditionswhich spec-
ify additional restrictions based on security requirements of
systems. Policies thus can be formed by any sequences of
TErules and TEconstraints.

Figure1 represents architecture and decision-making pro-
cess of TEpla. Access requests are first evaluated against
allow rules of policies. A query which is not granted by the
allow rules will cause a NotPermitted decision without con-
sidering the decision for constraints. If a query is authorized
by the allow rules, it will be checked against constraints to
check if it violates any security goals. Two possible decisions
of checking a query against constraints of the policies arePer-
mitted and Unknown, which means that the query satisfies
the security goals, or violates a security goal, respectively. If
none of the constraints are applicable to the query, the deci-
sion of the allow rules (i.e.,Permitted) will be the final access
decision for the query (see Sect. 2.9)

TypeEnforcement exploits the security context of resources
to regulate accesses. As mentioned above, every system
resource is labeled with a value from the basictype syntax

Fig. 1 The overall architecture
and decision-making flow in
TEpla
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class. This makes TEpla a fine-grained policy language as
administrators can apply different access regulations on dif-
ferent entities of a system.

2.4 Policy rules

Allow rules (TErules) enable policy writers to express eli-
gible access from a source type to a destination type.
The components of Allow rules include Source Type (sub-
ject),Destination Type (object),Object Class (cls),Permitted
Actions (prm), and Boolean Condition (cond_bool). Source
Type and Destination Type, as their names indicate, identify
the subject and object type of the rules.Object Class specifies
the object class of theDestination Type andPermittedActions
determines possible actions which Source Type can perform
on theDestination Type. The last component ofAllow rules is
a Boolean condition. Granting the specified access depends
on the value of the condition expressed by Boolean Condi-
tion as it is only granted if the value is true. This feature
enables policy writers to specify conditions to control grant-
ing accesses by Allow rules. As an example, suppose File
is an Object Class and Read is a Permitted Action. Then,
({mail_t,http_t}, mail_t, File, Read, true) is an
example Allow rule. We note that we do not use the last argu-
ment in this paper, so the value will always be true; we
discuss it further in future work.

TEpla supports transition of types in security contexts.
Type_Transition rules are policy statements which determine
types that can switch to other types. Type_Transition rules
include three components:SourceType (subject),Target Type
(type), and Object Class (cls). The Source Type, Target Type
state the initial type of the context and the new value for it,
respectively. Similar to source type ofAllow rules, we can use
attributes in Source Type of Type_Transition rules. However,
Target Type of Type_Transition rules has to precisely specify
the intended type (i.e., a basictype or an attribute with one
basictype) because usingmultiple basictypes in attributes for
the Target Type, the transition rule would be ambiguous. This
is not enforced by the BNF grammar of TEpla and adding a
constraint that an attribute must be a set of at least size two
basictypes, is left for future work.

2.5 Access requests

Access requests or queries consist of four components
Source Type, Destination Type, Object Class and Requested
Action. Access requests are inquiries into the policy to check
the possibility that Source Type is allowed to perform the
actionRequested Action on the objectDestination Type of the
object class Object Class (see the BNF grammar of TEpla
in Fig. 3). Processing of a query with respect to a policy
involves an attempt to check the authorization of a subject
element to carry out a specific access on an object element of

a particular class; both the subject and object belong to the
type syntax class. Continuing our example, the following is a
sample query: (mail_t, http_t, File, Write). In this
request, a subject of type mail_t is requesting to write to
an object whose class is File and whose type is http_t.

2.6 Constraints

As discussed earlier, rules alone cannot always accom-
modate the security requirements of systems precisely
enough. TEpla’s constraints (TEconstraints) can comple-
ment TErules with the goal of providing administrators a
feature to precisely express detailed aspects of safe sys-
tems. TEconstraints represent one of the powerful features
of TEpla, which can be tailored to different security require-
ments. In comparison with other languages which lack this
feature, TEconstraints allow policy writers not only to rely
on conditions or constraints defined in the language but also
to define their complementary security logic.

TEconstraints, (see the BNF grammar of TEpla), have six
arguments. The first two arguments areObject Class (cls) and
Permitted Action (prm). These two arguments are compared
to the Object Class (cls) and Permitted Action (prm) of a
query to check if the TEconstraint is applicable to the query.
The constraint is only applicable when the values of these
components match. The next three arguments are type, type,
and {type} (i.e., a set of types) whose values are provided by
the policy writers; they can provide important information
when a constraint is evaluated.

TEconstraints in TEpla include a function that returns a
Boolean as their last argument, expressing when the con-
straint is satisfied.

To illustrate constraints and predicates, we use a “sepa-
ration of duty” running example defined as follows, which
uses the predicate Prd_SoD, defined in the next subsection:
(File,Read, {mail_t,http_t},networkManager
_ssh_t, [],Prd_SoD). This constraint only allows sub-
jects whose types are elements of {mail_t,http_t} to
perform the action Read on objects whose basic type is
networkManager_ssh_t and whose object class is File
as long as the additional requirement is met that objects of
types {mail_t,http_t} and networkManager_ssh
_t are never permitted to be acted upon by subjects of
the same type. Prd_SoD will formally express what is
meant by this additional requirement. Informally, whenever
two Allow rules permit subjects of the same type to per-
form actions, if the object in one of the rules has a type
in {mail_t,http_t}, then the object in the other rule can-
not have type networkManager_ssh_t. Similarly, if the
object in one rule has type networkManager_ssh_t,
then the object in the other rule cannot have a type that is a
subset of {mail_t,http_t}. This constraint is applicable
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to all queries whose Object Class and Permitted Action are
File and Read, respectively.

2.7 Predicates

Predicates (TEpredicates_ID), i.e., a function that returns
a Boolean, are the last input argument of a TEconstraint,
which makes these functions act as predicates [13]. When
a query is evaluated against a policy (made up of TErules
and TEconstraints) the TEpredicate is evaluated, provided
that the TEconstraint is applicable to the query, with spe-
cific arguments provided by the TEconstraint and the query.
TEpredicates_ID has eight arguments, which supply a com-
prehensive set of values by which policy developers can
define the required security criteria. We will see in Sect. 2.9
how a query is evaluated against a constraint. Here, we
present the definition of Prd_SoD.

Algorithm 1 Defining the predicate Prd_SoD
Function Prd_SoD (rules: list TErule, types:list type, sClass:cls,
perm:prm, (qSrcT qDestT predSrcT predDestT : type))
if (qSrcT ⊆ predSrcT ) ∧ (qDestT ⊆ predDestT ) then

list1 ← search rules to find subject types that access predSrcT
list2 ← search rules to find subject types that access predDestT
return (list1 ∩ list2) = ∅

else
return true

In the above procedure, T1 ⊆ T2 means that all the basic
types in T1 are also included in T2. The parameter rules
contains all the Allow rules of the policy. Note that this
predicate does not use the second input argument because
it is not required in computing the intersection of the two
lists. The body of this predicate function searches the first
input argument, i.e., rules, to find all the subject types that
access the seventh and eighth input arguments. If these two
sets share common types, the predicate returns false, oth-
erwise, true. As we will see in Sect. 2.9, to check if the
predicate is applicable to a query, we compare the fifth input
argument (i.e., the subject type of the input query) with
the seventh input argument (i.e., the subject type received
from the constraint). Similarly, we check the same relation
between the sixth and eighth input arguments (i.e., the sub-
ject type of input queries and the subject type received from
the constraint, respectively).

2.8 Ordering relation on decisions, queries, and
policies

We define a Partially Ordered Set (poset) [13] called
(DCS,< ::) on TEpla’s three-valued set of decisions as
Not Permitted < ::Permitted < ::UnKnown. The low-
est decision in this ordering is NotPermitted, which means
that all accesses are first denied by default. To permit an

access query, a relevant rule in the first component of poli-
cies must authorize the access. If the query is not granted
at this stage, TEpla denies the access, which means that the
ultimate access decision is NotPermitted. In the case that the
query is granted (with decision Permitted), TEpla proceeds
to check whether or not the query satisfies the constraint
component of policies. The decision for the query continues
to be Permitted as long as it satisfies the constraints; if not,
that is the query fails to satisfy some constraints, the decision
changes to UnKnown (see Fig. 1). We allow composition of
policies in which decisions never go from UnKnown or Per-
mitted to NotPermitted when TEpla checks the sub-policies
of the composed policy (see Sect. 4.3 for more details about
this property).

Additionally, we define a relation on queries (Q,<< =).
Two queries Q1 = (srcTQ1, dstTQ1, clsQ1, prmActQ1) and
Q2 = (srcTQ2, dstTQ2, clsQ2, prmActQ1) are in relation
Q1 <<= Q2 if and only if srcTQ2 ⊆ srcTQ1 and dstTQ2 ⊆
dstTQ1 hold.

Finally, we define the binary relation (TEPLCY,�) on
policies, where p1 � p2 whenever p2 has more information
that p1. More formally:

∀(p1, p2 ∈ TEPLCY), p1 � p2 iff length(p1)

≤ length(p2) ∧ p1 ⊆ p2.

In this definition, length means the sum of the lengths of the
rule component and the constraint component of a policy.We
call the combined list authorization rules. Here, we overload
the⊆operator; p1 ⊆ p2 means that p2 hasmore authorization
rules and it contains all the authorization rules in p1.1

Policy writers should make sure the predicates that they
develop satisfy certain conditions. Note that this checking is
performed statically for predicates, by proving the required
properties before using them in policies, and there is no
dynamic checking needed. These conditions express that
given two queries related by “<<=” or two policies related
by “�,” the evaluation of predicates by the function that eval-
uates a query against a constraint (Algorithm (3) in Sect. 2.9)
preserves the defined order on decisions “< ::.”

2.9 Semantics

We define the semantics of TEpla as a mapping from policies
and access requests to decisions, in the form of five transla-
tion functions, which together act as the decision-making
chain that evaluates a query against a policy, taking into
account all the various parts of the policy. The first function,
shown in Algorithm 2, evaluates a query against a single rule
leading to a decision of either Permitted or NotPermitted.

1 In the Coq implementation, we do not have a separate definition for
�. Instead, we express it directly when needed using list operators.
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Algorithm 2 Evaluating a Query against an Allow rule
Function Translation Function 1 (allowRule, query)

(srcType,dstType,clsRule,prmActions,boolCond) ← allowRule
(srcTQuery,dstTQuery,clsQuery,prmActQry) ← query

if ((boolCond)∧(srcTQuery ⊆ srcType)∧(dstTQuery ⊆ dstType)
∧ (clsQuery = clsRule) ∧(prmActQry = prmActions)) then

return Permitted
else

return NotPermitted

For Allow rules, the authorization conditions include
checking to see whether a rule applies to the query, the
Boolean condition is true, types of the subject and object
in the query are a subset of the corresponding types in the
rule, and the object class and permitted action are the same. If
all conditions are satisfied, the result is Permitted; otherwise,
it is NotPermitted. The function for Type Transition rules is
similar (details omitted), but only the types of the subject and
object need to be checked in order to determine that the rule
applies.

The second translation function, shown in Algorithm 3,
evaluates a query against a constraint. It takes a single con-
straint, a query, and a list of rules (all the rules in the rule
component of a policy) as arguments. The rules argument can
be used to extract access information required for express-
ing security goals encoded in predicates. In order to check
whether or not the constraint is applicable to the query, the
object class and permitted action components are compared
and must be the same. If applicable, the constraint predicate
is checked. Note that the arguments passed to Prdct include
the list of rules as well as all the other components of the
constraint and query, except the two that are used to check
the applicability of the constraint. If the evaluation of the
predicate returns true, then the decision is Permitted. Oth-
erwise, the decision is UnKnown. Note that if the constraint
does not apply to the query, the default valueNotPermitted is
returned, which means the constraint has no role in changing
the access decision for the query, and other parts of the policy
will make the final decision.

Algorithm 3 Evaluating a Query against a Constraint
Function Translation Function 2 (cstrt,query,policyRules)

(clsCst,prmCst,tArg1,tArg2,typeList,Prdct) ← cstrt
(srcQry,dstQry,clsQry,prmQry) ← query

if (clsCst=clsQry) ∧ (prmCst=prmQry) then
if (Prdct(policyRules,typeList,clsCst,prmCst,srcQry,dstQry,tArg1,tArg2)) then

return Permitted

else
return UnKown

else
return NotPermitted

A query must be evaluated against all the rules and con-
straints in a policy. We omit the other translation functions
that are defined to complete this task. They include two func-
tions for processing every element in a list against the query,
one for rules and one for constraints, plus a function for
putting everything together to evaluate a query against a pol-
icy. The Coq implementation of themain translation function
that combines the decisions of different parts of policies,
taking into account the ordering relations we defined on deci-
sions in Sect. 2.8, is called TEPLCY_EvalTE; it takes a
policy and query as its two input arguments.

3 Coq development

In this section, we describe the Coq implementation of the
infrastructure of TEpla (i.e., the elements of syntax and
semantics of TEpla described in Chapter 2). As mentioned
above, the whole Coq development of TEpla is available
in [9]. All the proofs of lemmas and theorems of TEpla are
available in the Coq source of TEpla.

3.1 Syntax in Coq

We start by defining the basic data types. Here, C, P,
basicT, which represent object classes, permitted actions,
and basic types, respectively, are all defined as nat (N),
which is the datatype of natural numbers in Coq [8]. These
definitions plus the implementation of some examples dis-
cussed earlier are below.

Definition C := N. Definition P := N. Definition
basic T := N.

Definition File : C := 600.
Definition mail_t : basic T := 300. Definition http_t

: basic T := 301.
Definition networkManager_ssh_t : basic T := 302.
Definition Read : P := 702. Definition Write : P :=

703.

We encode a group type as a list of basic types, i.e.,
we represent them using Coq’s built-in datatype for lists.
For example, the code below introduces G to define group
types and program_G, which represents the example set
{mail_t,http_t}. A group type should contain at least 2
elements.

Definition G : Set := list basic T .
Definition program_ G : G := [mail_t;http_t].

We can now encode our principle entity, the type structure;
we define the inductive datatype T with two constructors
singleT and groupT. These constructors take arguments
of type basicT and G, respectively, to produce a term
belonging to T.

Inductive T : Type:=
| single T : basic T → T
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| group T : G → T .

Continuing our example, consider two subjects whose
security contexts are represented by the values http_t and
mail_t, and a third subject that is allowed to access objects
of both types.These are representedby (singleThttp_t),
(singleTmail_t), and (groupTprogram_G), respec-
tively.

Rules, which include both Allow and Type Transition, are
encoded as the inductive type R. This definition is followed
by an encoding of the example Allow rule given in Sect. 2.4.

Inductive R : Set :=
| Allow : T ∗ T ∗ C ∗ P ∗ B → R

| Type_Transition : T ∗ T ∗ C → R .
Definition R _A : R :=
Allow (group T program_ G , single T mail_t, File,

Read, true).

The * operator represents tuple types in Coq; Allow rules
are represented using a 5-tuple and Type Transition rules are
represented using a triple.

Decisions are defined by the inductive type DCS and
access requests or queries (Q) by a 4-tuple. These definitions
along with the example query from Sect. 2.5 are below:

Inductive DCS : Set := Permitted | NotPermitted |
UnKnown.

Definition Q : Set := T ∗ T ∗ C ∗ P .
Definition sample Q : Q := (single T mail_t, single

T http_t, File, Write).

Constraints are defined below as the typeCSTE. This def-
inition is followed by the example constraint from Sect. 2.6.

Inductive CSTE : Set :=
| Constraint : C ∗ P ∗ T ∗ T ∗ list T ∗

(list R → list T → C → P → T → T → T → T

→ B ) → CSTE .
Definition CSTE _SoD : CSTE := Constraint(File,

Read, group T program_ G ,
single T

networkManager_ssh_t, [],
Prd_SoD).

Note that constraints are encoded using a 6-tuple, where
the last element of the tuple is a function that returns a
Coq Boolean. The above example includes the function
Prd_SoD, defined later in Sect. 3.4.

Policies are defined below as the type TEPLCY using a
tuple consisting of a list of rules and a list of constraints.
We also define an example policy below using the exam-
ple rule and example constraint above; in this example both
the rule component and the constraint component are lists
of length 1.

Inductive TEPLCY : Set := TEPolicy : list R ∗ list
CSTE → TEPLCY .

Definition TEPLCY _example : TEPLCY := TEPolicy ([
R _A], [ CSTE _SoD]).

3.2 Semantics in Coq

The Coq definitions of Algorithms 2 and 3 are shown in
Listings 1 and 2, respectively.

Definition R _EvalTE ( R _policy: R ) (q: Q ) : DCS :=
match R _policy with
|Allow (alw_src T ,alw_dst T ,alw_ C ,alw_ P ,alw_ B )

⇒
match q with

|(qsrc T , qds T , q C , q P ) ⇒
if (( T Subset qsrc T alw_src T ) && ( T

Subset qds T alw_dst T ) &&
(Nat.eqb q C alw_ C ) && (Nat.eqb q P alw_

P ) && (alw_ B )
then Permitted else NotPermitted

end
|Type_Transition (trn_src T , trn_dst T , trn_ C ) ⇒

...
end.

Listing 1 Evaluation of a rule and a query

In Listing 1, the Coq function TSubset does the subset
check, making sure that the types of the subject and object in
the query are a subset of the corresponding types in the rule.
Note that in both listings, the built-inCoq functionNat.eqb
is used for the equality checks.

The function CSTE_EvalTE implemented in Listing
2 evaluates a query against a constraint. As mentioned in
Sect. 2, the rules argument can be used to extract access
information required for expressing security goals encoded
in predicates.

Definition CSTE _EvalTE
(constraint_rule: CSTE ) ( Q _to_constr: Q ) (list R

:list R ) : DCS :=
match constraint_rule with
|Constraint (cstrn_ C , cstrn_ P ,cstrn_ T _arg1,

cstrn_ T _arg2,
cstrn_list T ,cstrn_ PRDT ) ⇒

match Q _to_constr with
|( Q _src T , Q _dst T , Q _ C , Q _ P ) ⇒
if (Nat.eqb Q _ C cstrn_ C && Nat.eqb Q _ P

cstrn_ P ) then
match (cstrn_ PRDT list R cstrn_list T

cstrn_ C cstrn_ P

Q _src T Q _dst T cstrn_ T _arg1 cstrn_
T _arg2) with

|true ⇒ Permitted
|false ⇒ UnKnown

end
else NotPermitted

end
end.

Listing 2 Evaluation of a constraint

3.3 Processing access information

It is often useful to view various kinds of information in the
list of rules as sets of values, and so we provide several gen-
eral operators that support this view, such as intersection,
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union, as well as set comparison operators such as subset
and set equality. TSubset from the previous section was
an example of this. Here, we follow the general approach
in [14], where it is shown that such operators form a suit-
able formalism for expressing security conditions and goals
formulated as constraints. Selector functions process access
information in policies by retrieving various kinds of infor-
mation from a list of rules. In contrast, operator functions
apply certain operations on the results of selector functions
along with other arguments of the predicate. The selector
function called Search_subject is defined in Listing 3.
The Search_subject function receives a list of rules and
an object type as inputs. It searches all the Allow rules of
input rules to find all types of subjects that are allowed to
access (i.e., perform any kind of action on) objects of the
type specified by the object type argument. In particular, the
output of Search_subject is a list of elements of type
that are authorized to access the object type dscType to per-
form the action sdaction. The result is a list containing
these subject types.

Fixpoint Search_subject
(listrule:list R ) (dscType: T ) (sdaction: P ): list

T :=
match listrule with
|Allow (alw_src T ,alw_dst T ,alw_ C ,alw_ P ,alw_ B ) ::

reclistrule ⇒
if ( T _Equal alw_ds T dscType && Nat.eqb alw_ P

sdaction) then
alw_src T :: Search_subject reclistrule dsc

Type sdaction
else
Search_subject reclistrule dscType

sdaction

|Type_Transition (trn_src T ,trn_dst T ,trn_ C )::
reclistrule ⇒ ...

end.

Listing 3 The selector function Search_subject

Listing 4 expresses the distributive property of the selector
function Search_subject. In particular, the results of
applying selector functions to an input that is the concatena-
tion of two lists of elements of TErule are the same as the
concatenation of the results of the application of the selector
functions to each sub-list.

Lemma dstrb_destination (l1 l2:list R ) (tp: T ) (act: P ):
Search_subject (l1 ++l2) tp act =

Search_subject (l1) tp act ++Search_subject (
l2) tp act.

Listing 4 The distributive property of the selector function
Search_subject

Theoperator functionwedevelopnext isIntersection
List. Listing 5 expresses this function, which returns the set
of common elements of two lists of elements of type rep-
resented by lstFirst, and lstSecond input arguments.
The operator function IntersectionList checks if its

two input lists contain any common elements, and the oper-
ator is_empty_list checks to see if its input list has no
elements.

Fixpoint IntersectionList (lstFirst lstSecond:
list T ) : list T :=

match lstFirst with
| (a1) :: l’ ⇒

match lstSecond with
| l ⇒ if (∃b ( T _Equal a1) lstSecond)

then (a1) :: IntersectionList l’
lstSecond

else ...
| ...

Listing 5 The operator function IntersectionList

The operator function IntersectionList uses
existsb (denoted by ∃b in code), defined in the Coq
library Coq.Lists.List (depicted in Listing 6), to check
whether or not an element of the first input list lstFirst
is T_Equal to any elements of the input list lstSecond.

Fixpoint ∃b (l:list A) : B :=
match l with
| [] ⇒ false
| a::l ⇒ f a || ∃b l

end.

Listing 6 The function existsb

Listing 7 depicts two basic properties of the operator func-
tion IntersectionList. Lemma notNil_intrsec,
for example, expresses that if the result of the application of
IntersectionList to two lists of elements of type is
not empty then by adding another element to these lists, the
result of the intersection is still not empty.

Lemma intserc_distrib (l1 l2 tl: list T ):
IntersectionList (l2 ++l1) tl =

IntersectionList l2 ta ++
IntersectionList l1 tl.

Lemma notNil_intrsec (l1 l2 l3 l4: list T ):
IntersectionList (l1) (l2) <> [] →

IntersectionList (l3++l1) (l4++l2) <> [].

Listing 7 Some properties of the operator function
IntersectionList

3.4 Predicates and their conditions

Returning to our example, the Coq implementation of the
Prd_SoD predicate exploits selector function Search
_subject along with the operator functions Inter-
sectionList and is_emptylist. In general, selector
and operator functions enable policy developers to extract
access information from Allow rules that might be useful for
applying security goals that are encoded in constraints and
predicates. The Coq implementation of Prd_SoD predicate
is shown in Listing 8.
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Fixpoint Prd_SoD (list R :list R ) (List T :list T ) (
sClass: C ) (perm: P )

( Q Src T : T ) ( Q Des T : T ) ( PRDT src T

: T ) ( PRDT Des T : T ) : B :=
if ( T Subset Q Src T PRDT src T && T Subset Q

Des T PRDT Des T )
then is_emptylist (IntersectionList

(Search_subject list R PRDT

src T )
(Search_subject list R PRDT

Des T ))
else true.

Listing 8 The predicate Prd_SoD

Returning to our example constraintCSTE_SoD in Sect. 3.1,
we have now completed the definition of its last component,
and thus we can now see how a query is evaluated against this
constraint byCSTE_EvalTE in Listing 2.When Prd_SoD
is called inside CSTE_EvalTE, it first checks whether or
not the predicate is applicable to the query, by checking
that the subject and object types of the query (arguments
QSrcT and QDesT) are subsets of the input arguments
PRDTsrcT and PRDTDesT, respectively. The predicate
returns true if this condition is false. When the condition
is true, it gathers all the types of subjects in rules that act
on objects of types mail_t and/or http_t, and gathers
all the types of subjects in rules that act on objects of type
networkManager_ssh_t, and ensures that there is no
overlap. It checks all rules in a policy, which can be seen
by the fact that the first argument to Prd_SoD is passed on
directly to both calls to Search_subject.

Recall that in the definition of CSTE, a predicate takes
eight arguments. Note that arguments 1 as well as 5–8 are
the important ones for expressing Prd_SoD; the fact that the
second argument is not used is why an empty list [] appears
as the fifth component of CSTE_SoD.

We have used Prd_SoD and some other predicates to
develop a security policy called TEpla_policy as a case
study, which can be found in the Coq code. This example
policy has twenty rules andfive constraints.All the predicates
used there satisfy the conditions on predicates that we now
present in the next section.

As mentioned in Sect. 2.8, policy writers have to verify
three conditions on predicates using a library of lemmas we
provide for this purpose. We describe the Coq encoding of
these conditions briefly here. The first one is about queries
(involving the <<= relation) and the other two are about
policies (involving the � relation).

Two of the conditions involve a relation onBoolean values
called transition_Verify_Decision that relates
the Boolean results of applying a predicate twice with some
argument or collection of arguments differing between the
two calls.

The first condition is one of the two that uses this relation
onBooleans. It is calledPredicate_Query_condition

and the specific arguments that differ in the two calls are
the query subject and object types. This condition is used
in a lemma called predicate_query_condition_-
implication, which simply states that whenever a pred-
icate P satisfies Predicate_Query_condition, then
given any two queries Q1 and Q2 such that Q1 �= Q2,
a constraint C whose last argument is P, and any list of
rules listR, if d1 and d2 are the decisions resulting from
evaluating Q1 and Q2, respectively, against C and listR
(i.e., applying function CSTE_EvalTE in Listing 2), then
d1 < ::d2.

The second and third conditions involve evaluating a pred-
icate in a constraint on a single query butwith two sets of rules
(the first argument of the predicate). The second condition
simply states that the same result is obtained from applying
the predicate on the two lists of rules, whenever the two lists
differ only in the order of the rules. This condition is called
Predicate_plc_cdn.

The third condition, called Predicate_plc_cdn
_Transition, is the other condition that uses the rela-
tion transition_Verify_Decision on Booleans.
The condition states that given two lists of rules, listR and
listR′, the transition_Verify_Decision rela-
tion holds between the results of applying the predi-
cate to listR and listR ++ listR′. This condition
and the second condition are used in a lemma called
constraintEvalPropSnd.

Lemma constraintEvalPropSnd:
∀ ((listRuleA listRuleB: list R ) (listCnstrt:list

CSTE ) (q: Q )),
(cnsrt_prd_plcyRulesList (listCnstrt) ) →
(list CSTE _EvalTE listCnstrt q listRuleA) <::

(list CSTE _EvalTE listCnstrt q (listRuleA++
listRuleB)) = true.

Listing 9 Lemma constraintEvalPropSnd

This lemma states that whenever all the constraints
in a given listC of constraints satisfy both conditions
(expressed by lemma cnsrt_prd_plcyRulesList),
then given a query Q and two lists of rules listRuleA
and listRuleB, if d1 and d2 are the decisions resulting
from evaluating Q against listC and the two rule lists
listRuleA, and listRuleA ++ listRuleB, respec-
tively, (i.e., applying function listCSTE_EvalTE), then
d1 < ::d2.

As mentioned above, predicates have to satisfy the three
conditions predicate_query_condition,
Predicate_plc_cdn, and Predicate_plc_cdn_-
Transition.

Three lemmas (qry_condition_SoDpdct, plc-
_conditionS_SoDpdct, and plc_conditionF_-
SoDpdct) express that the predicate Prd_SoD satisfies
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these three conditions and the proofs are available in the
source code [9].

Wenote here that the expressive power of predicates is lim-
ited by the conditions discussed above that they are required
to satisfy. Alternatively, however, we propose two methods
to extend the expressive power of predicates. The first is
simply to relax the restriction and not require these condi-
tions to be verified, which would allow constraints to violate
the ordering on decisions by changing an UnKnown to a
Permitted. Allowing this freedom provides policy devel-
opers with the same expressive power as the studies that use
sets to express security goals, such as [14], which empirically
illustrates that practical binary constraints can be expressed
by comparisons of two sets. The second method is to replace
the above constraints with a structural restriction on policies
that requires that the rule component never changes. Such a
situation can occur, for example, when different departments
in an organization have different security goals, but they all
have the same set of rules defined by a central security admin-
istrator. With this change, some formal properties we present
in Sect. 4 will still hold. This solution eliminates the need for
an expert in Coq to verify conditions.

4 Formalization of language properties

In this section, we express the Coq encoding of the main for-
mal properties of TEpla. We evaluate the behavior of TEpla
through studying how TEpla semantics acts as a mapping
between the posets we defined in Sect. 2.8. In other words,
defining posets (TEPLCY,�), (Q,<<=) and (DCS,< ::)
allows us to evaluate language properties. In each subsection,
we present the Coq statement of one of the main theorems.
In addition, we provide further information about the proofs
in Sects. 4.1 and 4.2. In particular, Sect. 4.1 provides infor-
mation about a common proof technique in Coq, proof by
reflection, which is used to prove decidability of decisions,
and Sect. 4.2 discusses the mathematical proof before pre-
senting the Coq implementation, and also discusses Coq
proof strategies.

4.1 Decidability of decisions

Determinism is one of the important properties of policy lan-
guages discussed in [2]. A deterministic language always
produces the same decision for the same policies and queries.
Recall that the function TEPLCY_EvalTE evaluates a
query against a policy. The behavior of this function specifies
the overall semantics of TEpla. Thus, TEpla satisfies deter-
minism simply because evaluation is defined as a function.

Here, we prove the decidability of decisions using proof
by reflection [8, 15]. Proof by reflection enables us to write
proofs that exploit both the Boolean interpretations and the

propositional representations of facts. That is, proof by reflec-
tion takes advantage of combining computations with logical
facts in proving theorems. In particular, Boolean interpreta-
tions provide computations and propositional representations
provide logical facts. Accordingly, by proving that a propo-
sition holds when a Boolean expression is true, we can use a
combination of these interpretations in proofs because they
form rewritable equations [16] that can be used in a case anal-
ysis of inductive types.We prove the decidability of decisions
in TEpla through the Boolean reflection approach for partial
orders presented by the author of [17].

We define the Boolean relation compare_decisions
(in listing 10) for comparing decisions by considering the
partial order of decisions expressed in Sect. 2.8.

Definition compare_decisions (c d : DCS ) : B :=
match c,d with

| NotPermitted, _ ⇒ true
| Permitted, Permitted ⇒ true
| _, UnKnown ⇒ true
| _, _ ⇒ false

end.

Listing10 The functioncompare_decisions to compare decisions

For exploiting the proof by reflection approach, we need
to define a propositional representation of the order of deci-
sions, which is expressed as ans_compr_Prop in listing
11. As depicted in listing 11, we need four constructors
to cover all the possible relations of decisions. The con-
structor Prp_refl for constructing the reflexive relation
of each decisions, the constructor Prp_trans for building
the transitivity relation of decisions, and the two constructors
Prp_dnp_dp and Prp_dp_duk for expressing the basic
relation between NotPermitted,Permitted decisions,
and Permitted, UnKnown decisions.

Inductive ans_compr_Prop : DCS → DCS → Prop :=
| Prp_refl : ∀ d, ans_compr_Prop d d
| Prp_trans : ∀ dnp dp duk,

ans_compr_Prop dnp dp →
ans_compr_Prop dp duk →

ans_compr_Prop dnp duk
| Prp_dnp_dp : ans_compr_Prop NotPermitted

Permitted
| Prp_dp_duk : ans_compr_Prop Permitted UnKnown.

Listing 11 The inductively defined relation ans_compr_Prop

The proof begins by proving that the Boolean and proposi-
tional representation of the order of decisions are equivalent.
That is we now prove that a propositional representation,
defined as ans_compr_Prop, of the Boolean relation
compare_decisions, are logically equivalent (stated as
a theorem in listing 12).

Theorem aPrp_Boolreflection d1 d2 :
reflect (ans_compr_Prop d1 d2) (

compare_decisions d1 d2).
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Listing 12 The reflection relation between ans_compr_Prop and
compare_decision

After proving the equivalence of between the two charac-
terizations of the order of decisions, we then define the decid-
ability of decisions according to theorem decidability-
_of_decisions in listing 13.

Theorem decidability_of_decisions dcsF dcsS :
{ans_compr_Prop dcsF dcsS} + {∼

ans_compr_Prop dcsF dcsS}.

Listing 13 Decidability of TEpla decisions

The theorem in listing 13 indicates that the relation “< ::”
on decisions is decidable. That iswhenwe compare decisions
by the relation “< ::,” there is always an answer for this
comparison.

The running time of TEPLCY_EvalTE is O(n + mn)
in which n and m are the number of rules and constraints,
respectively. The running time of checking a query against
rules is O(n), and if granted, the running time of checking
the query against one constraint is O(n) because, in worst
case, to process access information needed in the constraint,
the entire list of rules should be traversed. Assuming that the
number of rules is greater than constraints, the running time
of TEPLCY_EvalTE is O(n2).

4.2 Order preservation of queries

TEpla has in fact been designed so TEPLCY_Eval-
TE is order-preserving for the relation � on policies,
<<= on queries, and < :: on decisions. This means that
TEPLCY_EvalTE acts as a homomorphism [13] on the
posets we defined on TEPLCY, Q, and DCS.

Of particular importance is the preservation of order
on decisions with respect to queries: if q1 <<= q2,
then the decisions d1 and d2 that result applying func-
tion TEPLCY_EvalTE on q1 and q2, respectively, are in
the relation d1 < ::d2. The <<= relation is defined (see
Sect. 2.8) to be as general as possible; it involves only subject
and object types, which are elements that queries in any lan-
guage must have. When policies are large, verifying policies
often involves testing a number of queries against the policy.
In a policy language with this property, undue access, i.e.,
bypassing security checks or unauthorized access to inter-
nal data [18], is impossible for queries that have incomplete
information [2], which is helpful for policy reasoning. In
addition, having an unambiguous ordering of queries facili-
tates sorting, filtering, and optimizing query evaluations.

We first introduce a lemma which helps us to prove order
preservation of queries. As mentioned earlier, TEpla policies
(TEPLCY) consist of two parts TErules and TEconstraints.
Thus, it is logical to prove this property for the elements of
these components: aTErule and aTEconstraint. The stepping
stone is to prove this property for a TErule. Lemma (1) shows

order preservation of queries for aTErule. In particular, if two
queries q, q ′ have the relation <<=, then the decisions of
applying Algorithm 2 with same TErule, have the relation
< ::.
∀ (q, q ′ ∈ Q), (r ∈ T Erule),

q <<= q ′ �⇒ Algori thm 2 (r , q)
< ::Algori thm 2 (r , q ′).

(1)

After expressing order preservation of queries for a
TErule, now it is time to consider the corresponding property
for a TEconstraint. Lemma 2) expresses the order preserva-
tion of queries for a TEconstraint. In particular, if two queries
q, q ′ have the relation <<=, then the decisions of applying
Algorithm 3 with the same list of TErules and TEconstraint,
have the relation < ::.

∀ (q, q ′ ∈ Q), (c ∈ T Econstraint), (l ∈ list T Erule),

q <<= q ′ �⇒ Algori thm 3 (c, q, l)

< ::Algori thm 3 (c, q ′, l). (2)

We now express the order preservation of queries as a
theorem for TEpla policies. Proving this theorem requires
the two lemmas we mentioned earlier.

∀ (p ∈ TEPLCY), (q, q ′ ∈ Q),

q <<= q ′ �⇒ TEPLCY_EvalTE (p, q)
< ::TEPLCY_EvalTE (p, q ′).

As the theorem states, for the same policies, queries with
the relation <<= render decisions with the relation < ::.
The Coq version of this theorem is stated below as Theorem
Order_Preservation_TEpla in Listing 14.

Theorem Order_Preservation_TEpla:
∀ (listrule:list R ) (listconstraint:list CSTE ) (q

q’ : Q ),
(q <<= q’) ∧ const_imp_prd_List list CSTE →
(( TEPLCY _EvalTE ( TEPLCY (listrule,

listconstraint)) q) <::
( TEPLCY _EvalTE ( TEPLCY (listrule,

listconstraint)) q’)) = true.

Listing 14 Order preservation of decisions with respect to queries

The const_imp_prd_List predicate in this theorem
expresses that all the predicates of the input list of con-
straints listCSTE satisfy the first condition from Sect. 3.4
(predicate_query_condition).

The proof script for theorem Order_Preservatio-
n_TEpla is shown in Fig. 2.

In the Coq proof, tactics are used to decompose the proof
into subgoals, or to transform a subgoal to a simpler one until
the proof is complete. This proof is by induction on the length
of the list of constraints and the induction tactic on the
first line of the proof breaks the proof into these two cases.
The symbols “-,” “+,” and “*” mark the cases of proofs
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Fig. 2 The proof script of
Theorem
Order_Preservation_TEpla

Theorem Order_Preservation_TEpla :
∀ (listrule :list R) (listCnstrt :list CSTE) (q q’ : Q),

(q <<= q’) ∧ const_imp_prd_List listCSTE →
((TEPLCY_EvalTE (TEPLCY (listrule, listCnstrt)) q) <::
(TEPLCY_EvalTE (TEPLCY (listrule, listCnstrt)) q’)) = true.

Proof .
induction listCnstrt .

intros . simpl . (* proving subgoal I *)
elim H . intros .
apply maximalpolicy_Prop .
split . + apply max_prop2 . assumption .

+ simpl . reflexivity .
intros . rewrite max_appendAns4 . (* proving subgoal II *)

assert(TEPLCY_EvalTE (TEPLCY (listRule, a :: listCnstrt)) q’ =
(maximalDcs (TEPLCY_EvalTE (TEPLCY (listRule, [a])) q’)
(TEPLCY_EvalTE (TEPLCY (listRule, listCnstrt)) q’) )).

rewrite max_appendAns4 . reflexivity .
rewrite H0 .
apply maximalDcs_prop .
split . + simpl . apply maximalpolicy_Prop . split .
apply max_prop2 . elim H . intros . assumption .
apply maximalDcs_prop . split .
apply OrdPreserv_cstrt .
split . elim H . intros . assumption .
elim H . intros . apply validconst_prop in H2 .
elim H2 . intros . assumption .
simpl . reflexivity .

+ apply IHlistCnstrt . split . elim H . intros . assumption .
elim H . intros . apply validconst_prop in H2 .

elim H2 . intros . assumption .
Qed .

that correspond to each subgoal on different levels. Here, the
subproof starting with the first “-” is the base case of the
induction, when the list is empty. The subproof starting with
the second “-” is for the inductive case. The application of
the induction tactic generates the induction hypothesis
for this case.

In general, theorems and lemmas in Coq are written as
follows:

Hyp (H1, H2, . . . , Hn) � Conclusion (G).

We have hypotheses H1, H2, . . . , Hn as the context of the
proof and at any point during the proof, we are proving one of
the possible subgoals (G). Here, we explain a few of the other
tactics used in the proof in Fig. 2. The intro tactic adds the
current variable or premise of the goal as a new variable to
the context. We can provide a new name for this variable
by writing intro new_name. Moreover, we can use the
tactic intros to introduce all variables or propositions on
the left side of an implication as assumptions. Similar to the
intro tactic, we can assign names to the assumptionswhich
will be introduced after applying the intros tactic, through
providing names as arguments to this tactic such as intros
new_name1 new_name2 …. The rewrite tactic trans-

forms one term of the current goal into the equivalent term
in the context. Suppose we want, for example, to prove that
C= B + B and the hypothesis H1: A = B is in the con-
text of our proof and the current goal is C= A + B, we can
transform the current goal to C= B + B by using the tactic
rewrite H1.

The assert tactic enables us to add a new hypothesis
to the context. In this case, first, we prove the goal using the
new hypothesis and thenwe have to prove that the introduced
hypothesis is true as well. For example, the tactic assert
(A = B) allows us to add the proposition (A = B) to the
context, as long as (A = B) is provable from the current
context. The reflexivity tactic proves a goal if it is in
the form of an equality A = B, where A and B are exactly
the same term, possibly after some simplification.

The apply tactic can be used to apply previously proved
lemmas. Note that the proof in Fig. 2 uses many such
lemmas. For example, they include validconst_prop,
maximalDcs_prop, and max_appendAns4, shown in
listings 15, 16 and 17, respectively. The binary function
maximalDcs, used in listings 16 and 17, takes two input
decisions and returns the greater decision according to the
order of decisions defined in Sect. 2.8.
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Lemma validconst_prop:
∀ (c : CSTE )(l:list CSTE ),
const_imp_prd_List (c::l) →

constraints_implication_prd c ∧
const_imp_prd_List l.

Listing 15 Lemma validconst_prop

Lemma maximalDcs_prop:
∀ (d1 d2 d3 d4: DCS ),

(d1<::d3)=true ∧ (d2<::d4)=true →
(maximalDcs d1 d2 <:: maximalDcs d3 d4)=true.

Listing 16 Lemma maximalDcs_prop

Lemma max_appendAns4:
∀ (a:list R ) (h: CSTE )(l:list CSTE )
(q: Q ),
( TEPLCY _EvalTE (TEPolicy (a, h :: l)) q) =

maximalDcs
( TEPLCY _EvalTE (TEPolicy (a, [h])) q)
( TEPLCY _EvalTE (TEPolicy (a, l)) q).

Listing 17 Lemma max_appendAns4

In addition, the OrdPreserv_cstrt lemma is the Coq
version of Lemma (2), and the max_prop2 lemma is a
corollary of Lemma (1) above.

4.3 Non-decreasing property of policies

It is common to add new policy statements as new regulations
arise. The next property states that when adding new rules,
policies do not change their decisions in the reverse direction
of the order on decisions (i.e.,< ::). When adding new rules,
changing decisions, for example, from Permitted to NotPer-
mitted, is impossible. Thus, granted requests will never be
revoked. Revoking access from already granted requests is
problematic because once the information has been revealed,
there is no way to reverse the effect of revealing this infor-
mation. This property is aligned with monotonicity defined
in [2]. We state and prove the property in Listing 18, which
expresses that TEpla is non-decreasing.

Theorem Non_Decreasing_TEpla:
∀ (Pol_list: list TEPLCY ) (Single_pol: TEPLCY ) (q:

Q ) (d d’: DCS ),
validCnstrtListPolicy Pol_list ∧ validConstrt

Single_pol →
( TEPLCY _EvalTE (⊕ (Pol_list)) q) = d →
( TEPLCY _EvalTE (⊕ (Single_pol::Pol_list)) q) = d’

→
(d <:: d’) = true.

Listing 18 Theorem Non_Decreasing_TEpla

This theorem states that adding a policy Single-
_pol, to any list of policies Pol_list can change the
decisions only according to the order relation <: : on
decisions. The predicate validCnstrt expresses that
the constraints in Single_pol satisfy the second and

third conditions from Sect. 3.4 (Predicate_pl_cdn
and Predicate_plc_cdn_Transition). The predi-
cate validCnstrtListPolicy applies this check to
every policy in Pol_list. The ⊕ operator extracts the
rule lists of all the policies in its argument list of poli-
cies and combines them into one list, and similarly for
constraints, forming a single policy from these rules and
constraints. Note that in this theorem, (⊕ Pol_list) �
(⊕ (Single_pol::Pol_list)).

4.4 Independent composition of policies

It is important to be able to analyze the behavior of access
control policies based on their components or sub-policies,
as the decisions for the combined policies can be determined
from the decisions of included policies. Similar to indepen-
dent composition in [2], we codify the following property of
TEpla.

Theorem Independent_Composition:
∀ (PLCY_ DCS _pair : list ( TEPLCY ∗ DCS )) (q : Q ) (

dstar : DCS ),
Foreach q (map fst PLCY_ DCS _pair) (map snd PLCY_

DCS _pair) ∧
( TEPLCY _EvalTE (⊕ (map fst PLCY_ DCS _pair)) q) =

dstar →
(maximum (map snd PLCY_ DCS _pair) <:: dstar) = true.

Listing 19 Theorem Independent_Composition

In this statement, PLCY_DCS_pair is a list of policies and
a list of decisions of the same length such that for each index
i into these lists, if pi and di are the policy and decision at this
index, respectively, then (pi , di ) is an evaluation pair on q,
which means that (TEPLCY_EvalTE pi q) = di , i.e., that
di is the decision returned from evaluating policy pi on query
q. Although we do not show its definition, the Foreach
predicate is defined to express this property. It also expresses
that all the constraints in each policy satisfy the second
and third conditions from Sect. 3.4 (Predicate_pl_cdn
and Predicate_plc_cdn_Transition). The inde-
pendent composition theorem states that whenever a pair
of lists satisfies this property, then the decision obtained
by evaluating the combined policy on q is the maximum of
the decisions resulting from evaluating each policy indepen-
dently. The function maximum takes a list of decisions and
returns the maximum according to the binary relation < ::.

5 Conclusion

We have presented the infrastructure of the TEpla Type
Enforcement policy language, and formally verified some of
its important properties inCoq. TEpla, with formal semantics
and verified properties, is an essential step toward developing
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certifiably correct policy-related tools for Type Enforcement
policies.

The properties that we have considered here, namely
determinism, order preservation, independent composition,
and non-decreasing, analyze the behavior of the language
by defining different ordering relations on policies, queries,
and decisions. These ordering relations enabled us to evalu-
ate how language decisions react to changes in policies and
queries.

Moreover, we provide the language constructs (in partic-
ular, the integration of user-defined predicates) for allowing
security administrators to encode different security goals in
policies. This makes the language flexible because policy
developers are not limited to built-in conditions to express
their intended predicates.

In related work, ACCPL (A Certified Core Policy Lan-
guage) [19] represents some preliminary work using our
approach, i.e., building in formal semantics from the start,
but in the domain of web services and digital resources, with
some very basic properties proved, which include determin-
ism, but not the other properties considered here. In other
work, a variety of other studies have included the formal-
ization of various aspects of access control policies using
different and sometimes quite complex logics and algo-
rithms, e.g., [20–23]. In our approach, we start with a simple
language, and some simple notions of orderings and rela-
tions on sets, and show that it is possible to express fairly
complex access control requirements. We were inspired, for
example, by the work in [14], which shows that complex
access control constraints such as separation of duty [4, 24]
can be expressed using set operators. Additionally, although
we began with the particular domain of policies for operat-
ing systems, one of our goals is to develop general ideas that
can be adapted to other domains such as the web and dis-
tributed platforms. Future work will include exploring such
extensions. Eventually, we plan to use the program extrac-
tion feature of Coq to generate a certified program from the
algorithms used to express TEpla semantics, similar to what
was done in [25] for firewall policy evaluation.

With regard to work on SELinux in particular, differ-
ent studies have been carried out that put forward some
possible tools for helping policy writers write policies that
are more easily understood and reasoned about. Languages
such as Lobster [26], Seng [27], Please [28], and CDS-
Framework [29] are intended to enhance the SELinux policy
language by providing easier syntax and more language fea-

tures, such as defining object-oriented policy syntax, for
example. Despite their attempt to help users to specify
SELinux security policies, as analyzed in [5], these languages
give rise to limited results that cannot be verified due to a lack
of formalized definition of semantics and language behav-
ior, which results in potentially contradictory interpretations
and precludes correct reasoning. These issues contribute to
the ongoing development of numerous policy-related tools
that try to model SELinux policies without proving the cor-
rectness of the results and analyses, as each tool attempts to
cover more features rather than verifying their properties and
results.

Our future work will also include addressing some of
the current limitations of the language, including extend-
ing the kinds of constraints provided, as well as designing
and developing certified tools for policy-related tasks such
as automating various kind of policy analyses. We expect to
be able to reuse many definitions and lemmas of the current
Coq development.
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Appendix A The BNF grammar of TEpla

Figure3 represents the BNF grammar of TEpla. We use
{ } notation to represent the Kleene operator meaning 0 or
more occurrences. In this grammar, the primitive attributes
type,Object Class, Permitted Action are denoted by type, cls,
prm respectively.
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Fig. 3 The BNF grammar of
TEpla
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