
Temporal Logic Theorem Proving and its

Application to the Feature Interaction Problem ⋆

Amy Felty

School of Information Technology and Engineering, University of Ottawa
150 Louis Pasteur, P.O. Box 450, Stn A

Ottawa, Ontario K1N 6N5, Canada
afelty@site.uottawa.ca

Abstract. We describe work in progress on a theorem prover for linear
temporal logic (LTL) that will be used to automatically detect feature
interactions in telecommunications systems. We build on previous work
where we identified a class of LTL formulas used to specify the require-
ments of features, and developed a model checking tool to help find
conflicts among feature requirements. The present work will generalize
and improve our method in two ways. It will increase the class of conflicts
we can find, and it will improve efficiency.

1 Introduction

The feature interaction problem is a well-known difficulty that arises in the
design and implementation of telecommunications systems, and has received
much attention from both research and industry. As more and more features are
added to both residential and business telephone services, there is an increased
potential for conflicting requirements among seemingly independent features. In
a variety of recent approaches to the problem, temporal logic is used to specify
feature requirements [4, 11], and model checking tools are used to help in the
automatic detection of feature conflicts (for example [6, 10, 16]).

In previous work, as part of an industrial case study, we developed a method
which found conflicts among features by considering two specification formu-
las, one each from two different features [10]. Each formula specifies a single
requirement of a feature in temporal logic. A feature conflict results whenever
the two formulas are logically inconsistent. We used a model checker to auto-
mate the process of finding such inconsistencies. We chose COSPAN since it was
relatively easy to adapt to our task.

This paper describes work in progress on generalizing and improving our
method by developing a theorem prover for linear temporal logic (LTL) that is
specialized to our task. The main improvement we envision is to generalize the
class of properties that can be handled by our technique. Using a model checker
restricted us to consider only particular instantiations of specification formulas.
Our proof search procedure will allow unrestricted use of quantification. We also

⋆ In Proceedings of the IJCAR Workshop on Issues in the Design and Experimental

Evaluation of Systems for Modal and Temporal Logics, Technical Report DII 14/01,
University of Siena, 2001.



hope to improve on performance. Although the model checker was quite efficient
for our task, using general-purpose tools specialized to particular tasks almost
always comes with some additional performance costs. Improving on performance
will allow us to consider more difficult problems. Thus, our goal is to develop a
specialized automated proof procedure that handles the class of linear temporal
logic formulas that arise in the application of feature interaction detection. The
addition of quantifiers will complicate matters, but we have begun to develop
strategies for applying quantifier rules efficiently for our task.

There are many choices in automating a temporal logic. Here, we choose to
translate LTL into first-order logic (FOL). We use a translation that can be
viewed as a formalization of the semantics of LTL [14, 15] in FOL with integers.
Because we are concentrating on a particular application, our proofs have a
specific form and are such that they can be decomposed so that the temporal
reasoning is simple and the challenging part is in the reasoning about formulas
of FOL with integer arithmetic. In designing a proof search procedure, we hope
to draw on current technology for automating this kind of reasoning.

In Sect. 2 we present LTL, and in Sect. 3 we describe our approach to feature
conflict detection. We give an example of a conflict, and provide an informal proof
in LTL which we use to help outline our proof search strategy. Our proposed
strategy is given in Sect. 4. This section describes work in progress, and thus
gives a rough outline of the strategy, and indicates where details have to be filled
in. Implementing our search procedure is, of course, part of our planned future
work. We discuss other future work, as well as related work and conclusions in
Sect. 5.

2 Linear Temporal Logic

In the version of LTL we use, an atomic formula has the form p(t1, t2, . . . , tn)
where p is a predicate and for i = 1, . . . , n, ti is a term, just as in first-order
logic. The syntax of formulas of LTL are defined as follows, where A represents
an atomic formula.

L := A | ¬L1 | L1 ∧ L2 | L1 ∨ L2 | L1 ⊃ L2

| �L1 | ♦L1 | L1 U L2 | L1 W L2 | XL1.

These formulas include the usual connectives of propositional logic, as well as the
temporal operators “always” (�), “eventually” (♦), “until” (U), “weak until”
(W), and “next” (X). We do not include quantifiers here; we introduce them
in Section 4 when we begin to discuss our new proof search procedure. The
semantics of LTL describes how to evaluate an LTL formula on a path or set of
paths in a model [14, 15]. A model is defined as a finite set of states labelled with
atomic LTL formulas and a transition relation containing pairs of states. For a
given state, the transition relation specifies which states it is possible to go to
in one step. It is required that each state has at least one transition going out
of it. One or more states are designated as start states. A path π is an infinite
sequence of states s0 → s1 → . . . such that s0 is a start state, and every pair of
consecutive states si → si+1 (i ≥ 0) is in the transition relation. We denote the
suffix of a path π starting at si as πi. We write π |= L to denote that the path

2



π satisfies LTL formula L. This satisfaction relation is defined by induction on
the structure of L as follows.

1. For atomic formula A, π |= A iff A is one of the labels assigned to s0.

2. π |= ¬L iff π |= L is false.

3. π |= (L1 ∧ L2) iff both π |= L1 and π |= L2.

4. π |= (L1 ∨ L2) iff π |= L1 or π |= L2.

5. π |= (L1 ⊃ L2) iff whenever π |= L1, it is also the case that π |= L2.

6. π |= �L iff for all i ≥ 0, πi |= L.

7. π |= ♦L iff for some i ≥ 0, πi |= L.

8. π |= (L1 U L2) iff there exists some i ≥ 0 such that πi |= L2 and for every
j = 0, . . . i − 1, we have πj |= L1.

9. π |= (L1 W L2) iff π |= �L1 or π |= (L1 U L2).

10. π |= XL iff π1 |= L.

We say that an LTL formula L is valid if every path in every model satisfies L.
All propositional tautologies, for example, are valid LTL formulas.

3 Feature Conflict Detection

Our approach to the detection of feature interactions begins by specifying each
feature of a telecommunications system as a set of formulas in LTL. We have
identified a general class of LTL formulas useful for feature specification [10].
Because we do not consider all of LTL, we will be able to specialize our new
proof procedure to handle only this class of formulas. In this section, for illus-
tration purposes, we consider a minor variation of one special case of this class
of formulas and discuss other examples in the next section. For this special case,
a specification formula has the form:

�[e ⊃ (p U (r ∨ d))]. (1)

The symbols e, p, r, and d are formulas formed from atomic formulas and the
propositional connectives. Informally, this formula states that if some enabling
condition e holds, then p is a condition that persists, until eventually there is
either a resolution r or a discharge condition d. If we were to consider exactly
the class of formulas from our previous work, formula (1) should be �[e ⊃
X(p U (r ∨ d))]. We needed the next operator for cases when p was ¬e. It is
not needed in the example we show here, so we leave it out to simplify the
presentation, though adding it would only change small details of the proof and
the search procedure.

We consider two features as examples: Anonymous Call Rejection (ACR) and
Call Forwarding Busy Line (CFBL). Calls to a subscriber of the ACR feature will
not go through when the caller prevents his or her number from being displayed
on the subscriber’s caller ID device. For CFBL, the subscriber gives a number to
which all calls will be forwarded when the subscriber’s line is busy. The property
below states that if x subscribes to ACR and if there is a call request to x from
y, and if furthermore the presentation of y’s number is restricted, this should

3



cause y to receive the ACR announcement denying the call, unless y gives up
and goes back on hook first.

�[(ACR(x) ∧ call req(x, y) ∧ ¬DN allowed(y)) ⊃

(call req(x, y) U (ACR annc(y, x) ∨ onhook(y)))] (2)

The next property states that if (a) x subscribes to CFBL, (b) x is not idle, (c)
all previously forwarded calls from x to z have terminated, and (d) there is an
incoming call from y, then the incoming call from y to x will be forwarded to z,
unless y goes back on hook in the meantime.

�[(CFBL(x) ∧ ¬idle(x) ∧ ¬∃y forwarding(x, y, z) ∧ call req(x, y)) ⊃

(call req(x, y) U (forwarding(x, y, z) ∨ onhook(y)))] (3)

The above two properties provide an example of feature interaction. Intuitively,
there is a conflict because there should never be a time when a call is forwarded at
the same time the caller hears an announcement saying that the call is denied.
This is a conflict known to designers of telecommunications systems, and is
resolved by giving priority to CFBL when DN allowed(y) holds, and to ACR
otherwise.

Both of these properties have the same form as formula (1). In both cases the
enabling condition e is a conjunct of several formulas, the persisting condition
p is call req(x, y) (which holds from the time y starts to call x until the point
where the call processing system makes a connection between x and y), the left
disjunct is the resolution r, and the right disjunct onhook(y) is the discharge
condition d.

In the CFBL property, note the use of ∃, even though the definition of LTL
so far doesn’t include quantifiers. Quantifiers can be added directly to LTL [15],
but it was important for our model checking approach to leave them out. The use
of ∃ here can be viewed as an abbreviation. When we are checking properties of
a particular model of call processing, we will always include some fixed number
of entities (parties with a phone). The formula with ∃ stands for the disjunction
of atomic formulas of the form ¬forwarding(x, y, z) where in each disjunct, y is
replaced by one of the entities, and there is a disjunct for every entity. When we
add quantifiers to the logic in the next section, our proof search procedure will
be designed to handle them directly, rather than as abbreviations.

A central idea to both our model checking and theorem proving approaches
is that a feature interaction corresponds to logical inconsistency of specification
formulas. Our definition of feature conflict [10], when applied to examples of the
form of formula (1) above, states that two features interact when the following
formula is valid:

¬(�[e1 ⊃ (p1 U (r1 ∨ d1))] ∧ �[e2 ⊃ (p2 U (r2 ∨ d2))]

∧ �[SA] ∧ ♦[e1 ∧ e2 ∧ g]). (4)

This formula is valid precisely when there does not exist a model such that all
four conjuncts inside the negation are satisfiable. The first two conjuncts are
two feature specifications, each having the form of formula (1). In the third
conjunct, SA represents system axioms, which describe properties that should

4



be true of any reasonable system implementation. The fourth conjunct restricts
our attention to paths on which both enabled conditions can hold simultaneously
and along which the call is not discharged prematurely, but is instead resolved
successfully. The formula g, and the system axioms we use for this example are
shown below.

g := (p1 ∧ p2) U (¬p1 ∧ ¬p2 ∧ ¬d1 ∧ ¬d2)
SA := ¬(ACR annc(y, x) ∧ forwarding(x, y, z))

∧ ¬(ACR annc(y, x) ∧ call req(x, y))
∧ ¬(forwarding(x, y, z) ∧ call req(x, y))
∧ ¬(onhook(y) ∧ call req(x, y)) ∧ ¬(onhook(y) ∧ forwarding(x, y, z))

See Felty & Namjoshi [10] for a fuller discussion of the role of these formulas.
To motivate our proof search strategy, we begin with an informal proof of

formula (4) specialized as follows:

e1 := ACR(x) ∧ call req(x, y) ∧ ¬DN allowed(y)
r1 := ACR annc(y, x)
e2 := CFBL(x) ∧ ¬idle(x) ∧ ¬∃y forwarding(x, y, z) ∧ call req(x, y)
r2 := forwarding(x, y, z)
p1, p2 := call req(x, y)
d1, d2 := onhook(y).

We denote this formula as φ. Formulas (2) and (3) are subformulas of φ rep-
resenting the particular specification formulas from which we attempt to find a
contradiction. We now present an informal proof of φ using the definition of the
semantics of LTL given at the end of Sect. 2. We have formalized this proof in
Nuprl [5], using an embedding of the semantics of temporal logic into Nuprl’s
type theory [9]. The proof we give here follows the Nuprl proof closely.

Theorem 1. φ is a valid formula.

Proof. This theorem states that it is not possible to define a model such that
there exists a path where all four conjuncts inside the outermost negation in φ

hold. Let π be an arbitrary path in an arbitrary model in π. We assume that
the four conjuncts are satisfied in π, and we derive a contradiction. The fourth
conjunct tells us that there is a k ≥ 0 such that (e1 ∧ e2 ∧ g) holds at sk. From
this, we derive the following three facts.

1. Since g holds at sk, by the definition of U, we know that there is a j ≥ k

such that (¬p1 ∧ ¬p2 ∧ ¬d1 ∧ ¬d2) holds at sj , and for j′ = k, . . . , j − 1, we
have that (p1 ∧ p2) holds at sj′ .

2. Since e1 holds at sk, by the first conjunct, (p1 U (r1 ∨ d1)) also holds at
sk. Thus there is an i1 ≥ k such that (r1 ∨ d1) holds at si1 , and for i′ =
k, . . . , i1 − 1, we have that p1 holds at si′ .

3. Similarly, since e2 holds at sk, we know (p2 U (r2∨d2)) also holds at sk. Thus
there is an i2 ≥ k such that (r2 ∨ d2) holds at si2 , and for i′ = k, . . . , i2 − 1,
we have that p2 holds at si′ .

From these facts, we know that k ≤ j, i1, i2. The rest of the proof proceeds by
cases on the relative values of j, i1, and i2.

5



Case 1. Assume i1 > j. Here we have a contradiction because by fact 1 above,
¬p1 holds at sj , and by fact 2 above, p1 holds at sj since j is in the range
k, . . . , i1 − 1.

Case 2. Assume i2 > j. Similarly, we have a contradiction because by fact
1, ¬p2 holds at sj , and by fact 3, p2 holds at sj since j is in the range
k, . . . , i2 − 1.

Case 3. Assume i1 < j. By fact 2, (r1 ∨ d1) holds at si1 . By fact 1, p1 holds at
si1 because i1 is in the range k, . . . , j−1. Thus (ACR annc(y, x)∨onhook(y))
and call req(x, y) both hold at si1 . But since SA holds at every state, we get
a contradiction because neither ACR annc(y, x) nor onhook(y) can hold at
the same time as call req(x, y).

Case 4. Assume i2 < j. This case is similar to case 3, but this time both
call req(x, y) and (forwarding(x, y, z)∨ onhook(y)) (which is r2 ∨ d2) hold at
state si2 , which again leads to a contradiction from SA.

Case 5. The only remaining case is when j = i1 = i2. At sj , we have (¬p1 ∧
¬p2 ∧ ¬d1 ∧ ¬d2) by fact 1, (r1 ∨ d1) by fact 2, and (r2 ∨ d2) by fact 3. By
propositional reasoning, it follows that r1 ∧ r2 hold, which means that both
ACR annc(y, x) and forwarding(x, y, z) hold at sj . We derive a contradiction
from SA once more, since these atomic formulas cannot hold at the same
time.

4 A Sequent Calculus Approach to Temporal Logic

Theorem Proving

The translation we use from LTL to FOL is straightforward, and based directly
on the semantic definition of LTL given at the end of Sect. 2. To each atomic LTL
predicate, we add a new argument to obtain the corresponding predicate in FOL.
This argument represents the index i of the state in the path in which it holds,
i.e., given path π, πi satisfies p(t1, t2, . . . , tn) in LTL if and only p(t1, t2, . . . , tn, i)
holds in FOL. The translation function f takes two arguments, an LTL formula,
and a path index. An LTL formula L is translated by computing f(L, 0). The
translation is defined inductively in Fig. 1.

f(p(t1, . . . , tn), i) := p(t1, . . . , tn, i)
f(¬L, i) := ¬f(L, i)

f(L1 ∧ L2, i) := f(L1, i) ∧ f(L2, i)
f(L1 ∨ L2, i) := f(L1, i) ∨ f(L2, i)
f(L1 ⊃ L2, i) := f(L1, i) ⊃ f(L2, i)

f(�L, i) := ∀j (j ≥ i ⊃ f(L, j))
f(♦L, i) := ∃j (j ≥ i ∧ f(L, j))

f(L1 U L2, i) := ∃j (j ≥ i ∧ f(L2, j) ∧ ∀k (i ≤ k < j ⊃ f(L1, k)))
f(L1 W L2, i) := f(L1 U L2, i) ∨ f(�L1, i)

f(XL, i) := f(L, i + 1)

Fig. 1. Translation of LTL formulas to FOL formulas

6



We outline a strategy for building proofs of FOL formulas obtained by trans-
lating LTL formulas of the form (4). We illustrate with the particular formula
φ and often refer to the proof of Theorem 1, but we make note of which parts
of this proof do not depend on the particular instantiations of the subformulas
e1, p1, r1, d1, e2, p2, r2, d2. As stated, formula (4) represents just one subclass of
the class of formulas we wish to consider, but serves to illustrate the general
ideas. Extending the proof procedure to handle the full class is ongoing work. It
is expected to be straightforward to include the whole class, but challenging to
make proof search efficient.

The first step is to determine if it is possible for both features to be enabled
together. Two features cannot be enabled together if ¬♦(e1 ∧ e2) is valid. We
try to find a proof of the translation of this formula. This check depends on the
instances of e1 and e2 and generally involves trying to find a fairly simple proof
in propositional logic. Second, if the features can be enabled together, we try to
find a proof of formula (4). In the sequel, we focus on the automatic generation
of proofs of formulas of this form.

For our first prototype, we have chosen to implement a Gentzen-style sequent
calculus for first-order classical logic [12] with rules for reasoning about equality
and inequality. The feature conflict examples we have worked with do not require
induction, so we do not include it. The main rules of this inference system are
given in Fig. 2. Rules for equality and inequality are not shown, though they

Γ −→ A, ∆ Γ −→ B, ∆
∧-R

Γ −→ A ∧ B, ∆

A,B, Γ −→ ∆
∧-L

A ∧ B, Γ −→ ∆

Γ −→ A, B, ∆
∨-R

Γ −→ A ∨ B, ∆

A, Γ −→ ∆ B, Γ −→ ∆
∨-L

A ∨ B, Γ −→ ∆

A, Γ −→ B, ∆
⊃ -R

Γ −→ A ⊃ B, ∆

Γ −→ A, ∆ B,Γ −→ ∆
⊃ -L

A ⊃ B, Γ −→ ∆

A, Γ −→ ∆
¬-R

Γ −→ ¬A, ∆

Γ −→ A,∆
¬-L

¬A, Γ −→ ∆

Γ −→ [y/x]A, ∆
∀-R

Γ −→ ∀xA,∆

[t/x]A, Γ −→ ∆
∀-L

∀xA,Γ −→ ∆

Γ −→ [t/x]A, ∆
∃-R

Γ −→ ∃xA,∆

[y/x]A, Γ −→ ∆
∃-L

∃xA,Γ −→ ∆

The ∀-R and ∃-L rules have the proviso that the variable y cannot appear free in the
lower sequent.

Fig. 2. A Sequent Proof System for First-Order Classical Logic

are of course important for our search strategy. A sequent is written Γ −→ ∆

where Γ and ∆ are sets of formulas. An initial sequent is a sequent Γ −→ ∆

such that there is a formula A where A ∈ Γ and A ∈ ∆. The search procedure
is goal-directed; it applies sequent rules and stores proofs and partial proofs as
it goes along. The important part of proof search is determining the strategy
for applying rules, i.e., which rules at which point in the proof and in what

7



order. One of the reasons we choose sequent proofs is that we believe that failed
proofs can give us some insight in the debugging phases of writing specification
formulas and system axioms. Our proof search procedure is similar to our model
checking procedure [10] in that if we assume that the specification formulas and
the system axioms are stated correctly and a proof is found, we can be sure there
is a conflict. If no proof is found, there could be gaps in the system axioms or
specifications.

For the generic parts of the proof that do not depend on instantiations of the
subformulas e1, p1, r1, d1, e2, p2, r2, d2, we build proof skeletons. We simply fill
them in with particular formulas, thus reducing the amount of search needed.
For example, note that the proof of Theorem 1 up to the beginning of the
case analysis is generic. The partial sequent proof representing this part of the
informal proof has the sequent → φ at the root, a series of applications of the
rules in Fig. 2 each of which has exactly one premise, and a leaf node of the form
Γ −→ ∆ where ∆ is empty and Γ is:

{k ≥ 0, j ≥ k, i1 ≥ k, i2 ≥ k,

f(e1, k), f(e2, k),¬f(p1, j),¬f(p2, j),¬f(d1, j),¬f(d2, j),
∀j′ (k ≤ j′ < j ⊃ (f(p1, j

′) ∧ f(p2, j
′))),

f(r1, i1) ∨ f(d1, i1), ∀j′ (k ≤ j′ < i1 ⊃ f(p1, j
′)),

f(r2, i2) ∨ f(d2, i2), ∀j′ (k ≤ j′ < i2 ⊃ f(p2, j
′)),

f(�[SA], 0)}

From this point, our approach to automating search is to do a case analysis on
the relative values of j, i1, and i2. There are 13 possible cases: 6 for the cases
where all 3 values are different, 6 for the cases when 2 are the same and the
other is different, and 1 for the case when j = i1 = i2. We could just break the
proof into these cases and apply some kind of general search to each. But in the
informal proof of Theorem 1, there are only 5 cases. We only needed 5 because
most of them cover more than one of the 13 subcases mentioned here. The
first case in the informal proof, for example, covers the subcases: i1 > j > i2,
i1 > i2 > j, i2 > i1 > j, i1 = i2 > j, i1 > i2 = j. In general, a clever
decomposition into a small number of cases is hard to automate, but we are at
least able to incorporate part of the structure of the case analysis of Theorem 1
into our strategy. In particular, we always use the first two cases because they
are generic; they are independent of the particular predicates for p1 and p2. As
we have done so far, we provide a sequent proof skeleton which gets filled in
with particular instances. These 2 cases in the informal proof cover 7 of the 13
subcases; thus only 6 remain.

In Theorem 1, the last 3 cases depend on particular facts about ACR and
CFBL. Since we cannot depend on always having the same structure as in this
example, our strategy is to decompose the proof into 6 cases at this point. Prov-
ing these cases is where good automation is required, and perhaps we will need
sophisticated heuristics. Our initial prototype implements a simple depth-first
search procedure [8]. This procedure combines direct sequent proof with ampli-

fication similar to that used in Andrew’s mating search procedure [1], which is
complete for FOL without integers. An important challenge will be automating
reasoning about integer inequalities. We may be able to incorporate decision pro-
cedures to handle these parts of the proof. For example, the Sup-Inf method [3,

8



19] may be useful here. We are not attempting to implement a complete pro-
cedure, but we believe it will not be difficult to handle those formulas already
handled in our model checking approach and hopefully many more.

One drawback of our model checking approach was that we had to use all
possible instantiations of the system axioms SA using the constants that repre-
sented the different parties in a call. In a call with 3 parties a, b, and c, there are
3 possible instances for x, 3 for y, and 3 for z. Here, we can universally quantify
over x, y, and z in the formula SA, and our procedure uses unification to de-
termine the instances we need. Amplification mentioned above can handle cases
where more than one instance is needed in a particular proof. We are unlikely
to ever need all 33 instances.

Our initial prototype can find proofs of some formulas of the form (4), but
the automated reasoning for the 6 subcases needs improvement. Also, there
are certainly other forms that specification formulas can take besides that of
formula (1). In our previous work, we defined a feature specification language [10]
which provides a general template. Specifications using these templates are easily
translated to LTL formulas of a regular form. For example, two other common
forms resulting from the template are below.

�¬(e1 ∧ X((p1 ∧ ¬e2) U (e2 ∧ ¬(p2 U (r ∨ d))))) (5)

�[e ⊃ X(¬p W r)] (6)

Formula (5) expresses a property that must hold after two enabling events e1 and
e2 happen in sequence. In particular, the precondition on the property is that e1

is followed by e2 with p1 persisting between them. The postcondition is (p2 U (r∨
d)), which is similar to the postcondition in formula (1) and states that after
this series of events, a second persisting condition p2 holds until there is either a
resolution r or a discharge d. The formula uses double negation to express this
form of requirement: the property is false if and only if there is a point where the
precondition holds but the postcondition fails to hold. Formula (6) is often used
to express a safety property: if there is some enabling event e, then some property
p should not hold between e and the resolution r. For example, if the called party
is idle, the caller should not hear a busy tone between the time the call is started
and the time it ends. Our approach must certainly be extended to handle these
and all formulas that result from translation of the specification language. Also,
formula (5) illustrates that the enabling conditions can be more complex, so
we will need more theorem proving power to determine if two formulas can be
enabled together. But even handling the full specification language only requires
a small subset of full LTL. We believe that we can integrate the general form
of our template language into the proof search strategy outlined so far without
encountering significant difficulties.

5 Conclusion

We have described work in progress on a proof procedure for automating feature
conflict detection. Our next step will be to fill in the rest of the strategy for this
procedure, implement it, and apply what we learn from examples to improve the
strategy and increase the class of examples that we can handle.

9



When we began work on automating conflict detection, in addition to model
checkers, we examined several existing modal logic theorem provers such as Mod-
LeanTAP[2] and the Logics Workbench (LWB) [13]. These systems, as well as
several other existing systems, did not directly support the logic we were plan-
ning to use, though perhaps it would not be difficult to adapt them to do so. Since
that time, a module for propositional linear temporal logic has been added to
LWB [18]. We plan to try this system on some examples without quantification,
e.g., any of the examples used in our model checking approach, and compare the
results to our new approach.

An alternative theorem proving approach would be to use a theorem prover
that implements a higher-order logic, and use an embedding of LTL into the
higher-order logic used by the system. As mentioned, we used such an embed-
ding in Nuprl [9] to formalize Theorem 1. LTL has also been formalized in the
HOL theorem prover [17]. Although there are some differences between the Nuprl
and HOL formalizations, the application of either one to the kinds of proofs we
encounter in feature conflict detection should be similar. Both systems provides
primitives which we can use to implement an automated procedure for the class
of LTL formulas we have identified and thus we could implement our conflict de-
tection fully within a higher-order system. Initial experiments with Nuprl showed
that the overhead of using one logic embedded in another for this application has
too great a cost. We expect the outcome to be similar using HOL, and we plan
to do similar experiments to find out. Our translation to FOL can be viewed as
a compromise. The expected advantage is a gain in efficiency. The disadvantage
is the use of a translation to build a notion of time into FOL. In the higher-order
embeddings, time is more elegantly defined in terms of primitives already exist-
ing in the logic. The FOL approach requires a correctness theorem to show that
a CTL formula is valid if and only if its translation is provable in FOL, but the
proof of such a theorem should be straightforward.

We have identified a class of formulas from LTL that correspond to those
that result from translation from our template language. It would be interesting
to give a more precise characterization of this fragment of LTL and compare it
to various other fragments that have been identified in the literature, such as
decidable fragments.

Another orthogonal direction for our work is to investigate the use of the
Mona model checker [7] for our application. Mona implements branching time
satisfiability, which generalizes linear time. In addition to detecting conflicts, we
plan to use it to investigate whether we can use the feature specifications to
synthesize efficient programs that meet these specifications.

References

1. P. B. Andrews. Theorem proving via general matings. Journal of the Association

for Computing Machinery, 28:193–214, 1981.
2. B. Beckert and R. Goré. System description: leanK 2.0. In Fifteenth International

Conference on Automated Deduction, volume 1421 of Lecture Notes in Artificial

Intelligence, pages 51–55. Springer-Verlag, 1998.
3. W. W. Bledsoe. A new method for proving certain Presburger formulas. In Pro-

ceedings of the Fourth Joint Conference on Artificial Intelligence, pages 15–21,
1975.

10



4. J. Blom, R. Bol, and L. Kempe. Automatic detection of feature interactions in
temporal logic. In K. E. Cheng and T. Ohta, editors, Feature Interactions in

Telecommunications Systems III, pages 1–19. IOS Press, 1995.
5. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop-

ment System. Prentice-Hall, 1986.
6. L. du Bousquet. Feature interaction detection using testing and model-checking,

experience report. In World Congress on Formal Methods. Springer Verlag, 1999.
7. J. Elgaard, N. Klarlund, and A. Møller. Mona 1.x: New techniques for WS1S and

WS2S. In Tenth International Conference on Computer Aided Verification, volume
1427. Springer-Verlag Lecture Notes in Computer Science, 1998.

8. A. Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic

Programming Language. PhD thesis, University of Pennsylvania, Technical Report
MS-CIS-89-53, August 1989.

9. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol verification in Nuprl. In
Tenth International Conference on Computer Aided Verification, pages 428–439.
Springer-Verlag Lecture Notes in Computer Science, June 1998.

10. A. P. Felty and K. S. Namjoshi. Feature specification and automatic conflict
detection. In M. Calder and E. Magill, editors, Feature Interactions in Telecom-

munications and Software Systems VI, pages 179–192. IOS Press, 2000.
11. A. Gammelgaard and J. E. Kristensen. Interaction detection, a logical approach. In

W. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecommunications

Systems, pages 178–196. IOS Press, 1994.
12. G. Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing
Co., Amsterdam, 1969.

13. A. Heuerding, G. Jäger, S. Schwendimann, and M. Seyfried. Propositional logics on
the computer. In Theorem Proving with Analytic Tableaux and Related Methods,
volume 918 of Lecture Notes in Artificial Intelligence, pages 310–323. Springer-
Verlag, 1995.

14. M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Rea-

soning about Systems. Cambridge University Press, 2000.
15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer Verlag, 1991.
16. M. Plath and M. Ryan. Plug-and-play features. In K. Kimbler and L. G. Bouma,

editors, Feature Interactions in Telecommunications and Software Systems V, pages
150–164. IOS Press, 1998.

17. K. Schneider and D. W. Hoffmann. A HOL conversion for translating linear time
temporal logic to ω-automata. In Twelfth International Conference on Theorem

Proving in Higher Order Logics, volume 1690, pages 255–272. Springer-Verlag Lec-
ture Notes in Computer Science, 1999.

18. S. Schwendimann. A new one-pass tableau calculus for PLTL. In Theorem Proving

with Analytic Tableaux and Related Methods, volume 1397 of Lecture Notes in

Artificial Intelligence, pages 277–291. Springer-Verlag, 1998.
19. R. Shostak. On the SUP-INF method for proving Presburger formulas. JACM,

24(4):529–543, 1977.

11


