
Resolving XACML Rule Conflicts using Artificial
Intelligence

Bernard Stepien and Amy Felty
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Canada

{bstepien, afelty}@uottawa.ca

ABSTRACT

The XACML access control policy specification language

provides a simple rule/policy combining algorithm that is invoked

when a request is evaluated against a particular policy set, and the

results of the policy decision point (PDP) include solutions with

both ―permit‖ and ―deny‖ effects. In short, the combining

algorithm allows the policy writer to specify which effect should

prevail in case of such conflicts. This feature has long been

considered as misleading, and a wide variety of research has been

done in an attempt to extend it using supplementary language

features or algorithms based on priority definitions. We propose a

new algorithm that, instead of absolute priorities expressed as

numbers, is based on relative priorities that do not use numerical

scales. Two kinds of annotations need to be added to policies, one

that says if the value of an attribute is sensitive and another that

provides information that can be used to determine which attribute

is most important in the case when several sensitive values are

encountered during the processing of attribute values in a request.

This information serves as input to our decision making

mechanism, designed to respect the user-specified priorities as

best as possible.

CCS Concepts

• General and reference➝General conference proceedings

• Theory of computation➝Logic and verification •Security

and privacy➝Access control •Computing

methodologies➝Knowledge representation and reasoning

•Computing methodologies➝Anomaly detection •Computing

methodologies➝Policy iteration.

Keywords

XACML; access control; Prolog; artificial intelligence; logical

reasoning.

1. INTRODUCTION
XACML [1], [2] is an XML based language for specifying access

control policies. It is highly expressive and includes a rich set of

datatypes, complex logical expressions and an unlimited number

of user-selected attributes. However, it is very verbose and thus

large specifications become rapidly unreadable by human readers.

It also includes a conflict resolution algorithm which is used when

several policies match the values of an access control request and

yield conflicting effects (permit/deny) or conflicting obligations.

In this case, this algorithm provides the policy maker with a

choice of three strategies: first-applicable, permit prevails and

deny prevails. While these algorithms were thought to be

satisfactory in early implementations of XACML, the increasing

use of XACML in industry led to the awareness that these

algorithms were, in fact, not satisfactory and sometimes even led

to dangerous situations. Consequently, this resulted in extensive

research and eventually in new algorithm definitions in version

3.0 of XACML. Among the many proposals, we mention a few

that characterize specific approaches. One of the main issues with

XACML is to know whether the logic of a XACML policy set can

be considered as a pure Boolean expression. Some people

ascertain that theory while others deny it on the basis that a

XACML policy set has rule/policy combining algorithms that they

consider an integral part of the decision logic [3].

A large portion of literature on the subject of rule and policy

conflict resolution is based on the belief that a conflict is an error

[4] and thus must be eliminated. Thus, research on static and

dynamic conflict detection at compile time has prevailed.

However, when looking closely at the intention of XACML,

instead we discover that policies and rules define authorization

spaces for which they are specifically applicable. This is described

fully in [5]. However the problem of determining with accuracy

which rule prevails in case of an overlap of authorization spaces

remains. Also, since policies and rules are composed by various

actors who insert different rules at different times, it is difficult to

constantly clean the policy sets or policies of such conflicts as

discussed in [6]. Instead, it is more appropriate to define methods

to determine which policy and rule is applicable in a certain

context.

The following medical example is of particular interest because it

provides a good illustration of the weaknesses of the XACML rule

combining algorithm. Here we are trying to specify the conditions

under which a nurse can access electronic records (action read).

The first rule specifies that a nurse can read a surgery report

without further restrictions. The second rule prohibits nurses from

reading any document when the location is home care. And finally,

the third rule has no restriction on resources or location but

operates in the case of an emergency, i.e. a nurse can read

anything and anywhere in an emergency. The following policy set

can be viewed as a depiction of a horizontal tree. It illustrates the

hierarchy of XACML elements showing the name of the XACML

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
ICISS 2020, March 19–22, 2020, Cambridge, United Kingdom

© 2020 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.
ACM ISBN 978-1-4503-7725-6/20/03…$15.00

https://doi.org/10.1145/3388176.3388188

121

element and its corresponding target logic. The corresponding full

XACML specification is left as an exercise to the reader.

01 policySet ConflictingPolicySet :=
02 subject-id matches nurse
04 policy NurseReadPolicy :=
05 action-id matches read
06
07 rule NurseResourceRule -> permit :=
08 resource-id matches surgery report
09
10 rule NurseHomeCareRestrictionRule -> Deny
11 := Location matches home care
12
13 rule NurseEmergencyRule -> Permit :=
14 Emergency matches true

In this example, it is clear that the home care rule conflicts with

the resource rule and with the emergency rule in the case of a

request of {subject-id = nurse, action-id = read, resource-id =

surgery report, Location = home care, Emergency = true}. Here

the use of the XACML rule combining algorithm would produce

the following undesired effects:

 Deny prevails would prevent a nurse from reading any

document during an emergency.

 Permit prevails would allow a nurse to read documents

during home care.

Instead, these three rules provide a complex example of conflicts

depending on the situations encountered. Basically, we want the

NurseHomeCareRestrictionRule to prevail in order to deny access

in the case when the location is home care and there is no

emergency, but we would like to see the NurseEmergencyRule

prevail to allow access regardless of the location. This example is

a case of cascading conflicts that cannot be resolved by a simple

XACML rule or policy combining algorithm. This conflict cannot

be considered as an error and should not be corrected by removing

any of its logic. The traditional recommendation of cleaning the

policy of conflicts would also be undesirable because XACML

rules can specify only one type of effect, permit or deny. By

cleaning, we mean removing some of the rule logic that is posing

a problem.

Also, some may argue that the use of the first-applicable rule

combining algorithm and a proper ordering of the rules would

solve the problem. It is highly recommended to avoid this. Most

industry users that we have talked to have prohibited the use of

the first-applicable rule combining algorithm altogether, due to

bad experiences using it. In fact, while this algorithm is usable for

the above small example, larger policy sets with hundreds or even

thousands of rules would easily become unmanageable when

trying to determine the correct order. Thus, most authors have

decided to come up with new algorithms altogether.

We propose a new solution to deriving the final desirable effect.

Instead of any modification such as cleaning, our approach keeps

the logic of these three rules (and all rules) intact, and adds a new

priority mechanism, based on simple sensitivity assessments of

attributes. This mechanism is used in place of the traditional

XACML rule/policy combining algorithm. However, we do not

use a numerical method such as the one in[7], where priorities are

scaled during the evaluation of a request against a policy set, in

the process of determining the desired effect. Instead, we propose

to use artificial intelligence in the form of automated logical

reasoning, which relies on a two-step process of declaring relative

priorities: the first step consists of determining which values of an

attribute are sensitive, and the second consists of declaring which

attributes are more important than other attributes. This

information will be used when conflicting cases are encountered.

This approach handles the concept of defining authorization

spaces as in [5], however without the rule combining algorithm.

The specification of rules is based on the fact that in the absence

of an appropriate target logic (i.e., when no policy rule applies), a

request would return ―not applicable,‖ which is considered as an

implicit deny. Thus, an explicit deny is really meant to ensure that

a rule specifying a permit effect should exclude any cases covered

by rules with an explicit deny specification. The problem is that

the reverse may also be true.

Although it may appear that our approach supersedes the various

methods for conflict detection, we note that these methods can

still be very useful. Indeed, they provide material to a policy set

administrator that can help to define adequate priorities among

authorization spaces. This situation may arise often, mostly

because users who define policies may not be aware of other users‘

policies as indicated in[8]. Also, there are still cases that can be

considered as pure errors for which a priority algorithm proves

useless. This is the case, for example, when solutions contain

exactly the same attributes operating on the same values, such as

in the following simple example:

Rule 1: A1 matches V1 /\ A2 matches V2 => permit

Rule 2: A1 matches V1 /\ A2 matches V2 => deny

2. BACKGROUND
The list below contains a sample of approaches to conflict

detection resolution during the evaluation of requests against

access control policies.

[9] proposes an algorithm based on deterministic formal automata,

based on matrices representing the effect of a pairwise policy.

[10] proposes an ordered set of conflict resolution rules (CRR).

This is in the context of multiple PDPs in collaborative systems.

[11] proposes a system of prioritization of rules and policies using

numerical rankings and performing complex operations like

computing Eigen values to determine which rule prevails.

[12] proposes a variety of priority concepts as follows:

 Absolute ordering where policies and rules are ordered and

the highest order has priority.

 Deny by default where deny effects of rules have priority

over permit cases.

 Obsolescence where more recent rules have priority over

older rules.

 Specificity where a specific rule overrides a more general

rule.

 Authority where a policy defined by a higher authority has

priority.

 Privileges where the policy with the strongest rights has

priority over weaker rights

[5]proposes a conflict resolution mechanism based on effect

constraints of conflicting segments. First, conflicting segments are

defined and then a reordering of conflicting segments is

compulsory. Basically, no changes are made to the user specified

combining algorithms.

122

[13] proposes a method using the concept of various degrees of

majority for a given effect.

[14] proposes an ordering of attributes to determine which

attributes are more important in making decisions using weights.

Among the above approaches to resolve rule conflicts at runtime,

two stand out: one for the RBAC model in [5] and one for the

ABAC model in[11], with the latter one being derived from[14].

3. PRIORITY-BASED CONFLICT

RESOLUTION

3.1 Difficulty Determining Exceptions
One of the potential solutions we have explored involves no

changes to the policy specification language. In this approach, we

defined rules that express exceptions. In the presence of such rules,

there are several ways to try to resolve the conflicts:

 Consider all rules as exceptions.

 Consider the fact that some rules have broader coverage than

others.

In the above example, the first rule NurseResourceRule is

restricted only to the document surgery report, while the second

rule NurseHomeCareRestrictionRule has no restriction involving

surgery report, and actually applies to any value of attribute

resource-id. It is restricted only to location home care. But the

reverse is also true so that there is no way to determine which rule

has a broader coverage than the other. Indeed, both have broader

coverage, but not on the same attribute. Consequently, the only

way to determine which rule should win is to apply some priority

mechanism.

3.2 Description of the Algorithm
The algorithm has been implemented using the logic

programming language Prolog, used widely in artificial

intelligence applications due to its suitability for implementing

logical reasoning. In logic programming, there are two distinct

elements. The first is the knowledge base, which is a database of

facts and clauses (which express rules) about the system to be

reasoned about. The second element is the logic and reasoning

used to solve problems using the knowledge base as an input.

3.2.1 Structure of the Knowledge Base
In our case, the knowledge base is composed of three groups of

facts:

 The description of priorities for each XACML attribute and

their corresponding values;

 The description of relative priorities used to describe which

attributes are more important than others;

 The actual logic of XACML rules in a given access control

application.

We note here that this relative priorities approach is closer to

human reasoning.

First, for the definition of priorities of attributes we consider

attribute/value pairs and specify if a value of an attribute is

sensitive or normal. A convincing example is the case of the

Emergency attribute. When its Boolean value is equal to true we

consider it as sensitive, while when it is false we consider it as

normal. The absence of such a definition can also be used to

express the fact that a given value is of no consequence in the

decision process.

The above example would require the following definition of

priorities to operate correctly. For the subject-id attribute, we

consider the nurse and psychiatrist values to be sensitive, in this

case, for two different reasons. The nurse is allowed to read

medical records of a patient only under certain conditions. Thus,

we consider his or her role as sensitive. On the other hand, the

psychiatrist deals with highly sensitive information that only s/he

can read. Also note that the sensitivity level normal for a surgeon

is the result of the fact that a surgeon performs his/her skills only

in an operating room, thus any other sensitive location is by

definition irrelevant, in sharp contrast with the nurses that perform

in various locations.

priority('subject-id', 'nurse', sensitive).

priority('subject-id', 'anesthesist', normal).

priority('subject-id', 'generalist', normal).

priority('subject-id', 'psychiatrist', sensitive).

priority('subject-id', 'surgeon', normal).

The action-id attribute has two sensitive values, read and email. It

is interesting to note that the print value is dependent on the read

value. You can print only if you can read.

priority('action-id', 'read', sensitive).

priority('action-id', 'write', normal).

priority('action-id', 'email', sensitive).

priority('action-id', 'print', normal).

The resource-id attribute has one particular sensitive value, the

psychiatric report.

priority('resource-id', 'general information', normal).

priority('resource-id', 'surgery report', normal).

priority('resource-id', 'assessment', normal).

priority('resource-id', 'psychiatric report', sensitive).

The Location attribute has sensitive values for any location

outside of a hospital, which here is ambulance and home care.

priority('Location', 'ambulance', sensitive).

priority('Location', 'operating room', normal).

priority('Location', 'home care', sensitive).

priority('Location', 'recovery room', normal).

Finally, the Emergency attribute has a sensitive value true.

priority('Emergency', 'true', sensitive).

priority('Emergency', 'false', normal).

Second, we define which attributes are more important than others

for the case when several sensitive values for different attributes

are present in a request. Here we consider that the Emergency

attribute prevails over any other attribute. In our case, this implies

that a nurse should be able to read any medical record in any

location. We specify this case using the special keyword $all.

is_more_important_than('Emergency', '$all').

Next, we consider the attribute Location as more important than

subject-id, action-id and resource-id. This is, of course, in order to

be able to handle appropriately the situation where the location is

home care.

is_more_important_than('Location', 'subject-id').

is_more_important_than('Location', 'action-id').

is_more_important_than('Location', 'resource-id').

123

In the above definition of facts, note that we have carefully

omitted a definition that would have said that Location is more

important than Emergency. The absence of a specification for this

case is naturally handled by Prolog since in Prolog, this would

generate a fail and force the system to look at the next available

solution.

Finally we consider the attribute resource-id more important than

subject-id in order to handle the psychiatric report case.

is_more_important_than('resource-id', 'subject-id').

It is important to note that the definitions for the

is_more_important_than fact is only partial. This is in sharp

contrast with the approach of defining complete matrices used

in[7]. This is inspired by the not-applicable effect of the XACML

PDP system, used when a request is not matched in the policy set.

However, in a Prolog implementation, if complete information

were required, the use of backtracking would have the effect of

forcing a search for another solution.

3.2.2 Reasoning Mechanism
When presenting a request to a policy decision point (PDP) using

the specified policy set, a number of solutions are returned,

possibly providing conflicting effects. A solution is defined as a

path through the policy set tree and is considered in its entirety

regardless of whether or not an element of logic belongs to a

particular XACML structuring entity (policy set, policy or rule).

Note that our reasoning mechanism is used only in case of

conflicts, not redundancies, mostly because our PDP is

implemented in Prolog where internal indexing is taking place,

reducing considerably the search time for solutions.

In general, we work on the tree representation of a policy set as

described in [5]. The tree is composed of sections of subtrees

expressing the anyOf and allOf constructs in a XACML 3.0 target

description, as was described in [12]. Here, the XACML anyOf

constructs are translated into Prolog disjunctions using the ―|‖

operator and the XACML allOf into Prolog conjunctions using the

Prolog ―,‖ operator. We have used the single predicate approach

described in [15] both for performance and also to enable easy

location of solution traces. However, there are some small but

important modifications to this early model that enable collecting

the names of attributes and the exact trace through the logic. Our

example is represented as follows in Prolog:

01 policy_set(PS, P, R, T, [

02 ['subject-id', A_subject_ID],

03 ['action-id', A_action_ID],

04 ['resource-id', A_resource_ID],

05

06 ['Location', A_Location],

07 ['Emergency', A_Emergency]],

08 EF):

09

10 PS = medex,

11 (A_subject_ID = ['subject-id', nurse],

12 TPS = tps1),

13 (

14 P = p1,

15 (A_action_ID = ['action-id', read],

16 TP= tp1),

17 (

18 (

19 R = r1,

20 (A_resource_ID = ['resource-id',

21 surgery_report],

22 T = [TPS, TP, tr1]),

23 EF = permit

24)

25 |

26 (

27 R = r2,

28 (A_Location = ['Location',

29 home_care],

30 T = [TPS, TP, tr2]),

31 EF = deny

32)

33 |

34 (

35 R = r3,

36 (A_Emergency = ['Emergency',

37 true],

38 T = [TPS, TP, tr3]),

39 EF = permit

40)

41)

42).

Solution paths are traces composed of tree traversals through

policy sets, policies and rules. They are obtained by posing a

query using the Prolog built-in findall predicate applied to the

entire tree:

:- findall(policy_set(PS, P, R, T, RQ,

 EF), policy_set(PS, P, R, T, RQ, EF),

 LS).

where RQ represents a request, which is composed of values for

each attribute of the policy set, LS is a variable that will return a

list of solution paths, and EF is the effect of each solution path.

While the request contains values for all attributes used in the

entire policy set, the returned solutions contain only subsets of

attributes that are effectively used in the path. For example, the

request:

R1 :=

 'subject-id' = 'nurse',

 'action-id' = 'read',

 'resource-id' = 'surgery_report',

 'Location' = 'home_care',

 'Emergency' = 'true'

will return three solution paths. The first one will traverse policy

set medex, policy p1 and rule r1 with an effect of permit. This is

achieved by the matching statements of lines 11, 12, 15, 16, 20,

21 of the Prolog representation of the XACML policy set above.

The subset of attributes for this solution path that contain sensitive

values is { subject-id, action-id }. Note that the attributes Location

and Emergency are absent from this list because there are no

corresponding matching expressions for them in this solution trace.

The surgery report value for resource-id has been declared as

non-sensitive in the priority facts above and thus does not appear

in the subset of attributes. The two other solution traces are left as

an exercise to the reader.

In this example, we have three results with two different effects

(both deny and permit). We have tried different mechanisms to

resolve such conflicts. First, we experimented with numerical

values to express priorities in two different ways.

124

The first approach consisted of calculating the sum of each

attribute‘s priority based on the values for the attributes that are

present in a solution trace through the policy set tree. This

solution was rapidly eliminated because it produces misleading

results when the solution traces do not contain exactly the same

number of attributes. In particular, this case arises when

expressions for a given attribute are not provided, which is the

way to express that any value of the attribute is applicable.

The second approach consisted of picking the solution trace for

which an attribute that is present in the policy logic showed the

highest priority value. This provided good results for our above

example but could not be generalized.

Consequently, we began exploring an algorithm that does not rely

on quantitative numerical values used to describe priorities, but

instead uses qualitative relative values as expressed by the Prolog

priority facts above.

The new algorithm has two steps:

 The first step consists of collecting the attributes for which

there is a sensitive value in a particular solution path. Then,

the attribute that is the most important among all of those in

the subset of attributes in the solution path is chosen using

the is_more_important_than facts. The algorithm works

under the assumption that when using an attribute to specify

some exception, policy writers do use sensitive values in the

XACML target logic. It is clear that this approach would not

work in the case of non-sensitive values. However, access

control logic is mostly composed of cases where sensitive

values of attributes apply. After this step, we end up with a

single attribute that is the most important for a given solution

trace and serves as the representative of a solution trace.

 In the second step, using the most important attributes for

each solution path determined in the first step, we apply the

is_more_important_than fact again, but this time to compare

the relative priority among solution paths, which determines

the most important solution path. The resulting solution path

then provides the final effect desired (permit or deny).

In our case, the request R1 produces three solutions against our

policy set.

The first solution consists of the path that traverses rule

NurseResourceRule, which is the first one returned when

evaluating the request against the policy set by the Prolog

inference engine:

Solution 1: policy_set(medex,p1,r1,[tps1,tp1,tr1],

 [[subject-id,[subject-id,nurse]],

 [action-id,[action-id,read]],

 [resource-id,[resource-id,

 surgery_report]],

 [Location,_G1880],

 [Emergency,_G1889]],

 permit)

In the above first solution, we notice that Prolog open variable

values _G1880 and _G1889 are produced when the matching

logic does not contain attributes Location and Emergency. The

solution trace actually considers all the attributes in the attribute

list of the Prolog representation of the policy set. The solution

trace traverses policy set medex, policy p1 and rule r1.

A solution trace can be obtained using the following Prolog term

to be used in a query to the knowledge base:

go_pdp_med_1:-

 nl, write('request 1'),

 retractall(solution(_,_)),

 assertz(solution(_,0)),

 request(request_1, RQ),

 findall(policy_set(medex, P, R, T, RQ,

 EF),

 policy_set(medex, P, R, T, RQ, EF), LS),

 extract_solution_traces(LS, [], LST),

 nl, write('solution traces:'),

 select_solution(LST, SSOL),

 nl, write('overall effect: '),

 write(SSOL).

The second solution trace returned by the above query is as

follows:

Solution 2: policy_set(medex,p1,r2,[tps1,tp1,tr2] ,

 [[subject-id,[subject-id,nurse]],

 [action-id,[action-id,read]],

 [resource-id,_G1961],

 [Location,[Location,home_care]],

 [Emergency,_G1979]],

 deny)

In the above second solution, we notice that Prolog open variable

values _G1961 and _G1979 are produced when the matching

logic is absent for attributes resource-id and Emergency. The

solution trace traverses policy set medex, policy p1 and rule r2.

And finally the third solution trace is as follows:

Solution 3: policy_set(medex,p1,r3,[tps1,tp1,tr3],

 [[subject-id,[subject-id,nurse]],

 [action-id,[action-id,read]],

 [resource-id,_G2051],

 [Location,_G2060],

 [Emergency,[Emergency,true]]],

 permit)

In the above third solution, we notice that Prolog open variable

values _G2051 and _G2060 are produced when the matching

logic is absent for attributes resource-id and Location.

The solution trace traverses policy set medex, policy p1 and rule

r3.

For each of these solutions we collect the attributes for which

sensitive values are detected in the request and the corresponding

policy set targets. For example, in the case of the third solution

trace, we would have the following list.

 [subject-id, action-id, Emergency]

Then we use the is_more_important_than fact to determine which

attribute is the most important for that solution, and it will be used

to represent this solution when comparing solutions to each other.

In this case, it is the attribute Emergency because of the

is_more_important_than fact for target attribute $all.

When comparing the Emergency attribute against other attributes

with matching expressions that operate on a sensitive value, we

can successfully derive that the Emergency attribute is the most

important of all. Thus the Emergency attribute will represent the

third solution when comparing the solutions among themselves.

This is summarized in Figure 1, where solid arrows show the path

125

of a given solution for request R1, grey boxes show the sensitive

values for attributes and dotted arrows show the

is_more_important_than relations.

By repeating this process for each solution, we determine that

Location is the most important attribute for the second solution

trace and the attribute action-id will represent the first solution,

mainly because there are no is_more_important_than definitions

for the attributes that are present in this solution path.

Figure 1. Visual representation of algorithm applied to

request 1.

Also, the results for the second request R2, where Emergency has

been set to false, will produce only two solutions, with the

attribute Location as the most important attribute. This attribute

value will be used to determine the final effect, which is deny.

R2 :=

 'subject-id' = 'nurse',

 'action-id' = 'read',

 'resource-id' = 'surgery_report',

 'Location' = 'home_care',

 'Emergency' = 'false'

Finally, the same method applied to the request R3 will result in

only one solution produced, in which case, we don‘t need to try to

determine priorities among attributes of this solution path. The

resulting effect of this solution is permit.

R3 :=

 'subject-id' = 'nurse',

 'action-id' = 'read',

 'resource-id' = 'surgery_report',

 'Location' = 'operating room',

 'Emergency' = 'false'

Now, when handling request 1, the second step of our method can

be applied. We compare the attribute representatives for each

solution as given by the first step. Here the results of the first step

produced the following most important attribute representatives

for each solution path:

Solution 1: action-id => permit

Solution 2: Location => deny

Solution 3: Emergency => permit

Since Emergency has been defined as the most important attribute

of all, this will make solution 3 win and the final effect will be

permit. In other words, a nurse can read any document anywhere

during an emergency.

3.2.3 Handling Concurrent Priorities
If we add one more rule that deals with psychiatric reports this

system may no longer work.

 rule NursePsychiatryRule -> Deny :=

 resource-id matches ‗psychiatric report‘

Effectively, since we have declared that the attribute Emergency is

more important than anything else, when attribute value

Emergency matches true and attribute resource-id matches value

psychiatric report in a request that is presented to the PDP, it will

allow a nurse to read a psychiatric report, which is what the above

additional rule wants to prevent. Thus, in this context we need to

improve our methodology. One easy way to handle this case is to

enhance the is_more_important_than facts by adding a field for

the highly critical value.

 is_more_important_than('resource-id',

‗psychiatric report‘, '$all').

Then, adding a clause to the Prolog logic to handle this case (lines

01 to 06 below) solves the problem. Here these cases would be

made available on the top of the list of alternative predicates and

if there is a match, a Prolog cut (―!‖) will prevent it from

considering the other cases as follows:

01 determine_most_important:-

02 is_more_important_than(A, V, '$all'),

03 significant(A),

04 request_value(A, V),

05 save_most_important(A),

06 !.

07

08 determine_most_important:-

09 is_more_important_than(A, '$all'),

10 significant(A),

11 request_value(A, V),

12 save_most_important(A),

13 !.

14

15 determine_most_important:-

16 significant(A),

17 (

18 most_important(nil)

19 |

20 most_important(MI),

21 is_more_important_than(A, MI)

22

23),

24 save_most_important(A),

25 fail.

26

126

27 determine_most_important.

The above code makes intensive use of the Prolog internal

database which in a way mimics the storage of information of

humans in their brains and reasoning as a retrieval of this

information.

3.3 Another Example in the Military Domain
The example provided in [12] can be enhanced to create the kind

of ambiguity found in the previous medical example, showing

again the benefit of priorities. Here we add a policy that considers

the unit being engaged.

policy agent_a policy :=

 Agent matches a

 rule No_fly_zone_rule –> permit :=

 Zone matches no_fly_zone.

 rule HostilesPresenceRule -> deny

 HostilesPresence matches true.

 rule UnitRule -> permit:=

 Zone = no_fly_zone,

 Unit matches special forces.

In this case, special forces are allowed to enter the no fly zone

even when a hostile presence is detected. This is achieved using

the following facts:

is_more_important(HostilePresence, Zone).

is_more_important(‗Unit‘, ‗special forces‘,

 ‗$all‘).

4. CONCLUSION
In this paper we have shown how to resolve run-time conflicts

using artificial intelligence in the form of automated logical

reasoning, with an algorithm that uses priorities based on

sensitivity assessments defined for each policy/rule attribute and

its associated values. Our approach uses a relative relationship and

thus there is no need for numerical weights. This approach is

closer to human reasoning, which reacts to overall sensitivity

factors rather than scales of values. We also determined that

compile time conflict detection algorithms are very useful for

testing purposes. They can determine which requests to a PDP

produce these conflicts, and thus enable the policy administrator

to verify offline that the conflict resolution algorithms are

performing as expected.

5. ACKNOWLEDGMENTS
The authors acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada.

6. REFERENCES
[1] OASIS, XACML Version 2.0, 2004, docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-core-spec-

os.pdf.

[2] OASIS, XACML Version 3.0, 2013, http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[3] C.D.P.K. Ramli, H. R. Nielson, F. Nielson, The Logic of

XACML, in proceedings of FACS 2011 pp 205-222.

[4] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S.

Chapin, ―Automatic error finding in access-control policies,‖

in 18th ACM Conference on Computer and Communications

Security, 2011, pp. 163–174.

[5] H. Hu, G.-J.Ahn and K. Kulkarni, Anomaly Discovery and

Resolution in Web Access Control policies in SACMAT‘11

proceedings.

[6] B. Stepien, S. Matwin, and A. Felty, ―Strategies for

reducing risks of inconsistencies in access control policies,‖

in 5th International Conference on Availability, Reliability,

and Security. IEEE Computer Society, 2010, pp. 140–147.

[7] I. Matteucci, P. Mori, and M. Petrocchi, ―Prioritized

execution of privacy policies,‖ in International Workshop

on Data Privacy Management and Autonomous

Spontaneous Security, ser. Lecture Notes in Computer

Science, vol. 7731. Springer, 2013, pp. 133–145.

[8] M. Aqib and R. A. Shaikh, Analysis and comparison of

access control policies validation mechanisms, International

Journal of Computer Network and Information Security, vol.

7, no. 1, pp. 54–69, 2015.

[9] N. Li, Q. Wang, P. Rao, D. Lin, E. Bertino, and J. Lobo, A

formal language for specifying policy combining algorithms

in access control, CERIAS, Tech. Rep. 2008-9, 2008,

http://core.ac.uk/download/pdf/21173941.pdf.

[10] K. Fatema and D. Chadwick, ―Resolving policy conflicts—

integrating policies from multiple authors,‖ in Advanced

Information Systems Engineering Workshops, ser. Lecture

Notes in Business Information Processing, vol. 178.

Springer, 2014, pp. 310–321.

[11] M. Hall-May and T. P. Kelly, ―Towards conflict detection

and resolution of safety policies,‖ in 24th International

System Safety Conference, 2006.

[12] B.Stepien, A. Felty, S.Matwin, Challenges of Composing

XACML Policies in 2014 Ninth International Conference on

Availability, Reliability and Security.

[13] N. Li, Q. Wang, W.Qardaji, E.bertino, P. Rao, Access

Control Policy Compiling: Theory Meets Practice in

SACMAT 09 proceedings pages 135-144.

[14] A.J. Rashidi, A. Rezakhani, a new method to ranking

Attributes in Attribute Based Access Control using decision

fusion in Natural Computing Applications Forum 2016,

Springer Verlag.

[15] B. Stepien and A. Felty, Using Expert Systems to Statically

Detect ―Dynamic‖ Conflicts in XACML in ARES 2016

proceedings, pp 127-136.

127

