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ABSTRACT
We extend tree-based typed Genetic Programming (GP)
representation schemes by introducing System F, an expres-
sive λ-calculus, for representing programs and types. At
the level of programs, System F provides higher-order pro-
gramming capabilites with functions and types as first-class
objects, e.g., functions can take other functions and types
as parameters. At the level of types, System F provides
parametric polymorphism. The expressiveness of the sys-
tem provides the potential for a genetic programming sys-
tem to evolve looping, recursion, lists, trees and many other
typical programming structures and behavior. This is done
without introducing additional external symbols in to the
set of predefined functions and terminals of the system. In
fact, we actually remove programming structures such as
if/then/else, which we replace by two abstraction opera-
tors. We also change the composition of parse trees so that
they may directly include types.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; F.4.1 [Mathematical Logic and For-

mal Languages]: Mathematical Logic—lambda calculus
and related systems

General Terms
Experimentation, Languages, Theory

Keywords
genetic programming, lambda calculus, polymorphism, types

1. INTRODUCTION
Genetic Programming (GP) is an evolutionary computa-

tion search strategy in which solutions are usually repre-
sented as executable parse trees [9].
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There has been some interest in experimenting with typed
representations in GP. The work presented in this article ex-
ploits recent advances in type theory to extend the currently
used tree-based typed GP representation schemes. Specifi-
cally, we propose to use System F [4][12], an extension of the
simply typed λ-calculus obtained by adding an operation of
abstraction on types, to represent the programs of a GP
system. System F provides a strong form of polymorphism
and can describe all functions which are provably total in
second-order logic. It renders all the usual data-types de-
finable as pure abstractions and directly supports recursion
without naming or special operators. In the system, types
such as ΠX.X → X → X , the type of any function that
takes two arguments of some type and returns an object of
this type as its output, can be defined. A term of this type,
for example ΛXλxXλyX .x, a program that takes two argu-
ments and returns the first, will behave the same on any
argument type.

System F is a worthwhile object of study as a representa-
tion scheme for GP for the following reasons:

• Language lightness: The pure System F syntax uses
a very small set of symbols. Yet, it is possible to rep-
resent all normal programming structures (recursion,
lists, trees, booleans, looping and so on) from within
the language. In fact, all functions and terminals de-
fined for GP problems in other systems that are not di-
rectly related to the problem such as branching, loop-
ing and recursion constructs can be eliminated for the
same problems expressed in System F.

• Typing structure: System F has variables ranging
over functions, data and types, making the language
very expressive while still maintaining full static type-
safety.

• Tree-like structure: System F programs are similar
in structure to the programs written in other func-
tional languages such as Lisp. This tree-like structure
is generally considered a natural choice for GP.

• Second-order logic isomorphism: Under the Curry-
Howard isomorphism [6], System F corresponds to a
second-order logic and can therefore describe all func-
tions which are provably total in second-order logic.
The isomorphism provides a dual meaning to the type
structure. For example, the type ΠX.X → X →

X can also be read as the second-order proposition
∀X.X → X → X. Including the atomic type A in
the system corresponds to adding the proposition A



as an axiom. The second-order derivation rules can be
used directly to produce new types. This becomes very
useful when used in conjunction with the next item.

• Deriving programs from types: There is an algo-
rithm that takes types in a specific form as input and
produces functions that take arguments of the specified
types and use them to produce objects corresponding
to the specified result type. For example, when given
the type ΠX.X → X → X, the algorithm produces
the only two terms of this type: ΛXλxXλyX .x and
ΛXλxXλyX .y.

• Strong Normalization: System F programs always
terminate. Partial normalization can be used to par-
tially evaluate parts of programs and can be combined
with abstraction support to devise a hierarchical evo-
lution mechanism that permits the evolution not only
of programs, but also of program patterns.

This article is structured as follows: Section 2 summarizes
related previous work; Section 3 describes System F and a
running example expressed in this language; Section 4 ...;
and Section 5 is the concluding discussion.

2. PREVIOUS WORK

2.1 Previous work on types in GP
In the original GP specification [9], the definitions of the

primitives (the predefined terminals and functions of the
system) are constrained by the closure requirement. All the
elements in the program’s parse tree must have the same
type. Closure is satisfied when “any possible composition
of functions and terminals produces a valid executable com-
puter program” [10]. This implies that the programming
language in which the individuals of the system are coded
will always be a one-type or monomorphic language.

A mechanism called constrained syntactic structures is
proposed in [9] to relax the closure property. Constrained
syntactic structures are problem-specific syntactic rules spec-
ifying which primitives are allowed to be the child nodes of
each function in the program trees. Constrained syntactic
structures are used for problems requiring data typing.

In [11], Montana uses types to eliminate the closure con-
straint of GP systems and to restrict the search space. The
method, called Strongly Typed Genetic Programming (STGP)
specifies a type for each argument of each function and for
the value it returns. Terminals are also typed. The basic
STGP formulation is equivalent to Koza’s approach to con-
strained syntactic structures and both are limited by the
need to specify multiple functions which perform the same
operation. Montana resolves the issue by using generic func-
tions. These are functions defined on named lists of argu-
ment types that have their return types inferred when they
are embedded in a newly spawned tree. After a generic func-
tion has been instantiated (by being embedded in a new tree)
it is and behaves as a standard function. This is also how
it is passed on to the program’s descendants. Montana uses
a table-lookup mechanism to produce legal parse trees. A
type possibilities table is computed beforehand to specify
all the types that can be generated at each tree depth level.
This table provides type constraints to the function selec-
tion procedure used to generate type-correct programs. Dur-
ing the creation of the initial population, each parse tree is

grown top-down by randomly choosing functions and termi-
nals and verifying their validity against the type possibility
table. STGP has been applied to the problem of evolving
cooperation strategies in a predator prey environment [5].
The solutions produced consistently outperformed the solu-
tions produced by an untyped system. It is suggested that
the reduced search space is the cause of the performance
improvements.

The PolyGP system [3] is also based on a type system.
Used during program creation, the type system ensures that
all programs created are type-correct. PolyGP implements
polymorphism using different kinds of type variables. The
system that is proposed in this document differs from PolyGP
in the following 4 ways:

1. In PolyGP, program parse trees are represented in a
Curry style, where type information is kept distinct
from the terms. This way of doing things requires
the use of a type unification algorithm. We propose
a Church style representation, where terms are anno-
tated with enough type information so that there is no
need for a type unification algorithm.

2. Unlike PolyGP, in the System F-based GP system,
parse trees will contain types, and types will be evolved
at the same level as terms/programs. This is the first
GP system we are aware of where types are explicitly
evolved during the run. This opens the door to the
natural evolution of data structures and of operations
on these data structures.

3. PolyGP’s recursion scheme requires the definition of
special structures. System F’s expressive power elimi-
nates this need.

4. PolyGP doesn’t eliminate the need to predefine func-
tions that are not directly related to the problem. A
System F-based GP system does.

2.2 Previous work on recursion in GP
There are currently two ways of providing recursion sup-

port in GP. The representation proposed in this article pro-
vides a third and new manner to achieve recursion in GP.

The explicit recursion approach [8][2], involves naming the
programs of the system so that they may refer to them-
selves. This requires additional overhead. Each program
uses a slightly different language because its name must be
included in the set of instructions to which it has access.
Names have to be kept and managed. Another problem
with the scheme is that special mechanisms must be put in
place to handle the cases where parts of programs that refer
to themselves are used to construct a new program (with a
different name) in a crossover operation. Finally, the num-
ber of recursive calls must be limited to avoid infinite loops.
Each recursive call has to be tabulated while the program
is running and a system of flags has to be implemented. In
contrast, the recursion scheme of the System F-based sys-
tem proposed in this document does not need to provide
programs with the ability to call themselves in order to sup-
port recursion and has no need to check for infinite loops.

The implicit recursion approach [14] exploits PolyGP’s
support for higher-order functions. Recursion is implemented
using predefined higher-order functions. Unfortunately, in-
creasing the number of primitives that are manipulated by



the GP system increases its search space and bloats its lan-
guage with programming constructs that are not directly re-
lated to the problem that is being solved. The functions are
general higher-order structures with no direct relation to the
actual problem for which a solution is being evolved and it is
not clear how it is decided which function goes with which
problem. Finally, PolyGP implements these higher-order
operations on lists only. Implementing recursion on other
structures requires additional syntax. The System F scheme
proposed in this documents doesn’t share these limitations.
In particular, it evolves its own higher-order functions and
naturally “understands” recursion on any structure.

3. SYSTEM F AND A RUNNING EXAMPLE
The system is formulated in the Church style where types

are embedded in terms, resulting in an extension of the pure
λ-calculus.

3.1 Rules for types
From a finite set of atomic types and an infinite set of

type variables, new types are constructed as:

1. If U and V are types, then U → V is a type.

2. If V is a type, and X is a type variable, then ΠX.V is
a type.

The type ΠX.V is called an abstract type, and an object of
this type can be expressed as:

ΛX.(function body) (1)

Where X is the same type variable as the one in the type of
the object. The calculus requires that any variable of type
X within function body be bound by a λ-abstraction. A
function typed with an abstract type ΠX.V can be viewed
as a function which takes as its parameter a type ty and
returns a function typed as V [ty/X].

3.2 Rules for terms

1. variables: xT , yT , zT , . . . of type T ,

2. application: tu of type V , where t is of type U → V
and u is of type U

3. λ-abstraction: λxU .v of type U → V , where xU is a
variable of type U and v is of type V ,

4. universal abstraction: if v is a term of type V , then we
can form ΛX.v of type ΠX.V , so long as the variable
X is not free in the type of a free variable of v.

5. universal application: if t is a term of type ΠX.V and
U is a type then tU is a term of type V [U/X]

3.3 Evaluation/reduction rules

1. (λx.v)u evaluates to v[u/x]

2. (ΛX.v)U evaluates to v[U/X]

3.3.1 Naming and equivalence
We write:

name
def
= E

to use the name name as a shorthand for the expression E,
the two being treated as identical. The pure system is a
calculus of expressions without names.

3.4 α-conversion
The α-conversion rule expresses the notion that the names

of the bound variables are unimportant; for example λxU .x
and λyU .y are the same function, and ΠY.Y → Y is the
same type as ΠX.X → X.

3.5 Reducibility and strong normalization
An expression reaches its normal form when it can’t be

rewritten any further by the evaluation rules. It is normal-
izable if it can be reduced to a normal form and is strongly
normalizable if every sequence of reductions starting with
the expression terminates in a normal form. System F terms
are strongly normalizing [7].

3.6 General scheme for free structures
The calculus is impredicative making self-application pos-

sible; for example, the polymorphic identity ΛX.λxX .x can
take its own type, ΠX.X → X and then itself as arguments.
The definition of an object can refer to the collection to
which the object belongs. In this section, several type and
object definitions are presented as examples. With these ex-
amples, we show how types and functions may be defined
as pure abstractions, describing structure. This implies that
any genetic program whose representation scheme is based
on System F would have the capacity to express the exam-
ples below, no matter what the set of functions that are
defined for the genetic program is. There is another way to
say this:

Any GP system based on System F that

has the capacity to name and to reuse terms

and types also has the capacity to repre-

sent structures such as booleans, numbers,

pairs, lists, trees, tuples and all the usual

operations on those structures. In addi-

tion, such a system can represent recursive

functions. The representation is encoded

in the structure of the tree and is indepen-

dent of the primitive terms and types that

are defined for the GP system.

3.6.1 Finding the representations
System F comes with a general scheme for the represen-

tation of free structures. To generate objects of type ty,
where ty represents a structure, a series of constructors is
needed. These are functions that take no one, or several ar-
guments and use them to produce objects of type ty. These
constructors can be recursive. For example one of the list
constructors creates a list from two argumenst: a list of el-
ements of a given type, and an element of the same type.

3.6.2 Format for the types
Following [7], we restrict ourselves to types in the form:

ΠX.S1 → . . . → Sn → X (2)

with each Si in the form:

T i
1 → . . . → T i

ki
→ X (3)

Where the ‘X’ type variable in each Si is replaced by the
name of the structure. For any type ty, each Si[ty/X] is the
type of a function that “builds” an object of type ty. That
function is a constructor. This implies that each structure
requires f1, . . . , fn constructor definitions. For example, if



ty is the integer type, there will be two constructors, the first
one, typed as ty → ty (a constructor that takes an integer
object and returns its successor, itself an integer object) and
the other with type ty coding 0 (with no argument). Simi-
larly, if ty is the boolean type, it will require 2 constructors,
neither of which take any arguments: one that constructs
the object false and the other to produce true.

3.6.3 The boolean type

ty Boolean
def
= ΠX.X → X → X (4)

with

S1

def
= X S2

def
= X (5)

which gives two constructors, f1 and f2, of type
S1[ty Boolean/X] and S2[ty Boolean/X]:

f1

def
= te true

def
= ΛX.λxX

1 .λxX
2 .xX

1

f2

def
= te false

def
= ΛX.λxX

1 .λxX
2 .xX

2

(6)

3.6.4 Lists
The type of a list of objects of type U is definable as:

ty ListU
def
= ΠX.X → (U → X → X) → X (7)

So there are two Si:

S1

def
= X S2

def
= U → X → X (8)

which gives two constructors, f1 and f2 of type ty ListU for
the empty list constructor and U → ty ListU → ty ListU
for the one that constructs an object of type ty ListU from
an object of type U and an object of type ty ListU :

f1

def
= te nil

def
= ΛX.λxX

1 .λxU→X→X
2 .x1

f2

def
= te cons

def
=

λpU
1 λpty ListU

2
ΛX.λxX

1 .λxU→X→X
2 .x2 p1 (p2 X x1 x2)

(9)
The second constructor illustrates how recursion happens.
The polymorphic argument p2 is first applied to the type
variable X, which gives it the right type to “fit” inside the
body of the constructor and makes it accept the arguments
x1 and x2. The normalized form of the list (u1, u2, . . . , un)
of elements of type U is encoded as:

ΛX.λxX .λyU→ X → X .y u1(y u2(. . . (y un x)) . . .) (10)

3.6.5 Integers
The representation for integers requires two constructors:

a constant (for 0) of type integer and the successor function
from the integers to the integers, so:

ty Int
def
= ΠX.(X → X) → X → X (11)

And there are two Si:

S1

def
= X → X S2

def
= X (12)

So we need two constructors:

f1

def
= te Succ

def
= λpty Int

1
.ΛX.λxX→X

1 λxX
2 .x1 (p1 X x1 x2)

f2

def
= te 0

def
= ΛX.λxX→X

1 λxX
2 .x2

(13)
The ty Int object n is the function which to any type U and
function f of type U → U associates the function fn, i.e. f
iterated n times.

Figure 1: Parse tree for expression 14

Table 1: Primitives for GP2

Type

ty Boolean Abstract Type, ΠX.X → X → X
Int Generic

Functions Type

+ Int → Int → Int
- Int → Int → Int
/ Int → Int → Int
* Int → Int → Int
> Int → Int → ty Boolean
Terminals Type

[0, . . . , 10] Int
TIME Int

3.6.6 What cannot be represented in System F
System F has the strong normalization property, so the

programs of the system always eventually terminate. The
unsolvability of the halting problem [13] implies that there
are computable functions that cannot be represented in Sys-
tem F. This is not so bad as it sounds because as [1] puts it,
in order to find computable functions that cannot be repre-
sented in F, “one has to stand on one’s head”.

In theory, we could do all the programming we would ever
need without going outside the pure system. In practice, the
genetic programs we experiment with include primitive ex-
ternal functions and terminals defined as symbols and eval-
uated using a semantic evaluator that gives them meaning
outside their System F representation.

3.6.7 A symbolic regression example
The problem of symbolic regression can be stated as “given

a set of data points, find the underlying function in sym-
bolic terms” [9]. Table 1 defines the primitives of GP2, a
symbolic regression GP system that uses System F to rep-
resent its individuals. The example is based on the one
given on page 18 of [9]. GP2 models a real valued func-
tion of the variable TIME. The set of primitives is used
to predefine symbols that exist outside System F and to
name constructs that exist within it. The first primitives
to be inserted are the atomic types. For example, the type
Int. Once the atomic types have been introduced in the
system, the user can insert the typed free variables of the
system, such as 6 : Int or + : Int → Int → Int. The
set is also a syntactic sugar mechanism. Composite expres-
sions can be included, depending on the problem. For ex-



ample, the type Int → Int → Int might be renamed as
BinaryNumericalOp or the booleans might be included,
either by naming the type ΠX.X → X → X or by inserting
an atomic boolean type in the set, with true and false also
defined as atomic symbols. The system’s designer might
also decide to do both, or might even choose not to include
a boolean type at all. Because it can still be expressed by
the system, it is possible for it to evolve on its own.

In our sample implementation, an element of the Primi-
tives set may also be linked to an “evaluation recipe”, that
provides instructions as to how the object should be evalu-
ated. During a run, there are functions that allow the user
to pause the run and extend the Primitives set so that:

1. Complex structures that appear often might be re-
placed by syntactic sugar, making the programs more
readable.

2. Some System F structures that are evaluated mechan-
ically within the system might be replaced by a more
efficient evaluation recipe.

3.6.8 Computing from within the system
In the versions of the symbolic regression problem pre-

sented in [9] and [11], branching is enabled via the primitive
function IFTE. GP2 doesn’t include a branching struc-
ture, and doesn’t need one. For example, the expression
(+ 2 (+ 1 (IFTE (> TIME 10) 3 4))), can be expressed
in System F using the primitives of GP2 as:

+ 2 (+ 1 (> TIME 10 Int 3 4 )) (14)

The sub-expression (> TIME 10) evaluates to a ty Boolean
(as defined in section 3.6.3). (te true Int) evaluates to the
term λxIntλyInt.x of type Int → Int → Int after replacing
X by Int. This is a function that takes two arguments of
type Int as inputs and outputs the first of the arguments.
Conversely, (te false Int) evaluates to a function of two Int-
typed arguments that returns the second of the arguments.
Figure 1 represents the resulting parse tree for expression
14 in the partial application style of program representation
[3]. Each node in the tree is either a leaf (corresponding to
a primitive) or a typed function application that is itself at
the root of a binary tree. Our research uses and augments
this representation style in two ways:

1. Tags are added to each node to indicate its type.

2. Parse trees can be linked using both function applica-
tion nodes and type application nodes. Type applica-
tion is new to GP, and is one of the contributions of
this research. Type application nodes link functions
to types.

The result of the evaluation of the (> TIME 10) term is
directly used as a branching structure. This is only possible
because true and false are functions defined without using
any symbol from outside the language and therefore express
abstract behavior. Boolean objects can be used as a decision
procedure between two arguments of any type. For example
(15) is a decision between an addition and a subtraction:

> TIME 10 (Int → Int → Int) + − (15)

While (16) is a simple integer-valued decision tree based on
the value of the variable TIME:

> TIME 5 Int (> TIME 10 Int 3 2) (> TIME 0 Int 1 0)
(16)

3.6.9 Recursion
As an example of recursive behavior, let’s compute the

Fibonacci sequence in System F using the primitives of GP2.
For this task, we may use the type:

TrInt
def
= ΠX.(Int → Int → Int → X) → X

TrInt is in the required format and the constructor scheme
can be applied mechanically to yield:

tr
def
= λiIntλjIntλkIntΛXλxInt→Int→Int→X .x i j k

Finally let’s define:

fib
def
= λdTrInt.
tr (+ (d Int (λxIntλyIntλzInt.x)) 1)

(d Int (λxIntλyIntλzInt.z))
(d Int (λxIntλyIntλzInt.(+ y z)))

of type TrInt → TrInt. fib has an invariant property on
objects of type TrInt: Given j, the (n − 1)st term, and k,
the nth term in the Fibonacci sequence then (fib (tr n j k))
evaluates to (tr (+ n 1) k (+ j k)). We can now compute
the Fibonacci sequence for n+2 in many different ways. For
example using the integers of Section 3.6.5:

te n TrInt fib (tr 2 0 1)
where te n is the nth numeral of type ty Int. We could also
use lists and write:

te l T rInt (tr 2 0 1) (λutyλtTrInt.fib t)
where te l is a list of n elements of any type ty in GP2. There
are many other possibilities for the computation. Just as
there was no need to extend GP2 with an IFTE function
for branching, there is no need to extend GP2 for recursion.

4. ENCODING THE GENOTYPES
The individuals are programs constructed as a series of

applications of expressions from the BlockPopulation set, a
set of well-formed normalized terms and types, built from
the primitives defined for the system. The head element
of an individual must be a term. BlockPopulation evolves
during the system’s run, but the initial set should spread
out over as wide a search space area as possible. A term can
be an element of the BlockPopulation set if and only if it is
carried as a block by an individual of the system.

4.1 Complexity
An expression might encapsulate a substantial amount of

information. Because of the random process by which new
expressions are produced, a lot of that information might be
useless. To monitor and minimize the memory cost associ-
ated each with expression, the complexity of an expression
is calculated as:

1. Atomic types have complexity 1.

2. Arrow types have the complexity of their left type plus
the complexity of their right type, plus 1.

3. The complexity of an abstract type is the complexity
of the body of its abstraction plus 2 (one for its type
variable and one for itself).

4. The complexity of a term variable is 1 plus the com-
plexity of its type.

5. The complexity of an application term is the sum of
the complexities of its two arguments and of its type,
plus 1.



6. The complexity of an abstract term is the sum of the
complexities of the body of the abstraction, of its bound
term variable and of its type, plus 1.

7. The complexity of a term abstracted by type is the
sum of the complexities of the body of the abstraction
and of its type, plus 2.

By providing an upper-bound on the complexity of both
blocks and individuals, it is possible to implement the kind of
bloating controlling measures usually associated with max-
imum tree-depth values in typical GP systems.

4.2 Generating the initial BlockPopulation set
The Primitives set is the kernel of the BlockPopulation

set. The initial set is constructed by adding new expressions,
built from the ones that are already in it. The construction
process stops when the sum of the complexities of all objects
in the BlockPopulation set is greater than maxComp, one of
the system-wide variables defined for the system. The rules
used to produce new terms and new types are based on logic
derivation rules. Each rule is a meta-operation that takes an
expression as input and outputs another expression. For ex-
ample, a rule might start with the input ΠX.X → X → X,
randomly pick a type ty from the BlockPopulation set and
produce the type ty → ty → ty. Another rule might start
with the term tty→ty, pick a term aty in BlockPopulation
and produce the term (t a).

4.3 The system’s individuals
Genotypes are represented as lists of building blocks. For

example, the genotype corresponding to (17)

+ (+ 1 2) (> Time 10 Int 3 4) (17)

might be represented as either (18) or (19) in GP2.

[+, + 1 2, > T ime 10 Int 3 4] (18)

[+ (+ 1 2), > T ime 10 Int 3 4] (19)

From a program interpretation point of view, (18) expresses
its solution as the application of the function + to two Ints
while (19) expresses its solution as the application of the
function f(x) = x+3 to a single Int. Both programs do the
same thing, but have different tree structures, translating
into different crossover points. Using this scheme, there are
many other genotypes that can express the same phenotype.
Figure 2 presents 5 other ways to express the phenotype
associated with (18). Each has a unique tree structure and
except for the last one, the shape of their associated tree is
determined by the type of the head element.

The expressive power of System F allows the sampling of
different sectors of the search space. For example, in Figure
2:

• (1) “understands” the problem as finding an operation
of type Int → Int and an Int to apply it to.

• (2) sees the solution to the problem as an application
of a function of type Int → Int to an Int.

• (3) looks at it from the point of view of the appli-
cation of a function of type ty Boolean → Int to a
ty Boolean.

• (4) considers the phenotype to be the application of
a function of type (Int → Int → Int) → Int to an
operator of type Int → Int → Int such as + or −.

• (5) is the most abstract of all (but not the most ab-
stract possible). It sees the solution as an application
of a function that takes as parameters 4 objects of some
type ty and a binary operator on tys and outputs a ty
object. In this sense the root function of genotype 5
is truly a polymorphic function usable with any type.
Because of this, the second element of the genotype, a
type, also plays a role in shaping the overall structure
of the tree.

In the biological world genetically unrelated organisms
will often evolve the same phenotypical solutions through
completely different genetic pathways. System F’s versatil-
ity produces a similar situation. In GP, it is the phenotype
that is fitness-scored. This implies that (18), (19) and all
the genotypes of Figure 2 will obtain the same fitness score
on the same test cases. They express the same phenotype,
but they are not the same at the genotype level. Because
their tree structures are different, crossover will affect them
in different ways.

4.3.1 GoalType
GoalType is the parameter of the system used to provide

a specification of the program that is being evolved. For
example, if the programs should output a list of objects of
type A on input of an object of type B, then GoalType can
be defined as:

B → (ΠX.X → (A → X → X) → X)
If we’re asking for an operation on objects of type Int, for
example as a variation of GP2 where the TIME variable
is passed in as an argument to the program, then we can
define GoalType as:

Int → Int
and evaluate a program Prog as: Prog(TIME). GoalType
does not need to be included in the Primitives, but might
encourage the production of recursive behavior when it is.

4.3.2 Spawning
The first generation of individuals is randomly spawned.

Randomly creating terms of type GoalType amounts (via
the Curry-Howard isomorphism extended to system F) to
building a proof of the proposition GoalType, using the
propositions that are available as the types of the terms in
the BlockPopulation set. The rules for generating individu-
als are simply an adaptation of second order logic derivation
rules applied to the types that exist in the BlockPopulation
set. Elements of Individuals are System F programs of type
GoalType. At the implementation level, individuals are vec-
tors of pointers to expressions in the BlockPopulation set.

4.4 Generalizing expressions with abstractions
The System F based representation allows the GP system

to:

1. produce higher abstractions from successful specializa-
tions and

2. specialize abstractions so as to apply them in different
contexts.

System F’s isomorphism to second order logic makes this
sort of manipulation simple because it provides a set of rules
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that can be used to increase or reduce the abstraction level.
For example, given a term t : U in which the free vari-
able aA occurs, we can produce the equivalent valid term
(λxA.t[x/a])a, and if it happens that A doesn’t occur else-
where than in the type of the bound variable x, then we
can also produce the equivalent ΛX.(λxX .t[x/a]) A a. λ-
abstraction is a way to produce generalizations. Consider
now a rewrite of part of (16) into the λ-abstraction:

λxIntλyIntλzInt. > TIME x Int
(> TIME y Int 3 2) (> TIME z Int 1 0)

(20)

In (20), the values of the decision cutoffs have been ab-
stracted out of the decision tree. The System F representa-
tion supports functional abstraction independently of type
abstraction.

4.4.1 Generalizing to polymorphism
To illustrate the simplicity of the process by which a poly-

morphic expression might be produced from a non-generic
object, consider once again (16). The first step to the pro-
duction of a polymorphic version of the expression is to
rewrite it as a λ-abstraction. One possibility is:

λxIntλyIntλwIntλzInt. > TIME 5 Int
(> TIME 10 Int x y) (> TIME 0 Int w z)

(21)

Here, (21) has type Int → Int → Int → Int → Int and is
a function that implements the decision algorithm of (16),
but takes the possible return values as input. The second
step to full abstraction is to replace the type of the bound
variables of the abstraction by a type variable and to add
the type abstraction symbol:

ΛY λxY λyY λwY λzY . > TIME 5 Y
(> TIME 10 Y x y) (> TIME 0 Y w z)

(22)

transforming the decision logic of the tree itself into a poly-
morphic function that takes 4 arguments of any type and
applies the logic of (16) to the arguments.

The specific advantage of the System F representation
scheme in this case is the ease by which it is possible to
produce a generalization of a phenotype.

4.5 The crossover operator
Crossover produces a new list of System F expressions

from two parent lists in the same species. Our preliminary
experiments suggest that it makes little sense to try and
produce a quality offspring from two genotypes that are in
completely different search space sectors. For example, in
Figure 2, genotypes 5 and 3 may express the same pheno-
type, but any crossover operation defined on these genotypes
is likely to be as absurd as a crossover operation defined on
tigers and mushrooms would be. If natural species are con-
sidered solutions to a problem defined by the environment in
which they exist, then it might be suggested that a species
represents an optimum solution in a search landscape that
is very irregular. It could be said that reproduction is a
way to search for small improvements around the peak rep-
resented by the species; inter-species breeding insures that
absurd search solutions are not the most common outcome
of the reproduction process.

4.5.1 Species differentiator
The species differentiator that we use is the type of the

head element of its genotype list representation. For the
genotypes of Figure 2, this translates into:

• (1) belongs to the species: (Int → Int) → Int → Int

• (2) belongs to the species Int → Int

• (3) is in the species ty Boolean → Int

• (4) is in the species (Int → Int → Int) → Int

• (5) is in the species ΠX.(X → X → X) → X → X →

X → X → X

The type of the head element enforces the structure of the
parse tree that represents the genotype.

4.5.2 Use of abstraction for crossover
The crossover scheme outlined here is specific to this sys-

tem. The the analogy for a typical GP crossover operation
would be “grafting” (a form of asexual propagation) in hor-
ticulture. It always produces a new program that includes
everything that is common in both parents at the phenotype
level and has an equal probability of including blocks that
are not shared by either parent. Crossover in this system
should be seen as two related but distinct operations:

• In the normal sense, crossover uses two parents that
belong to the same species as material for the produc-
tion of one or many children whose information is some
combination of the information from the parents.

• Crossover at the genotype level also acts as both a se-
lection and a crossover operation at the block level.
When a block is identical at the same position in two
parents, it also becomes material for a recombination
operation applied on blocks in what is in effect a se-
lection operation on the BlockPopulation set elements.
Blocks constructed from the recombination of blocks
common to both parents are produced and inserted in
the BlockPopulation set. In the population, these new
genes are carried by the new offspring.

The general case of crossover begins by identifying the blocks
that are common to both parents. When the two parents
contain similar blocks, an abstraction is produced from what
is similar to both programs.



Algorithm sketch for general case of crossover.
Given two parent programs within the species constraint of
the crossover operation:

1. One version of each shared block is pushed onto a
shared stack (Shareds). When two blocks at the same
position in the parents are not shared, one of the two
is chosen randomly and is pushed onto the argument
stack (Distincts). The system doesn’t actually ma-
nipulates or compare actual blocks, but only the point-
ers that reference them inside BlockPopulation.

2. The head block of the offspring is produced as an ab-
straction. The expressions that are in Distincts are
its input and the expressions in Shareds are used to
construct its body. The function is normalized and can
be used directly as a new block by inserting it into the
BlockPopulation set, where it may or may not already
exist. The second step might stop here, or the head
might be degraded further into two or more blocks.
The blocks produced in this manner are inserted in
BlockPopulation and the results of the insertion oper-
ations are used as the head blocks of the offspring.

3. The third step adds the tail blocks to the offspring’s
genotype by successive pop operations on Distincts.

4.6 Evaluation
The evaluation procedure we use is also specific to our sys-

tem. When it is possible to evaluate a block independently
from the genotypes in which it is embedded, the system
stores and reuses the result of the evaluation of the building
block. For example, the block (+ 3 5) would be associated
with its value < 8.0 > at construction and would be evalu-
ated only once. The block is replaced directly by the result
of the evaluation when a genotype that contains that block
is evaluated.

4.7 Sample implementation
We are currently experimenting with a sample C++ im-

plementation of a system corresponding to GP2 to find an
optimal subset of formation rules for the generation of the
BlockPopulation. Our main implementation will be pro-
duced in the functional language OCamL.

5. CONCLUSIONS
The potential of System F as a representation scheme for

GP comes from both its simplicity and expressiveness. It
is a language that doesn’t use many symbols, doesn’t have
many rules and yet is naturally capable of expressing many
computations in many different styles. It handles recursion
and even allows us to define and work with many of the
structures typically used by programmers. All this occurs
within the system using only two abstraction operations. In
terms of safety, the programs are typed and always termi-
nate.
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