
Formal Correctness of Conflict Detection for Firewalls

Venanzio Capretta
∗

venanzio@cs.ru.nl
Bernard Stepien

bernard@site.uOttawa.ca

Amy Felty
afelty@site.uOttawa.ca

Stan Matwin
†

stan@site.uOttawa.ca

School of Information Technology and Engineering (SITE)
University of Ottawa, Canada

ABSTRACT
We describe the formalization of a correctness proof for a
conflict detection algorithm for firewalls in the Coq Proof
Assistant. First, we give formal definitions in Coq of a fire-
wall access rule and of an access request to a firewall. For-
mally, two rules are in conflict if there exists a request on
which one rule would allow access and the other would deny
it. We express our algorithm in Coq, and prove that it finds
all conflicts in a set of rules. We obtain an OCaml version of
the algorithm by direct program extraction. The extracted
program has successfully been applied to firewall specifica-
tions with over 200,000 rules.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about

Programs]: Mechanical verification; C.2.0 [General]: Se-
curity and protection

General Terms
Security, Verification

Keywords
Coq, Firewall

1. INTRODUCTION
Firewalls are an essential component of enterprise security.

Several factors with respect to current use and configuration
of firewalls, however, can lead to security compromises. The
distributed nature of firewalls is one such factor. Firewalls

∗now at Computer Science Institute (iCIS), Radboud Uni-
versity Nijmegen, The Netherlands
†also affiliated with Institute for Computer Science, Polish
Academy of Sciences, Warsaw, Poland

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-887-9/07/0011 ...$5.00.

operate in an environment of routers that are used to inter-
face with the outside world. They also partition an internal
network of an enterprise in order to reduce security risks by
restricting the access to machines strictly to the authorized
users of these machines. It is thus essential to at least at-
tempt to reconcile the intentions of various interfaces so as
to avoid conflicting policies.

Another factor that can lead to security problems is the
low level of firewall specification languages and the primi-
tive user interfaces that are used in order to program fire-
walls. Currently, most users prefer to download a rule base
to their computers so as to modify it using a conventional
text editor. This is a fairly primitive solution to ensuring
a correct firewall since a text editor has no specialized fea-
tures for checking the syntax or semantics for the particular
rule description language used. In addition, as rule sets be-
come larger and more complex, modifying them can result
in unanticipated changes to the overall policy.

Factors such as those described above have been identi-
fied over the last several years and a number of tools have
been developed to cope with various aspects of the problem.
A classification of the kinds of anomalies in firewall config-
urations is described in several papers, e.g. [1, 15, 32]. In
this paper, we address the problem of conflicts in firewall
rules. In particular, we detect pairs of rules such that, given
a specific access request, one rule permits the access and the
other denies it.

We consider the Cisco [7] firewall specification language in
particular. This language has several code-saving features
that enable a user to write a single rule for several source
or destination hosts. Such techniques often involve using
value masks, port number ranges, or lists of port number
specifications for which a particular rule is applicable. Thus
each rule applies to a possibly wide range of access requests,
and it is often the case that more than one rule will apply to
any particular request. In practice, only the first rule that is
encountered from the top of the rule base is executed, thus
ignoring any further rules pertaining to the same targets.
In some cases, a firewall administrator may intentionally
introduce certain kinds of overlaps knowing that only the
first rule is important: a default policy is specified by a later
blanket rule, which can be contradicted on smaller ranges by
earlier rules. In this case the conflict is intended. However,
the specification language does not explicitly mark blanket
rules, so there is no way to distinguish these false conflicts
from actual mistakes in the firewall.

Moreover, overlaps are likely to occur if more than one
person maintains a firewall, as is often the case in a large
organization. However, it is quite common that when more
than one rule applies, there is an unintended redundancy
or conflict—redundancy in the case when all the applicable
rules permit the request or all deny the request, and conflict
when at least one applicable rule permits the request and
one denies it.

To address the conflict problem, we develop a conflict de-
tection program and prove its correctness in the proof assis-
tant Coq [29, 6]. In the process, we also take care to write an
efficient program, so that we may extract it to OCaml and
run it on actual firewall specifications. The extracted pro-
gram, in fact, can detect conflicts in firewalls with hundreds
of thousands of rules.

A variety of tools have been designed to address specific
problems in firewall specifications. They can roughly be di-
vided into tools that allow querying firewalls to get various
kinds of information as well as high-level help with debug-
ging, and tools which perform analyses such as conflict and
redundancy checking. A good overview can be found in the
related work section of [32]. We discuss some of them in
more detail later. None that we are aware of have been
formally verified. For example, the work of Eronen and Zit-
ting [11] addresses the conflict problem directly. They im-
plement an expert system in Prolog for this task. Although
they discuss conflicts, they do not define them formally. In
fact, by formalizing our results, we were led to a more gen-
eral definition of conflict than the one used by their system.

The advantages and contributions of this work can be
summarized as follows:

• Uses existing firewall specification language: We pro-
vide a tool that can work directly on firewall con-
figurations expressed in languages such as the Cisco
firewall specification language, to make them more se-
cure. Other tools described in the literature, as far as
we know, which work directly with languages used by
practitioners, do not scale up as much as our approach.

• Can be adopted directly by a firewall administrator:
Our tool provides a powerful aid to firewall admin-
istrators, which they can use directly without being
required to change the way firewalls are currently pro-
grammed. It does not modify a firewall specification,
but reports potential conflicts to a firewall administra-
tor, who decides if the reported conflict is an intended
one, or needs to be addressed.

• Handles ranges and masks in full generality: Most al-
gorithms and tools simplify the kinds of ranges that
are allowed when specifying a set of hosts or ports.
Although it is usually better “programming practice”
to use single intervals when writing rules, the fact that
firewall configuration languages allow more than that
means that any tool that claims to do a full analysis
must handle all that the language is capable of express-
ing. We did not find any other work that discussed
handling this level of generality.

• Formally verified: The proof itself is not complicated,
but with formal verification as an initial goal, we were
led to an elegant treatment of ranges, masks, and in-
tersections that led to a simplified algorithm, and a

verification that took some effort but was well within
the capabilities of existing verification tools.

• Efficient extracted program: As well as a program that
can be executed directly in Coq, we also were able to
extract an efficient OCaml program whose correctness
is guaranteed. The extracted program can handle large
sets of rules, with tens to hundreds of thousands of
rules.

• Scalability: A variety of other tools discussed later also
scale up well, but all those that we found that do so
also simplify the rule format in some way to abstract
away the complications found in real firewall configu-
ration languages such as the one considered here.

The files of the Coq formalization and the extracted OCaml
program are available at: http://www.site.uottawa.ca/

~afelty/coq/fmse07_coq.html

2. RULES AND REQUESTS
A firewall specification is a sequence of rules stating ac-

cess permissions to some resources. Cisco firewall rules have
several formats depending on the purpose of the rule and
also on the version of the Cisco specification language. We
present some examples and then show how we represent rules
in general in Coq.

A rule consists of a group number, an action (permit or
deny), a specification of a set of source hosts, a set of desti-
nation hosts, and an interval of port numbers to which this
rule applies. In the following rule, group 105 denies UDP ac-
cess to port numbers greater than 100 for traffic originating
at host IP address 10.0.0.2 and terminating at host 10.0.1.2.

access-list 105 deny udp

host 10.0.0.2 host 10.0.1.2

gt 100

The two host keywords indicate a single source host, and a
single destination host, respectively. The expression gt 100

indicates that the rule applies to port numbers in the interval
101 to the maximum possible port number. Note that this
rule specifies only one port; our algorithm will handle the
general case where both source and destination ports can be
included.

The following rule illustrates two ways to indicate a range
of possible hosts.

access-list 153 permit udp

any 10.0.0.0 0.0.0.255

eq 124

The keyword any is used to indicate that the rule is appli-
cable to source addresses in the entire allowable range of
values. This is followed by a specification of a range of des-
tination IP addresses. In general, a range is specified by a
base IP number followed by a mask that is to be interpreted
in its binary representation. When a bit in the mask is set
to 0, this indicates that the corresponding bit number in
the address must match the corresponding bit in the base.
Otherwise a 1 bit has the effect of a wild card on that same
bit number. In the above example, 10.0.0.0 is the base
IP address and 0.0.0.255 the mask. Thus, the destination
consists of all IP addresses in the range from 10.0.0.0 to
10.0.0.255.

A firewall is a program that takes access requests as input
and gives a decision, permit or deny, as output according to
the set of firewall rules. A request includes a specific com-
munication protocol, source address, source port number,
destination address, and destination port number. We for-
malize requests as records with fields implemented in Coq
as follows:

Record request : Set := ask request

{ req protocol : protocol;
req source ip : ip address;
req source pn : port number;
req dest ip : ip address;
req dest pn : port number }.

where protocol, ip address, and port number are appropriate
Coq representations of those notions. For example, the rule
formally written as

ask request tcp (ip 1 0 0 1) 19 (ip 1 5 0 100) 35

is read as: Request to transmit from the computer with IP
address 1.0.0.1, via port number 19, to the computer with
IP address 1.5.0.100, via port number 35, using the TCP
protocol.

A firewall rule is also formalized as a Coq record, where
the fields for IP addresses allow ranges, and the fields for
port numbers allow intervals:

Record access rule : Set := rule

{ r action : action;
r protocol : protocol;
r source ip : ip range;
r source pn : pn interval;
r dest ip : ip range;
r dest pn : pn interval }.

A rule set , which defines a firewall, is just a list of rules:

Definition rule set := list access rule.

Notation: lists in Coq have the constructors nil for the empty
list and :: for the cons operator, so a rule set has the form:
r0 :: r1 :: r2 :: · · · :: rn :: nil, where r1, . . . , rn are access rules.

We have developed a parser for Cisco IOS extended rules
as defined in [26]. This parser is a multi target language
tool that produces representations in Prolog and the vari-
ous Coq representations that we have been experimenting
with during this research. It handles, among other things,
the range keywords that enable the specification of ranges
of IP addresses and port numbers. Each occurrence of these
keywords is translated into the appropriate Coq range: the
keyword any that matches all IP addresses, is represented
by an IP range with a mask containing all 1s; the specifica-
tion gt 100 is represented as the range (101, 65535), and the
equality specification eq 124 as the range (124, 124). The
two IOS examples rules above are translated as follows:

(rule deny udp

(ip range (ip 10 0 0 2) (ip 0 0 0 0)) (101, 65535)
(ip range (ip 10 0 1 2) (ip 0 0 0 0)) (101, 65535)) ::

(rule permit udp

(ip range (ip 0 0 0 0) (ip 255 255 255 255)) (124, 124)
(ip range (ip 10 0 0 0) (ip 0 0 0 255)) (124, 124)) :: nil.

When a request is submitted, the firewall checks it against
all the rules of the rule set and produces the appropriate
action. A rule applies to a request if:

• req protocol matches r protocol;

• req source ip is in range of r source ip;

• req source pn is in range of r source pn;

• req dest ip is in range of r dest ip;

• req dest pn is in range of r dest pn.

If they all match, the decision given by r action (permit or
deny) is taken. If some of the fields don’t match, the rule
does not apply.

The question of correctness arises because a request may
match several different rules. If they specify inconsistent
actions, we say that there is a conflict in the rule set.

3. SPECIFICATION OF CORRECTNESS
The conflict detection software should be a program with

type:

find conflicts : rule set → list (N × N).

Given a rule set as input, it outputs the list of indices (posi-
tions in the rule set) of those pairs of rules that may generate
a conflict. Correctness of the software means that it finds
all and only the conflicting rules.

We start the specification by a formal definition of conflict.
First of all we use two relations between access rules and
requests, specifying when the request is permitted or denied
by the given rule:

rule permit : access rule → request → Prop;
rule deny : access rule → request → Prop.

Given an access rule r and a request q, (rule permit r q) is
a proposition: it is true if q is permitted by r; it is false
if q is either denied by or does not match r. Similarly,
(rule deny r q) is true if and only if r denies q. The two
relations are both false in case q does not match r.

We say that two rules are in conflict if there is some re-
quest on which they give opposite actions:

rule conflict : access rule → access rule → Prop

rule conflict q1 q2 :=
∃r : request, (rule permit q1 r ∧ rule deny q2 r) ∨

(rule deny q1 r ∧ rule permit q2 r).

Finally, we define a three-place relation (rs conflict r̄ i j),
where r̄ is a rule set and i and j are indices, that holds if
the ith and jth rules of r̄ conflict:

rs conflict : rule set → N → N → Prop

rs conflict r̄ i j :=
{Hi : i < (length r̄) ∧
{Hj : j < (length r̄) ∧

(rule conflict (Nth r̄ i Hi) (Nth r̄ j Hj))}}.

This reads: Both i and j are smaller than the length of the
rule set r̄ and there is a conflict between rules number i and
j of r̄. Two special notations have been used: the notation
(Nth r̄ i Hi) denotes the ith element of the list r̄, requiring
a proof Hi that i is strictly smaller than the length of r̄; the
notation {(h : P)∧Q[h]} denotes dependent conjunction [22],
that is, the conjunction of two propositions P and Q where Q

depends on the proof h of P . Such dependency of functions
and propositions on proofs is quite common in intensional
type theory, on which Coq is based: it is a direct consequence

of the Curry-Howard isomorphism [17, 27], which identifies
propositions with data-types and proofs with programs.

The correctness specification states that the conflict detec-
tion program find conflicts finds all and only such conflicts.
It splits into two properties: soundness and completeness.

conflict soundness :
∀(r̄ : rule set)(i j : N),
(i, j) ∈ (find conflicts r̄) → rs conflict r̄ i j.

conflict completeness :
∀(r̄ : rule set)(i j : N),
i < j → rs conflict r̄ i j → (i, j) ∈ (find conflicts r̄).

In the statement of completeness, we require i < j for ef-
ficiency. We want to detect every pair of conflicting rules
only once (and a rule never conflicts with itself).

4. CONFLICT DETECTION
Before programming the conflict detection algorithm and

proving its soundness and completeness, let us be more spe-
cific about the definition of the fields in a request and the
corresponding ranges in a rule. For every field, we define a
membership predicate between values and ranges that char-
acterizes the values in the range. Towards the construction
of a conflict detection program, we also define an intersec-
tion check boolean function of two ranges that takes the
value true if and only if there exists a value that belongs to
both ranges.

Actions and protocols are simple sets. Actions have just
two discrete values. For simplicity, our definition of protocol
also has just two values, but could easily be generalized to
include other communication protocols.

action : Set := permit | deny;
protocol : Set := udp | tcp.

Here we do not have ranges but single values in both requests
and rules, therefore we do not need a range membership
relation (equality will do) and the boolean check function is
just an identity check:

action bool : action → action → B;
protocol bool : protocol → protocol → B.

Port numbers are integers and the rules prescribe an in-
teger interval for them, specified by its extremities. The
membership relation and the intersection check function are
straightforward (we use the operators u, t,

.
=, and v to de-

note the boolean versions of conjunction, disjunction, equal-
ity, and order):

port number : Set := Z;
pn interval : Set := port number × port number;

pn match : port number → pn interval → Prop

pn match n (i1, i2) := i1 ≤ n ≤ i2;

pn bool : pn interval → pn interval → B

pn bool (x1, y1) (x2, y2) := ((x1 v y1) u (x2 v y2)) u
((x1 v y2) u (x2 v y1)).

In the definition of pn bool, the first line checks that both
intervals are non-empty, the second that they intersect.

The situation for IP addresses is a bit more complicated:
An IP address is specified by four bytes of eight bits each. In

the Coq definitions, the type bit is just B, byte is bit× bit×
bit× bit× bit× bit× bit× bit, and ip address is byte× byte×
byte×byte. To facilitate the writing of specific IP addresses,
the already mentioned operation ip takes four integers and
converts them into a four-byte address. As illustrated in the
previous section, ranges are not simple intervals as in the
case of port numbers but are given by a base address and a
mask . The mask specifies which bits of the base address are
to be considered variable and which ones are to be considered
fixed. We explain this further here with a more detailed
example, which illustrates our notation and motivates our
definitions. If the base address is (ip 140 101 171 31) and
the mask is (ip 24 7 56 255), then, writing them in binary
form in the first two lines, we get the matching pattern in
the third line of the following scheme:

base: 10001100.01100101.10101011.00011111

mask: 00011000.00000111.00111000.11111111

pattern: 100**100.01100***.10***011.********

This shows that the matching addresses must have the
same bit values as the base in the positions where the mask
has a 0, and can have any value in the positions where the
mask has a 1. In practice this system is used to define simple
intervals by having a mask with all 0s in the higher positions
and all 1s in the lower positions. One of the common errors
in defining access rules is to give an incorrect mask, thus
specifying unintended addresses. The formal definition of
an IP address range is a record with two fields:

Record ip range : Set := mk range

{ ip base : ip address;
ip mask : ip address }.

The matching relation between addresses and ranges is de-
fined first for bits and bytes, with an extra argument for the
mask, and then for the full IP address:

bit match : bit → bit → bit → Prop

bit match b1 b2 bm := (bm = true) ∨ (b1 = b2);

byte match : byte → byte → byte → Prop

byte match (b11, . . . , b18) (b21, . . . , b28) (bm1, . . . , bm8)
:= bit match b11 b21 bm1 ∧ . . . ∧ bit match b18 b28 bm8;

ip match : ip address → ip range → Prop

ip match (a1, . . . , a4) (mk range (b1, . . . , b4) (m1, . . . , m4))
:= byte match a1 b1 m1 ∧ . . . ∧ byte match a4 b4 m4.

Consequently, two IP address ranges overlap if in every
bit position one of the following two conditions holds: at
least one of the two masks has a 1 or the two base bits are

the same. This leads to the following definitions:

bit mask bool : bit → bit → bit → bit → B

bit mask bool b1 m1 b2 m2 := m1 t m2 t (b1

.
= b2);

byte mask bool : byte → byte → byte → byte → B

byte mask bool (b11, . . . , b18) (m11, . . . , m18)
(b21, . . . , b28) (m21, . . . , m28)

:= (bit mask bool b11 m11 b21 m21) u . . .

. . . u (bit mask bool b18 m18 b28 m28);

ip address bool : ip range → ip range → B

ip address bool (mk range (b11, . . . , b14) (m11, . . . , m14))
(mk range (b21, . . . , b24) (m21, . . . , m24))

:= (byte mask bool b11 m11 b21 m21) u . . .

. . . u (byte mask bool b14 m14 b24 m24).

Having defined the functions that check intersections of
ranges for each field, we can finally program a function that
compares two rules, verifies if they overlap, and in that case
checks whether they give the same action:

conflict check : access rule → access rule → B

conflict check (rule a1 p1 rs1 ns1 rd1 nd1)
(rule a2 p2 rs2 ns2 rd2 nd2)

:= if (action bool a1 a2)
then false

else (protocol bool p1 p2) u
(ip address bool rs1 rs2) u (pn bool ns1 ns2) u
(ip address bool rd1 rd2) u (pn bool nd1 nd2).

This states that if the action given by the two rules is the
same, then there is no conflict; if the two actions are dif-
ferent, then there is a conflict if all the corresponding fields
have non-empty intersection. A slight modification of our
algorithm can be used to detect redundant rules: rules that
apply to the same requests and give the same answer. It is
enough to check for non-empty intersections when the ac-
tion is the same. This redundancy-detection algorithm is
very similar to the conflict detection one, so we do not ex-
plicitly formulate it.

Finally, the conflict detection algorithm must check all the
pairs of rules in the rule set and apply conflict check to all:

find conflicts : rule set → list (N × N).

Pairs of rules are compared in their occurrence order: a
rule is compared only with the rules following it, to avoid
duplicate comparison.

To implement the procedure efficiently, we define a couple
of auxiliary functions to perform careful bookkeeping of the
rule indices. The first function, rrs conflicts, checks a single
rule r against a list of rules ~s and returns a list of pairs of
indices. We give as inputs also a pair of indices: i is the
index of r in the original rule set and n is the index of the
first element of ~s in the original rule set. The function is
defined by recursion on the structure of ~s.

rrs conflicts : N → N →
access rule → rule set → list (N × N)

rrs conflicts i n r nil := nil

rrs conflicts i n r (h :: ~s)
:= if (conflict check r h)

then (i, n) :: (rrs conflicts i (n + 1) r ~s)
else (rrs conflicts i (n + 1) r ~s).

The second function searches for conflicts inside a tail frag-
ment ~s of the original rule set, using an extra input indicat-
ing at what position of the original rule set ~s starts:

conflictsaux : N → rule set → list (N × N)
conflictsaux n nil := nil

conflictsaux n (r :: ~s)
:= (rrs conflicts n (n + 1) r ~s) ++ (conflictsaux (n + 1) ~s).

where ++ is the append operator on lists. So, in the case of
a nonempty list, the result is comprised of two parts: the
conflicts between the head of the list and its tail, and the
conflicts within the tail.

Finally, the conflict detection program just applies the
function conflictsaux to the whole rule set:

find conflicts ~r := conflictsaux 0 ~r.

We assumed that the numbering of the rules in the rule set
starts with 0. Often the convention is to start with a first
rule with number 1; in that case we just need to replace 0
with 1 in the definition of find conflicts. For the correctness
proof to carry over, we would also need to modify accord-
ingly the function Nth and replace < with ≤ in the definition
of rs conflict.

We can optimize the algorithm further by programming
a tail-recursive version of it. This will prevent a stack over-
flow for very large rule sets. The transformation to a tail-
recursive form is a standard technique.

rrs confltl : N → list (N × N) → N →
access rule → rule set → list (N × N)

rrs confltl i l n r nil := l

rrs confltl i l n r (h :: ~s)
:= if (conflict check r h)

then (rrs confltl i ((i, n) :: l) (n + 1) r ~s)
else (rrs confltl i (n + 1) r ~s);

conflaux,tl : list (N × N) → N → rule set → list (N × N)
conflaux,tl l n nil := l

conflaux,tl l n (r :: ~s)
:= conflaux,tl (rrs confltl n l (n + 1) r ~s) (n + 1) ~s;

find confltl : rule set → list (N × N)
find confltl ~r := conflaux,tl nil 0 ~r.

It is easy to prove that the tail-recursive version of the al-
gorithm is equivalent to the original formulation. The only
difference is that the results are given in inverse order.

Theorem 1 (find conflicts tl equivalence).

∀~s : rule set, find conflicts ~s = reverse (find confltl ~s).

In Sections 6 and 7, we prove soundness and completeness,
which, as argued, establish the correctness of our algorithm.
These proofs are formalized for the algorithm find conflicts

and, by the previous theorem, they extend immediately to
find confltl. The next section is dedicated to a description of
the extracted OCaml program.

5. THE EXTRACTED PROGRAM
The interaction between programming and formal theo-

rem proving can be realized with two distinct methodolo-
gies: the common external approach and the constructive
integrated approach [12, 9]. The traditional external ap-
proach consists of implementing an algorithm as a program

in some programming language and then using a logical sys-
tem to prove its correctness. The integrated approach, on
the other hand, exploits the computational content of con-
structive logic to extract a program from the proof of a the-
orem.

Since Coq is not just a proof-assistant, but also a func-
tional programming language, we could program our algo-
rithm directly in it. Then the proof of correctness guaran-
tees that, when we run the Coq functions find conflicts and
find confltl, the results are provably correct. For large rule
bases, however, the Coq implementation may not be efficient
enough and we may need to extract the program to a more
conventional programming language.

Coq has an extraction mechanism that produces an OCaml
program from any Coq object [24, 18]. Since Coq develop-
ments may contain logical information that has no counter-
part in OCaml, the extraction mechanism deletes all non-
computational parts of the Coq objects.

A further strength of Coq is that executable programs can
also be extracted from constructive proofs. These are proofs
whose types live in the sort Set rather than in Prop. Indeed,
our initial development did not contain a direct implemen-
tation of the boolean decision functions, but used instead
constructive decidability results.

For example, instead of using the boolean function

ip address bool : ip address → ip address → B,

we would use a lemma

ip address dec :
∀a1 a2 : ip address, {ip match a1 a2} + {¬(ip match a1 a2)},

which states that the predicate ip match is decidable. The
proof of such a lemma is constructive and therefore a de-
cision procedure can be obtained from it. However, the
extracted program was not efficient, so we decided to im-
plement directly an algorithm for conflict detection, rather
than obtaining it from a proof. In other words, we used
the integrated approach to produce a prototype, and then
switched to an external approach to realize some optimiza-
tions of the software.

Now we can again use extraction to get an OCaml pro-
gram. This looks identical to the Coq implementation, ex-
cept for some changes in notation, since we have used no log-
ical information in defining find conflicts. But there is still
some inefficiency caused by the fact that Coq data-types are
translated together with the functions. This means that the
OCaml program does not use the native types for natural
numbers, integers, bytes, Cartesian products, lists, etcetera,
but uses instead the translations of Coq’s inductive types.
To improve efficiency, we modified the OCaml program by
replacing Coq types with native OCaml types.

For example, port numbers are defined as integers. The
extracted program defines a type of binary integers that is
obtained from the Coq inductive implementation:

type positive =

| XI of positive

| XO of positive

| XH

type z =

| Z0

| Zpos of positive

| Zneg of positive

Here we have a type positive of positive integers with three
constructors: XH for 1, X0 for the function n 7→ 2 ∗n, and XI

for the function n 7→ 2∗n+1. Then the integers z are defined
by taking two copies of positive, one for the positive and
the other for the negative numbers, plus a constant Z0 for 0.
All the basic operations on integers are also extracted from
the Coq versions.

Clearly this is an inefficient excess, since OCaml has a
native type of integers int with all the basic operations ef-
ficiently implemented. Therefore, we used int in place of
z in the conflict detection program. Naturally, the proof of
correctness is still valid, provided that the computational be-
haviours of the two integer types are equivalent. The major
potential source of error in this replacement is that, while el-
ements of z are arbitrary precision integers, elements of int
are 31-bit integers. This would cause an error if numbers
with more that 31 bits are used. Fortunately, in our devel-
opment z is used to model two entities: bytes, which have
only 8 bits, and port numbers, which have 16 bits. Therefore
no error can ever occur.

To demonstrate that the OCaml version of the program
is just a reformulation of the Coq algorithm in a different
syntax, here is, as example, the extracted boolean function
checking whether there is a conflict between two rules:

let conflict_check r1 r2 =

let { r_action = a1;

r_protocol = pt1;

r_source_ip = sip1;

r_source_pn = spn1;

r_dest_ip = dip1;

r_dest_pn = dpn1 } = r1

in

let { r_action = a2;

r_protocol = pt2;

r_source_ip = sip2;

r_source_pn = spn2;

r_dest_ip = dip2;

r_dest_pn = dpn2 } = r2

in

a1<>a2 && pt1=pt2 &&

ip_range_int sip1 sip2 &&

port_number_int spn1 spn2 &&

ip_range_int dip1 dip2 &&

port_number_int dpn1 dpn2

Compare it with the type-theoretic version of the previous
section. It is basically the same, although Coq automatically
performed a simplification of the (if − then − else −)
construct before the extraction.

In the OCaml program we used, for efficiency, the tail-
recursive version of the conflict detection algorithm.

To give an idea of the efficiency of the algorithm, below
are the execution times (on an IBM ThinkPad X60s) for
some sample rule sets. The generator for these test rule
sets is included in the file conflicts.ml: the command
rs_generate z1 z2 z3 z4 will generate a rule set contain-
ing 5(z1 + 1)(z2 + 1)(z3 + 1)(z4 + 1) rules. The smallest set
(when all arguments are 0) is a list of 5 rules containing 3
conflicts.

num. of rules conflicts found exec. time
5000 5600 4s

10000 15200 14s
20000 43200 54s
40000 86400 217s

100000 216000 23m
200000 432000 92m

6. PROOF OF SOUNDNESS
Now we want to prove the soundness of the algorithm.

Intermediate results guarantee that the boolean functions
used to check the intersection of the ranges of the fields of
rules are sound with respect to the meaning given to them.

The boolean check function for IP ranges gives true if and
only if the two ranges have a non-empty intersection, that
is, if there exists an IP address that matches both:

Lemma 1 (ip range intersection).

∀ r1 r2 : ip range,

(ip address bool r1 r2) = true →
∃a : ip address, (ip match a r1) ∧ (ip match a r2).

Proof. The proof of this lemma is based on similar re-
sults at the level of bits and bytes and it is quite straight-
forward.

Similar lemmas hold for the other fields. Once we put them
all together, we can prove the correctness of the conflict
check function:

Lemma 2 (conflict check soundness).

∀r1 r2 : access rule,

conflict check r1 r2 = true → rule conflict r1 r2.

Finally, the proof of soundness of the conflict detection
algorithm requires only some bookkeeping on the indices.

Theorem 2 (conflicts soundness).

∀(rs : rule set)(i j : N),
(i, j) ∈ (find conflicts rs) → rs conflict rs i j.

7. COMPLETENESS
Besides proving that all the pairs detected by find conflicts

are actual conflicts, we must also guarantee that all conflicts
are discovered by the program. That is, we need to establish
completeness. All properties of the boolean check functions
that were proved in the previous section can be reversed.
For example, we can prove that if two port number ranges
overlap, then the corresponding check function gives true:

Lemma 3 (intersection pn range).

∀(r1 r2 : pn interval)(n : port number),
pn match n r1 → pn match n r2 →
(pn bool r1 r2) = true.

In this statement we changed the existential quantifica-
tion on n in the hypothesis into an equivalent global uni-
versal quantification, to simplify the logic. Similar lemmas
hold for the other fields. Using such results, we prove the
completeness theorem for the conflict detection program.

Theorem 3 (conflicts completeness).

∀(r̄ : rule set)(i j : N),
i < j → rs conflict r̄ i j → (i, j) ∈ (find conflicts rs).

8. RELATED WORK
As previously mentioned, numerous other firewall analysis

algorithms and tools have been developed, some of which
can perform inconsistency and redundancy checks, but none
of those that we consulted has been formally verified. We
mention a few related approaches here. Tools that allow
user queries for the purpose of analysis and management of
firewall rules include Firmato [5] and Lumeta [31]. Lumeta
is a successor to Fang [23] with capabilities for automatically
generating queries that highlight risks.

Tools that provide analyses which detect inconsistencies
are most closely related to our approach, especially those
whose analyses involve a pairwise comparison of rules, such
as the work of Eronen and Zitting [11] on the implementa-
tion of an expert system and of Al-Shaer and Hamed [2, 3] on
the Firewall Policy Advisor tool. In all the literature that we
examined, either it is not clear how masks are handled, or it
is assumed that a mask specifies a single interval. Although
this is often the case in practice, our example showed that
a single mask can specify a range comprising multiple in-
tervals of IP addresses. We incorporated full general ranges
into our definitions. In addition, because of the success of
our performance tests, we believe that our approach is an
optimization on the specific class of problems that can be
handled by all these approaches. Although it is not possi-
ble to compare directly, since we don’t have a copy of their
implementations, statistics given for the Firewall Policy Ad-
visor consider up to 100 rules. Statistics are not given for
Eronen and Zitting’s expert system, but we did a cursory
comparison by also implementing and testing a prototype
of both their approach and our approach in Prolog. The
Firewall Policy Advisor tool also includes a high-level policy
editor which helps a firewall administrator avoid introducing
new conflicts when adding rules.

Other algorithms that involve pairwise comparisons are
those of Hari et. al. [16], Eppstein and Muthukrishnan [10],
and Baboescu and Varghese [4]. These algorithms assume
a rule format with no masks and a simplified kind of range,
which allows for efficient algorithms which scale well. These
papers report good experimental results; in some cases up
to tens of thousands of rules are processed successfully. The
FIREMAN toolkit [32] is another example of this approach
to detecting inconsistencies and redundancies in single fire-
walls and in networks of firewalls. The set of all possible
requests is formulated and model checking is used to di-
vide the set into those which are accepted, those which are
rejected, and those for which no rule applies. The experi-
mental results include firewalls of up to 800 rules, but the
tool could likely handle more since it uses an efficient BDD
representation.

The ACLA framework [25] is another set of algorithms for
performing various analyses on firewall specifications. These
analyses include detecting conflicts, as well as others such
as redundancy checking. The main aim of the approach
is to use the results of analysis to optimize firewalls. For
example, if there is a conflict because two rules containing
intersecting port number ranges, then these two rules are
split into three rules, one for the non-intersecting part of the
permit rule, one for the non-intersecting part of the deny
rule, and one for the intersection of the two ranges. The
order of the two rules is important for determining whether
the latter rule is designated a permit rule or a deny rule;
it is given the same designation as the one appearing first

in the list. The result of the set of analyses is a new list of
rules with the same behavior as the original with all conflicts
and redundancies removed. While this kind of analysis can
detect conflicts, the goal is different from ours. The ACLA
approach assumes that the firewall has no errors and returns
an optimized version that could be quite different from the
original, and thus hard to read for the original programmer.
Our approach reports conflicts to a firewall administrator
for help in debugging a firewall specification.

Another algorithm for both reporting and removing con-
flicts and redundancies is presented in [8]. The kinds of
transformations done are similar to those of the ACLA frame-
work, though the algorithms differ. In [8], redundancies and
conflicts are both removed automatically and reported to
the system administrator.

Liu and Gouda [19] give an algorithm specialized for find-
ing redundancies. Like in the ACLA work, they assume that
the input firewalls are correct. Under such an assumption,
a redundancy is any rule such that the operation of the fire-
wall would be the same without it, which differs significantly
from our definition (and that of [32]). For example, given
two rules that cover the same set of packets, the one occur-
ring later in the list of rules is considered redundant, even if
one rule accepts these packets, and the other denies them;
this is a conflict in our case. On the other hand, their defini-
tion does not cover rules which both deny or both accept a
set of packets in the case when the set of packets covered by
one rule is not a subset of the packets covered by the other;
our definition does cover this case. Thus the algorithms de-
veloped are necessarily different from ours. No experimental
results are given for this technique.

Guttman and Herzog [13, 14] develop a high-level model
of a network and a set of algorithms and tools for analyzing
both firewall rules and network intrusion detection systems.
This work focuses on ensuring that firewall and network con-
figurations satisfy a given policy; the analyses they can per-
form include detecting inconsistencies and redundancies but
are more general. Uribe and Cheung [30] also use similar
modeling techniques and perform a variety of analyses. The
Network Policy Enforcement tool [14] is one of the more re-
cent tools in this line of work. It uses a BDD representation
and reports successful results on 1,300 access rules in a single
run, and is likely to work for even larger rule sets.

9. CONCLUSION
The results presented here illustrate that it is possible

to write a conflict detection algorithm for firewalls that is
both formally verified and efficient. When we began this
work, we first developed a method to prove, for each firewall
specification, that it was conflict-free. The main advantage
of the method shown here, i.e., proving the correctness of the
program which detects conflicts, is clear. There is a single
proof required; we proved the correctness once and for all,
and then can apply the verified extracted program to as
many firewalls as needed. We have also reported that our
algorithm is efficient. In particular, we successfully applied
our conflict detection implementation to a firewall with over
200,000 rules.

In papers where classification systems are given, conflicts
are divided into several categories. For example, in [32],
shadowing refers to a conflict where the packets covered by
a rule appearing later in the list is a subset of the packets
covered by an earlier rule, generalization is the reverse where

the rule with the subset appears first, and correlation covers
the case where the packets covered by both rules intersect,
but neither is a subset of the other. Our algorithm covers all
these cases, but does not distinguish them. We could easily
add such a distinction to the algorithm and to the reporting
of conflicts. Also, as noted, although we have not done so,
our techniques could easily be applied to detect redundancies
as well, and we could also specify the corresponding three
categories of redundancies.

The kind of reasoning needed to complete the formal proof
was not deep, and more of the proof could likely be auto-
mated if we were to use a system that implements a less
expressive logic and has more automated reasoning capabil-
ities. We chose Coq for a variety of reasons. For example, its
expressive power allowed a direct and elegant formulation of
definitions, leading to a concise proof. Also, it has a pro-
gram extraction facility that is direct and easy to use. The
fact that the proof was done interactively was not a big cost
since the proof was done once. Coq does provide facilities to
develop automated procedures which we could apply to this
particular application. If we were to consider a wider class
of firewall analysis tools, each which needed to be proved
correct independently, it would likely become worthwhile to
further investigate this potential as well as compare it with
the use of other systems which provide more automation
directly.

Our future work will include handling blanket rules. As
mentioned, a blanket rule expresses constraints on many
hosts or port numbers at once, specifying a default policy
that may be contradicted by more specific rules appearing
earlier. For example, a firewall administrator may want to
deny FTP for all ports numbers from 20 to 30 but permit
FTP for a given destination host from any source. The per-
mit rule would appear before the blanket deny rule. Thus,
even though these rules describe opposite behavior for one
destination host, they should not in principle be considered
conflicting because they implement the intended behavior.
Handling such rules will involve formally defining the no-
tion of blanket, and incorporating it into our definition of
conflict.

It would be interesting to try to formally verify the analy-
sis algorithms of FIREMAN, ACLA, and several other sys-
tems, which could both confirm their correctness as well as
provide a method of formal comparison of the definitions of
conflict used by the different approaches. In addition, other
areas such as firewall policy deployment are important in
practice and can involve complex algorithms (e.g. [33]) which
may benefit from formal verification.

Our work paves the way for considering more general pol-
icy representation languages like XACML [28], which is be-
coming increasingly important in the security domain. Some
work on detecting conflicts in XACML policies can be found
in [20, 21]. We expect to be able to apply our method for
handling ranges such as those specified by host/mask pairs
to a variety of other kinds of data which are used by XACML
to express both numerical and non-numerical constraints.
We have so far implemented a prototype in Prolog for a
large subset of XACML, which will serve as the starting
point for a formal version.

Acknowledgements
The authors are grateful to Luigi Logrippo and to Jacques
Sincennes for their input to this research. The work de-

scribed here is supported by the Ontario Centres of Excel-
lence and the Natural Sciences and Engineering Research
Council of Canada.

10. REFERENCES
[1] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and

Masum Hasan. Conflict classification and analysis of
distributed firewall policies. IEEE Journal on Selected
Areas in Communications, 23(10):2069–2084, October
2005.

[2] Ehab S. Al-Shaer and Hazem H. Hamed. Firewall
policy advisor for anomaly discovery and rule editing.
In IFIP/IEEE Eighth International Symposium on
Integrated Network Management, pages 17–30, 2003.

[3] Ehab S. Al-Shaer and Hazem H. Hamed. Discovery of
policy anomalies in distributed firewalls. In
Proceedings of IEEE Infocom, volume 4, pages
2605–2626, 2004.

[4] Florin Baboescu and George Varghese. Fast and
scalable conflict detection for packet classifiers. In
Tenth IEEE International Conference on Network
Protocols, pages 270–279, 2002.

[5] Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai
Wool. Firmato: A novel firewall management toolkit.
ACM Transactions on Computer Systems,
22(4):381–420, November 2004.

[6] Yves Bertot and Pierre Castéran. Interactive Theorem
Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[7] James Boney. CISCO IOS in a Nutshell. O’Reilly, first
edition, 2001.

[8] F. Cuppens, N. Cuppens-Boulahia, and
J. Garćıa-Alfaro. Detection and removal of firewall
misconfiguration. In IASTED International
Conference on Communication, Network, and
Information Security, 2005.

[9] P. Dybjer. Comparing integrated and external logics
of functional programs. Science of Computer
Programming, 14:59–79, 1990.

[10] David Eppstein and S. Muthukrishnan. Internet
packet filter management and rectangle geometry. In
Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 827–835, 2001.

[11] Pasi Eronen and Jukka Zitting. An expert system for
analyzing firewall rules. In 6th Nordic Workshop on
Secure IT Systems, pages 100–107, 2001.

[12] J.-Y. Girard. Linear logic and parallelism. In
Mathematical Models for the Semantics of Parallelism,
volume 280 of Lecture Notes in Computer Science,
pages 166–182. Springer-Verlag, 1986.

[13] Joshua D. Guttman. Filtering postures: Local
enforcement for global policies. In IEEE Symposium
on Security and Privacy, pages 120–129, 1997.

[14] Joshua D. Guttman and Amy L. Herzog. Rigorous
automated network security management.
International Journal of Information Security, 2003.
To appear.

[15] Hazem Haded and Ehab Al-Shaer. Taxonomy of
conflicts in network security policies. IEEE
Communications Magazine, 44(3):134–141, March
2006.

[16] Adiseshu Hari, Subhash Suri, and Guru Parulkar.
Detecting and resolving packet filter conflicts. In
Proceedings of IEEE Infocom, volume 3, pages
1203–1212, 2000.

[17] W. A. Howard. The formulae-as-types notion of
construction. In J. P. Selding and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages
479–490. Academic Press, 1980.

[18] Pierre Letouzey. A new extraction for Coq. In Types
for Proofs and Programs, Second International
Workshop, volume 2646 of Lecture Notes in Computer
Science, pages 200–219. Springer-Verlag, 2003.

[19] Alex X. Liu and Mohamed G. Gouda. Complete
redundancy detection in firewalls. In Data and
Applications Security, volume 3654 of Lecture Notes in
Computer Science, pages 196–209. Springer-Verlag,
2005.

[20] Mahdi Mankai. Vérification et analyse des politiques
de contrôle d’accès: Application au langage XACML.
Master’s thesis, Université du Québec en Outaouais,
January 2005.

[21] Mahdi Mankai and Luigi Logrippo. Access control
policies: Modeling and validation. In K. Adi,
D. Amyot, and L. Logrippo, editors, 5th NOTERE
Conference (Nouvelles Technologies de la Répartition),
pages 85–91, Gatineau, Canada, 2005.

[22] Per Martin-Löf. Intuitionistic Type Theory.
Bibliopolis, 1984. Notes by Giovanni Sambin of a
series of lectures given in Padua, June 1980.

[23] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang:
A firewall analysis engine. In IEEE Symposium on
Security and Privacy, pages 177–187, 2000.

[24] Christine Paulin-Mohring. Extracting F(omega)’s
programs from proofs in the calculus of constructions.
In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 89–104, 1989.

[25] Jiang Qian, Susan Hinrichs, and Klara Nahrstedt.
ACLA: A framework for access control list (ACL)
analysis and optimization. In Proceedings of
Communications and Multimedia Security, 2001.

[26] Jeff Sedayao. Cisco IOS Access Lists. O’Reilly, June
2001.

[27] Morten Heine B. Sørensen and P. Urzyczyn. Lectures
on the Curry-Howard Isomorphism. Elsevier Science,
2006.

[28] Sun Microsystems. A brief introduction to XACML.
http://www.oasis-open.org/committees/-
download.php/2713/-
Brief Introduction to XACML.html,
2003.

[29] The Coq Development Team. LogiCal Project. The
Coq Proof Assistant. Reference Manual. Version 8.
INRIA, 2004. Available at the web page
http://pauillac.inria.fr/coq/coq-eng.html.

[30] Tomás E. Uribe and Steven Cheung. Automatic
analysis of firewall and network intrusion detection
system configurations. In ACM Workshop on Formal
Methods in Security Engineering, pages 66–74, 2004.

[31] Avishai Wool. Architecting the Lumeta firewall
analyzer. In 10th USENIX Security Symposium, 2001.

[32] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen,
Chen-Nee Chuah, and Prasant Mohapatra.
FIREMAN: A toolkit for firewall modeling and
analysis. In IEEE Symposium on Security and
Privacy, 2006.

[33] Charles C. Zhang, Marianne Winslett, and Carl A.
Gunter. On the safety and efficiency of firewall policy
deployment. In IEEE Symposium on Security and
Privacy, pages 33–50, 2007.

