Feature Specification and Automatic
Conflict Detection*

Amy P. Felty' Kedar S. Namjoshi
School of Information Technology and Bell Laboratories,
Engineering, University of Ottawa Lucent Technologies
afelty@site.uottawa.ca kedar@research.bell-labs.com

Abstract. We present a formal feature specification language and a
method of automatically detecting feature conflicts (“undesirable inter-
actions”) at the specification stage. Early conflict detection can help
prevent costly and time-consuming problem fixes during implementa-
tion. Features are specified in linear temporal logic; two features conflict
essentially if their specifications are mutually inconsistent under axioms
about the underlying system behavior. We show how this inconsistency
check may be performed automatically with existing model checking
tools. The model checking tools can also be used to provide witness
scenarios, both when two features conflict as well as when the features
are mutually consistent. Both types of witnesses are useful for refining
the specifications. We have implemented a conflict detection tool, FIX
(Feature Interaction eXtractor), that uses the model-checker COSPAN
for the inconsistency check. We describe our experience in applying this
tool to a collection of feature specifications derived from the Telcordia
(Bellcore) standards.

1 Introduction

Telecommunications services are typically marketed to customers as groups of features
such as call-waiting and call-forwarding. Since the groups are flexible, an individual
feature is usually specified without knowledge of which other features it may be grouped
with. This facilitates modular design and implementation; however, as features in a
group can be active concurrently, problems arise when the feature requirements man-
date conflicting behavior. Individual implementations may resolve such conflicts in
different ways, leading to unpredictable behavior in the system as a whole. It is there-
fore essential to detect and resolve such feature conflicts as early as possible, preferably
in the specification stage itself .

With this motivation, we have developed a formal feature specification language,
and a method of automatically detecting feature conflicts at the specification stage,

*In M. Calder and E. Magill, editors, Feature Interactions in Telecommunications and Software
Systems VI, I0S Press, 2000.

tThis work was done while the author was at Bell Laboratories.

!This notion of conflict roughly corresponds to feature interference or service interference as dis-
cussed in the literature (see [12], for example); in contrast, interaction is often used more generally
and includes interactions that may be desirable.

which is implemented in a detection tool. Features are specified by describing their
temporal behavior. For instance, a typical informal specification for call forwarding is
that “If entity = has call forwarding enabled and calls to = are to be forwarded to z
then, whenever z is busy, any incoming call from y to x is eventually forwarded to
2”. This informal description can be expressed precisely in our specification language,
as described in Section 3. The language itself may be viewed as a sugared version of
temporal logic or w-automata. Specifying features as temporal formulae abstracts from
specific state-machine implementations, allowing any implementation that satisfies the
specifications.

Given that specifications are temporal formulae, the natural way to define a feature
conflict is that the feature formulae are mutually inconsistent; i.e., their conjunction is
unsatisfiable. As discussed in Section 4.1, to detect feature conflicts, we may also need
to include azioms about the underlying system. The system axioms describe properties
that should be true of any reasonable system implementation. The need for such system
axioms in one form or another (for example, the network properties in [9]) has arisen in
a variety of approaches to the feature interaction problem. In our case, typical axioms
for telephony include the following: (i) the system should not disconnect an established
call, and (ii) if a call attempt is rejected, no connection should be established until the
next attempt. These axioms are also specified in the same specification language as the
features. Specifying the system by axioms abstracts from particular implementations,
resulting in conflict reports that have wider applicability.

Conflict detection is thus reduced to a satisfiability test for temporal formulae. By
considering only a finite number of entities, the feature specifications can be made
propositional, and the test can be performed automatically with a model checking
tool. We have developed a tool, FIX (Feature Interaction eXtractor), that reads in
feature specifications, converts them into w-automata descriptions, and uses the model
checking tool COSPAN [10] to perform the satisfiability test. The detection process is
fully automated. The model checker provides witness computations for either outcome.
If no conflict is detected, the witness describes a non-conflicting computation of the
system; examining this computation often reveals assumptions about the system that
need to be added as axioms. If a conflict is detected, the witness computation describes
a particular scenario where the features conflict. By examining this scenario, one can
determine either the proper resolution of the conflict, or whether the specifications need
to be modified. Our specification method includes a mechanism that makes it easy to
specify dynamic priorities (i.e., dependent on system state) between conflicting features.
Our experience so far has been that this detection process is reasonably efficient and
quite accurate; for the set of features to which we have applied this method, we have
been able to detect most of the interactions given in the Telcordia (Bellcore) standards,
as well as some new ones.

The rest of the paper is structured as follows. Section 2 contains a short back-
ground on temporal logic, w-automata and model checking. We motivate and describe
our specification language in Section 3. The precise definition of feature conflict and
the detection method is described in Section 4. We have applied our tool to several
Telcordia feature specifications; this is described in Section 5. The paper concludes
with a discussion of related work and conclusions in Section 6.

2 Background

In this section, we provide a short background on linear temporal logic, w-automata,
and model checking.

2.1 Linear Temporal Logic

Linear-time temporal logic (usually abbreviated as LTL) was first suggested as a proto-
col specification language in [16]. Formulae in the logic define sets of infinite sequences;
hence, the logic is particularly well suited to describe time dependent properties of
concurrent, reactive systems such as telephony and other network protocols. Formally,
LTL formulae are parameterized by a set of atomic propositions, AP, and are defined
by the following syntax:

1. Every proposition P in AP is a formula,
2. For formulae f and g, (f A ¢) and —(f) are formulae,
3. For formulae f and g, X(f) and (f U g) are formulae.

The temporal operators are X (read as “next-time”) and U (read as “until”). An
infinite sequence of atomic proposition valuations can be defined as a function from N
to 247, We write o,i |= f to mean that the infinite sequence o : N — 247 satisfies the
formula f at position i. The language of f, denoted by L(f), is the set {o | 0,0 E f}.
The satisfaction relation can be defined by induction on the structure of f as follows.

1. For a proposition P, 0,i = P iff P € o(i),
2. oiE=-(f)iff o,i | [is false,
o,i = (f A g)iff both 0,i = f and 0,i = g are true,
3. i =X(f)iffo,i+1Ef,
o,i = (f U g) iff there exists j, j > i, such that o,j |= g and for every k, i < k < j,
ok E=f.

Other connectives can be defined in terms of these basic connectives: (f V g) is
—(=f A g); (f = g)is ~f Vg F(g) (“eventually ¢”) is (true U g); G(f) (“always
f7)is =F(=f), and (f W g) (“f holds unless ¢”) is (G(f) V (f U g)).

2.2 Automata on infinite sequences

Temporal properties can also be specified by finite-state automata that recognize infinite
input sequences. Such automata are known as Biichi automata [4] or as w-automata.
A Biichi automaton A is specified by a tuple (S, X, A, I, F'), where:

S is a finite set of states,

Y is a finite set known as the alphabet,

A C S x X xS, is the transition relation,
I C S is the set of initial states,

F C S is the set of accepting states.

A run of A on an infinite sequence o : N — ¥ is an infinite sequence r : N — S of
states such that: (i) 7(0) € I, and (ii) for each i € N, (r(7),0(i),r(i+1)) € A. Arunr
is accepting iff one of the states in F' appears infinitely often along r. The language of
the automaton, £(.A), is the set of infinite sequences on which A has an accepting run.
Biichi automata (with ¥ = 247) are strictly more powerful than linear temporal logic
at defining sets of sequences. There is a (worst-case exponential) translation from LTL
formulae to equivalent Biichi automata; see [18] for a survey.

2.3 Model Checking

A program generates a set of computation sequences. For reactive programs where
non-termination is desirable, such as operating systems and telephony protocols, the
sequences are infinite, in general; hence, temporal logic or Biichi automata can be
used to describe properties of the programs. For instance, mutual exclusion may
be written as G(—(Criticaly A Critical;)), and eventual access as G(Waiting =
(Waiting U Granted)).

For programs with finitely many states, a fully automated procedure known as Model
Checking [5, 17] can be used to determine if a property holds of all computations of
the program. A finite state program can be represented by a Biichi automaton with
the trivial acceptance condition F' = S; hence, model checking becomes the language
containment question L£(Program) C L(Property) [19].

Model Checking tools based on language containment include COSPAN [10] and VIS
[3]. If the specification fails to hold of the program, the tool generates a computation
that is a witness to this failure; i.e., one that is in the set £(Program) N L(Property).
We make use of this capability in our conflict detection method (Section 4).

3 Feature Specification

In this section, we describe and define our feature specification language and the
methodology we have used to set up the feature conflict check. The details of this
check are presented in the following section.

In order to specify features, we have to begin with some informal understanding of
the term “feature”. In the rest of the paper, we restrict ourselves to telephony features;
however, our specification language and the conflict detection algorithm can also be
applied to specifications of features in other kinds of systems.

A telephony feature, such as call waiting or call forwarding, typically specifies the
behavior, over time, of one or more entities in terms of their current state and a set of
input events. The informal specification given earlier for call forwarding is an example:
“If entity x has call forwarding enabled and calls to x are to be forwarded to z then,
whenever x is busy, any incoming call from y to z is eventually forwarded to z”. In
this specification, we can distinguish several predicates that describe the state of entity
x: call_forwarding_enabled(z), forward_from_to(z,z), forwarded_call_from_to(y,z, z),
busy(z), and the predicate incoming-_call_from_to(y,z) that describes the occurrence
of an event. The rest of the sentence uses boolean operators and temporal operators
(i.e., “whenever”, “eventually”). Hence, we believe that a particularly appropriate way

of specifying a feature is by a collection of temporal formulae (or automata) that are
defined over a set of predicates that denote states or events of the system.

The specification notation that we have developed is a sugared version of LTL. Each
feature is specified in a separate file; for instance, call forwarding is specified in the file
“call_forwarding.spec”. Each specification consists of definitions of basic and derived
predicates, and a list of properties. We use the symbols +, &, ~,=> to denote the
boolean operators V , A ,—, = respectively.

The properties are defined in terms of predicates that indicate relationships between
entities in the system. There are two pre-defined predicates: eq(z,y), which denotes
equality of the entities 2 and y and, for each feature, a predicate disable(z), which
indicates that the feature specification is to be disabled at entity . The latter predicates
are used for selectively disabling features in order to resolve conflicts. The identifiers
x,y etc. are wariables which can be instantiated by constants representing entities in
the system. We allow existential quantification over entities. We use it, for example, to
specify predicates such as is_on_hold(z) = (exists y : has_on_hold(y, z)). A restricted
form of existential quantification represents quantified variables by “_”; for instance, the
above definition may also be written as is_on_hold(z) = has_on_hold(_,z). The scope
of an existential quantifier in such an abbreviated form includes only the predicate
containing the “” symbol.

The general form of a property specification is shown below. The symbols €0, p0,
el, pl,...,eN, p, r, d are boolean expressions formed out of the basic predicates.
The keyword until may be replaced with the keyword unless to define a weaker
specification.

property <Name>

event: e0 persists: p0
event: el persists: pl

persists: p until: r discharge: d

The event and persists conditions above the dashed line indicate the precondition
of the property; the persists-until-discharge triple (or a persists-unless-discharge triple)
indicates the postcondition of the property. Informally, the property states that “when-
ever the precondition holds, the postcondition holds subsequently”.

The precondition has the following informal reading: “e0 holds, followed by a period
where (p0 A —el) is true, then el holds, followed by a period where (p1 A —e2) is
true, etc., until e N holds.” In extended regular expression notation, this can be written
succinctly as €0; (p0 A =—el)*;el; (pl A —e2)*;...;eN. We say that a property is
enabled at a point on a computation iff its precondition is true of a prefix that ends at
the point.

The postcondition should hold at every point on a computation where the property is
enabled. The “persists: p until: r discharge: d” notation translates to the LTL formula
(p U (r VvV d)); with unless in place of until, it corresponds to the LTL formula
(p W (r vV d)). While the discharge condition may seem technically unnecessary, it

makes a distinction that is important for the specifier. The until condition is thought
of as specifying the desired outcome, while the discharge condition is thought of as
specifying the ezception conditions that cause the property to be trivially satisfied.
We make use of this distinction in our conflict test. Any of the three components
of the postcondition can be omitted; the choice between until and unless defaults
to unless, the persists condition defaults to ¢rue, and the unless and discharge
conditions default to false.

The easiest way to define the complete property in LTL is to consider its negation:
the property is false of an infinite sequence iff there is a point where the precondition
holds but the postcondition fails to hold. To illustrate the translation, consider the
property below.

event:e0 persists:p0 event:el

persists:p until:r discharge:d

The LTL property =F(e0 A X((p0 A —el) U (el A =(p U (r V d))))) is equivalent
to this specification. The general case can be handled in a similar manner, increasing
the depth of nesting for successive event-persists pairs. This translation indicates why
it is better to use a sugared notation than to use LTL directly. We consider such
a formula with free variables x,y,... to represent the infinite family of propositional
LTL formulae defined by instantiating the free variables with constants. We use such
instantiations in our conflict test, but the presence of free variables makes it simple to
consider alternative bindings of constants to variables.

We have shown how features may be represented by formulae in LTL over a set of
predicates. The predicates are, however, not independent — any underlying telephony
system imposes some constraints between the predicates. For instance, busy_tone(z)
and call_waiting_tone(z) are mutually exclusive. Constraints such as these can be
considered as an aziomatization of the switching infrastructure of a telephony system. In
the specification language, constraints are specified using the same syntax as properties,
except that the form begins with the keyword constraint instead of property.

This approach of casting the entire specification as a collection of temporal logic
formulae differs from the common method of constructing state machine models of the
switching system and the individual entities. State machine models fix a particular
implementation — however abstract — which can create feature conflicts that may be
avoided in other implementations. In addition, modifying a state machine to change
or add properties is quite difficult, while with temporal logic this can be done simply
by changing or adding to the property specification. We believe that this considerably
simplifies the maintainance of the specification. While state machines can sometimes
be more succinct at representing a collection of closely related properties, the benefits
of adopting a formula-based approach outweigh this disadvantage.

4 Feature Conflict Detection

Given that a feature is specified as a temporal logic formula, how can we define “conflict”
(i.e., an “undesirable interaction”)? We motivate our current definition through an

analysis of successively stronger formulations. We then describe our detection method
and analyze its strengths and weaknesses. In the following, it should be understood that
we are referring to specific instantiations of the features (i.e., binding the free variables
with constants). This is indicated by using the letters a, b, ... instead of x,y, ... in the

formulae. We say that a feature is enabled if one of the properties of the feature is
enabled.

4.1 Formulating “Conflict” Precisely

Consider the following definition of feature conflict: features A and B conflict iff there
does not exist a system where every computation satisfies both the specifications A and
B. We can form a simpler, equivalent formulation by applying the following general
theorem.

Theorem 1 For any propositional LTL formulae f and g, there exists a system that
satisfies f on some computation and satisfies g on all computations if and only if the
formula f A g s satisfiable.
Proof Sketch. In the left-to-right direction, consider the computation of the witness
system that satisfies f. As g is true of all computations, it must also satisfy g; hence,
f A g is satisfiable. In the other direction, if f A g is satisfiable, there exists a path
ending in a cycle that satisfies both formulae (see [18] for details). This path defines a
system with the required properties.
End Proof.

Instantiating the theorem with f as “true” and g as “Specy and Specg”, we get
that the feature conflict definition above is equivalent to the following one.

Definition 1 Features A and B conflict iff the formula (Speca N Specy) is unsatisfi-
able; i.e., in every computation, some feature property does not hold.

This definition, however, turns out to be inadequate. Consider the two features
A and B defined by Specy = G(calls(a,b) = F(connected(a,b) V disconnect(a)))
(“Whenever a calls b, eventually a and b are connected, if a does not disconnect”), and
Specy = G(calls(a,b) = F(forwards(a,b,c) V disconnect(a))) (“Whenever a calls b,
the call is eventually forwarded to ¢, if a does not disconnect”).

Informally, these specifications are conflicting, since forwarding from b and connect-
ing to b should not both happen for a single call. Yet the conjunction of the formulae is
satisfiable: consider the computation in which calls(a, b) is always false! The problem
here is that it is always possible to satisfy a feature specification in a system where
the feature is always disabled. Hence, we would like to consider only those systems for
which there exist computations where both features can be enabled together. We choose
to consider only computations where both features are enabled together infinitely often
— a computation where the features are enabled together once, but disabled forever
from some point on is, in a sense, artificially restricted. Instantiating Theorem 1 with
f as “infinitely often A and B enabled” and ¢ as “Spec, and Specy”, we are led to our
second formulation.

Definition 2 Features A and B conflict iff the two features can be enabled together
infinitely often, but in every such computation, some feature property does not hold.

Even with the strengthened definition, the two features in our example are still non-
conflicting! Consider the computation in which whenever calls(a, b) is true, eventually
connected(a, b) holds, followed by forwards(a, b, ¢c). The problem here is that we have
failed to account for the constraint that prevents the same call being both connected
and forwarded. This is not a feature property; it should be part of the system axioms.
We would like to constrain the possible implementations further so that they satisfy
these axioms along all computations. Instantiating Theorem 1 with f as “infinitely
often A and B enabled” and g as “system axioms and Spec, and Specy”, we are led to
our third formulation.

Definition 3 Features A and B conflict iff the two features can be enabled together
infinitely often under the system axioms, but in every computation where the features
are enabled together infinitely often and the system axioms also hold, some feature
property does not hold.

It is still true that the example features are non-conflicting! Consider the computa-
tion in which after calls(a, b) holds, disconnect(a) is true before either connected(a, b)
or forwards(a, b, ¢) holds. Both specifications are thus satisfied trivially. It is for such
a situation that we make use of the distinction between until/unless and discharge
conditions. We would like to rule out those computations where discharge events occur
while the feature is pending, i.e., enabled but not satisfied. Adding this property to the
previous instantiation of g and applying Theorem 1, we get the following final definition
of feature conflict.

Definition 4 (Feature Conflict) Features A and B conflict iff A and B can be en-
abled together infinitely often under the system axioms, and for every computation where

1. The system axioms hold, and
2. A and B are enabled together infinitely often, and
3. The discharge condition for a feature does not occur while the feature is pending,

some feature property does not hold.

Conditions 2 and 3 can be expressed with simple formulae of temporal logic. For
instance, “p holds infinitely often” is expressed by GXF(p) and “d does not occur between
occurrences of p and ¢” is expressed by G(p = (—~d W ¢q)).

4.2 Automatic Detection

Each conflict test is performed on a specific instantiation of the features. The param-
eterized form of the feature specification makes it easy to instantiate different config-
urations — for instance, one where entity a has call-forwarding and entity b has call-
waiting. In general, two LTL properties f and g are inconsistent iff L(f) N L(g) = 0,

which is true iff £(f) € L(g). This is exactly the model checking question with f

as the program and —g as the property. Hence, a model checker can be used to
detect feature conflicts. For features A and B, system axioms C, and auxiliary au-
tomata D that specify conditions 2 and 3 of Definition 4, the inconsistency check
can be written as L(A) N L(B) N L(C) N L(D) = 0, which is equivalent to
L(C) N L(D) C L(A) U L(B). This is the form used in our implementation.

We have developed a tool called FIX (for Feature Interaction eXtractor) that uses
the model checker COSPAN [10] for the conflict check. In COSPAN, both properties and
constraints are represented by w-automata. FIX translates the constraints C' and the
feature specifications A, B into COSPAN automata that accept the specified languages.
Each feature is translated to a parameterized automaton which is instantiated as needed
for each particular test. Since the automata representing conditions 2 and 3 of the
definition are independent of the particular features, they are obtained from a library
and instantiated on each use with the enabling condition of the particular features.

The model checker declares failure if the set inclusion above is false; i.e., if the
properties do not conflict. The non-conflict may be due to weak system axioms, or
(rarely) because the instantiation defines a system without enough entities to exhibit
a conflict. Since the model checker declares failure, it produces a witness computation
for which the axioms and both features hold. Inspection of this witness computation
often reveals constraints that need to be included in the system axioms. Even if this
is not the case, a “no conflict” report should be, in general, considered inconclusive,
as the check is performed for a particular system configuration (i.e., a fixed number of
entities).

On the other hand, a “conflict” result is conclusive; but, as the model checker
declares success, no witness is produced for the conflict. To produce a witness, we
perform another check: £(C) N L(D) N L(A) C L(B). As there is a conflict, this
check must fail, so the model checker produces a computation that satisfies C', D and A
but does not satisfy B. This computation describes a scenario in which both features
are enabled together infinitely often and A holds, but B does not hold.

5 Case Study

We have applied our tool to a collection of feature specifications derived from the
Telcordia standards. We report on the results for ten of these features, each checked
against the nine others. One of the features we consider is Anonymous Call Rejection
(ACR). Calls to a subscriber having this feature will not go through when the caller
prevents her number from being displayed on the subscriber’s caller ID device. The
following property is one example from the 6 properties which specify this feature.

property ACR_Normal_Operation_3
{

event: ACR(x) & call_req(x,y) & “DN_allowed(y) & resources_for_ACR_annc(x)
persists: call_req(x,y)
until: ACR_annc(y,x)
discharge: onhook(y)
}

Informally, it states that if x subscribes to ACR and if there is a call request to x
from y, and if furthermore the presentation of y’s number is restricted and resources
for the ACR denial announcement are available, this should cause y to receive the
ACR announcement, unless y gives up and goes back on hook first. Note that call_req
occurs both as an event and a persisting condition. In our model, events are not
a primitive concept; they are points in time in which a formula becomes true. For
example, call_req(z,y) becomes true at some point after completion of dialing and
continues to hold until there is some resolution of the call such as a connection or an
announcement.

A second feature that we consider is Call Forwarding Busy Line (CFBL), where the
subscriber gives a number to which all calls will be forwarded when the subscriber’s
line is busy. The following is one of 3 properties specifying this feature.

property CFBL_Normal_Operation_1
{

event: CFBL(x) & “idle(x) & “forwarding(x,_,z) &
same_switch(x,z) & le_five_forwards(y) & call_req(x,y)

persists: call_req(x,y)
until: forwarding(x,y,z)
discharge: onhook(y)

}

This property states that if (1) = subscribes to CFBL, (2) « is not idle, (3) all previously
forwarded calls from = to z have terminated, (4) x and z are on the same switch, (5) the
incoming call from y has been forwarded at most 5 times and (6) there is an incoming
call from y, then the incoming call from y to x will be forwarded to z, unless y goes
back on hook in the meantime.

These two properties provide one example of the kind of conflict that may arise.
Consider the case when z and y in the ACR property are instantiated with a and
b, respectively and x, y, z of the CFBL property are instantiated with a, b, and c,
respectively. Furthermore, suppose that all of the predicates in both events hold si-
multaneously. Thus a subscribes to both ACR and CFBL and has an incoming call
from b. The two features require that the incoming call be resolved in different ways:
ACR requires that b receive the ACR denial announcement, while CFBL requires that
the call be forwarded to ¢. The information required from the system axioms in order
for this conflict to be detected by our tool is that (1) a call request is distinct from a
call resolution and (2) that the two resolutions cannot occur at the same time. These
properties are expressed by the following constraints.

constraint call_req_not_resolution
{

event: true

persists: ~“(call_req(x,y) & (ACR_annc(y,x) + forwarding(x,y,_)))
}

constraint distinct_resolutions

{

event: true

10

Table 1: Features, Number of Properties used in Specification, and Descriptions

ACR Anonymous 6 | Allows subscriber to reject calls from parties who
Call have a privacy feature that prevents the delivery of
Rejection their calling number to the called party. When ac-

tive, the call is routed to a denial announcement and
terminated.

CFBL | Call 3 | A telephone-company-activated feature that forwards
Forwarding incoming calls to a subscriber to another line when
Busy Line the subscriber is busy.

CFDA | Call 4 | Incoming calls to the subscriber are forwarded when
Forwarding the subscriber doesn’t answer after a specified time
Don’t Answer interval.

CFMB | Call 1 | Allows subscriber to press a key to put phone into a
Forwarding busy state so that all calls will be forwarded.

Make Busy

CFV Call 7 | Allows subscriber to specify a number to which all
Forwarding calls will be forwarded.

Variable

CwW Call Waiting 16 | Informs a busy subscriber that another call is waiting
by playing a tone. The subscriber may flash, placing
the original call on hold and answer the new call, or
may go on-hook, in which case the subscriber is rung
and connected to the new call upon answer.

DOS Denied 2 | Provides the capability to deny a subscriber from
Originating making calls.
Service

DTS Denied 2 | Provides the capability to deny terminating calls to a
Terminating subscriber.
Service

PKUP | Call Pickup 2 | Allows one station to answer a call directed to another

station within a business group.

RDA Residential 2 | Allows the subscriber to designate special telephone
Distinctive numbers that may be identified using distinctive
Alerting alerting treatment.

persists: “(forwarding(x,y,_) & ACR_annc(y,x))
}

The first property states that at any point in time when x has an outstanding call
request to y, y is neither receiving the ACR denial announcement from z nor having
its call to « forwarded. The second property states that a call to x from y is not
being forwarded at the same time that y is receiving the ACR denial announcement.
Without these constraints there would be no conflict. For example, without the second
constraint, nothing prevents the call from being forwarded at the same time that the
caller is given an announcement. The conflict in this case should be resolved by giving
precedence to the ACR feature; the CFBL property should only be required to hold
when the subscriber does not also subscribe to ACR.

Table 1 describes the 10 features we consider here. Their names, descriptions, and
number of properties in each of their specifications are given in the table. Table 2

11

Table 2: Number of Conflicting Property Pairs for each Pair of Feature Specifications

FBL FD FMB FV WD DTS | PKUP | RD

ACR 8 5 4 3 8 | 2 1 1 0
CFBL | — 0 2 2 | 4 1 0 0
CFDA | — 2 I 00 2 0 0
CFMB | — — — 3 1 0 1 T 0 0
CFV — — — — | 2 1 2 | 0
CW — — — — [— [0 2 T 0
DOS — — — e e e 3 0
DTS — — — — [— | — | — 1 0
PRKUP | — — — — [| 1 0

shows the results of checking the ten features for conflicts. The features are considered
in pairs, and each property of one of the features in a pair is checked against every
property of the other feature. The checks are carried out using a database of about 45
system axioms expressed as constraints like those above. (In fact, the above constraints
are special cases of constraints in the database involving all possible resolutions of a
call.) In the table, the numbers indicate the number of pairs of properties that resulted
in a conflict when checking the pair of features against each other. Some entries are
blank to avoid duplication. In some cases when more than one conflict is reported
for a pair of features, the conflicts are for similar reasons but involve different pairs
of properties. For example, the property CFBL_Normal_Operation_1 mentioned above
states the conditions under which a call must be forwarded. This property conflicts
with two CF'V properties, one that prohibits a call from being forwarded when CFV is
deactivated by the subscriber, and one that prohibits a call from being forwarded when
the call has already been forwarded before (e.g., because of a forwarding loop).

The tool has a variety of options; the results reported on here were done using the
default settings. In the default case, for any pair of properties, the x occurring in the
first property is considered to be the same as the x in the second property, and similarly
for y and z. The system axioms are, however, instantiated in all possible ways. An
average size check, for example checking ACR against CFBL which includes 18 pairwise
checks, takes 20 minutes on a SGI Challenge machine.

Under the default settings, the tool will first check that the two input properties
can be enabled together. If not, there is no conflict. Otherwise the conflict check
is completed. Options provided in the tool include enhancements for greater efficiency
and for more complete coverage in finding conflicts. One option for more comprehensive
checks is the capability to provide alternative variable bindings. For example, = in a
property of one feature can be bound to y in another.

It is possible to increase the effectiveness of the conflict checks by adding new pred-
icates and new arguments to existing predicates so that properties can be expressed
more precisely. For example, we write busy(z) for hearing a busy signal, but writing
busy(z, y) to mean that x hears a busy signal in response to an attempt to call y would
be more precise. There is, however, a tradeoff: making the set of predicates more com-
plicated increases the execution time required for model checking. We have attempted

12

to keep the set of predicates simple and increase the precision carefully as needed.

6 Related Work and Conclusions

A variety of approaches to solving the feature interaction problem start by specifying
a basic implementation in the form of an automaton or finite state machine, or even
a procedural description that can be easily translated to a finite state machine repre-
sentation. Various kinds of analyses are performed on these representations to detect
interactions and check for other properties of features.

In several approaches that use finite state machines or other procedural specifi-
cations, feature requirements are expressed as properties in a temporal logic. Model
checking or other state exploration techniques are used to check that these properties
hold of the specification. Interactions are detected when certain properties are not
satisfied, or when “bad” states are found to be reachable. Examples of this approach
include [2, 6, 7, 8, 11, 14, 15]. For a more complete survey of this and related approaches,
see [12].

Temporal logic is sometimes used to specify transitions of a state machine directly [2,
9]. In this approach, the same logic is used for both specifying the system and expressing
properties of it. Maintainability of this kind of description is likely to be easier than
for more explicit state transition representations; however, the logics used in this work
are limited to next-state descriptions, so no liveness properties can be expressed.

Another approach (cf. [1, 13]) to detecting interactions between features A and B,
which are specified as state machines, is to form the composed systems A//Switch and
A//B//Switch, and check if the behavior (i.e., the sequences of events) of A differs in
the two systems; if this is so, the behavior of A has been affected by the presence of B.

In our work, we have described a method for detecting feature conflicts where fea-
tures are specified as a collection of temporal logic formulae or w-automata, and inter-
actions are discovered by finding pairs of specification formulae that are contradictory
with respect to axioms about system behavior. We show how existing model checkers
can be used to perform this test. As discussed earlier, the advantages of this approach
are that it simplifies the maintenance of specifications and avoids any commitment to
a particular implementation, allowing the detection of conflicts that have wider appli-
cability. We have implemented this method, and applied it to the analysis of formal
specifications derived from the Telcordia standards. Our experience so far has been
that this detection process is reasonably efficient and quite accurate; for the set of fea-
tures to which we have applied this method, we have been able to detect most of the
interactions given in the Telcordia standards, as well as some new ones.

An important component of future work will be to handle more features. Note that
adding feature specifications does not increase the complexity of each conflict check,
but does multiply the number of pairwise checks that must be carried out if we want
to check each new feature against all existing features. In order to address the problem
of scaling up, we will address the tradeoff of efficiency vs. power in FIX. By power, we
mean not only allowing a greater number of conflict checks, but also achieving more
accuracy in detecting conflicts. Along these lines, we plan to investigate the extensions
discussed in Section 3: alternative variable bindings and building more precision into

13

the feature specifications themselves. In addition, we plan to incorporate checks that
include more than two features at a time.

Acknowledgements: We would like to thank Margaret Smith for translating the

Telcordia standards into the initial set of feature specifications. Margaret Smith, Ger-
ard Holzmann, Mihalis Yannakakis, Carlos Puchol and Bob Kurshan provided several
valuable suggestions and encouragement.

References

[1]

A. Aho, S. Gallagher, N. Griffeth, C. Schell, and D. Swayne. SCF3'™ /Sculptor with
Chisel: Requirements engineering for communications services. In K. Kimbler and L. G.
Bouma, editors, Feature Interactions in Telecommunications and Software Systems V,
pages 456—63. 10S Press, 1998.

J. Blom, R. Bol, and L. Kempe. Automatic detection of feature interactions in temporal
logic. In K. E. Cheng and T. Ohta, editors, Feature Interactions in Telecommunications
Systems II1, pages 1-19. I0S Press, 1995.

R. K. Brayton et al. VIS: A system for verification and synthesis. In Conference on
Computer Aided Verification. Springer-Verlag, 1996.

J. R. Buchi. On a decision method in restricted second-order arithmetic. In Proc. 1960
Int. Congr. for Logic, Methodology and Philosophy of Science. Stanford Univ. Press, 1962.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume 131 of
LNCS. Springer-Verlag, 1981.

P. Combes and S. Pickin. Formalisation of a user view of network and services for feature
interaction detection. In W. Bouma and H. Velthuijsen, editors, Feature Interactions in
Telecommunications Systems, pages 120-135. IOS Press, 1994.

L. du Bousquet. Feature interaction detection using testing and model-checking, experi-
ence report. In World Congress on Formal Methods. Springer Verlag, 1999.

M. Faci and L. Logrippo. Specifying features and analysing their interactions in a LOTOS
environment. In W. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecom-
munications Systems, pages 136-151. I0S Press, 1994.

A. Gammelgaard and J.E. Kristensen. Interaction detection, a logical approach. In
W. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecommunications Sys-

tems, pages 178-196. I0S Press, 1994.

R. H. Hardin, Z. Har’el, and R. P. Kurshan. COSPAN. In Conference on Computer
Aided Verification. Springer-Verlag, 1996.

J. Kamoun and L. Logrippo. Goal-oriented feature interaction detection in the intelli-
gent network model. In K. Kimbler and L. G. Bouma, editors, Feature Interactions in
Telecommunications and Software Systems V, pages 172-186. IOS Press, 1998.

D.O. Keck and P.J. Kuehn. The feature and service interaction problem in telecommuni-
cations systems: A survey. IEEE Transactions on Software Engineering, 24(10):779-796,
October 1998.

T.F. LaPorta, D. Lee, Y-J. Lin, and M. Yannakakis. Protocol feature interactions. In
Formal Description Techniques (FORTE-PSTV), 1998.

F.J. Lin and Y-J. Lin. A building block approach to detecting and resolving feature
interactions. In W. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecom-
munications Systems, pages 86-119. IOS Press, 1994.

M. Plath and M. Ryan. Plug-and-play features. In K. Kimbler and L. G. Bouma, editors,
Feature Interactions in Telecommunications and Software Systems V, pages 150-164. I0S
Press, 1998.

14

[16]

[17]

[18]

[19]

A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer
Science, pages 4657, 1977.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the 5th International Symposium on Programming, volume 137
of LNCS. Springer-Verlag, 1982.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook on
Theoretical Computer Science, volume B. Elsevier Science, 1990.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Symposium on Logic in Computer Science, pages

332-344, 1986.

15

