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Abstract. SCI — Scalable Coherent Interface — is an IEEE standard for specify-
ing communication between multiprocessors in a shared memory model. In this
paper we model part of SCI by a program written in a UNITY-like program-
ming language. This part of SCI is formally specified in Manna and Pnueli’s
Linear Time Temporal Logic (LTL). We give a sketch of our proof that the pro-
gram satisfies its specification. The proof has carried out within LTL. It uses
history variables. Structuring of the proof hass achieved by careful formulation
of lemmata and the use of auxiliary predicates as an abstraction mechanism.

1. Introduction

In this paper we formalize and sketch verification of part of the SCI (Scalable
Coherent Interface) protocol [IEE90]. The correctness proof can be found in the
longer version [FS99] of the current paper. This protocol is an IEEE standard for
specifying communication between shared memory multiprocessors. It is called
scalable because the protocol is intended to be performed in a system which may
consist of up to 64,000 processors. Our correctness proof has been carried out for
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an arbitrary, finite number of processors (and not for some maximum number of
Processors).

Our model of the protocol has been extracted from the informal description
in a document from 1990 when the SCI protocol had been proposed as an IEEE
standard. (It became a standard in 1992.) The SCI protocol is large and complex.
For this reason, we consider only the cache coherence portion of this protocol.
In addition, we model only an abstraction of this portion. For example, we do
not keep track of processors which want to read only (and not write) and we
consider the problem with one cache line only. (Multiple cache lines require a
straightforward extension of the proof. In essence, we need copies of our current
proof.) Also, in our model of the protocol we assume messages sent from one
process to another process arrive at the latter process in the same order as sent.
In the standard this is not necessarily the case.

For any proof of this complexity and size, it is essential for both the verifier
and the reader to structure the proof. We have done so by formulating a number
of lemmata, each of which can be proved directly or using previously formulated
(and proved) lemmata. Also, we have introduced a number of auxiliary predicates
as an abstraction mechanism. In addition, for rather big lemmata we have proved
properties under certain assumptions, which are then later discharged.

Our part of the SCI protocol is formally modeled by a program written in a
guarded command programming language similar to UNITY [CM88]. Its specifi-
cation is formulated in Manna and Pnueli’s Linear Time Temporal Logic (LTL)
[MP91]. We have proved within LTL that the program meets its specification. A
history variable has been used in order to reason about the program’s communi-
cation behavior. In addition to this variable we have also used logical variables,
also called ghost variables or freeze variables, in our correctness proof. They are
used to freeze the values of the history and of certain program variables during
a computation when reasoning about the program. As mentioned above the cor-
rectness proof can be found in [FS99]. The current paper presents a sketch of
that proof.

The presence of multiple caches introduces the problem of coherence. Accord-
ing to [CFT78] a memory scheme is coherent if the value returned on a read is
the value given by the latest store with the same address. Coherence is usually
achieved by snooping. In essence, all processors listen to a bus, and either in-
validate or update their caches when data is written into memory. This kind of
cache coherence protocol relies on a broadcasting mechanism. They do not scale
well because the bus becomes a bottleneck. In non-snooping cache coherence al-
gorithms it is often the case that memory keeps track of the caches which may be
affected when data is written into memory. In this case the bottleneck is at the
memory controller. To overcome these bottlenecks the SCI protocol decentral-
izes the communication. Broadcast is replaced by point-to-point communication
which requires more messages per read/write but messages are sent only to the
relevant processes. For bookkeeping, doubly linked lists of processes are used to
keep track of the caches which need to be updated when data is modified.

An attempt to validate the program verified in the current paper has been
made by the model checking community. Holzmann [Hol95] using SPIN [Hol91],
Kurshan [Kur95] using COSPAN [Kur89], and Long and McMillan [LM95] using
SMV [McM93] report to have validated the program for up to five processes. The
problem that each of the model checkers face in this case is the state explosion
problem.

Other work on the formal specification of the SCI protocol has been carried
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out by Gjessing et al. [GKMK91, GMK91]. Using stepwise refinement, multiple
layers of the protocol are formalized at different levels of abstraction and func-
tions are defined which map one level to the next. The lowest level of formal
description is comparable with the C-code specification in the SCI document.
This formalization work is part of an ongoing effort to fully verify the SCI cache
coherence protocol. Stern and Dill [SD95] describe another ongoing project of
automatically verifying the SCI protocol. They have discovered several errors in
the C-code which defines that protocol. An overview of the SCI protocol and
related projects can be found in [Gus92].

There is a vast amount of work done on other cache coherence algorithms,
see, e.g., [ABM93, SD87, SS88, IEE92] to name just a few of them. The al-
gorithm proposed by Afek, Brown, and Merritt in [ABM93] explores a formal-
ization of Lamport’s notion of sequential consistency [Lam79]. (Whereas cache
coherence ensures that processors have a consistent view of the cache, sequen-
tial consistency addresses the question of what order data writes are observed
by other processors [PH96].) This algorithm has recently been the subject of
various verification methods: Brinksma [Bri95] uses queue-like action transduc-
ers; Gerth [Ger95] uses a generalized version of refinement; Graf [Gra95] uses
abstraction and model checking; Janssen, Poel, and Zwiers [JPZ95] apply a
compositional approach; Jonsson, Pnueli, and Rump [JPR95] apply a partial
order transducer; Katz [Kat95] uses ISTL [KP87]; Ladkin, Lamport, Olivier,
and Roegel [LLOR95] apply the temporal logic TLA [Lam94]; Lowe and Davies
[LD95] use CSP [Hoa85]. In each of these proofs the emphasis is on sequential
consistency. Pong and Dubois [PD95] present a general technique for verifying
cache coherence protocols. They use a symbolic representation of the system
state keeping track of whether the caches have 0, 1, or multiple copies. We are
not convinced that their technique is applicable to the algorithm analyzed in the
current paper, because of the doubly linked list. Other cache coherence protocols
have been validated in [CGH*95] and in [MS91], using the model checker SMV.

The rest of this paper is organized as follows: In the next section we introduce
some basic notions and notation. Both the informal and formal descriptions of the
algorithm analyzed in our paper are given in Section 3. The algorithm’s formal
specification in formulated in Section 4. Section 5 contains a sketch of our proof
that the algorithm satisfies its specification. Mechanizing the correctness proof
using a theorem prover is currently being pursued. Finally, Section 6 draws some
conclusions.

2. Preliminaries

The system considered in this paper consists of a process m called memory and
a number of processes called processors to distinguish them from m. The set of
all processors is denoted by P. The term process denotes either a processor or
memory. Every process has its own identity distinct from the identities of all
other processes.

The cache coherence algorithm is modeled in a guarded command language
similar to UNITY [CM88]. The program consists of a state formula and a (fi-
nite) set of guarded actions. The state formula describes the states in which the
program may start its execution.

Our program consists of send- and receive-commands as well as the more con-
ventional statements such as assignments and conditionals. To be more precise,
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every process p in the system maintains its own message queue buf [p] to record
messages which have been sent to, but not yet received by, p. Sending message
M from process p to ¢ is achieved by p executing the send-command buf [¢]!M .
This causes message M to be appended to queue buf [g].

As usual in the description of network algorithms, we distinguish between
different types of messages. A type is identified with a string of characters. A
message of type T' and arguments args is represented by T'(args). To allow a
receiving process to determine the identity of the sender of a message, the first
component of args is always the identity of that message’s sender. (This restric-
tion could be relaxed. We refrain from doing so because it eases our proof.)

A receive-command is of the form buf [p|?T (args). Command buf [p]?T (args)
can be executed by process p only if buf[p]’s first message is of type T in the
state of its execution. In this case, we say that the receive-command is enabled
in that state. Its execution causes process p to receive the first message of the
queue, and to delete this message from the queue.

The guard of an action is either a boolean condition or a receive-statement.
In case of a boolean condition, we say that guard g is enabled in some state if g
evaluates to true in that state.

In the semantics of programs, we use history variable A which can take se-
quences as values. The empty sequence is denoted by e. Every element in sequence
h is of the form

e (Snd,p, M, q), to denote that process p has sent message M to process ¢, or
e (Rec,p, M, q), to denote that process g has received message M from process
p.

As usual, variable h is updated whenever a send- or receive-command is executed.
E.g., if buf [q]!M is executed by process p, then (Snd,p, M, q) is appended to h.

Our program always starts in a state satisfying h = e. Let P=(0, A) denote
this program, where © describes the state in which the program may start its
execution, and where A describes the program’s set of actions. Let 7 denote
the idling action [MP91]. A computation sequence of P is an infinite sequence

S0 3 57 B s4--- of states s, and actions a,, € A U {7} (n > 0), such that sg
satisfies formula O, and for all n > 0 the following is satisfied:

e Either some action a, € A is enabled in state s,, and s,41 is the state
resulting when a,, is executed in s,; or no action in state s, is enabled,
Sp = Sn+1, and a,, = T.

e Every action in A which is enabled from some point onwards in the sequence
is eventually taken (weak fairness [Fra86]).

An obvious property which holds continuously during execution of the program
is: The sequence of messages received by process ¢ from process p is a prefix of
the sequence of messages sent by p to ¢q. Let hl(Rec, p,q) denote the sequence
of messages in sequence h that have been received by process ¢ from process p;
it is obtained by projection of h onto elements of the form (Rec,p, T (arygs),q).
Similarly, let hl(Snd,p,q) denote the sequence of messages in sequence h that
have been sent by process p to process g. The property of the program mentioned
above is then expressed by hl(Rec,p, ¢)<hl(Snd, p, q), where < denotes the usual
prefix operator on sequences.

As discussed, message queue buf [p] takes sequences consisting of elements of
the form T'(args) as values. Intuitively, buf [p] is the sequence of messages sent
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to, but not yet been received by p. Let buf [p]lg denote the sequence of messages
in buf [p] of the form T'(q, args'), i.e., those messages sent by ¢ to p but not yet
received by p. (Recall that the first component of a message is the identity of a
process.)

For sequences hq, ho, let hy @ ho denote the sequence obtained by appending
hs to hy; and let hy © hy denote the difference between sequences h; and ho, i.e.,

hi1 © ho=h, if ha D h = hy
€, otherwise.

The following holds continuously during execution of the program: hl(Snd, p, ¢)©
hl(Rec,p,q) = buf[q]lp, i.e., the sequence of messages sent from p to ¢ not yet
received by ¢ can be found (in the sames order as sent) in ¢’s buffer. In other
words, if some message is in process p’s buffer, then that message has been sent
to p (hence, recorded in h), and that message has not yet been received by p.
Thus, messages sent from one process to another process are received in the same
order as sent.

Throughout this paper we use Manna and Pnueli’s Linear Time Temporal
Logic LTL [MP91]. In particular, we use the temporal operators O (always), <
(eventually), O (next), W (weak-until), and U (strong-until). Note that the <-
operator can be derived from the O-operator; and that the U-operator can be
derived from the W- and the <¢-operators. In correctness proofs of programs one
usually establishes invariants, i.e., properties which are true throughout com-
putation. LTL offers proof rules to establish such properties. As an example,
assume that ¢ is a state property. The proof rule below, cf. SJINV in [MP9]]
shows how to prove Oy for some program P consisting of state formula © and
set A of guarded actions. Here, ¢’ denotes some state property.

0=¢, {ola{y'}, forallac A, o=
PFOp

Thus, a verifier has to formulate some state property ¢’ stronger than ¢ in order
to apply this rule. The reason is that property ¢ is, in general, too weak to
prove that it is preserved by all actions of the program. Property ' may have
to characterize a large number of additional properties in order to establish ¢,
as is the case for complicated programs such as the one analyzed in the current

paper.

3. Program

We now present the informal and formal descriptions of the program studied in
the rest of this paper.

3.1. Informal Description

Memory m maintains its (own) variables cuvy,, status,,, and head,,. Variable cuy,
(rm’s cache value) records the cache from m’s point of view. For ease of exposition,
we assume that the value of cuv,, is always some natural number. The initial value
of cuy, is irrelevant.

Variable statusy,, has initial value Home. This variable can take the following
values, where the informal explanation is given from m’s point of view.
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head succ succ succ .
m - nil
pred pred ~ pred

Fig. 1. In an idealized view, memory and processors which have indicated to read or write the
cache form a doubly liked list.

e Home, if no read- or write-queries are in progress,
e Fresh, if only read-queries are in progress, or
e Gone, if at least one write-query is in progress.

The value of variable head,, is either nil or a processor’s identity. Value nil is
different from all such identities; it is the initial value of head,,. Intuitively, head,,
records the processor to which m has last sent a response to a read- or write-
query and for which a read- or write-query is in progress. (It is nil if no such
processor exists.) Roughly, a read/write query is in progress for a processor after
it has indicated that it wants to read or write until it goes off the doubly linked
list mentioned in Section 1. During this period a series of messages is exchanged
and the processor might be granted permission to read or write the cache.

Every processor p maintains its (own) variables cup, csp, pred,, succy, and
statusp. Variable cv, (p’s cache value), whose initial value is irrelevant, records
the cache from processor p’s point of view. Similarly to memory’s variable cv,,,
it is assumed that the value of cv, is always a natural number.

To describe the interpretation of variable cs, (p’s cache status), we introduce
the notion of the owner of the cache: If there are no write-queries in progress,
then we say that m is the owner of the cache; otherwise, the processor to which m
has last sent a response to a read- or write-query and for which a read- or write-
query is in progress is the owner of the cache. This description is not precise, but
suffices for the informal explanation of the algorithm. The notion of the owner
of the cache will be formally defined in Section 4.

Variable csp’s initial value is énvalid. This is also its value when p has no read-
or write- requests in progress. (In this case, the processor has no interest in the
cache value and might have an incorrect value. The processor must reissue a
query to get the correct value.) It has value dirty, if for some processor, possibly
different from p, a write-request is in progress and p is the owner of the cache.
It is fresh, otherwise, e. g., if p indicates that it wants to read and no other
processor wants to modify the cache. As with the notion of the owner of the
cache, the description of the intuition behind variable cs, is again imprecise.
E. g., the value of cs, may be invalid if p has made a read- or write-query but is
not yet part of the shared list which we introduce below.

The initial value of the variables pred, and succy, is nil. This is also the value
of these variables when no read- or write-request is in progress. When processors
issue read- or write-requests (to memory), they will always receive a response
back (from memory). Intuitively, when such a request is in progress for processor
D, succy, records the processor ¢ such that the following is true: Prior to p, m has
most recently sent a response to ¢, and a read- or write-request is in progress for
q- (It is ndl, if no such processor exists.) Analogously, when a read- or a write-
request is in progress for processor p, pred, records the next processor after p
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that received a response from memory and for which a read- or write-request is
in progress. (It is m, if no such processor exists.) Thus, in an idealized view, the
processors for which there is a read- or write-request in progress form a doubly
linked list. For processor p, succ, identifies the next element in the list (the
processor which prior to p issued a read- or a write-query), and pred,, identifies
the previous element (the processor which following p issued a read- or a write-
query) in the list. Fig. 1 depicts the idealized view. This view may be corrupted
because the processes perform their computation concurrently with respect to
each other. Following [IEE90] we call this list the shared list.

The last variable to be discussed is statusy, for processor p. It can take the
values:

e Off, if no read- or write-request is in progress for processor p.

e Pending, if p has issued a read- or a write-request and it is waiting for a
response (from memory).

e Inqueue, if p has received the response from memory to its read- or write-
request and p attempts to prepend to the shared list.

e Inlist, if p has succeeded in joining the shared list.

e Delright, if p attempts to go off the shared list and notifies the processor
identified by succ, of this.

o Delleft, if p attempts to go off the shared list and notifies the processor
identified by pred, of this.

e Ftod (Fresh to dirty), if p has a read-query in progress and issues a request
to m to modify the cache.

e Purging, if p has permission to write and is in the phase of deleting all other
processors from the shared list.

We are now ready to discuss the algorithm. We relate the discussion to actions
in the formal description of the algorithm given in Section 3.2.

If processor p is in the Off state (status, = Off holds), then it can send
a message read_cache_fresh(Q)(p) to memory indicating that p wants to read the
cache; or a message read_cache_goneQ(p) indicating that p wants to modify the
cache. Processor p then goes to the Pending state waiting for a response from
memory. (Cf. the actions labeled pl and p2 in Section 3.2.)

Thus, a less idealized view of Fig. 1 would consist of the shared list and a
set of processors which are trying to get onto the shared list. More precisely,
certain processors would form the shared list whereas other processors (“closer”
to memory in Fig. 1) constitute a set of processors attempting to append to the
shared list.

If memory m receives message read_cache_fresh@Q)(p), then it sends a message
read_cache_freshR as a response to p. This message carries four arguments. The
first one is the identity of m; the second one is the processor which will be p’s
successor in the shared list (this value is nil if the shared list is empty and p will
become the only processor in the shared list); the third argument is the value of
cVp,; and the fourth argument is either gone if m is not the owner of the cache,
or ok otherwise. Memory also updates its variable head,, (from m’s point of view
p is the new head of the shared list). If p is the first processor on the list from
m’s point of view, then m goes (from the Home state) to the Fresh state. (Cf.
the action labeled m1 in Section 3.2.)

If memory m receives message read_cache_goneQ(p), then it sends a message
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read_cache_goneR back to p. This message also carries four arguments with the
same interpretation as the ones in read_cache_freshR. As in the case of message
read-cache_freshQ(p), m updates its variable head,,. Finally, m goes to the Gone
state. (There is at least one write-request in progress.) (Cf. the action labeled
m2 in Section 3.2.)

When p receives message read_cache_freshR(m, q, cv, arg) it assigns m to pred,,.
Now, if g is nil then p immediately goes to the shared list, and p becomes the
only processor in the list. It records the value of m’s cache and also records that
this is a fresh copy. Otherwise, if ¢ is not nil, then p attempts to prepend to the
shared list by sending message prepend@Q(p) to g. If arg = gone holds then cs,
remains invalid and the proper value of the cache will be transferred to p at a
later stage in the computation. This possibility occurs if memory was not the
cache owner at the time it responded to p’s query. In this case p must get its
cache value and cache status from its successor in the shared list later, and may
then become the owner of the cache. Additional action is taken only if arg = ok
holds. If this is so, then processor p records the value of m’s cache and records
that it now has a fresh copy of the cache. (Cf. the action labeled p3 in Section
3.2.) In the case of a read_cache_goneR message, p also records that it has be-
come the owner of the cache, by assigning value dirty to its variable cs,. (Cf. the
action labeled p4 in Section 3.2.)

Upon receipt of message prepend@Q(p), a processor ¢ grants permission to
processor p to prepend to the shared list provided that q is in the Inlist state, by
sending message prependR(q, g, ok, cug, cs;) back to p. The first argument is, as
for all messages, the identity of the sender; the second argument is the identity of
the head of the shared list; the third argument indicates permission to prepend
to the shared list. If this permission is granted, then g records that processor
p is ¢’s new predecessor. (For this purpose, the variable pred, is used.) If ¢
was the owner of the cache, then it passes ownership on to p. Processor g then
records that it is not the owner of the cache any more (by assigning fresh to
its variable esq). It sends message prependR(q, nil, ok, cvy, c¢s;) when ¢ is in the
phase of notifying its predecessor that it is going off the shared list, and that the
shared list becomes empty. In this case, p can safely prepend. Processor g sends
message prependR(q, T, retry, cvp,, csy,) in all other cases to notify p that p cannot
prepend (yet) and that it should redirect its request to processor r. Argument
r is succ, if processor q is going off the shared list. Otherwise processor ¢ is not
going off the shared list and r = ¢ holds. (Cf. the action labeled (p5) in Section
3.2)

After processor p has received message prependR(q,r, arg, cv, cs), p retries to
prepend to the shared list if arg = retry holds. It does so by sending message
prepend@(p) to processor 7. If, on the other hand, arg = ok holds, then p gets
onto the shared list and becomes the new head of the list. More precisely, p goes
to the Inlist state, and records that r, which is either the identity of a processor
or nil, is its successor. Processor p also assigns the values of cv and ¢s to cv, and
¢sp, respectively, if ¢s, was invalid. (Cf. the action labeled p6 in Section 3.2.)
(The value of cs, is invalid if memory was not the owner of the cache when it
sent its response to p’s read- or write-query. In this case ¢ was the owner and
has transferred ownership to p.)

In the Inlist state, processor p has several possibilities:

(a) It may attempt to modify the cache when it is the owner of the cache. This
case occurs if ¢s, = dirty holds. Our correctness proof shows that this occurs
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Fig. 2. When a processor purges its successor q in the shared list, it updates its successor.
The new successor will thereafter be purged off the shared list.

when p is at the head of the shared list. If no other processors are in the
shared list, then p simply modifies the cache. If other processors are part of
the shared list, then p notifies them to go off the list. Other processors are
in the shared list if succ, # nil holds. To purge processors from the list, p
sends message purge@(p) to its successor in the list. In order to record that
p is purging processors, p goes to the Purging state. (Cf. the action labeled
p7 in Section 3.2.)

A processor ¢ receiving message purge() records that it is off the shared list
by setting both its variables succ, and pred, to nil. Processor g also sets its
variable cs, to invalid. If g is in the Inlist state, then it simply goes to the Off
state. Otherwise, as we will show, processor ¢ has issued some query, e. g.,
a delright-query, to some other processor, and waits until it has received a
response to that query before ¢ goes to the Off state. In either case, ¢ sends
a message purgeR(q,r) back to processor p. Argument r is the processor that
follows ¢ in the shared list if such a processor exists; otherwise, = nil holds.
(Cf. the action labeled p16 in Section 3.2.) We have illustrated this in Fig.
2. Note that this figure demonstrates once again that the view depicted in
Fig. 1 is too idealized. Of course, the idealized view serves as a starting point
for understanding the complicated nature of the cache coherence algorithm
studied in the current paper.

When p receives message purgeR(q, ), it continues purging processor r until it
has received a message purgeR(q', nil), for some processor ¢'. This means that
the shared list consists only of processor p. In this case, p can safely modify
the cache; and p goes back into the Inlist state. (Cf. the action labeled p17
in Section 3.2.)

Processor p is at the head of the shared list, and may attempt to modify the
cache, even though it is not the owner of the cache. This happens when p
has issued a read query before, but now decides that it wants to modify the
cache.

From our correctness proof it follows that in this case, cs, = fresh and pred, =
m holds. Processor p issues a query (to memory) to transfer ownership of the
cache to p by sending message modifydataQ(p) to m and going into the Ftod
state to wait for a response. (Cf. the action labeled p8 in Section 3.2.)
Upon receipt of message modifydata@Q(p), memory grants permission to p to
modify the cache if p is also the head of the shared list from m’s point of view.
It does so by sending message modifydataR(m, ok) to processor p and going
into the Gone state. (Now, there exists at least one process which attempts
to modify the cache.) If p is not the head of the shared list from m’s point
of view, then m does not grant permission to modify the cache by sending
message modifydataR(m, reject) to processor p. (Cf. the action labeled m4 in
Section 3.2.)
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m p I — nil

T

Fig. 3. When processor p gets a positive response from its successor to p’s delright query, p’s
successor updates its own predecessor in the shared list. In this case m is that predecessor.
Thereafter m should update its own variable to point to the head of the shared list.

When processor p receives response modifydataR from memory, p goes back
into the Inlist state. If it has been granted permission to modify the cache,
then p records this by changing its variable cs,, from fresh to dirty. (Ownership
of the cache has been transformed from m to p.) (Cf. the action labeled p9
in Section 3.2.)

Processor p attempts to go off the shared list.

In this case, p has to inform its predecessor and its successor in the shared
list (if any) that it is attempting to go off the list. If p has a successor in the
shared list, then it sends a message delrightQ(p, pred,, cs,) to its successor
q and goes into the Delright state. This message is to be interpreted as a
request of p to ¢ for p to go off the list. (Cf. the action labeled p10 in Section
3.2)

When ¢ has received message delright@, it grants p’s query, provided that
q itself is not waiting for any response due to an outstanding query and
provided that ¢’s predecessor is p indeed. Processor ¢ does so by sending
message delrightR(q, ok) to p and by recording its new predecessor in the
shared list. This case is depicted in Fig. 3. If ownership of the cache has to
be passed from p to ¢, then g also copies the third argument of the delright@
message into its variable csq. The query associated with the delrightQ) message
is not granted by ¢ if ¢ is waiting for a response to one of its own queries, or
if p is not its predecessor in the shared list (from ¢’s point of view.) In this
case, ¢ sends message delrightR(q, reject) to p. (Cf. the action labeled p12 in
Section 3.2.)

Now if processor p receives message delrightR it may be that p was purged off
the list in the meantime. In this case, its variable cs, will have value invalid
and it will go directly to the Off state. If p has not been purged its behavior
is as follows: If p receives a message delrightR(q, reject), then p simply goes
back into the Inlist state, because no permission had been granted to p to
go off the list. If p, on the other hand, receives a message delrightR(q, ok)
then p has to inform its predecessor in the shared list that it is going off
the list. Informing the predecessor that p is going off the shared list is also
immediately done if p has no successors in the list (without going through
the Delright state). To do so, p sends message delleftQ(q, succy, cup) to the
process (which might be memory) identified by variable pred,, and goes into
the Delleft state. (Cf. the actions labeled pl11 and pl13 in Section 3.2.)

To describe the response to message delleftQ, we distinguish two cases:

(c1) Message delleft@) is received by memory.
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m

I ———— nil

T

Fig. 4. This is the situation after memory has updated its variable head,, to record the new
head of the shared list. Thereafter processor p will go to the Off state.

If p is not the head of the shared list from m’s point of view, then m
sends a message delleftR(m, reject) to processor p. This message is not
to be interpreted as a rejection to p of m to go off the list, but rather as
information that p should retry to send other delleftQ) messages later
because the shared list is being modified.

If p is the head of the list from m’s point of view, then m informs
p that it can go off the shared list. Memory m does so, by sending
a message delleftR(m, ok) to p. Memory m then copies the value of
the third argument of message delleft() into its variable cv,, (p could
have been the owner of the cache and modified it). It records that the
processor identified by the second argument of the delleft) message is
the new head of the shared list. Note that there is no such processor
if this argument is nil. In this case, memory m goes back to the Home
state because no read- or write queries are in progress any more. (Cf.
the action labeled m3 in Section 3.2.) Fig. 4 shows how the list of
processors looks like after memory positively responds to the delleft-
request.

Message delleft(@ is received by processor g.

First processor ¢ checks if p is its successor in the shared list. It then
also checks if it is either not waiting for a response, is waiting for a
modifydataR message, or is waiting for a delrightR message. (These
responses do not cause processor g to change the shared list.) If so,
q sends message delleftR(q, ok) to processor p to inform p that it can
safely go off the list. Processor ¢ also updates its successor in the shared
list (by using the second argument of the delleftQ) message it received).
There is no need for processor ¢ to update its variable cv, because p is
not at the head of the shared list, hence not the owner of the cache.
In all other cases, ¢ sends message delleftR(q, reject) to p, to inform
p to resend the delleftQ) message later (cf. case (cl) above). (Cf. the
action labeled p14 in Section 3.2.)

Upon receipt of message delleftR, processor p immediately goes to the Off
state, if some processor has purged him off the list (i.e., when cs, = invalid),
or if p has been informed that it is safe to go off the list (i.e., when arg =
ok). (Cf. the case of delrightR messages.) Otherwise, if p receives message
delleftR(q, reject), then p retries to go off the list by again sending message
delleftR to its predecessor (which may be another process than when it first
sent that message). (Cf. the action labeled p15 in Section 3.2.)



12 Amy Felty and Frank Stomp

This completes our informal description of the algorithm.

3.2. Formal Description

As mentioned before, a program consists of an initial condition and a finite
collection of actions. We first specify the initial condition, and thereafter the
actions.

Initially, no communication has taken place and all the buffers are empty;
process m is in the Home state and its variable head,, has value nil; and every
processor is in the Off state, its own cache-status is invalid, and its forward and

backward pointers have value nil. Thus, the initial condition is the conjunction
of

[ ] h = 67
o status,, = Home A buf [m] = € A head,,, = nil, and

o forall p € P, status, = Off Abuf [p] = € Acs, = invalidA\succ, = nilApred, =
nal.

The collection of actions is specified below. There, z:=7 denotes the random
assignment to model writing an arbitrary value into the cache.

Processor p

(pl) statusp=0ff — buf[m]!read_cache_freshQ(p); statusy,:=Pending
(p2) statusp=0ff —> buf[m]!read-cache_goneQ(p); statusp:=Pending
(p3) buf [p]?read_cache_freshR(q,r,cv,arg) — pred,:=g;
if r=nil
then statuspy:=Inlist; cvp:=cv; csp:=fresh
else buf [r]!prependQ(p); statusy:=Inqueue
if arg = ok then cvp:=cv; csp:=fresh fi
fi
(p4) buf [p]?read_cache_goneR(q,r,cv,arg) — pred,:=g;
if r=nil
then statusp:=Inlist; cup:=cwv; csp:=dirty
else buf [r]'prependQ(p); statusp:=Inqueue
if arg = ok then cvy:=cv; csp:=dirty fi
fi
(p5) buf [p]?prependQ(q) — if statusp=1Inlist
then buf [q]!prependR(p, p, ok, cvp, csp); pred,:=q
if csp=dirty then csp :=fresh fi
else if statusp,=Delleft
then if succp=nil
then buf [g]!prependR(p, nil, ok, cvp, csp);
csp:=tnvalid; pred,,:=nil
else buf [q]!prependR(p, succy, retry, cup, csp);
cspr=invalid; pred,:=nil; succp:=nil
fi
else buf [q]'prependR(p,p,retry, cup, csp)
fi

fi
(p6) buf [p]?prependR(q,r,aryg, cv,cs) — if arg = ok
then statusp:=Inlist; succp:=r;
if csp=1invalid then cvp:=cv; csp:=cs fi
else buf [r]!prependQ(p)
fi
(p7) statusp=InlistAcsp=dirty — if succp#nil

then buf [succy|'purgeQ(p); statusp:=Purging; succy:=nil
else cup:=?
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fi

(p8) statusp=InlistAcsp=freshApred,=m — buf [m]!modifydataQ(p); statusp:=Ftod
(p9) buf [p]?modifydataR(q,arg) — statusp:=Inlist; if arg = ok then csp:=dirty fi
(p10) statusp=Inlist\succp#nil — buf [succyl!delright Q(p, pred,,, csp); statusp:=Delright
(p11) statusp=InlistAsuccy=nil — buf [pred,]'delleftQ(p,nil, cvp); statusy:=Delleft
(p12) buf [p]?delrightQ(q,r,cs) —> if statusp,=Inlist A pred,=q

then buf [q]!delright R(p, ok); pred,:=r;

if cs=dirty then csp:=cs fi
else buf [g]!delrightR(p, reject)
fi

(p13) buf [p]?delrightR(q, arg) — if csp=invalid
then statusp:=Off
else if arg = reject
then statusp:=Inlist
else buf [pred,]!delleftQ(p, succp, cvp);
statusp:=Delleft
fi
fi
(p14) buf [p]?delleft@(q,r,cv) — if  succp=gq
A (statusp=Inlist V statusp,=Ftod V status,=Delright)
then buf [q]!delleftR(p, ok); succp:=r
else buf [q]!delleftR(p, reject)
fi

(p15) buf [p]?delleftR(q,arg) —> if csp=invalidvarg = ok
then succp:=nil; pred,:=nil; csp:=invalid; statusp:= Off
else buf [pred,|!delleftQ(p, succp, cup)
fi

(p16) buf [p]?purgeQ(q) — csp:=invalid; buf [q]!purgeR(p, succy); pred,:=nil; succp:=nil;
if statusp,=1Inlist then statusy:=Off fi
(p17) buf [p]?purgeR(q,r) — if r=nil then status,:=Inlist; cvp:=? else buf [r]'purgeQ(p) fi

Memory m

(m1) buf [m]?read_cache_fresh@Q(p) — if status,, = Gone
then buf [p]!read_cache_freshR(m, heady, , cum , gone);
else buf [p]!read_cache_freshR(m, headp, , cum , ok)

)
headp,:=p;
if status,,=Home then status,,:=Fresh fi

(m2) buf [m]?read-cache_goneQ(p) — if status,,=Gone
then buf [p]!read_cache_goneR(m, headm , cum , gone)
else buf [p]!read_cache_goneR(m, headm , cvm , ok)

)
headn, :=p; statusy,:=Gone
(m3) buf [m]?delleftQ(p, q,cv) — if head,,=p
then cum:=cy; buf [p]ldelleftR(m, ok); headm:=g;
if ¢g=nil then status;,,:=Home fi
else buf [p]'delleftR(m, reject)
fi

(m4) buf [m]?modifydataQ(p) — if head,,=p
then buf [p]!modifydataR(m, ok); statusm:=Gone
else buf [p]'modifydataR(m, reject)
fi

4. Specification

We now present, the formal specification of the program in the previous section.
As remarked, every process has its own view of the cache. We stipulated
that the value of the cache is the value of the owner of the cache. This is not
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quite true, however, because it might be that ownership (and hence, the value of
the cache) is being transferred from one process to another process. Hence the
informal requirement that the processor p with cs, = dirty is the owner of the
cache also needs to be refined in order to ensure the obviously desired property
that at any time during computation exactly one process is the owner of the
cache.

First we formally define the notion of the owner of the cache. The owner is
m, if m is in the Home- or Fresh-state. Otherwise, it is either processor p for
which cs, = dirty holds and which has not been granted permission to go off
the shared list; or it is the processor to which ownership of the cache is being
transferred. A processor with cs, = dirty is granted permission to go off the
shared list, if it receives message delrightR(q, ok) from some process ¢, or if it
has no successor in the shared list and receives message delleftR(q, ok) from some
process ¢q. (If p is in the Delleft-state and has a successor, then p has been in the
Delright-state before and received message delrightR(q, ok) from its successor q.)
Ownership is transferred from one process to another through a message if that
message causes the process to go into a state with cs, = dirty. This can happen
when one of the following messages is in transit: read_cache_goneR(m, r, cv, arg)
with (r = nil V arg = ok), prependR(q, r, ok, cv, dirty), modifydataR(m, ok). The
formal definition of the owner of the cache is given next. Our correctness proof
we shows that at any time during computation there exists exactly one owner of
the cache. Therefore, if a processor is the owner then status,, = Gone holds.

Hereafter, we often omit types of data in formal definitions whenever immate-
rial. Also, all free variables in a formula are assumed to be universally quantified.

Definition 4.1.
(m, tf status,, = Home V status,, = Fresh
p,if peP
csp = dirty A\ status, # Delleft
A—3q.delrightR(q, ok) € buf [p)
V csp = dirty A status, = Delleft A\ succ, = nil
A —3q.delleftR(q, ok) € buf [p]
V 3r, cv, arg. read_cache_goneR(m,r, cv, arg)€buf [p]
A (r=mnil VvV arg = ok)
V g, r.prependR(q, r, ok, cv, dirty) € buf [p]
L V' modifydataR(m, ok) € buf [p]

cache_owner =

The value of the cache is the value of the cache owner’s copy of the cache if
the owner’s cache status has value dirty. If ownership is being transferred to a
process by means of a message, then that message carries the value of the cache
as an argument, except for message modifydataR(m, ok). The latter case is the
only time that a processor p with cs, = fresh is granted permission to modify
the cache, and we define the value of the cache by cs,. The correctness proof
shows that before the cache value is modified, cv, is the same as cv,, (m is the
previous owner of the cache).

Definition 4.2.
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( CUp, if cache_owner =m
cvp, ifp € P A csp = dirty A status, # Delleft
A —3q.delrightR(q, ok) € buf [p]

cvp, ifp € P A csp = dirty A status, = Delleft A\ succ, = nil
cache_value = A —3dq.delleftR(q, ok) € buf [p]

cv, if  3p,q,r. read_cache_goneR(m,r,cv,arg) € buf [p]

A (r=mnil V arg = ok)
V prependR(q,r, ok, cv, dirty) € buf [p)

L cUp, if p € P A modifydataR(m,ok) € buf [p]

We say that a processor is idle, if it is either in the Off state or if it has sent a
read- or write-query that has not yet been received by memory; a processor is
entering if memory has received the read- or write-query and the processor is in
the Pending- or the Inqueue-state; a processor is leaving, if it is about to go off
the list, more precisely, if the processor is in the Delleft- or Delright-state and
it has either been purged by another processor or a message delleftR(q, ok) has
been sent to that processor; finally, a processor which is not idle, not entering,
and not leaving, is called visiting. A processor is called staying if it is visiting and
it is has not been granted any permission to go off the list.

Definition 4.3. For processors p € P, define

(a) idle(p), if status,=Off V read_cache_freshQ(p)€buf [m]
V read_cache_goneQ(p)€buf [m].
entering(p), if —idle(p) A (statusp=Pending V status,=Inqueue).

leaving(p), if (statusp=Delleft V status,=Delright)
A (esp=invalid vV 3q.delleftR(q, ok) €buf [p]).

visiting(p), otherwise.
(b) staying(p) = visiting(p) N status,#Delleft A —3q.delrightR(q, ok) € buf [p].

A process p is said to have a consistent view of the cache if cv, = cache_value
holds. We require that during computation there always exists a unique owner
of the cache, that staying processors always have a consistent view of the cache,
and that only the owner of the cache can modify the cache. We also require that
the owner of the cache will eventually have a proper copy of the cache, and that
a processor which is in the Purging-state will eventually be able to modify the
cache. The latter occurs if a process receives a message purgeR and it goes into
the Inlist-state. We cannot prove that processors which have indicated that they
want to modify the cache will eventually do so, because this property is not true.
(Such processors may be purged off the list when another processor has become
the owner.) Also, processors that indicated that they want to read only might
later get permission to write. This can be avoided by maintaining an additional
variable for every processor indicating whether it issued a read- or a write query.
We have abstracted away from this in the model of our paper. The discussion
above leads to the following formal specification of the program:

Definition 4.4. The following is required to hold continuously during compu-
tation of the program:
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(a) Ap.(p e PU{m} A cache-owner = p).
(There exists always exactly one owner of the cache.)
(b) Vp € P.(staying(p) = cvp, = cache_value).
(Staying processors have a consistent view of the cache.)
(¢) cache_value # O(cache_value)
= cache_owner € P A CUcqche_owner = cache_value
A cache_owner = O(cache_owner)
A O(cVeache_owner) = O(cache_value).
(Only a processor which is the owner can modify the cache value.)
(d) (cache-owner = p) U (cache-owner =p A cv, = cache_value).
(The owner of the cache eventually has a proper copy of the cache.)

(e) [(p €P A cache_owner=p A status,=Purging)
U

(cache_owner=p A statusp=Purging A 3q.first(buf [p])=purgeR(g,nil))]
A (first(buf [p])=purgeR(q',nil)) U (status, = Inlist A cache-owner = p).
(A processor in the Purging-state eventually receives a purge response and
goes into the Inlist-state from which it can modify the cache. See the pro-
gram text.)

5. Correctness Proof

We now describe how we have shown that the program in Section 3.2 satisfies
the specification formulated in Definition 4.4. A detailed proof is presented in
[FS99].

5.1. Invariants

In this subsection we list a number of properties which continuously hold during
execution of the program. Some of these properties deal with types; some other
properties are formulated in order to show that there are no unspecified receipts.
(For every process, if it can receive a message then it can execute at least one
action which deals with that message.) The invariants are also used to establish
that the program satisfies its specification.

Every message always carries the identity of the sender, a process, as the first
component of the message’s argument:

Lemma 5.1. The following properties continuously hold during execution of
the program:

(a) ((Snd,p,T(p',arg),q) € hV (Rec,p,T(p',arg),q) €h) = ( pE€ P)U {m}
Ap=p).
(b) T(p,arg) € buflq] = p€ PU{m}. |

The proofs of this property and of some properties formulated hereafter de-
pend on general properties of the semantics, such as msg(p,arg) € buf[q] =
msg(q,arg) €hd{Snd,p,q)Shl(Rec,p,q) (see Section 2). We omit most proofs
in this paper; they can all be established using the techniques described in [MP91]
We have that queries are only sent by processors (and never by memory):
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Lemma 5.2. For all message types msgQ, the following continuously holds dur-
ing execution of the program:
((Snd,p,msgQ(p,arg),q) € h
( Vv (Rec,p,msgQ(p,arg),q) € h ) =>peP. i
vV msgQ(p,arg) € buf[q])

Read-, write-, and modifydata-queries are only sent to memory:

Lemma 5.3. The following continuously holds during execution of the program:
(Snd, p, read_cache_freshQ(p), q) € h

(Snd, p, read_cache_goneQ(p),q) € h
(Snd, p, modifydataQ(p),q) € h
(Rec, p, read_cache_freshQ(p), q) € h
(Rec, p, read-cache_goneQ(p),
(Rec, p, modifydataQ(p ) q) €
read_cache_freshQ(p) € buf[q]
read_cache_goneQ(p) € buf [q]

modifydataQ(p) € buf [q]

eh =q=m. |

LKL LK LKL KL

This lemma implies that there are no unspecified receipts for processors.

Read-, write-, and modifydata-responses are only sent by memory and to
processors. This property as well as a number of other ones, which are needed
to establish it, are formulated in the next lemma.

Lemma 5.4. The following continuously holds during execution of the pro-
gram:

(Snd, p, read_cache_freshR(p, r, cv,arg),q
(Snd, p, read_cache_goneR(p,r, cv,arg), q
(Rec, p, read_cache_freshR(p,r, cv,arg), q
(Rec, p, read-cache_goneR(p, r, cv,arg), q
read_cache_freshR(p,r, cv, arg) € buf [q]
read_cache_goneR(p,r, cv,arg) € buf[q]
= pP=mAgePA (r=nil V reP)A (arg=o0kV arg = gone)).

(Snd, p, modifydataR(p, arg),q) € h
o )

(a)

<K<K

vV (Rec, p, modifydataR(p, arg),q) € h
vV modifydataR(p, arg) € buf [q]
= (p=mAq€PA (arg=o0kV arg =reject)).
(¢) heady,,=nil V headn€ P.
(d) For all p € P, succ,=nil V succ,€ P.
(Snd, p, prependR(p, r, arg, cv,cs),q) € h
(e) ( vV (Rec, p, prependR(p,r, arg,cv cs),q) € h )
vV prependR(p,r,arg, cv,cs) € buf[q
pEP AN qeTP
= ( /\((arg—ok/\( =rVr = nil)
V (arg =retry Ar € P
(Snd, p, delleftQ(p, r, cv), q
f ( V' (Rec, p, delleftQ(p,r, cv), ) E h ) (r=mnil VreP). |
Vo delleftQ(p,r, cv) € buf[q]
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It follows that, for all processors p € P, succ,7#m holds.
We next show the values that some of the other variables can take:

Lemma 5.5. The following continuously holds during execution of the pro-
gram:

(a) status,=Home V status,,=Fresh \V status,,=Gone.

(b) status,,=Home < head,,=nil.

(c¢) For all processors p, status,=0ff V status,=Pending V status,=Inqueue
V status,=Inlist V status,=Delleft V status,=Delright vV status,=Ftod V
status,=Purging. |

Prepend- and delright-queries are sent only to processors (and never to memory);
and the value of pred,,, for processors p, is either nil or in set PU{m}:

Lemma 5.6. The following continuously holds during execution of the pro-
gram:

(Snd,p, prependQ(p),q) € h
(a) ( VvV (Rec,p, prependQ(p),q) € h ) =q€P.
Vv prependQ(p) € buf [q]
(Snd, p, delrightQ(p,r, cv),q) € h
(b) ( vV (Rec,p, delright Q(p, r,cv),q) € h ) =>q€PA(r=nilvrePU
vV delrightQ(p,r, cv) € buf[q
{m}).

(c) pred,=nil V pred,€ P U{m}. |

Purge-queries and purge-responses are sent by processors to processors:

Lemma 5.7. The following continuously holds during execution of the pro-
gram:

(Snd,p, purgeQ(p), q) € h
(a) ( V. (Rec,p, purgeQ(p),q) € h ) =>q€P.
vV purgeQ(p) € buf[q]
(Snd, p, purgeR(p,7),q) € h
(b) ( VvV (Rec,p, purgeR(p,7),q) € h ) >pEPAGEPA(r=nil VI € P).
Vv purgeR(p,r) € buf [q]

Delleft-responses are always sent to processors (never to memory); the second
argument of the response is either ok or reject:

Lemma 5.8. The following continuously holds during execution of the program:
(Snd, p, delleftR(p,arg),q) € h
( V' (Rec, p, delleftR(p,arg),q) € h ) = q € PA(arg =0k V arg = reject).
vV delleftR(p,arg) € buf|q]
|
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It follows from the Lemmata 5.4, 5.6, 5.7, and 5.8 that there are no unspeci-
fied receipts for m. In particular, m will never receive a message of the form
msgR(arg), i.e., one associated with a response.

An occurrence of message msg(@ is outstanding for processor p, if p has sent
msg(@) to some process and not received message msgR thereafter.

Definition 5.1.

(a) Out(msgQ,p,i) =
0<i<|h|
A JgePU{m}.Jarg.h[i] = (Snd, p, msgQ(arg), q)
AYq €ePU{m}Narg Vj. (i<j<|h|= h[j]#(Rec,q', msgR(arg’),p)).

(b) outstanding(msgQ,p) = Fi. Out(msgQ,p,1). |

If —outstanding(msg@,p) V Imsg.3li. Out(msgQ, p,i) holds, we say that there
exists at most one outstanding query for processor p.

Hereafter, the operator 37 denotes the “exclusive-or” operator, i.e., Ay B
holds iff either A or B, but not both, holds. We now arrive at the first key
invariant:

Lemma 5.9. The following continuously holds during execution of the pro-
gram:

(a) Every processor has at most one outstanding query.
(b) For every processor p,
statusp=Off = p has no outstanding queries.
statusp=Pending = p has an outstanding read- or write query.
status,=Inqueue = p has an outstanding prepend query.
statusp=1Inlist = p has no outstanding queries.
statusp=Delleft = p has an outstanding delleft query.
status,=Delright = p has an outstanding delright query.
statusp=Purging = p has an outstanding purge query.
statusp=_Ftod = p has an outstanding modifydata query.
() hil =(Snd, p.msgR(arg). q)
= Jj.Jargd.( 1<j<i A h[j] = (Rec, q, msgQ(arg), p)
AVEkNarg'.(j<k<i =h[k] # (Snd, p, msgR(arg"), q})).
(If p responds to process ¢, then there has been a request of ¢ to p, and p
has not responded to that request before.)
(d) Out(msgQ,p,i) < Jq €P U {m}. ( Jarg.msgQ(p, arg) € buf[q]
v33jTarg. ( i< j <A
A h[j] = (Snd, q, msgR(arg), p)
A msgR(arg') € buf[p])).
(A process has an outstanding query iff either that query is in transit or
p’s buffer contains a response to that query.) |

Lemma 5.10. For every processor p, the following continuously holds during
execution of the program:

(a) (status, = Delright A cs, # invalid A pred, = z)
w
( (status, = Delright A csp = invalid)
V ([status, = Inlist V status, = Delleft] N\ cs, # invalid A pred, = z)).
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(b) (status, = Delright A csp = cs A\ ¢s # invalid N delrightR(g, ok) € buf [p])
w

((status, = Delright A csp = invalid) V (status, = Delleft N cs, = cs)).
(¢c) (status, = Delright A csp = invalid) W status, = Off .
(d) (status, = Delleft A pred, = z1 A succ, = 22)
w
(esp = invalid A (status, = Delleft V status, = Off)).
(e) (status, = Delleft A delleftR(q, ok) € buf [p]) W status, = Off .

(f) (status, = Delleft N cs, = invalid) W status, = Off . |

Recall that we have introduced the notions of a process being idle, entering, and
visiting (see Definition 4.3). We have:

Lemma 5.11. For every processor p, the following continuously holds during
execution of the program:

(a) idle(p) W entering(p).
(b) wvisiting(p) W (leaving(p) V status, = Off ).
(c) leaving(p) W status, = Off . |

Let us call a processor active if it is either entering or wvisiting. By active(p)
we denote that processor p is active. We next assign ranks to active processors
according to the order in which read and write queries are received by m. First
we define an auxiliary function:

Definition 5.2. For processors p and natural numbers n define,

Last_activated(p) = n,
if  active(p)
A ( hin] = (Rec, p, read_cache_freshQ(p), m)
V hin] = (Rec, p, read_cache_goneQ(p), m))
AVYin < i < |h|.(  h[i]#(Rec, p, read_cache_freshQ(p), m)
V h[i]#(Rec, p, read_cache_goneQ(p), m)). I

Definition 5.3. For processors p such that active(p) holds, define

rank(p) = 0, if  3n.Last_activated(p) = n
AYm.Nq € P.(q # p A active(q) A Last_activated(q)=m) = m>n.
rank(p) =n+1,if g € P active(q) A rank(q) =n
A Last_activated(q)< Last_activated(p)
A -reP. active(r)
A Last_activated(q) < Last_activated(r)
A Last_activated(r) < Last_activated(p).

We then have the following properties:

Lemma 5.12. For every processor p, ¢, the following continuously holds during
execution of the program:
(a) active(p) = In.Last_activated(p) = n.

(b) (p # qAactive(p)Aactive(q)) = rank(p) # rank(q).
(c) (active(p) A rank(p) = n)W (—active(p) V rank(p) < n).
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(d) (active(p) A rank(p) = n) = Ym < n.3p'€P.(active(p') A rank(p') =m). 1

There are two lemmata which are critical for our correctness proof. They show
various properties including how messages sent from one processor to another
relate to the ranks of those processors. In both these lemmata we have formu-
lated invariants of the program which hold under certain assumptions. This has
been done to reduce the size of the lemmata. (Without these assumptions, the
invariants cannot be proved.) The assumptions are discharged later. The lem-
mata depend on the property that communication is reliable and that the order
of messages sent by one process to another is preserved. (There can be two mes-
sages from one process in some other process’s buffer.) The two key lemmata
demonstrate the phenomenon explained at the end of Section 2: In order to es-
tablish some invariant of the program, we have to prove a stronger property of
that program. We have tried to break up these lemmata into smaller ones, but
have not succeeded in doing so. One of the lemma consists of 17 clauses; the
other one consists of 7 clauses. We believe that all the clauses in the lemmata
are mutually dependent and that none of these clauses can be omitted. This
observation is further supported by our mechanical verification effort of this cor-
rectness proof. The theorem prover Nuprl [CT86] is now being employed in an
ongoing project to mechanize the proof reported in the current paper. So far, we
have not discovered any independent clauses which could have then be removed
from the lemmata. We mention our work using the theorem prover in Section 6.

In essence, some of the clauses in the lemmata are concerned with charac-
terizing the the structure of nodes when they are on the shared list. The idea is
that the head of shared list can be reached through pointer head,,. Processors
on the shared list can be reached by following the succ pointers. The notion of
rank is employed to prove that the shared list will never contain any cycles. The
invariant expressing these properties is not immediately provable, but requires
establishing a stronger invariant as noted in Section 1. Thus, we have added ad-
ditional clauses to do so, such as one clause to cope with the situation that some
processor may become part of the shared list. This approach also demonstrates
the accumulative process for finding provable properties, because the addition
of one clause may generate the additions of other clauses to ensure that all the
added clauses are provable.

After having proved the two lemmata mentioned above, we have a lemma
which combines the invariants proved under certain assumptions into another
invariant. At this stage during the proof we also discharge the assumptions under
which these invariants were derived. Thereafter, we are ready to show that the
program is correct w.r.t. its specification:

Theorem 5.1. The program satisfies its specification.

6. Conclusion

The SCI protocol is an IEEE standard for specifying communication between
multiprocessors in a shared memory model. In this paper we have considered
the cache coherence portion of this protocol. We have modeled and sketched
correctness of an abstraction of this portion. For example, we have not kept track
of processors which want to read only (and not write) and we have considered the
problem with one cache line only. (Multiple cache lines require a straightforward
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extension of the proof.) Also, we have used only three values for the cache status
of a process, whereas in the full protocol more values are employed. We have
presented a specification of our model and a proof sketch that the model meets
this specification. The correctness proof has been carried out within Linear Time
Temporal Logic and can be found in [FS99].

Our proof has been carried out by pen and paper. We realize that hand-
written proofs may contain errors. For this reason we are now in the process of
mechanizing our whole proof. This work is done jointly with Doug Howe using
the theorem prover Nuprl. Another reason to advocate the use of mechanical
tools to support human reasoning became evident when doing the correctness
proof. Two lemmata are rather tedious to prove. Both these lemmata consists of
a large number of clauses of which it has to be shown that each of them is an
invariant. The correctness of a clause depends on several clauses which are de-
fined later in the lemma. When one of the clauses turns out to be invalid (as has
happened quite frequently when formulating the lemma), all previously verified
clauses need to be reproved because they might depend on the modified one. A
tool which could keep track of such dependencies or which could redo the proof
would be of great help. We are convinced that such tools are even essential if
such proofs are carried out on a regular basis.

We have used assumptions in lemmata in order to structure the correctness
proof. These assumptions have been discharged at a later stage in the proof.
In contrast to compositional appoaches, our assumptions may refer to global
properties. We believe that our approach is worth further research, since it allows
more transparent formulations of properties and structuring their proofs. This
may have an impact on reducing complexity of automated proofs.

With Doug Howe we are currently mechanizing the correctness proof reported
on in the current paper. This is an ongoing project and results about our mecha-
nization, employing the theorem prover Nuprl [C*86], can be found in [FHS98].

In previous work [BFS95], with Ramesh Bharadwaj, we have investigated
how to combine model checking and theorem proving to verify a broadcasting
protocol. The work reported in the current paper serves as a foundation for a case
study to push the limits of formal verification by means of tools to really large
programs, in particular programs which cannot be validated by model checking
techniques (only). In the future we will try to mechanically verify even larger
programs.
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