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ol is intended to be performed in a system whi
h may
onsist of up to 64,000 pro
essors. Our 
orre
tness proof has been 
arried out for� In Formal Aspe
ts of Computing, 11(5):475{497, 1999. 

Springer-Verlag London Limited1999. A preliminary version of this paper has appeared in the Pro
eedings of the eleventhAnnual Conferen
e on Computer Assuran
e (COMPASS96), see [FS96℄.Corresponden
e and o�print requests to: Frank Stomp, Wayne State University, Departmentof Computer S
ien
e, Detroit, MI 48202, USA.



2 Amy Felty and Frank Stompan arbitrary, �nite number of pro
essors (and not for some maximum number ofpro
essors).Our model of the proto
ol has been extra
ted from the informal des
riptionin a do
ument from 1990 when the SCI proto
ol had been proposed as an IEEEstandard. (It be
ame a standard in 1992.) The SCI proto
ol is large and 
omplex.For this reason, we 
onsider only the 
a
he 
oheren
e portion of this proto
ol.In addition, we model only an abstra
tion of this portion. For example, we donot keep tra
k of pro
essors whi
h want to read only (and not write) and we
onsider the problem with one 
a
he line only. (Multiple 
a
he lines require astraightforward extension of the proof. In essen
e, we need 
opies of our 
urrentproof.) Also, in our model of the proto
ol we assume messages sent from onepro
ess to another pro
ess arrive at the latter pro
ess in the same order as sent.In the standard this is not ne
essarily the 
ase.For any proof of this 
omplexity and size, it is essential for both the veri�erand the reader to stru
ture the proof. We have done so by formulating a numberof lemmata, ea
h of whi
h 
an be proved dire
tly or using previously formulated(and proved) lemmata. Also, we have introdu
ed a number of auxiliary predi
atesas an abstra
tion me
hanism. In addition, for rather big lemmata we have provedproperties under 
ertain assumptions, whi
h are then later dis
harged.Our part of the SCI proto
ol is formally modeled by a program written in aguarded 
ommand programming language similar to UNITY [CM88℄. Its spe
i�-
ation is formulated in Manna and Pnueli's Linear Time Temporal Logi
 (LTL)[MP91℄. We have proved within LTL that the program meets its spe
i�
ation. Ahistory variable has been used in order to reason about the program's 
ommuni-
ation behavior. In addition to this variable we have also used logi
al variables,also 
alled ghost variables or freeze variables, in our 
orre
tness proof. They areused to freeze the values of the history and of 
ertain program variables duringa 
omputation when reasoning about the program. As mentioned above the 
or-re
tness proof 
an be found in [FS99℄. The 
urrent paper presents a sket
h ofthat proof.The presen
e of multiple 
a
hes introdu
es the problem of 
oheren
e. A

ord-ing to [CF78℄ a memory s
heme is 
oherent if the value returned on a read isthe value given by the latest store with the same address. Coheren
e is usuallya
hieved by snooping. In essen
e, all pro
essors listen to a bus, and either in-validate or update their 
a
hes when data is written into memory. This kind of
a
he 
oheren
e proto
ol relies on a broad
asting me
hanism. They do not s
alewell be
ause the bus be
omes a bottlene
k. In non-snooping 
a
he 
oheren
e al-gorithms it is often the 
ase that memory keeps tra
k of the 
a
hes whi
h may bea�e
ted when data is written into memory. In this 
ase the bottlene
k is at thememory 
ontroller. To over
ome these bottlene
ks the SCI proto
ol de
entral-izes the 
ommuni
ation. Broad
ast is repla
ed by point-to-point 
ommuni
ationwhi
h requires more messages per read/write but messages are sent only to therelevant pro
esses. For bookkeeping, doubly linked lists of pro
esses are used tokeep tra
k of the 
a
hes whi
h need to be updated when data is modi�ed.An attempt to validate the program veri�ed in the 
urrent paper has beenmade by the model 
he
king 
ommunity. Holzmann [Hol95℄ using SPIN [Hol91℄,Kurshan [Kur95℄ using COSPAN [Kur89℄, and Long and M
Millan [LM95℄ usingSMV [M
M93℄ report to have validated the program for up to �ve pro
esses. Theproblem that ea
h of the model 
he
kers fa
e in this 
ase is the state explosionproblem.Other work on the formal spe
i�
ation of the SCI proto
ol has been 
arried
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y in SCI 3out by Gjessing et al. [GKMK91, GMK91℄. Using stepwise re�nement, multiplelayers of the proto
ol are formalized at di�erent levels of abstra
tion and fun
-tions are de�ned whi
h map one level to the next. The lowest level of formaldes
ription is 
omparable with the C-
ode spe
i�
ation in the SCI do
ument.This formalization work is part of an ongoing e�ort to fully verify the SCI 
a
he
oheren
e proto
ol. Stern and Dill [SD95℄ des
ribe another ongoing proje
t ofautomati
ally verifying the SCI proto
ol. They have dis
overed several errors inthe C-
ode whi
h de�nes that proto
ol. An overview of the SCI proto
ol andrelated proje
ts 
an be found in [Gus92℄.There is a vast amount of work done on other 
a
he 
oheren
e algorithms,see, e.g., [ABM93, SD87, SS88, IEE92℄ to name just a few of them. The al-gorithm proposed by Afek, Brown, and Merritt in [ABM93℄ explores a formal-ization of Lamport's notion of sequential 
onsisten
y [Lam79℄. (Whereas 
a
he
oheren
e ensures that pro
essors have a 
onsistent view of the 
a
he, sequen-tial 
onsisten
y addresses the question of what order data writes are observedby other pro
essors [PH96℄.) This algorithm has re
ently been the subje
t ofvarious veri�
ation methods: Brinksma [Bri95℄ uses queue-like a
tion transdu
-ers; Gerth [Ger95℄ uses a generalized version of re�nement; Graf [Gra95℄ usesabstra
tion and model 
he
king; Janssen, Poel, and Zwiers [JPZ95℄ apply a
ompositional approa
h; Jonsson, Pnueli, and Rump [JPR95℄ apply a partialorder transdu
er; Katz [Kat95℄ uses ISTL [KP87℄; Ladkin, Lamport, Olivier,and Roegel [LLOR95℄ apply the temporal logi
 TLA [Lam94℄; Lowe and Davies[LD95℄ use CSP [Hoa85℄. In ea
h of these proofs the emphasis is on sequential
onsisten
y. Pong and Dubois [PD95℄ present a general te
hnique for verifying
a
he 
oheren
e proto
ols. They use a symboli
 representation of the systemstate keeping tra
k of whether the 
a
hes have 0, 1, or multiple 
opies. We arenot 
onvin
ed that their te
hnique is appli
able to the algorithm analyzed in the
urrent paper, be
ause of the doubly linked list. Other 
a
he 
oheren
e proto
olshave been validated in [CGH+95℄ and in [MS91℄, using the model 
he
ker SMV.The rest of this paper is organized as follows: In the next se
tion we introdu
esome basi
 notions and notation. Both the informal and formal des
riptions of thealgorithm analyzed in our paper are given in Se
tion 3. The algorithm's formalspe
i�
ation in formulated in Se
tion 4. Se
tion 5 
ontains a sket
h of our proofthat the algorithm satis�es its spe
i�
ation. Me
hanizing the 
orre
tness proofusing a theorem prover is 
urrently being pursued. Finally, Se
tion 6 draws some
on
lusions.2. PreliminariesThe system 
onsidered in this paper 
onsists of a pro
ess m 
alled memory anda number of pro
esses 
alled pro
essors to distinguish them from m. The set ofall pro
essors is denoted by P . The term pro
ess denotes either a pro
essor ormemory. Every pro
ess has its own identity distin
t from the identities of allother pro
esses.The 
a
he 
oheren
e algorithm is modeled in a guarded 
ommand languagesimilar to UNITY [CM88℄. The program 
onsists of a state formula and a (�-nite) set of guarded a
tions. The state formula des
ribes the states in whi
h theprogram may start its exe
ution.Our program 
onsists of send- and re
eive-
ommands as well as the more 
on-ventional statements su
h as assignments and 
onditionals. To be more pre
ise,
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ess p in the system maintains its own message queue buf [p℄ to re
ordmessages whi
h have been sent to, but not yet re
eived by, p. Sending messageM from pro
ess p to q is a
hieved by p exe
uting the send-
ommand buf [q℄!M .This 
auses message M to be appended to queue buf [q℄.As usual in the des
ription of network algorithms, we distinguish betweendi�erent types of messages. A type is identi�ed with a string of 
hara
ters. Amessage of type T and arguments args is represented by T (args). To allow are
eiving pro
ess to determine the identity of the sender of a message, the �rst
omponent of args is always the identity of that message's sender. (This restri
-tion 
ould be relaxed. We refrain from doing so be
ause it eases our proof.)A re
eive-
ommand is of the form buf [p℄?T (args). Command buf [p℄?T (args)
an be exe
uted by pro
ess p only if buf [p℄'s �rst message is of type T in thestate of its exe
ution. In this 
ase, we say that the re
eive-
ommand is enabledin that state. Its exe
ution 
auses pro
ess p to re
eive the �rst message of thequeue, and to delete this message from the queue.The guard of an a
tion is either a boolean 
ondition or a re
eive-statement.In 
ase of a boolean 
ondition, we say that guard g is enabled in some state if gevaluates to true in that state.In the semanti
s of programs, we use history variable h whi
h 
an take se-quen
es as values. The empty sequen
e is denoted by �. Every element in sequen
eh is of the form� hSnd; p;M; qi, to denote that pro
ess p has sent message M to pro
ess q, or� hRe
; p;M; qi, to denote that pro
ess q has re
eived message M from pro
essp.As usual, variable h is updated whenever a send- or re
eive-
ommand is exe
uted.E.g., if buf [q℄!M is exe
uted by pro
ess p, then hSnd; p;M; qi is appended to h.Our program always starts in a state satisfying h = �. Let P�h�; Ai denotethis program, where � des
ribes the state in whi
h the program may start itsexe
ution, and where A des
ribes the program's set of a
tions. Let � denotethe idling a
tion [MP91℄. A 
omputation sequen
e of P is an in�nite sequen
es0 a0! s1 a1! s2 � � � of states sn and a
tions an 2 A [ f�g (n � 0), su
h that s0satis�es formula �, and for all n � 0 the following is satis�ed:� Either some a
tion an 2 A is enabled in state sn, and sn+1 is the stateresulting when an is exe
uted in sn; or no a
tion in state sn is enabled,sn = sn+1, and an = � .� Every a
tion in A whi
h is enabled from some point onwards in the sequen
eis eventually taken (weak fairness [Fra86℄).An obvious property whi
h holds 
ontinuously during exe
ution of the programis: The sequen
e of messages re
eived by pro
ess q from pro
ess p is a pre�x ofthe sequen
e of messages sent by p to q. Let h#(Re
; p; q) denote the sequen
eof messages in sequen
e h that have been re
eived by pro
ess q from pro
ess p;it is obtained by proje
tion of h onto elements of the form hRe
; p; T (args); qi.Similarly, let h#(Snd; p; q) denote the sequen
e of messages in sequen
e h thathave been sent by pro
ess p to pro
ess q. The property of the program mentionedabove is then expressed by h#(Re
; p; q)�h#(Snd; p; q), where � denotes the usualpre�x operator on sequen
es.As dis
ussed, message queue buf [p℄ takes sequen
es 
onsisting of elements ofthe form T (args) as values. Intuitively, buf [p℄ is the sequen
e of messages sent
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eived by p. Let buf [p℄#q denote the sequen
e of messagesin buf [p℄ of the form T (q; args0), i.e., those messages sent by q to p but not yetre
eived by p. (Re
all that the �rst 
omponent of a message is the identity of apro
ess.)For sequen
es h1; h2, let h1�h2 denote the sequen
e obtained by appendingh2 to h1; and let h1	h2 denote the di�eren
e between sequen
es h1 and h2, i.e.,h1 	 h2=h, if h2 � h = h1�, otherwise.The following holds 
ontinuously during exe
ution of the program: h#hSnd; p; qi	h#hRe
; p; qi = buf [q℄#p, i.e., the sequen
e of messages sent from p to q not yetre
eived by q 
an be found (in the sames order as sent) in q's bu�er. In otherwords, if some message is in pro
ess p's bu�er, then that message has been sentto p (hen
e, re
orded in h), and that message has not yet been re
eived by p.Thus, messages sent from one pro
ess to another pro
ess are re
eived in the sameorder as sent.Throughout this paper we use Manna and Pnueli's Linear Time TemporalLogi
 LTL [MP91℄. In parti
ular, we use the temporal operators 2 (always), 3(eventually), O (next), W (weak-until), and U (strong-until). Note that the 3-operator 
an be derived from the 2-operator; and that the U -operator 
an bederived from the W - and the 3-operators. In 
orre
tness proofs of programs oneusually establishes invariants, i.e., properties whi
h are true throughout 
om-putation. LTL o�ers proof rules to establish su
h properties. As an example,assume that ' is a state property. The proof rule below, 
f. S INV in [MP91℄shows how to prove 2' for some program P 
onsisting of state formula � andset A of guarded a
tions. Here, '0 denotes some state property.�) '0, f'0gaf'0g, for all a 2 A, '0 ) 'P ` 2'Thus, a veri�er has to formulate some state property '0 stronger than ' in orderto apply this rule. The reason is that property ' is, in general, too weak toprove that it is preserved by all a
tions of the program. Property '0 may haveto 
hara
terize a large number of additional properties in order to establish ',as is the 
ase for 
ompli
ated programs su
h as the one analyzed in the 
urrentpaper.3. ProgramWe now present the informal and formal des
riptions of the program studied inthe rest of this paper.3.1. Informal Des
riptionMemory m maintains its (own) variables 
vm, statusm, and headm. Variable 
vm(m's 
a
he value) re
ords the 
a
he fromm's point of view. For ease of exposition,we assume that the value of 
vm is always some natural number. The initial valueof 
vm is irrelevant.Variable statusm has initial value Home. This variable 
an take the followingvalues, where the informal explanation is given from m's point of view.
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m ....Fig. 1. In an idealized view, memory and pro
essors whi
h have indi
ated to read or write the
a
he form a doubly liked list.� Home, if no read- or write-queries are in progress,� Fresh, if only read-queries are in progress, or� Gone, if at least one write-query is in progress.The value of variable headm is either nil or a pro
essor's identity. Value nil isdi�erent from all su
h identities; it is the initial value of headm. Intuitively, headmre
ords the pro
essor to whi
h m has last sent a response to a read- or write-query and for whi
h a read- or write-query is in progress. (It is nil if no su
hpro
essor exists.) Roughly, a read/write query is in progress for a pro
essor afterit has indi
ated that it wants to read or write until it goes o� the doubly linkedlist mentioned in Se
tion 1. During this period a series of messages is ex
hangedand the pro
essor might be granted permission to read or write the 
a
he.Every pro
essor p maintains its (own) variables 
vp, 
sp, predp, su

p, andstatusp. Variable 
vp (p's 
a
he value), whose initial value is irrelevant, re
ordsthe 
a
he from pro
essor p's point of view. Similarly to memory's variable 
vm,it is assumed that the value of 
vp is always a natural number.To des
ribe the interpretation of variable 
sp (p's 
a
he status), we introdu
ethe notion of the owner of the 
a
he: If there are no write-queries in progress,then we say thatm is the owner of the 
a
he; otherwise, the pro
essor to whi
hmhas last sent a response to a read- or write-query and for whi
h a read- or write-query is in progress is the owner of the 
a
he. This des
ription is not pre
ise, butsuÆ
es for the informal explanation of the algorithm. The notion of the ownerof the 
a
he will be formally de�ned in Se
tion 4.Variable 
sp's initial value is invalid. This is also its value when p has no read-or write- requests in progress. (In this 
ase, the pro
essor has no interest in the
a
he value and might have an in
orre
t value. The pro
essor must reissue aquery to get the 
orre
t value.) It has value dirty, if for some pro
essor, possiblydi�erent from p, a write-request is in progress and p is the owner of the 
a
he.It is fresh, otherwise, e. g., if p indi
ates that it wants to read and no otherpro
essor wants to modify the 
a
he. As with the notion of the owner of the
a
he, the des
ription of the intuition behind variable 
sp is again impre
ise.E. g., the value of 
sp may be invalid if p has made a read- or write-query but isnot yet part of the shared list whi
h we introdu
e below.The initial value of the variables predp and su

p is nil. This is also the valueof these variables when no read- or write-request is in progress. When pro
essorsissue read- or write-requests (to memory), they will always re
eive a responseba
k (from memory). Intuitively, when su
h a request is in progress for pro
essorp, su

p re
ords the pro
essor q su
h that the following is true: Prior to p, m hasmost re
ently sent a response to q, and a read- or write-request is in progress forq. (It is nil, if no su
h pro
essor exists.) Analogously, when a read- or a write-request is in progress for pro
essor p, predp re
ords the next pro
essor after p
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eived a response from memory and for whi
h a read- or write-request isin progress. (It is m, if no su
h pro
essor exists.) Thus, in an idealized view, thepro
essors for whi
h there is a read- or write-request in progress form a doublylinked list. For pro
essor p, su

p identi�es the next element in the list (thepro
essor whi
h prior to p issued a read- or a write-query), and predp identi�esthe previous element (the pro
essor whi
h following p issued a read- or a write-query) in the list. Fig. 1 depi
ts the idealized view. This view may be 
orruptedbe
ause the pro
esses perform their 
omputation 
on
urrently with respe
t toea
h other. Following [IEE90℄ we 
all this list the shared list.The last variable to be dis
ussed is statusp, for pro
essor p. It 
an take thevalues:� O� , if no read- or write-request is in progress for pro
essor p.� Pending, if p has issued a read- or a write-request and it is waiting for aresponse (from memory).� Inqueue, if p has re
eived the response from memory to its read- or write-request and p attempts to prepend to the shared list.� Inlist, if p has su

eeded in joining the shared list.� Delright, if p attempts to go o� the shared list and noti�es the pro
essoridenti�ed by su

p of this.� Delleft, if p attempts to go o� the shared list and noti�es the pro
essoridenti�ed by predp of this.� Ftod (Fresh to dirty), if p has a read-query in progress and issues a requestto m to modify the 
a
he.� Purging, if p has permission to write and is in the phase of deleting all otherpro
essors from the shared list.We are now ready to dis
uss the algorithm. We relate the dis
ussion to a
tionsin the formal des
ription of the algorithm given in Se
tion 3.2.If pro
essor p is in the O� state (statusp = O� holds), then it 
an senda message read 
a
he freshQ(p) to memory indi
ating that p wants to read the
a
he; or a message read 
a
he goneQ(p) indi
ating that p wants to modify the
a
he. Pro
essor p then goes to the Pending state waiting for a response frommemory. (Cf. the a
tions labeled p1 and p2 in Se
tion 3.2.)Thus, a less idealized view of Fig. 1 would 
onsist of the shared list and aset of pro
essors whi
h are trying to get onto the shared list. More pre
isely,
ertain pro
essors would form the shared list whereas other pro
essors (\
loser"to memory in Fig. 1) 
onstitute a set of pro
essors attempting to append to theshared list.If memory m re
eives message read 
a
he freshQ(p), then it sends a messageread 
a
he freshR as a response to p. This message 
arries four arguments. The�rst one is the identity of m; the se
ond one is the pro
essor whi
h will be p'ssu

essor in the shared list (this value is nil if the shared list is empty and p willbe
ome the only pro
essor in the shared list); the third argument is the value of
vm; and the fourth argument is either gone if m is not the owner of the 
a
he,or ok otherwise. Memory also updates its variable headm (from m's point of viewp is the new head of the shared list). If p is the �rst pro
essor on the list fromm's point of view, then m goes (from the Home state) to the Fresh state. (Cf.the a
tion labeled m1 in Se
tion 3.2.)If memory m re
eives message read 
a
he goneQ(p), then it sends a message
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a
he goneR ba
k to p. This message also 
arries four arguments with thesame interpretation as the ones in read 
a
he freshR. As in the 
ase of messageread 
a
he freshQ(p), m updates its variable headm. Finally, m goes to the Gonestate. (There is at least one write-request in progress.) (Cf. the a
tion labeledm2 in Se
tion 3.2.)When p re
eives message read 
a
he freshR(m; q; 
v; arg) it assignsm to predp.Now, if q is nil then p immediately goes to the shared list, and p be
omes theonly pro
essor in the list. It re
ords the value of m's 
a
he and also re
ords thatthis is a fresh 
opy. Otherwise, if q is not nil, then p attempts to prepend to theshared list by sending message prependQ(p) to q. If arg = gone holds then 
spremains invalid and the proper value of the 
a
he will be transferred to p at alater stage in the 
omputation. This possibility o

urs if memory was not the
a
he owner at the time it responded to p's query. In this 
ase p must get its
a
he value and 
a
he status from its su

essor in the shared list later, and maythen be
ome the owner of the 
a
he. Additional a
tion is taken only if arg = okholds. If this is so, then pro
essor p re
ords the value of m's 
a
he and re
ordsthat it now has a fresh 
opy of the 
a
he. (Cf. the a
tion labeled p3 in Se
tion3.2.) In the 
ase of a read 
a
he goneR message, p also re
ords that it has be-
ome the owner of the 
a
he, by assigning value dirty to its variable 
sp. (Cf. thea
tion labeled p4 in Se
tion 3.2.)Upon re
eipt of message prependQ(p), a pro
essor q grants permission topro
essor p to prepend to the shared list provided that q is in the Inlist state, bysending message prependR(q; q; ok; 
vq; 
sq) ba
k to p. The �rst argument is, asfor all messages, the identity of the sender; the se
ond argument is the identity ofthe head of the shared list; the third argument indi
ates permission to prependto the shared list. If this permission is granted, then q re
ords that pro
essorp is q's new prede
essor. (For this purpose, the variable predq is used.) If qwas the owner of the 
a
he, then it passes ownership on to p. Pro
essor q thenre
ords that it is not the owner of the 
a
he any more (by assigning fresh toits variable 
sq). It sends message prependR(q;nil; ok; 
vq ; 
sq) when q is in thephase of notifying its prede
essor that it is going o� the shared list, and that theshared list be
omes empty. In this 
ase, p 
an safely prepend. Pro
essor q sendsmessage prependR(q; r; retry; 
vm; 
sm) in all other 
ases to notify p that p 
annotprepend (yet) and that it should redire
t its request to pro
essor r. Argumentr is su

p if pro
essor q is going o� the shared list. Otherwise pro
essor q is notgoing o� the shared list and r = q holds. (Cf. the a
tion labeled (p5) in Se
tion3.2.)After pro
essor p has re
eived message prependR(q; r; arg; 
v; 
s), p retries toprepend to the shared list if arg = retry holds. It does so by sending messageprependQ(p) to pro
essor r. If, on the other hand, arg = ok holds, then p getsonto the shared list and be
omes the new head of the list. More pre
isely, p goesto the Inlist state, and re
ords that r, whi
h is either the identity of a pro
essoror nil, is its su

essor. Pro
essor p also assigns the values of 
v and 
s to 
vp and
sp, respe
tively, if 
sp was invalid. (Cf. the a
tion labeled p6 in Se
tion 3.2.)(The value of 
sp is invalid if memory was not the owner of the 
a
he when itsent its response to p's read- or write-query. In this 
ase q was the owner andhas transferred ownership to p.)In the Inlist state, pro
essor p has several possibilities:(a) It may attempt to modify the 
a
he when it is the owner of the 
a
he. This
ase o

urs if 
sp = dirty holds. Our 
orre
tness proof shows that this o

urs
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...... nilm qFig. 2. When a pro
essor purges its su

essor q in the shared list, it updates its su

essor.The new su

essor will thereafter be purged o� the shared list.when p is at the head of the shared list. If no other pro
essors are in theshared list, then p simply modi�es the 
a
he. If other pro
essors are part ofthe shared list, then p noti�es them to go o� the list. Other pro
essors arein the shared list if su

p 6= nil holds. To purge pro
essors from the list, psends message purgeQ(p) to its su

essor in the list. In order to re
ord thatp is purging pro
essors, p goes to the Purging state. (Cf. the a
tion labeledp7 in Se
tion 3.2.)A pro
essor q re
eiving message purgeQ re
ords that it is o� the shared listby setting both its variables su

q and predq to nil. Pro
essor q also sets itsvariable 
sq to invalid. If q is in the Inlist state, then it simply goes to the O�state. Otherwise, as we will show, pro
essor q has issued some query, e. g.,a delright-query, to some other pro
essor, and waits until it has re
eived aresponse to that query before q goes to the O� state. In either 
ase, q sendsa message purgeR(q; r) ba
k to pro
essor p. Argument r is the pro
essor thatfollows q in the shared list if su
h a pro
essor exists; otherwise, r = nil holds.(Cf. the a
tion labeled p16 in Se
tion 3.2.) We have illustrated this in Fig.2. Note that this �gure demonstrates on
e again that the view depi
ted inFig. 1 is too idealized. Of 
ourse, the idealized view serves as a starting pointfor understanding the 
ompli
ated nature of the 
a
he 
oheren
e algorithmstudied in the 
urrent paper.When p re
eives message purgeR(q; r), it 
ontinues purging pro
essor r until ithas re
eived a message purgeR(q0;nil), for some pro
essor q0. This means thatthe shared list 
onsists only of pro
essor p. In this 
ase, p 
an safely modifythe 
a
he; and p goes ba
k into the Inlist state. (Cf. the a
tion labeled p17in Se
tion 3.2.)(b) Pro
essor p is at the head of the shared list, and may attempt to modify the
a
he, even though it is not the owner of the 
a
he. This happens when phas issued a read query before, but now de
ides that it wants to modify the
a
he.From our 
orre
tness proof it follows that in this 
ase, 
sp = fresh and predp =m holds. Pro
essor p issues a query (to memory) to transfer ownership of the
a
he to p by sending message modifydataQ(p) to m and going into the Ftodstate to wait for a response. (Cf. the a
tion labeled p8 in Se
tion 3.2.)Upon re
eipt of message modifydataQ(p), memory grants permission to p tomodify the 
a
he if p is also the head of the shared list fromm's point of view.It does so by sending message modifydataR(m; ok) to pro
essor p and goinginto the Gone state. (Now, there exists at least one pro
ess whi
h attemptsto modify the 
a
he.) If p is not the head of the shared list from m's pointof view, then m does not grant permission to modify the 
a
he by sendingmessage modifydataR(m; reje
t) to pro
essor p. (Cf. the a
tion labeled m4 inSe
tion 3.2.)
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m p nil....Fig. 3. When pro
essor p gets a positive response from its su

essor to p's delright query, p'ssu

essor updates its own prede
essor in the shared list. In this 
ase m is that prede
essor.Thereafter m should update its own variable to point to the head of the shared list.When pro
essor p re
eives response modifydataR from memory, p goes ba
kinto the Inlist state. If it has been granted permission to modify the 
a
he,then p re
ords this by 
hanging its variable 
sp from fresh to dirty. (Ownershipof the 
a
he has been transformed from m to p.) (Cf. the a
tion labeled p9in Se
tion 3.2.)(
) Pro
essor p attempts to go o� the shared list.In this 
ase, p has to inform its prede
essor and its su

essor in the sharedlist (if any) that it is attempting to go o� the list. If p has a su

essor in theshared list, then it sends a message delrightQ(p; predp; 
sp) to its su

essorq and goes into the Delright state. This message is to be interpreted as arequest of p to q for p to go o� the list. (Cf. the a
tion labeled p10 in Se
tion3.2.)When q has re
eived message delrightQ, it grants p's query, provided thatq itself is not waiting for any response due to an outstanding query andprovided that q's prede
essor is p indeed. Pro
essor q does so by sendingmessage delrightR(q; ok) to p and by re
ording its new prede
essor in theshared list. This 
ase is depi
ted in Fig. 3. If ownership of the 
a
he has tobe passed from p to q, then q also 
opies the third argument of the delrightQmessage into its variable 
sq . The query asso
iated with the delrightQ messageis not granted by q if q is waiting for a response to one of its own queries, orif p is not its prede
essor in the shared list (from q's point of view.) In this
ase, q sends message delrightR(q; reje
t) to p. (Cf. the a
tion labeled p12 inSe
tion 3.2.)Now if pro
essor p re
eives message delrightR it may be that p was purged o�the list in the meantime. In this 
ase, its variable 
sp will have value invalidand it will go dire
tly to the O� state. If p has not been purged its behavioris as follows: If p re
eives a message delrightR(q; reje
t), then p simply goesba
k into the Inlist state, be
ause no permission had been granted to p togo o� the list. If p, on the other hand, re
eives a message delrightR(q; ok)then p has to inform its prede
essor in the shared list that it is going o�the list. Informing the prede
essor that p is going o� the shared list is alsoimmediately done if p has no su

essors in the list (without going throughthe Delright state). To do so, p sends message delleftQ(q; su

p; 
vp) to thepro
ess (whi
h might be memory) identi�ed by variable predp, and goes intothe Delleft state. (Cf. the a
tions labeled p11 and p13 in Se
tion 3.2.)To des
ribe the response to message delleftQ, we distinguish two 
ases:(
1) Message delleftQ is re
eived by memory.
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m p nil....Fig. 4. This is the situation after memory has updated its variable headm to re
ord the newhead of the shared list. Thereafter pro
essor p will go to the O� state.If p is not the head of the shared list from m's point of view, then msends a message delleftR(m; reje
t) to pro
essor p. This message is notto be interpreted as a reje
tion to p of m to go o� the list, but rather asinformation that p should retry to send other delleftQ messages laterbe
ause the shared list is being modi�ed.If p is the head of the list from m's point of view, then m informsp that it 
an go o� the shared list. Memory m does so, by sendinga message delleftR(m; ok) to p. Memory m then 
opies the value ofthe third argument of message delleftQ into its variable 
vm (p 
ouldhave been the owner of the 
a
he and modi�ed it). It re
ords that thepro
essor identi�ed by the se
ond argument of the delleftQ message isthe new head of the shared list. Note that there is no su
h pro
essorif this argument is nil. In this 
ase, memory m goes ba
k to the Homestate be
ause no read- or write queries are in progress any more. (Cf.the a
tion labeled m3 in Se
tion 3.2.) Fig. 4 shows how the list ofpro
essors looks like after memory positively responds to the delleft-request.(
2) Message delleftQ is re
eived by pro
essor q.First pro
essor q 
he
ks if p is its su

essor in the shared list. It thenalso 
he
ks if it is either not waiting for a response, is waiting for amodifydataR message, or is waiting for a delrightR message. (Theseresponses do not 
ause pro
essor q to 
hange the shared list.) If so,q sends message delleftR(q; ok) to pro
essor p to inform p that it 
ansafely go o� the list. Pro
essor q also updates its su

essor in the sharedlist (by using the se
ond argument of the delleftQ message it re
eived).There is no need for pro
essor q to update its variable 
vq be
ause p isnot at the head of the shared list, hen
e not the owner of the 
a
he.In all other 
ases, q sends message delleftR(q; reje
t) to p, to informp to resend the delleftQ message later (
f. 
ase (
1) above). (Cf. thea
tion labeled p14 in Se
tion 3.2.)Upon re
eipt of message delleftR, pro
essor p immediately goes to the O�state, if some pro
essor has purged him o� the list (i.e., when 
sp = invalid),or if p has been informed that it is safe to go o� the list (i.e., when arg =ok). (Cf. the 
ase of delrightR messages.) Otherwise, if p re
eives messagedelleftR(q; reje
t), then p retries to go o� the list by again sending messagedelleftR to its prede
essor (whi
h may be another pro
ess than when it �rstsent that message). (Cf. the a
tion labeled p15 in Se
tion 3.2.)
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ompletes our informal des
ription of the algorithm.3.2. Formal Des
riptionAs mentioned before, a program 
onsists of an initial 
ondition and a �nite
olle
tion of a
tions. We �rst spe
ify the initial 
ondition, and thereafter thea
tions.Initially, no 
ommuni
ation has taken pla
e and all the bu�ers are empty;pro
ess m is in the Home state and its variable headm has value nil; and everypro
essor is in the O� state, its own 
a
he-status is invalid, and its forward andba
kward pointers have value nil. Thus, the initial 
ondition is the 
onjun
tionof� h = �,� statusm = Home ^ buf [m℄ = � ^ headm = nil, and� for all p 2 P, statusp = O� ^buf [p℄ = � ^
sp = invalid^su

p = nil^predp =nil.The 
olle
tion of a
tions is spe
i�ed below. There, x:=? denotes the randomassignment to model writing an arbitrary value into the 
a
he.Pro
essor p(p1) statusp=O� �! buf [m℄!read 
a
he freshQ(p); statusp:=Pending(p2) statusp=O� �! buf [m℄!read 
a
he goneQ(p); statusp:=Pending(p3) buf [p℄?read 
a
he freshR(q; r; 
v; arg) �! predp:=q;if r=nilthen statusp:=Inlist; 
vp:=
v; 
sp:=freshelse buf [r℄!prependQ(p); statusp:=Inqueueif arg = ok then 
vp:=
v; 
sp:=fresh ��(p4) buf [p℄?read 
a
he goneR(q; r; 
v; arg) �! predp:=q;if r=nilthen statusp:=Inlist; 
vp:=
v; 
sp:=dirtyelse buf [r℄!prependQ(p); statusp:=Inqueueif arg = ok then 
vp:=
v; 
sp:=dirty ��(p5) buf [p℄?prependQ(q) �! if statusp=Inlistthen buf [q℄!prependR(p; p; ok; 
vp; 
sp); predp:=qif 
sp=dirty then 
sp :=fresh �else if statusp=Delleftthen if su

p=nilthen buf [q℄!prependR(p; nil; ok; 
vp; 
sp);
sp:=invalid; predp:=nilelse buf [q℄!prependR(p; su

p; retry; 
vp; 
sp);
sp:=invalid; predp:=nil; su

p:=nil�else buf [q℄!prependR(p; p; retry; 
vp; 
sp)��(p6) buf [p℄?prependR(q; r; arg; 
v; 
s) �! if arg = okthen statusp:=Inlist; su

p:=r;if 
sp=invalid then 
vp:=
v; 
sp:=
s �else buf [r℄!prependQ(p)�(p7) statusp=Inlist^
sp=dirty �! if su

p 6=nilthen buf [su

p℄!purgeQ(p); statusp:=Purging; su

p:=nilelse 
vp:=?
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y in SCI 13�(p8) statusp=Inlist^
sp=fresh^predp=m �! buf [m℄!modifydataQ(p); statusp:=Ftod(p9) buf [p℄?modifydataR(q; arg) �! statusp:=Inlist; if arg = ok then 
sp:=dirty �(p10) statusp=Inlist^su

p 6=nil �! buf [su

p℄!delrightQ(p; predp; 
sp); statusp:=Delright(p11) statusp=Inlist^su

p=nil �! buf [predp℄!delleftQ(p; nil; 
vp); statusp:=Delleft(p12) buf [p℄?delrightQ(q; r; 
s) �! if statusp=Inlist ^ predp=qthen buf [q℄!delrightR(p; ok); predp:=r;if 
s=dirty then 
sp:=
s �else buf [q℄!delrightR(p; reje
t)�(p13) buf [p℄?delrightR(q; arg) �! if 
sp=invalidthen statusp:=O�else if arg = reje
tthen statusp:=Inlistelse buf [predp℄!delleftQ(p; su

p; 
vp);statusp:=Delleft��(p14) buf [p℄?delleftQ(q; r; 
v) �! if su

p=q^ (statusp=Inlist _ statusp=Ftod _ statusp=Delright)then buf [q℄!delleftR(p; ok); su

p:=relse buf [q℄!delleftR(p; reje
t)�(p15) buf [p℄?delleftR(q; arg) �! if 
sp=invalid_arg = okthen su

p:=nil; predp:=nil; 
sp:=invalid; statusp:=O�else buf [predp℄!delleftQ(p; su

p; 
vp)�(p16) buf [p℄?purgeQ(q) �! 
sp:=invalid; buf [q℄!purgeR(p; su

p); predp:=nil; su

p:=nil;if statusp=Inlist then statusp:=O� �(p17) buf [p℄?purgeR(q; r) �! if r=nil then statusp:=Inlist; 
vp:=? else buf [r℄!purgeQ(p) �Memory m(m1) buf [m℄?read 
a
he freshQ(p) �! if statusm = Gonethen buf [p℄!read 
a
he freshR(m; headm; 
vm; gone);else buf [p℄!read 
a
he freshR(m; headm; 
vm; ok)�;headm:=p;if statusm=Home then statusm:=Fresh �(m2) buf [m℄?read 
a
he goneQ(p) �! if statusm=Gonethen buf [p℄!read 
a
he goneR(m; headm; 
vm; gone)else buf [p℄!read 
a
he goneR(m; headm; 
vm; ok)�;headm:=p; statusm:=Gone(m3) buf [m℄?delleftQ(p; q; 
v) �! if headm=pthen 
vm:=
v; buf [p℄!delleftR(m; ok); headm:=q;if q=nil then statusm:=Home �else buf [p℄!delleftR(m; reje
t)�(m4) buf [m℄?modifydataQ(p) �! if headm=pthen buf [p℄!modifydataR(m; ok); statusm:=Goneelse buf [p℄!modifydataR(m; reje
t)�4. Spe
i�
ationWe now present the formal spe
i�
ation of the program in the previous se
tion.As remarked, every pro
ess has its own view of the 
a
he. We stipulatedthat the value of the 
a
he is the value of the owner of the 
a
he. This is not
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ause it might be that ownership (and hen
e, the value ofthe 
a
he) is being transferred from one pro
ess to another pro
ess. Hen
e theinformal requirement that the pro
essor p with 
sp = dirty is the owner of the
a
he also needs to be re�ned in order to ensure the obviously desired propertythat at any time during 
omputation exa
tly one pro
ess is the owner of the
a
he.First we formally de�ne the notion of the owner of the 
a
he. The owner ism, if m is in the Home- or Fresh-state. Otherwise, it is either pro
essor p forwhi
h 
sp = dirty holds and whi
h has not been granted permission to go o�the shared list; or it is the pro
essor to whi
h ownership of the 
a
he is beingtransferred. A pro
essor with 
sp = dirty is granted permission to go o� theshared list, if it re
eives message delrightR(q; ok) from some pro
ess q, or if ithas no su

essor in the shared list and re
eives message delleftR(q; ok) from somepro
ess q. (If p is in the Delleft-state and has a su

essor, then p has been in theDelright-state before and re
eived message delrightR(q; ok) from its su

essor q.)Ownership is transferred from one pro
ess to another through a message if thatmessage 
auses the pro
ess to go into a state with 
sp = dirty. This 
an happenwhen one of the following messages is in transit: read 
a
he goneR(m; r; 
v; arg)with (r = nil _ arg = ok), prependR(q; r; ok; 
v; dirty), modifydataR(m; ok). Theformal de�nition of the owner of the 
a
he is given next. Our 
orre
tness proofwe shows that at any time during 
omputation there exists exa
tly one owner ofthe 
a
he. Therefore, if a pro
essor is the owner then statusm = Gone holds.Hereafter, we often omit types of data in formal de�nitions whenever immate-rial. Also, all free variables in a formula are assumed to be universally quanti�ed.De�nition 4.1.

a
he owner =8>>>>>>>>>>>><>>>>>>>>>>>>:

m; if statusm = Home _ statusm = Freshp; if p 2 P^ 0BBBBBBBB�

sp = dirty ^ statusp 6= Delleft^:9q:delrightR(q; ok) 2 buf [p℄_ 
sp = dirty ^ statusp = Delleft ^ su

p = nil^ :9q:delleftR(q; ok) 2 buf [p℄_ 9r; 
v; arg: read 
a
he goneR(m; r; 
v; arg)2buf [p℄^ (r = nil _ arg = ok)_ 9q; r:prependR(q; r; ok; 
v; dirty) 2 buf [p℄_ modifydataR(m; ok) 2 buf [p℄

1CCCCCCCCA
The value of the 
a
he is the value of the 
a
he owner's 
opy of the 
a
he ifthe owner's 
a
he status has value dirty. If ownership is being transferred to apro
ess by means of a message, then that message 
arries the value of the 
a
heas an argument, ex
ept for message modifydataR(m; ok). The latter 
ase is theonly time that a pro
essor p with 
sp = fresh is granted permission to modifythe 
a
he, and we de�ne the value of the 
a
he by 
sp. The 
orre
tness proofshows that before the 
a
he value is modi�ed, 
vp is the same as 
vm (m is theprevious owner of the 
a
he).De�nition 4.2.
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a
he value = 8>>>>>>>>>><>>>>>>>>>>:


vm; if 
a
he owner = m
vp; if p 2 P ^ 
sp = dirty ^ statusp 6= Delleft^ :9q:delrightR(q; ok) 2 buf [p℄
vp; if p 2 P ^ 
sp = dirty ^ statusp = Delleft ^ su

p = nil^ :9q:delleftR(q; ok) 2 buf [p℄
v; if 9p; q; r: read 
a
he goneR(m; r; 
v; arg) 2 buf [p℄^ (r = nil _ arg = ok)_ prependR(q; r; ok; 
v; dirty) 2 buf [p℄
vp; if p 2 P ^modifydataR(m; ok) 2 buf [p℄We say that a pro
essor is idle, if it is either in the O� state or if it has sent aread- or write-query that has not yet been re
eived by memory; a pro
essor isentering if memory has re
eived the read- or write-query and the pro
essor is inthe Pending- or the Inqueue-state; a pro
essor is leaving, if it is about to go o�the list, more pre
isely, if the pro
essor is in the Delleft- or Delright-state andit has either been purged by another pro
essor or a message delleftR(q; ok) hasbeen sent to that pro
essor; �nally, a pro
essor whi
h is not idle, not entering,and not leaving, is 
alled visiting. A pro
essor is 
alled staying if it is visiting andit is has not been granted any permission to go o� the list.De�nition 4.3. For pro
essors p 2 P, de�ne(a) idle(p), if statusp=O� _ read 
a
he freshQ(p)2buf [m℄_ read 
a
he goneQ(p)2buf [m℄.entering(p), if :idle(p) ^ (statusp=Pending _ statusp=Inqueue).leaving(p), if (statusp=Delleft _ statusp=Delright)^ (
sp=invalid _ 9q:delleftR(q; ok) 2buf [p℄).visiting(p), otherwise.(b) staying(p) � visiting(p) ^ statusp 6=Delleft ^ :9q:delrightR(q; ok) 2 buf [p℄.A pro
ess p is said to have a 
onsistent view of the 
a
he if 
vp = 
a
he valueholds. We require that during 
omputation there always exists a unique ownerof the 
a
he, that staying pro
essors always have a 
onsistent view of the 
a
he,and that only the owner of the 
a
he 
an modify the 
a
he. We also require thatthe owner of the 
a
he will eventually have a proper 
opy of the 
a
he, and thata pro
essor whi
h is in the Purging-state will eventually be able to modify the
a
he. The latter o

urs if a pro
ess re
eives a message purgeR and it goes intothe Inlist-state. We 
annot prove that pro
essors whi
h have indi
ated that theywant to modify the 
a
he will eventually do so, be
ause this property is not true.(Su
h pro
essors may be purged o� the list when another pro
essor has be
omethe owner.) Also, pro
essors that indi
ated that they want to read only mightlater get permission to write. This 
an be avoided by maintaining an additionalvariable for every pro
essor indi
ating whether it issued a read- or a write query.We have abstra
ted away from this in the model of our paper. The dis
ussionabove leads to the following formal spe
i�
ation of the program:De�nition 4.4. The following is required to hold 
ontinuously during 
ompu-tation of the program:
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a
he-owner = p).(There exists always exa
tly one owner of the 
a
he.)(b) 8p 2 P :(staying(p) ) 
vp = 
a
he value).(Staying pro
essors have a 
onsistent view of the 
a
he.)(
) 
a
he value 6= O(
a
he value)) 
a
he owner 2 P ^ 
v
a
he owner = 
a
he value^ 
a
he owner = O(
a
he owner )^ O(
v
a
he owner) = O(
a
he value).(Only a pro
essor whi
h is the owner 
an modify the 
a
he value.)(d) (
a
he-owner = p) U (
a
he-owner = p ^ 
vp = 
a
he value).(The owner of the 
a
he eventually has a proper 
opy of the 
a
he.)(e) [(p 2P ^ 
a
he owner=p ^ statusp=Purging)U(
a
he owner=p ^ statusp=Purging ^ 9q:�rst(buf [p℄)=purgeR(q; nil))℄^ (�rst(buf [p℄)=purgeR(q0; nil)) U (statusp = Inlist ^ 
a
he-owner = p).(A pro
essor in the Purging-state eventually re
eives a purge response andgoes into the Inlist-state from whi
h it 
an modify the 
a
he. See the pro-gram text.)5. Corre
tness ProofWe now des
ribe how we have shown that the program in Se
tion 3.2 satis�esthe spe
i�
ation formulated in De�nition 4.4. A detailed proof is presented in[FS99℄.5.1. InvariantsIn this subse
tion we list a number of properties whi
h 
ontinuously hold duringexe
ution of the program. Some of these properties deal with types; some otherproperties are formulated in order to show that there are no unspe
i�ed re
eipts.(For every pro
ess, if it 
an re
eive a message then it 
an exe
ute at least onea
tion whi
h deals with that message.) The invariants are also used to establishthat the program satis�es its spe
i�
ation.Every message always 
arries the identity of the sender, a pro
ess, as the �rst
omponent of the message's argument:Lemma 5.1. The following properties 
ontinuously hold during exe
ution ofthe program:(a) (hSnd; p; T (p0; arg); qi 2 h _ hRe
; p; T (p0; arg); qi 2 h) ) ( p 2 P [ fmg^ p = p0).(b) T (p; arg) 2 buf [q℄ ) p 2 P [ fmg.The proofs of this property and of some properties formulated hereafter de-pend on general properties of the semanti
s, su
h as msg(p; arg) 2 buf [q℄ )msg(q; arg) 2h#hSnd; p; qi	h#hRe
; p; qi (see Se
tion 2). We omit most proofsin this paper; they 
an all be established using the te
hniques des
ribed in [MP91℄We have that queries are only sent by pro
essors (and never by memory):
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ontinuously holds dur-ing exe
ution of the program: (hSnd; p;msgQ(p; arg); qi 2 h_ hRe
; p;msgQ(p; arg); qi 2 h_ msgQ(p; arg) 2 buf [q℄) !) p 2 P :Read-, write-, and modifydata-queries are only sent to memory:Lemma 5.3. The following 
ontinuously holds during exe
ution of the program:0BBBBBBBBBB�
hSnd; p; read 
a
he freshQ(p); qi 2 h_ hSnd; p; read 
a
he goneQ(p); qi 2 h_ hSnd; p;modifydataQ(p); qi 2 h_ hRe
; p; read 
a
he freshQ(p); qi 2 h_ hRe
; p; read 
a
he goneQ(p); qi 2 h_ hRe
; p;modifydataQ(p); qi 2 h_ read 
a
he freshQ(p) 2 buf [q℄_ read 
a
he goneQ(p) 2 buf [q℄_ modifydataQ(p) 2 buf [q℄

1CCCCCCCCCCA) q = m:
This lemma implies that there are no unspe
i�ed re
eipts for pro
essors.Read-, write-, and modifydata-responses are only sent by memory and topro
essors. This property as well as a number of other ones, whi
h are neededto establish it, are formulated in the next lemma.Lemma 5.4. The following 
ontinuously holds during exe
ution of the pro-gram:(a) 0BBBBB� hSnd; p; read 
a
he freshR(p; r; 
v; arg); qi 2 h_ hSnd; p; read 
a
he goneR(p; r; 
v; arg); qi 2 h_ hRe
; p; read 
a
he freshR(p; r; 
v; arg); qi 2 h_ hRe
; p; read 
a
he goneR(p; r; 
v; arg); qi 2 h_ read 
a
he freshR(p; r; 
v; arg) 2 buf [q℄_ read 
a
he goneR(p; r; 
v; arg) 2 buf [q℄

1CCCCCA) (p = m ^ q 2 P ^ (r = nil _ r 2 P) ^ (arg = ok _ arg = gone)).(b)  hSnd; p;modifydataR(p; arg); qi 2 h_ hRe
; p;modifydataR(p; arg); qi 2 h_ modifydataR(p; arg) 2 buf [q℄ !) (p = m ^ q 2 P ^ (arg = ok _ arg = reje
t)).(
) headm=nil _ headm2 P.(d) For all p 2 P , su

p=nil _ su

p2 P.(e)  hSnd; p; prependR(p; r; arg; 
v; 
s); qi 2 h_ hRe
; p; prependR(p; r; arg; 
v; 
s); qi 2 h_ prependR(p; r; arg; 
v; 
s) 2 buf [q℄ !)  p 2 P ^ q 2 P^ (( arg = ok ^ (p = r _ r = nil))_ (arg = retry ^ r 2 P)): !(f)  hSnd; p; delleftQ(p; r; 
v); qi 2 h_ hRe
; p; delleftQ(p; r; 
v); qi 2 h_ delleftQ(p; r; 
v) 2 buf [q℄ !) (r = nil _ r 2 P):



18 Amy Felty and Frank StompIt follows that, for all pro
essors p 2 P, su

p 6=m holds.We next show the values that some of the other variables 
an take:Lemma 5.5. The following 
ontinuously holds during exe
ution of the pro-gram:(a) statusm=Home _ statusm=Fresh _ statusm=Gone.(b) statusm=Home , headm=nil.(
) For all pro
essors p, statusp=O� _ statusp=Pending _ statusp=Inqueue_ statusp=Inlist _ statusp=Delleft _ statusp=Delright _ statusp=Ftod _statusp=Purging.Prepend- and delright-queries are sent only to pro
essors (and never to memory);and the value of predp, for pro
essors p, is either nil or in set P[fmg:Lemma 5.6. The following 
ontinuously holds during exe
ution of the pro-gram:(a)  hSnd; p; prependQ(p); qi 2 h_ hRe
; p; prependQ(p); qi 2 h_ prependQ(p) 2 buf [q℄ !) q 2 P :(b)  hSnd; p; delrightQ(p; r; 
v); qi 2 h_ hRe
; p; delrightQ(p; r; 
v); qi 2 h_ delrightQ(p; r; 
v) 2 buf [q℄ ! ) q 2 P ^ (r = nil _ r 2 P [fmg):(
) predp=nil _ predp2 P [ fmg.Purge-queries and purge-responses are sent by pro
essors to pro
essors:Lemma 5.7. The following 
ontinuously holds during exe
ution of the pro-gram:(a)  hSnd; p; purgeQ(p); qi 2 h_ hRe
; p; purgeQ(p); qi 2 h_ purgeQ(p) 2 buf [q℄ !) q 2 P:(b)  hSnd; p; purgeR(p; r); qi 2 h_ hRe
; p; purgeR(p; r); qi 2 h_ purgeR(p; r) 2 buf [q℄ !) p 2 P ^ q 2 P ^ (r = nil _ r 2 P):Delleft-responses are always sent to pro
essors (never to memory); the se
ondargument of the response is either ok or reje
t:Lemma 5.8. The following 
ontinuously holds during exe
ution of the program: hSnd; p; delleftR(p; arg); qi 2 h_ hRe
; p; delleftR(p; arg); qi 2 h_ delleftR(p; arg) 2 buf [q℄ !) q 2 P ^ (arg = ok _ arg = reje
t):
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y in SCI 19It follows from the Lemmata 5.4, 5.6, 5.7, and 5.8 that there are no unspe
i-�ed re
eipts for m. In parti
ular, m will never re
eive a message of the formmsgR(arg), i.e., one asso
iated with a response.An o

urren
e of message msgQ is outstanding for pro
essor p, if p has sentmsgQ to some pro
ess and not re
eived message msgR thereafter.De�nition 5.1.(a) Out(msgQ; p; i) �0 < i � jhj^ 9q2P[fmg.9arg:h[i℄ = hSnd; p;msgQ(arg); qi^ 8q0 2P [ fmg:8arg0:8j: (i<j�jhj) h[j℄ 6=hRe
; q0;msgR(arg0); pi).(b) outstanding(msgQ; p) � 9i. Out(msgQ; p; i).If :outstanding(msgQ; p) _ 9!msg:9!i. Out(msgQ; p; i) holds, we say that thereexists at most one outstanding query for pro
essor p.Hereafter, the operator 5 denotes the \ex
lusive-or" operator, i.e., A 5 Bholds i� either A or B, but not both, holds. We now arrive at the �rst keyinvariant:Lemma 5.9. The following 
ontinuously holds during exe
ution of the pro-gram:(a) Every pro
essor has at most one outstanding query.(b) For every pro
essor p,statusp=O� ) p has no outstanding queries.statusp=Pending ) p has an outstanding read- or write query.statusp=Inqueue ) p has an outstanding prepend query.statusp=Inlist ) p has no outstanding queries.statusp=Delleft ) p has an outstanding delleft query.statusp=Delright ) p has an outstanding delright query.statusp=Purging ) p has an outstanding purge query.statusp=Ftod ) p has an outstanding modifydata query.(
) h[i℄ =hSnd; p;msgR(arg); qi) 9j:9arg0:( 1 �j<i ^ h[j℄ = hRe
; q;msgQ(arg0); pi^ 8k:8arg00:(j<k<i )h[k℄ 6= hSnd; p;msgR(arg00); qi)):(If p responds to pro
ess q, then there has been a request of q to p, and phas not responded to that request before.)(d) Out(msgQ; p; i) , 9q 2P [ fmg: ( 9arg:msgQ(p; arg) 2 buf [q℄59j:9arg0: ( i < j � jhj^ h[j℄ = hSnd; q;msgR(arg0); pi^ msgR(arg0) 2 buf [p℄)).(A pro
ess has an outstanding query i� either that query is in transit orp's bu�er 
ontains a response to that query.)Lemma 5.10. For every pro
essor p, the following 
ontinuously holds duringexe
ution of the program:(a) (statusp = Delright ^ 
sp 6= invalid ^ predp = z)W( (statusp = Delright ^ 
sp = invalid)_ ([statusp = Inlist _ statusp = Delleft℄ ^ 
sp 6= invalid ^ predp = z)).



20 Amy Felty and Frank Stomp(b) (statusp = Delright ^ 
sp = 
s ^ 
s 6= invalid ^ delrightR(q; ok) 2 buf [p℄)W((statusp = Delright ^ 
sp = invalid) _ (statusp = Delleft ^ 
sp = 
s)).(
) (statusp = Delright ^ 
sp = invalid) W statusp = O� .(d) (statusp = Delleft ^ predp = z1 ^ su

p = z2)W(
sp = invalid ^ (statusp = Delleft _ statusp = O� )).(e) (statusp = Delleft ^ delleftR(q; ok) 2 buf [p℄) W statusp = O� .(f) (statusp = Delleft ^ 
sp = invalid) W statusp = O� .Re
all that we have introdu
ed the notions of a pro
ess being idle, entering, andvisiting (see De�nition 4.3). We have:Lemma 5.11. For every pro
essor p, the following 
ontinuously holds duringexe
ution of the program:(a) idle(p) W entering(p).(b) visiting(p) W (leaving(p) _ statusp = O� ).(
) leaving(p) W statusp = O� .Let us 
all a pro
essor a
tive if it is either entering or visiting. By a
tive(p)we denote that pro
essor p is a
tive. We next assign ranks to a
tive pro
essorsa

ording to the order in whi
h read and write queries are re
eived by m. Firstwe de�ne an auxiliary fun
tion:De�nition 5.2. For pro
essors p and natural numbers n de�ne,Last a
tivated(p) = n,if a
tive(p)^ ( h[n℄ = hRe
; p; read 
a
he freshQ(p);mi_ h[n℄ = hRe
; p; read 
a
he goneQ(p);mi)^ 8i.n < i � jhj.( h[i℄ 6=hRe
; p; read 
a
he freshQ(p);mi_ h[i℄ 6=hRe
; p; read 
a
he goneQ(p);mi).De�nition 5.3. For pro
essors p su
h that a
tive(p) holds, de�nerank(p) = 0, if 9n.Last a
tivated(p) = n^8m.8q 2 P.(q 6= p ^ a
tive(q) ^ Last a
tivated(q)=m)) m>n.rank(p) = n+ 1, if 9q 2 P a
tive(q) ^ rank(q) = n^ Last a
tivated(q)<Last a
tivated(p)^ :r 2 P . a
tive(r)^ Last a
tivated(q) < Last a
tivated(r)^ Last a
tivated(r) < Last a
tivated(p).We then have the following properties:Lemma 5.12. For every pro
essor p; q, the following 
ontinuously holds duringexe
ution of the program:(a) a
tive(p)) 9n:Last a
tivated(p) = n.(b) (p 6= q^a
tive(p)^a
tive(q)))rank(p) 6= rank(q).(
) (a
tive(p) ^ rank(p) = n)W (:a
tive(p) _ rank(p) < n).
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tive(p) ^ rank(p) = n) ) 8m < n.9p02P .(a
tive(p0) ^ rank(p0) = m).There are two lemmata whi
h are 
riti
al for our 
orre
tness proof. They showvarious properties in
luding how messages sent from one pro
essor to anotherrelate to the ranks of those pro
essors. In both these lemmata we have formu-lated invariants of the program whi
h hold under 
ertain assumptions. This hasbeen done to redu
e the size of the lemmata. (Without these assumptions, theinvariants 
annot be proved.) The assumptions are dis
harged later. The lem-mata depend on the property that 
ommuni
ation is reliable and that the orderof messages sent by one pro
ess to another is preserved. (There 
an be two mes-sages from one pro
ess in some other pro
ess's bu�er.) The two key lemmatademonstrate the phenomenon explained at the end of Se
tion 2: In order to es-tablish some invariant of the program, we have to prove a stronger property ofthat program. We have tried to break up these lemmata into smaller ones, buthave not su

eeded in doing so. One of the lemma 
onsists of 17 
lauses; theother one 
onsists of 7 
lauses. We believe that all the 
lauses in the lemmataare mutually dependent and that none of these 
lauses 
an be omitted. Thisobservation is further supported by our me
hani
al veri�
ation e�ort of this 
or-re
tness proof. The theorem prover Nuprl [C+86℄ is now being employed in anongoing proje
t to me
hanize the proof reported in the 
urrent paper. So far, wehave not dis
overed any independent 
lauses whi
h 
ould have then be removedfrom the lemmata. We mention our work using the theorem prover in Se
tion 6.In essen
e, some of the 
lauses in the lemmata are 
on
erned with 
hara
-terizing the the stru
ture of nodes when they are on the shared list. The idea isthat the head of shared list 
an be rea
hed through pointer headm. Pro
essorson the shared list 
an be rea
hed by following the su

 pointers. The notion ofrank is employed to prove that the shared list will never 
ontain any 
y
les. Theinvariant expressing these properties is not immediately provable, but requiresestablishing a stronger invariant as noted in Se
tion 1. Thus, we have added ad-ditional 
lauses to do so, su
h as one 
lause to 
ope with the situation that somepro
essor may be
ome part of the shared list. This approa
h also demonstratesthe a

umulative pro
ess for �nding provable properties, be
ause the additionof one 
lause may generate the additions of other 
lauses to ensure that all theadded 
lauses are provable.After having proved the two lemmata mentioned above, we have a lemmawhi
h 
ombines the invariants proved under 
ertain assumptions into anotherinvariant. At this stage during the proof we also dis
harge the assumptions underwhi
h these invariants were derived. Thereafter, we are ready to show that theprogram is 
orre
t w.r.t. its spe
i�
ation:Theorem 5.1. The program satis�es its spe
i�
ation.6. Con
lusionThe SCI proto
ol is an IEEE standard for spe
ifying 
ommuni
ation betweenmultipro
essors in a shared memory model. In this paper we have 
onsideredthe 
a
he 
oheren
e portion of this proto
ol. We have modeled and sket
hed
orre
tness of an abstra
tion of this portion. For example, we have not kept tra
kof pro
essors whi
h want to read only (and not write) and we have 
onsidered theproblem with one 
a
he line only. (Multiple 
a
he lines require a straightforward



22 Amy Felty and Frank Stompextension of the proof.) Also, we have used only three values for the 
a
he statusof a pro
ess, whereas in the full proto
ol more values are employed. We havepresented a spe
i�
ation of our model and a proof sket
h that the model meetsthis spe
i�
ation. The 
orre
tness proof has been 
arried out within Linear TimeTemporal Logi
 and 
an be found in [FS99℄.Our proof has been 
arried out by pen and paper. We realize that hand-written proofs may 
ontain errors. For this reason we are now in the pro
ess ofme
hanizing our whole proof. This work is done jointly with Doug Howe usingthe theorem prover Nuprl. Another reason to advo
ate the use of me
hani
altools to support human reasoning be
ame evident when doing the 
orre
tnessproof. Two lemmata are rather tedious to prove. Both these lemmata 
onsists ofa large number of 
lauses of whi
h it has to be shown that ea
h of them is aninvariant. The 
orre
tness of a 
lause depends on several 
lauses whi
h are de-�ned later in the lemma. When one of the 
lauses turns out to be invalid (as hashappened quite frequently when formulating the lemma), all previously veri�ed
lauses need to be reproved be
ause they might depend on the modi�ed one. Atool whi
h 
ould keep tra
k of su
h dependen
ies or whi
h 
ould redo the proofwould be of great help. We are 
onvin
ed that su
h tools are even essential ifsu
h proofs are 
arried out on a regular basis.We have used assumptions in lemmata in order to stru
ture the 
orre
tnessproof. These assumptions have been dis
harged at a later stage in the proof.In 
ontrast to 
ompositional appoa
hes, our assumptions may refer to globalproperties. We believe that our approa
h is worth further resear
h, sin
e it allowsmore transparent formulations of properties and stru
turing their proofs. Thismay have an impa
t on redu
ing 
omplexity of automated proofs.With Doug Howe we are 
urrently me
hanizing the 
orre
tness proof reportedon in the 
urrent paper. This is an ongoing proje
t and results about our me
ha-nization, employing the theorem prover Nuprl [C+86℄, 
an be found in [FHS98℄.In previous work [BFS95℄, with Ramesh Bharadwaj, we have investigatedhow to 
ombine model 
he
king and theorem proving to verify a broad
astingproto
ol. The work reported in the 
urrent paper serves as a foundation for a 
asestudy to push the limits of formal veri�
ation by means of tools to really largeprograms, in parti
ular programs whi
h 
annot be validated by model 
he
kingte
hniques (only). In the future we will try to me
hani
ally verify even largerprograms.A
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