
Specifying and Implementing

Theorem Provers in a Higher-Order

Logic Programming Language

Amy P. Felty

A dissertation

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy.

1989

Dale Miller

Supervisor of Dissertation

Jean Gallier

Graduate Group Chairperson

c©1989 Amy P. Felty. All rights reserved.

iii

Abstract

Specifying and Implementing Theorem Provers in a Higher-Order

Logic Programming Language

Amy P. Felty

Supervisor: Dale Miller

We argue that a logic programming language with a higher-order intuitionistic logic as

its foundation can be used both to naturally specify and implement theorem provers. The

language extends traditional logic programming languages by replacing first-order terms

with simply-typed λ-terms, replacing first-order unification with higher-order unification,

and allowing implication and universal quantification in queries and the bodies of clauses.

Inference rules for a variety of proof systems can be naturally specified in this language.

The higher-order features of the language contribute to a concise specification of provisos

concerning variable occurrences in formulas and the discharge of assumptions present in

many proof systems. In addition, abstraction in meta-terms allows the construction of

terms representing object level proofs which capture the notions of abstractions found in

many proof systems. The operational interpretations of the connectives of the language

provide a set of basic search operations which describe goal-directed search for proofs.

To emphasize the generality of the meta-language, we compare it to another general

specification language: the Logical Framework (LF). We describe a translation which

compiles a specification of a logic in LF to a set of formulas of our meta-language, and

prove this translation correct.

A direct specification of inference rules provides a declarative account of a proof system

and a specification of the process of searching for proofs, but generally does not implement

a theorem prover that can be executed directly. We show that it is sometimes possible to

obtain a theorem prover that is complete under depth-first control by making only slight

modifications to a specification. For the purpose of general theorem proving, we show how

tactics and tacticals, which provide a framework for high-level control over search, can be

directly implemented in our extended language. This framework serves as a starting point

for implementing theorem provers and proof systems that can integrate many diversified

operations on formulas and proofs for various logics.

We present an extensive set of examples that have been implemented in the higher-order

logic programming language λProlog.

iv

Table of Contents

1 Introduction 1

1.1 Outline of the Dissertation . 3
1.1.1 Specification . 4
1.1.2 Implementation . 4

2 A Higher-Order Logic Programming Language 6

2.1 The Simply Typed λ-Calculus . 7
2.2 Definite Clauses and Goal Formulas . 9
2.3 A Non-Deterministic Interpreter . 10
2.4 A Deterministic Interpreter . 12
2.5 Syntax for Logic Programs . 13

3 Specifying Sequent and Natural Deduction Style Theorem Provers for

First-Order Intuitionistic

Logic 17

3.1 Specifying A Sequential Proof System . 17
3.2 A Specification of Natural Deduction in First-Order Logic 24
3.3 Explicit vs. Implicit Representation of Assumptions in Natural Deduction . 27
3.4 Proof Terms for Natural Deduction . 28
3.5 A Theorem Prover That Constructs Normal NI Proofs 33

4 Specifying Other Logics 40

4.1 Specification of Proof Systems for Classical Logic 40
4.2 Specifying the Untyped and Simply-Typed λ-Calculus 41
4.3 Correctness of Specifications . 45

4.3.1 Mappings Between Object Terms and Meta-Terms 46
4.3.2 Correctness of the Specification of βη-Convertibility 54

4.4 Specification of a Higher-Order Logic . 63
4.5 Discussion . 67

5 LF Signatures as Logic Programs 70

5.1 Canonical LF . 70
5.2 A Specification of β-Convertibility for LF 80
5.3 Translating LF Signatures to Logic Programs 92
5.4 Translation of a Signature for Natural Deduction 111

6 Executing Specifications Directly 116

6.1 A Depth-First Strategy for Proof Checking in First-Order Logic 117
6.2 Depth-First Theorem Proving in First-Order Logic 119
6.3 Depth-First Search With a Higher-Order Object Logic 127

7 Implementing Interpreters for Theorem Provers 130

7.1 Defining and Interpreting Goal Structures 130
7.1.1 Goal Structures . 130

v

7.1.2 Inference Rules as a Relation on Goals 132
7.1.3 Interpreting Compound Goal Structures 133

7.2 NI Inference Rules as Tactics . 134
7.3 Some Simple Interpreters . 139

7.3.1 A Depth-First Interpreter . 139
7.3.2 A Depth-First Iterative Deepening Interpreter 140

7.4 A Tactic Interpreter . 142
7.5 Interactive Component for the Tactic Interpreter 145
7.6 A Tactic Theorem Prover for Natural Deduction 151
7.7 A Session With a Natural Deduction Tactic Prover 153
7.8 Use of Meta-Language Features in Tactic Provers 155
7.9 A Contrast to ML Tactic Theorem Provers 156

8 Operations on Proof Terms 158

8.1 Transforming LI Proofs to NI Proofs . 158
8.2 Proof Normalization in NI . 165
8.3 Some Tactics for Proof by Analogy . 172

9 Conclusion and Future Work 179

9.1 Future Work . 181
A λProlog Programs for Manipulating Lists 184
B Infix Operators Used in λProlog Modules 185

vi

List of Figures

2.1 A Complete Set of Inference Rules for the Meta-Language 11

3.1 The LI Sequent Proof System for First-Order Intuitionistic Logic 19
3.2 The NI Natural Deduction Proof System for First-Order Intuitionistic Logic 25
3.3 Modified Rules for a Precise Formulation of the NI Proof System 29
3.4 NI Proof of ∀xq(x) ⊃ ∃xq(x) . 30
3.5 NI Proofs of p ⊃ (p ⊃ p) and ∀x(q(x) ∧ p) ⊃ ∀xq(x) 31
3.6 Some Example Fragments of NI Deductions 35

4.1 The LC Sequent Proof System for First-Order Classical Logic 41
4.2 A Proof System for βη-Convertibility of λ-Terms 42
4.3 Type Assignment for the Simply-Typed λ-Calculus 44
4.4 Encoding of Untyped Terms . 47
4.5 Decoding of Untyped Terms . 52
4.6 Quantifier Rules for Higher-Order Logic . 66

5.1 β-Convertibility in LF . 72
5.2 The Edinburgh Logical Framework . 73
5.3 Application Rules for C-LF . 79
5.4 Encoding of LF Terms . 81
5.5 Decoding of LF Terms . 82
5.6 Negative Translation of LF Judgments to Definite Clauses 93
5.7 Positive Translation of LF Judgments to Goal Formulas 94
5.8 Translation of Arbitrary LF Assertions . 111
5.9 LF Signature for a Fragment of NI . 111

7.1 The Import Structure of a Tactic Theorem Prover for NI 153

8.1 LI and NI Proofs of ∀xq(x) ⊃ ∃xq(x) . 161
8.2 Reductions for Proof Normalization in NI 166
8.3 Reductions for Removing Redundant Applications of ∨-E or ∃-E 170
8.4 A Tactic Theorem Prover for NI With Proof By Analogy Tactics 176
8.5 NI Proofs of (∀xq(x) ∨ p) ⊃ ∀x(q(x) ∨ p) and ∀x(q(x) ∧ p) ⊃ (∀xq(x) ∧ p) . 177

B.1 Infix Operators Used in λProlog Modules 185

vii

List of Modules

3.1 fol: Logical Connectives for First-Order Logic 18
3.2 nprf: Proof Term Constructors for NI . 33
3.3 niprover: Specification of NI . 34
3.4 ninormal: Specification of NI that Constructs Normal Deductions 39
4.1 convert: βη-Convertibility in the Simply-Typed λ-Calculus 46
5.1 lfsig: Signature for LF Terms, Types, and Kinds 81
5.2 lfconv: β-Convertibility in LF . 85
5.3 lfnorm: β-Normalization in LF . 86
5.4 lf fol: Translation of LF Signature for First-Order Logic 112
5.5 lf ni: A Slight Simplification of the Translation of an LF Signature for

Natural Deduction . 114
6.1 lprf: Proof Term Constructors for LI and LC 122
6.2 lc prove: Main Search Component for Automatic Theorem Prover for LC . 123
6.3 lc iter: Iteration Loop for Automatic Theorem Prover for LC 124
6.4 lc auto: Root Module for Automatic Theorem Prover for LC 125
7.1 goals: Goal Constructors for Meta-Goals 131
7.2 maptac: Interpreting Compound Goal Structures 133
7.3 ndgoal: Primitive Goal Constructors for NI 134
7.4 ndtac Part I: Tactics for NI . 137
7.5 ndtac Part II: Tactics for NI . 138
7.6 dfs: A Depth-First Interpreter . 140
7.7 idfs: An Iterative Deepening Interpreter 141
7.8 tacticals: Some Common Tacticals . 143
7.9 goalred: Simplifying Compound Goals . 145
7.10 inter tacs: Interactive Component for Tactic Interpreter 150
7.11 ndprint: Output Program for Interactive Proof Search for NI 151
7.12 nd: Root Module for NI Tactic Theorem Prover 152
8.1 liprover: Specification of the LI Inference Rules Without Cut 162
8.2 ninormal: Explicit Context Specification of NI that Constructs Normal

Deductions . 163
8.3 lniprover: Proof Transformer from LI Proofs to NI Deductions 164
8.4 ndredex: Reductions for Proof Normalization in NI 171
8.5 ndnormalize: Proof Normalization for NI 172
8.6 mapcopy: Processing Compound Goals in Proof By Analogy 174
8.7 copy: Some Basic Tactics for Proof by Analogy 174
8.8 ndcopy: Tactics for Proof By Analogy in NI 176
A.1 lists: Some Simple Operations on Lists . 184

viii

Chapter 1

Introduction

Logic programming languages have many characteristics that indicate that they should

serve both as good specification and implementation languages for theorem provers. First,

in terms of specification, at the foundation of any logic programming language is a given

logic in which programs are specified as a set of declarative propositions. The language

Prolog [SS86], for instance, has the classical, first-order theory of Horn clauses as its foun-

dation. Propositions in such languages are generally clauses with a top-level implication

where a clause body implies its head. Proof systems that are defined by a set of inference

figures should be easily specified as clauses of this form: the head of a clause specifies

the conclusion of a rule, while the body specifies its premises. Second, in terms of imple-

mentation, a central mechanism of computation in logic programming is search. Search in

logic programming languages is generally goal-directed, and is specified by a small set of

operations. Search is also fundamental to theorem proving. The process of discovering a

proof involves traversing an often very large and complex search space in some controlled

manner. Finally, unification is an important mechanism in logic programming which is im-

mediately and elegantly accessible in most implementations. This mechanism can be very

useful in theorem proving in the manipulation of formulas and proofs, and in determining

which inference rules can be applied and producing the proper instances of these rules.

The functional programming language ML was originally developed as the meta-language

for the implementation of theorem provers and has been used extensively for this purpose

[GMW79, Gor85, C+86, Pau88]. The language contains many features that are useful for

the design of theorem provers. It has a secure typing scheme, and is higher-order, allowing

complex operations to be composed easily. In addition, it contains some unification capa-

bilities and provisions for sophisticated manipulation of data objects. While ML has been

used with much success in implementing theorem provers, many of the characteristics of

logic programming languages suggest that such languages are worth investigating as an

alternative in which certain basic operations such as search and unification are available

more directly.

1

The basic data structure of traditional logic programming languages such as Prolog

is first-order terms. As argued in [MN87], such terms are not adequate for represent-

ing quantified formulas in first-order logic, or in any other logic that contains quanti-

fiers. First-order terms cannot adequately characterize the notions of variables and the

scopes of variable bindings in such formulas. Of course, quantification can be specially en-

coded. For example, in Prolog, we can represent abstractions in formulas by representing

bound variables as either Prolog free variables or constants. The formula ∀x∃y P (x, y),

for instance, could be written as the first-order term forall(X,exists(Y,p(X,Y))) or

forall(x,exists(y,p(x,y))) (where capital letters represent free variables and lower

case letters represent constants). In either representation, occurrences of variables inside

the scope of quantifiers must be distinguished from those outside it, and thus the substi-

tution and unification that is available on free variables in Prolog is not available for these

terms. In other words, Prolog’s unification cannot provide unification at the object level.

The programmer would have to write special procedures that accomplish these tasks for

the encoded representation. By manipulating such an encoding, much of the declarative

nature of logic programs is lost.

For the purposes of this dissertation, we use a higher-order logic programming language

based on higher-order hereditary Harrop formulas [MNS87, MNPS]. This language replaces

first-order terms with simply typed λ-terms. These terms can be used to elegantly express

the higher-order abstract syntax of object logics [PE88]. For example, the abstractions

built into λ-terms can be used to naturally represent quantification. We will see that the

operations of quantifier instantiation and substitution are very naturally specified in terms

of application of λ-terms. Abstraction in λ-terms also allows us to represent notions of

abstraction found in many proof systems. For example, in natural deduction there is a

notion of a variable bound inside a proof [Pra71]. In addition, in natural deduction, a

proof of an implication A ⊃ B can be considered a function from proofs of A to proofs of

B. As we will see, terms representing proofs can be constructed in which these notions are

captured. The construction of proof terms will in fact be an important aspect of all the

theorem provers presented in this dissertation.

Our extended language also permits queries and the bodies of clauses to be both im-

plications and universally quantified. We shall show how universal quantification can be

used to naturally specify the provisos on inference rules in many proof systems concerning

the occurrences of variables in formulas. Such uses of universal quantification are in fact

essential for the correct implementation of various kinds of theorem provers for these log-

ics. In addition, we will see that implication is very useful for specifying the discharge of

assumptions in natural deduction systems.

The characteristics of higher-order hereditary Harrop formulas described so far suggest

that this logic is well-suited to the representation of formulas and proofs and the declarative

2

specification of inference rules. We will also see that many of the operational aspects of

the logic programming language with this logic as its foundation are well-suited to the

implementation of theorem provers and the organization and implementation of proof

systems in general. By a proof system1, we mean here a system which implements not

only theorem proving but also many other operations on formulas and proofs for potentially

many logics.

For example, quantification over higher-order objects such as predicates provides a

mechanism for writing procedures which take other procedures as arguments. In theorem

proving, this capability will be useful in writing procedures to implement basic control

mechanisms for proof search, for instance. Such procedures will take as parameters the

various primitive operations of a particular theorem prover and compose them in various

ways to form more complex operations and proof search strategies.

The operational interpretation of implicational goals provides support for modular

programming. A modular organization is beneficial if not necessary for the implementation

of potentially complex proof systems. Separating control mechanisms from the specification

of primitive operations of a theorem prover is one example of modularization that may be

useful. It is also desirable to separate domain specific information for one domain from that

of others. Modules may contain, for example, search strategies geared toward a particular

logic or domain, or store libraries of definitions and theorems for a given domain. By

taking such a modular approach, not only will each individual module be conceptually

simpler, but it will also be possible to integrate many potentially diverse operations on

formulas and proofs into one unified framework.

1.1 Outline of the Dissertation

In Chapter 2, we present our extended logic programming language. We first present the

language of higher-order hereditary Harrop (hohh) formulas, and then describe a non-

deterministic interpreter for this language in terms of several simple search operations

which correspond closely to the connectives of the logic. We also describe the deter-

ministic interpreter λProlog, which adopts depth-first control, and for which prototype

implementations exist [MN88, EP89]. The remainder of the dissertation is divided into

two parts: specification and implementation.

1In contrast, note the other use of the term proof system to mean a set of inference figures for constructing

proofs in a particular logic. The two uses of the term are quite different and it will always be clear from

context which is meant.

3

1.1.1 Specification

To specify a theorem prover, we begin with a given logic and a proof system for that logic,

and specify the inference rules as a set of hohh formulas. Such specifications provide a

declarative account of the content of the proof systems. In addition, each specification

will also have an operational reading with respect to the non-deterministic interpreter. In

general, we will discuss both the declarative and operational readings of specifications.

In Chapter 3, we illustrate the specification of theorem provers using first-order in-

tuitionistic logic as an example. We specify both sequent and natural deduction proof

systems. We show that there are many ways to specify natural deduction, and include a

specification that constructs only normal proofs. In Chapter 4, we specify several proof

systems for other logics including classical first-order logic, the simply-typed λ-calculus,

and a higher-order logic. One consequence of writing programs that are declarative and

easy to read is that correctness proofs for such programs should be relatively easy to es-

tablish. As an example, we establish the correctness of a specification for βη-conversion

in the untyped λ-calculus. We first prove the correctness of the representation of untyped

terms as terms in the meta-language. This result illustrates in general the correspondence

between first-order and higher-order abstract syntax for object logics. Once this result

is established it is then easy to show the correctness of the specification of βη-conversion

with respect to the non-deterministic interpreter described in Chapter 2.

The Edinburgh Logical Framework (LF) is a logic developed to provide a general theory

of inference systems that captures many uniformities across different logics [HHP89]. In

Chapter 5, we formalize the correspondence between specifying logics in LF and specifying

logics as hohh formulas. We show that LF signatures can be naturally “compiled” into

hohh formulas.

1.1.2 Implementation

We have used the term specification to mean a set of hohh formulas representing the

inference rules of a given proof system, and have indicated that in addition to declarative

content, specifications have an operational reading with respect to a non-deterministic

interpreter. Yet specifications do not in general serve as complete implementations with

respect to some deterministic control. In the second half of this dissertation, we are

concerned with building theorem provers of practical import, and thus good execution

behavior will become an important consideration. Since we use the same meta-language

for both specification and implementation, we distinguish between the two by using the

term implementation to mean a program that is intended to have the additional property

that it has good behavior with respect to a deterministic interpreter, in particular, for

the purposes of this dissertation, with respect to the λProlog interpreter described in

4

Chapter 2.

In Chapter 6, we analyze the operational behavior of the specifications of Chapters 3

and 4 with respect to the deterministic interpreter. We will see that many of the specifica-

tions, exactly as they are presented, are complete implementations of proof checkers. As

theorem provers, not surprisingly, the programs often do not behave well with respect to

the deterministic interpreter. In some cases, as we will discuss in Chapter 6, slight modifi-

cations to the specifications can provide complete implementations of automatic theorem

provers.

In Chapter 7, we consider more generally the question of developing good implemen-

tations for theorem provers and proof systems. We argue that λProlog serves as a good

meta-language for implementing interpreters for theorem provers. We implement several,

each consisting of a small set of basic control mechanisms that behave well under depth-

first control. We then show that by adding a set of clauses specifying the inference rules

of a particular logic, we can obtain a theorem prover for that logic. These inference rule

clauses serve as the set of basic operations to the interpreter. In this chapter, we concen-

trate mainly on the implementation of an interpreter based on tactics and tacticals. As

an example, we present a complete theorem prover for natural deduction for first-order

intuitionistic logic. We show that the tactic interpreter provides an environment that can

be extended modularly to include other logics and operations such as interactive proof

search, and later in Chapter 8, capabilities for proof by analogy.

As stated earlier, the construction of terms representing proofs in a particular proof

system will be an important aspect of all the theorem provers we present. In Chapter 8,

we present several operations involving such proof terms. Proof by analogy is one such

operation where proof terms play a central role. We also present a program which translates

proof terms representing proofs in a cut-free sequent system for first-order intuitionistic

logic to proof terms for normal natural deduction proofs. This program combines two

separate specifications for these two proof systems and provides an illustration of the

correspondence between them. Also in this chapter is a program for proof normalization

in natural deduction. The proof reductions of the proof normalization theorem in [Pra71]

are specified quite naturally as clauses relating two proof terms.

Finally, we summarize and discuss future research directions in Chapter 9.

5

Chapter 2

A Higher-Order Logic

Programming Language

The logic programming language used in this dissertation extends traditional logic pro-

gramming languages by enriching the underlying logical foundation. Higher-order hered-

itary Harrop formulas extend Horn clauses in essentially two ways. The first extension

permits richer logical expressions in both queries (goals) and the bodies of program clauses.

In particular, this extension provides for implications, disjunctions, and universally and

existentially quantified formulas, as well as conjunction. The addition of disjunctions and

existential quantifiers into the bodies of clauses does not depart much from the usual pre-

sentation of Horn clauses since such extended clauses are classically equivalent to Horn

clauses. The addition of implications and universal quantifiers, however, makes a signif-

icant departure. The second extension to Horn clauses makes this language higher-order

in the sense that it is possible to quantify over predicate and function symbols. For a

complete realization of this kind of extension, several other features must be added. In

order to instantiate predicate and function variables with terms, first-order terms are re-

placed by more expressive simply typed λ-terms. The application of λ-terms is handled

by λ-conversion, while the unification of λ-terms is handled by higher-order unification.

There are four major components to our extended logic programming language: types,

λ-terms, definite clauses, and goal formulas. Types and terms are essentially those of

the simply typed λ-calculus [HS86]. In Section 2.1, we give the basic definitions for this

calculus. Then, in Section 2.2, we present the formulas and clauses of the logic program-

ming language. In Section 2.3, we discuss a simple non-deterministic interpreter for the

language, and then in Section 2.4, a deterministic version is presented. This interpreter

is a description of the logic programming language λProlog. Finally, in Section 2.5, we

present a syntax for terms and formulas of the logic that will be used in the remainder of

this dissertation.

6

2.1 The Simply Typed λ-Calculus

We assume that a certain set of base types is provided. This set must contain the type

symbol o which will denote the type of logic programming propositions. Function types

are built in the usual way using the arrow constructor →: if τ1 and τ2 are types then so

is τ1 → τ2. The arrow type constructor associates to the right: τ1 → τ2 → τ3 is read as

τ1 → (τ2 → τ3).

For each type τ we assume that there are denumerably many constants and variables

of that type. λ-terms can then be built up using constants, variables, applications, and

abstractions in the usual way, as specified by the following inductive definition where M

and N are syntactic variables for terms, x : τ is a variable of type τ , and c : τ is a constant

of type τ .

M := c : τ | x : τ | MN | λx : τ.M

When writing a variable or constant, we often omit the type when it can be inferred from

context. We assume the usual definitions for bound and free variables, and closed and

open terms.

Terms are assigned types as follows: a constant or variable of type τ is a term of type

τ , an abstraction λx : τ.M is a term of type τ → τ ′ if M is a term of type τ ′, and an

application MN is a term of type τ ′ if M is a term of type τ → τ ′ and N is a term of type

τ . If a term can be assigned a type in this manner it is said to be well-typed.

In this dissertation, we will denote a substitution, σ, as a set of pairs. The set

{〈x1,M1〉, . . . , 〈xn,Mn〉} denotes the function that for i = 1, . . . , n maps xi to Mi. Given

a term N , σ(N) denotes the term obtained by simultaneously replacing free occurrences

of x1, . . . , xn in N with M1, . . . ,Mn, respectively, systematically renaming bound variables

when necessary in order to avoid variable capture. We write dom(σ) to denote the domain

of substitution σ and cod(σ) to denote the codomain of σ.1 We define an updating opera-

tion on substitutions. Given substitution σ, 〈x,M〉 + σ denotes the substitution obtained

by adding the pair 〈x,M〉 to σ, such that if x already appears on the left of a pair in σ,

this pair is overwritten. Following convention, we sometimes write [N1/x1, . . . ,Nn/xn]M

to denote the term σ(M) where σ is the substitution {〈x1,N1〉, . . . , 〈xn,Nn〉}.

Two terms M and N are said to be βη-convertible, written M =βη N if they are

equivalent modulo the following three equations.

(α) λx.M = λy.[y/x]M if y is not free in M

(β) (λx.M)N = [N/x]M

(η) λx.Mx = M if x is not free in M

Equality between λ-terms in our meta-language is taken to mean βη-convertible.

1Throughout this dissertation, dom and cod will be used to denote the domain and codomain of functions

in general.

7

A β-redex is a term of the form (λx.M)N and an η-redex is a term of the form λx.Mx

where x does not occur free in M . A term is in βη-normal form if it contains no β

or η-redexes. A term in βη-normal form has the form λx1 . . . λxn.(xM1 . . . Mm) where

n,m ≥ 0, x is either a constant or variable and M1, . . . ,Mm are in βη-normal form.

We say that a term is in βη-long normal form (or just βη-long form) if it has the form

λx1 . . . λxn.(xM1 . . . Mm) where x is a variable or constant of type τ1 → · · · → τm → τ

where τ is a base type, and M1, . . . ,Mm are in βη-long form. We will also say that a term

is βη-normal or βη-long if it is in βη-normal form or βη-long form, respectively. All well-

typed terms are βη-convertible to a term in βη-normal form and a term in βη-long form

that are unique up to the (α) equation above. Given two terms M and N , if M =βη N

and N is βη-normal or βη-long, we say that N is the βη-normal form or βη-long form,

respectively, of N .

We assume that the reader is familiar with the basic properties of the simply typed

λ-calculus, in particular, those found in Chapters 1,7,13, and 15 of [HS86]. The following

result, which will be needed in later chapters, follows from basic properties of substitution

and α-conversion. We write M =α N to denote the equivalence of two terms modulo the

(α) equation above.

Lemma 2.1 Let σ be a substitution and let M and N be terms.

1. If σ(λx.M) =α λy.N then (〈x, y〉 + σ)(M) =α N .

2. If (〈x, y〉 + σ)(M) =α N , and y is not free in σ(λx.M) whenever y is different from
x, then σ(λx.M) =α λy.N .

Proof: The proof of (1) is by induction on the structure of the term M .

Base: If M is a constant c, then N is also the constant c. Clearly (〈x, y〉+ σ)(c) =α c.

If M is the variable x, then N is the variable y, and clearly (〈x, y〉 + σ)(x) =α y. If M

is a variable z where z is different from x, then σ(λx.z) =α λx′.(〈x, x′〉 + σ)(z) for some

x′ not free in the terms in cod(σ) or z. Thus N is (〈x, x′〉 + σ)(z) where y is not free in

(〈x, x′〉 + σ)(z). Since x is not free in z, (〈x, y〉 + σ)(z) =α (〈x, x′〉 + σ)(z).

Induction Step: If M has the form P1P2, then N has the form Q1Q2 and σ(λx.P1P2) =α

λy.Q1Q2. Thus σ(λx.P1) =α λy.Q1 and σ(λx.P2) =α λy.Q2. By the induction hypothesis,

(〈x, y〉 + σ)(P1) =α Q1 and (〈x, y〉 + σ)(P2) =α Q2. Clearly,

((〈x, y〉 + σ)(P1))((〈x, y〉 + σ)(P2)) =α (〈x, y〉 + σ)(P1P2).

Thus (〈x, y〉 + σ)(P1P2) =α Q1Q2.

If M has the form λw.P then N has the form λz.Q and σ(λx.λw.P) =α λy.λz.Q. For

some x′ not free in the terms in cod(σ) or in λw.P ,

σ(λx.λw.P) =α λx′.(〈x, x′〉 + σ)(λw.P).

8

Since y is not free in λy.λz.Q, y is not free in σ(λx.λw.P). Thus λx′.(〈x, x′〉+σ)(λw.P) =α

λy.(〈x, y〉 + σ)(λw.P). Hence (〈x, y〉 + σ)(λw.P) =α λz.Q.

The proof of (2) is also by induction on the structure of M .

Base: If M is a constant c, then N is also the constant c. Clearly σ(λx.c) =α λy.c. If

M is the variable x, then N is the variable y, and clearly σ(λx.x) =α λy.y. Next consider

the case when M is the variable y different from x and y is not free in σ(λx.y). Since y

is not free in σ(λx.y), there must be a pair 〈y, z〉 ∈ σ such that z is different from y and

(〈x, y〉 + σ)(y) =α z. Thus N is the variable z, and hence σ(λx.y) =α λy.z. Finally, if M

is a variable z where z is different from both x and y, then (〈x, y〉+ σ)(z) =α σ(z), and N

is σ(z). Thus σ(λx.z) =α λy.σ(z).

Induction Step: If M has the form P1P2, then N has the form Q1Q2 and

(〈x, y〉 + σ)(P1P2) =α Q1Q2. Since,

(〈x, y〉 + σ)(P1P2) =α ((〈x, y〉 + σ)(P1))((〈x, y〉 + σ)(P2)),

it follows that (〈x, y〉 + σ)(P1) =α Q1 and (〈x, y〉 + σ)(P2) =α Q2. Thus by the induction

hypothesis, σ(λx.P1) =α λy.Q1 and σ(λx.P2) =α λy.Q2. Thus σ(λx.P1P2) =α λy.Q1Q2.

If M has the form λw.P then N has the form λz.Q and (〈x, y〉 + σ)(λw.P) =α λz.Q.

We must show σ(λx.λw.P) =α λy.λz.Q. For the case when x is y, we know that

λx.(〈x, x〉 + σ)(λw.P) =α λx.λz.Q. Clearly λx.(〈x, x〉 + σ)(λw.P) =α σ(λx.λw.P). Thus

σ(λx.λw.P) =α λx.λz.Q. It remains to be shown that the equivalence holds when x is

different from y. For some x′ not free in the terms in cod(σ) or in λw.P , σ(λx.λw.P) =α

λx′.(〈x, x′〉+σ)(λw.P). Since x is different from y, we know that y is not free in σ(λx.λw.P).

Thus, either x′ is y or y is not free in (〈x, x′〉 + σ)(λw.P). In either case,

λx′.(〈x, x′〉 + σ)(λw.P) =α λy.(〈x, y〉 + σ)(λw.P).

Since (〈x, y〉+σ)(λw.P) =α λz.Q, it follows that λy.(〈x, y〉+σ)(λw.P) =α λy.λz.Q. Thus

σ(λx.λw.P) =α λy.λz.Q.

2.2 Definite Clauses and Goal Formulas

Logical connectives and quantifiers are introduced into λ-terms by introducing suitable

constants as in [Chu40]. In particular, the constants ∧,∨,⊃ are all assumed to have type

o → o → o, and the constants ∀ and ∃ are given type (α → o) → o for each type

replacing the “type variable” α. (Negation is not used in this programming language.)

The expressions ∀λx.A and ∃λx.A are abbreviated to be ∀xA and ∃xA, respectively. ∧,∨,

and ⊃ will be written as infix constants. A λ-term which is of type o is called a proposition.

A function symbol whose target type is o will be considered a predicate.

9

Given a set of base types B, a signature (over B) is a finite set Σ of constants and

variables such that there is at least one constant or variable of every base type. A λ-term

over a signature Σ is a λ-term built using the terms in Σ and the logical constants. Given

a signature Σ, we define H(Σ) to be the set of λ-terms over Σ that do not contain the

logical constant ⊃. A proposition in H(Σ) in βη-normal form whose head is not a logical

constant will be called an atomic formula.

We now define two new classes of propositions over a signature Σ, called goal formulas

and definite clauses (or just clauses). Let A be a syntactic variable for atomic formulas,

G a syntactic variable for goal formulas, and D a syntactic variable for definite clauses.

These two classes of formulas are defined by the following mutual recursion.

G := A | G1 ∧ G2 | G1 ∨ G2 | ∃xG | D ⊃ G | ∀xG

D := A | G ⊃ A | ∀xD

Note that the top-level form of a definite clause is either ∀x1 . . . ∀xnA or ∀x1 . . . ∀xn(G ⊃ A)

where n ≥ 0. In either case, the atomic formula A is called the head of the clause, and G

is called the body. A universal instance of the body will be called a subgoal. There is one

final restriction on definite clauses: the head of a definite clause must have a constant as

its head. The heads of atomic goal formulas on the other hand may be either variable or

constant. The set of definite clauses are also called higher-order hereditary Harrop formulas

(see [MNPS]), which we abbreviate to hohh. Goal formulas will also be called queries.

A logic program or just simply a program is a pair Σ;P where Σ is a signature and P

is a finite set of clauses over Σ. We will often refer to a set P of definite clauses alone as

a program. A signature can usually be inferred from any type information given and the

occurrences of constants in the definite clauses.

2.3 A Non-Deterministic Interpreter

Provability for the logic described in the previous section is given in terms of a sequent

calculus [Gen69]. A sequent in this system is a triple Σ;P −→ G, where Σ is a signature

over a set of base types B, P is a set of definite clauses over Σ, and G is a goal formula over

Σ. The inference rules for this system are given in Figure 2.1. The set |P|Σ is defined to be

the smallest set of clauses over Σ such that P ⊆ |P|Σ and if ∀xD ∈ |P|Σ and M ∈ H(Σ),

then [M/x]D ∈ |P|Σ. Trees are constructed using these inference rules as schemas in the

usual way up to βη-convertibility of the goal formula, i.e., for every node Σ;P −→ G that

is an instance of a premise of one rule, if it is not a leaf node, then there is some G′ such

that G =βη G′, and Σ;P −→ G′ is an instance of the conclusion of the preceeding rule.

Building trees in this way avoids the need for an explicit rule for βη-convertibility. A proof

of the sequent Σ;P −→ G is a finite tree such that the root is labeled with Σ;P −→ G

10

Σ;P −→ G1 Σ;P −→ G2
∧-R

Σ;P −→ G1 ∧ G2

Σ;P −→ G1
∨-R

Σ;P −→ G1 ∨ G2

Σ;P −→ G2
∨-R

Σ;P −→ G1 ∨ G2

Σ;P −→ [M/x]G
∃-R

Σ;P −→ ∃x : τ.G
Σ;P ∪ {D} −→ G

⊃-R
Σ;P −→ D ⊃ G

Σ ∪ {y : τ};P −→ [y/x]G
∀-R

Σ;P −→ ∀x : τ.G
Σ;P −→ G

backchain
Σ;P −→ A

The ∃-R rule has the proviso that M is a term of type τ in H(Σ).

The ∀-R rule has the proviso that the variable y is not in Σ.

The backchain rule has the proviso that G ⊃ A is in |P|Σ.

Figure 2.1: A Complete Set of Inference Rules for the Meta-Language

and the leaves are labeled with initial sequents, that is, sequents Σ′;P ′ −→ A′ such that

A′ is atomic and A′ ∈ |P ′|Σ′ .

One important property of this proof system [MNPS] is that given a signature Σ, a

set of definite clauses P over Σ, and a goal formula G over Σ, the sequent Σ;P −→ G is

provable in the inference system in Figure 2.1 iff G is intuitionistically provable from P.

This logic allows for quantification over arbitrary predicates, a feature which we will not

make use of until Chapter 7. Quantification over function symbols on the other hand will

be used extensively in our examples although it will generally be restricted to order two.

Note that in any node in a proof, if the goal formula on the right of the sequent has a top-

level connective, the sequent must be the conclusion of the inference rule that introduces

that connective. If the goal formula is atomic, the sequent is either an initial sequent or

the conclusion of the backchain rule. Based on this property (called uniformity [MNPS]),

a simple non-deterministic logic programming interpreter can be described. We represent

a state of such an interpreter as a triple 〈Σ,P, G〉 where Σ is the current signature, P is

the current program consisting of clauses over Σ, and G is the current goal, a goal formula

over Σ. Σ;P ⊢I G will denote the proposition that the interpreter succeeds given the

current signature Σ, program P, and goal G. Judgments of this form will be called hohh

judgments. A high level description of an interpreter is given by the following six search

operations.

11

AND Σ;P ⊢I G1 ∧ G2 only if Σ;P ⊢I G1 and Σ;P ⊢I G2.

OR Σ;P ⊢I G1 ∨ G2 only if Σ;P ⊢I G1 or Σ;P ⊢I G2.

INSTANCE Σ;P ⊢I ∃x : τ.G only if there is some term M in H(Σ) of type τ

such that Σ;P ⊢I [M/x]G.

AUGMENT Σ;P ⊢I D ⊃ G only if Σ;P ∪ {D} ⊢I G.

GENERIC Σ;P ⊢I ∀x : τ.G only if Σ ∪ {y : τ};P ⊢I [y/x]G where y is a

variable or constant such that y /∈ Σ.

BACKCHAIN Σ;P ⊢I A (where A is atomic) if either A ∈ |P|Σ or G ⊃ A ∈ |P|Σ

and Σ;P ⊢I G.

Note that the AUGMENT search operation extends the current program, while the GENERIC

search operation extends the current signature. We allow this new signature item to be

either a variable or constant. As we will see in Section 4.3 and Chapter 5, in establishing

various results about logic programs it will be convenient to think of these new signature

items as variables. On the other hand, in presenting example clauses and programs and

describing their operational behavior, we will generally think of them as constants to

avoid confusion with “logic variables” used as an implementation technique for handling

substitutions and unification.

Also, note that the set of terms from which substitution terms are chosen in the

INSTANCE operation is the same set that was used in defining |P|Σ used in the BACKCHAIN

operation.

2.4 A Deterministic Interpreter

In order to implement a deterministic interpreter, it is important to make choices which

are left unspecified by the high-level description of the non-deterministic interpreter. The

choices made here are those that were made in implementing the λProlog systems LP2.7

[MN88] and eLP [EP89], many of which are similar to those routinely used in Prolog.

The order in which conjuncts and disjuncts are attempted and the order for backchain-

ing over definite clauses is determined exactly as in conventional Prolog: conjuncts and

disjuncts are attempted in the order they are presented. Definite clauses are backchained

over in the order they are listed in P using a depth-first search paradigm to handle failures.

In the extended language, clauses can be added dynamically by the AUGMENT operation.

We specify that new clauses get added to the top of the list.

The non-determinism in the INSTANCE operation is extreme. Generally when an exis-

tential goal is attempted, there is very little information available as to what closed λ-term

should be inserted. Instead, the Prolog implementation technique of instantiating the ex-

istential quantifier with a logic (free) variable which is later “filled in” using unification is

12

employed. Thus instead of picking a term M from H(Σ), the INSTANCE search operation

will introduce a new logic variable as the substitution term. A similar use of logic variables

is made in implementing BACKCHAIN: instead of choosing a clause from |P|Σ, a clause from

P is chosen and an instance is made by replacing all outermost universally quantified vari-

ables with new logic variables. Such logic variables are not part of the meta-language and

thus are distinct from the variables that occur in Σ.

The addition of logic variables in our setting, however, forces the following extensions

to conventional Prolog implementations. First, higher-order unification becomes necessary

since these logic variables can occur inside λ-terms. Also the equality of terms is not a

simple syntactic check but a more complex check of βη-conversion. This equality check is

decidable, although if the terms being compared are large, this check can be very expensive:

β-reduction can greatly increase the size of λ-terms. Since higher-order unification is

not in general decidable and since most general unifiers do not necessarily exist when

unifiers do exist, unification can contribute to the search aspects of the full interpreter.

λProlog addresses this by implementing a depth-first version of the unification search

procedure described in [Hue75, SG88]. It was shown in [MNPS] that such unification

is sufficient for determining substitutions, and in [Nad87, NM88], that this unification

procedure can be smoothly integrated into the usual backtracking mechanism of logic

programming languages. The higher-order unification problems we shall encounter in this

dissertation are all rather simple. In fact all such problems are decidable. In addition, the

presence of logic variables requires that GENERIC be implemented slightly differently than

is described above. In particular, if the goal ∀xG or the current program P contains logic

variables, the new signature item y must not appear in the terms eventually instantiated

for those logic variables. Several ways of handling the constraints on unification imposed

by the GENERIC operation are discussed in [Mil88]. Without these checks, logic variables

would not be a sound implementation technique.

2.5 Syntax for Logic Programs

Since much of this dissertation is concerned with how to specify and implement theo-

rem provers using the class of hereditary Harrop formulas presented in this chapter, we

shall need to present many such formulas. We will make such presentations by using the

syntax adopted by the eLP [EP89] implementation of λProlog, which itself borrows from

conventional Prolog systems.

Variables are represented by tokens with an upper case initial letter and constants are

represented by tokens with a lower case initial letter. Function application is represented

by juxtaposing two terms of suitable types. Application associates to the left, except for

infix constants and then normal infix conventions are adopted. λ-abstraction is represented

13

using backslash as an infix symbol: a term of the form λx.M is written as X\M. Terms are

most accurately thought of as being representatives of βη-conversion equivalence classes

of terms. For example, the terms X\(f X), Y\(f Y), (F\Y\(F Y) f) and f all represent

the same class of terms. In the programs in this dissertation, when a logic variable A has

functional type, say τ → τ ′ where τ ′ is a base type, we sometimes write its η-long form

X\(A X) when we want to make explicit the fact that A is an abstraction.

The symbols , and ; represent ∧ and ∨ respectively, and , binds tighter than ;. The

symbol :- denotes “implied-by” while => denotes the converse “implies.” The first symbol

is often used to write the top-level connective of definite clauses as in Prolog: the clause G ⊃

A can be written A :- G. Implications in goals and the bodies of clauses are always written

using =>. Free variables in a definite clause are assumed to be universally quantified, while

free variables in a goal are assumed to be existentially quantified. Universal and existential

quantification within goals and definite clauses are written using the constants pi and

sigma in conjunction with a λ-abstraction.

Below is an example of a (first-order) program using this syntax.

sterile Y :- pi X\ (bug X => (in X Y => dead X)).

dead X :- heated Y, in X Y, bug X.

heated j.

The goal (sterile j), for example, follows from these clauses.

To specify a signature for a program, kind declarations are used to introduce new

base types, and type declarations are used to introduce constants and give them types.

In λProlog, types are assigned either explicitly by user declarations or by automatically

inferring them from their use in programs. Explicit typings are made by adding to program

clauses declarations such as:

kind jar type.

kind insect type.

type sterile jar -> o.

type in insect -> jar -> o.

Notice that from this declaration, the types of the variables and other constants in the

example clauses above can easily be inferred.

λProlog permits a degree of polymorphism by allowing type declarations to contain

type variables (written as capital letters). For example, pi is given the polymorphic

typing (A -> o) -> o. It is also convenient to be able to build new “primitive” types

from other types. This is done using type constructors. In this paper, we will need to

have only one such type constructor, list. For example, (list jar) would be the type

of lists all of whose entries are of type jar. Lists are represented as in the programming

language ML by the following construction: nil represents an empty list of polymorphic

type (list A), and if X is of type A and L is of type (list A) then X::L represents a list

14

of type (list A) whose first element is X and whose tail is L. The programs throughout

this dissertation will make use of various operations on lists. We illustrate two versions of

a program for testing list membership here. These two, and all other list functions used in

this dissertation are displayed in Appendix A for reference. We introduce two predicates,

memb and member, both of polymorphic type A -> (list A) -> o, used to implement

standard list membership programs. The code for these programs is as follows.

memb X (X::L).

memb X (Y::L) :- memb X L.

member X (X::L) :- !.

member X (Y::L) :- member X L.

The member program illustrates one of the few non-logical features of λProlog used in

this dissertation: the cut (!). The cut is a goal which always succeeds and commits the

interpreter to all choices made since the parent goal was unified with the head of the clause

in which the cut occurs (see [SS86]). For example, if L is the list (1::2::3::nil) and

A is a logic variable, the goal (memb A L) will succeed in three ways with 1, 2, 3 as the

successive instances of A, while the goal (member A L) will succeed only once with A as 1.

Two other non-logical features of the logic programming language that will be used in

implementing theorem provers are the write and read predicates. As in Prolog, (write

A) prints the current binding of A to the screen and will always succeed. The read predicate

has polymorphic type (A -> o) -> o. A goal of the form read (X\G) prompts the user

for input of some term M, and then solves the goal ((X\G) M). When G fails, the read also

fails.

In λProlog, sets of type declarations and clauses are organized into modules. In the

implementation section of this dissertation, for illustration purposes, we will present mod-

ules as a whole using the syntax of eLP. Also, in the specification section it will sometimes

be helpful to present whole modules, particularly when they are imported by programs ap-

pearing in later chapters. A module consists of five parts: a name, a list of other modules

imported by the module, kind declarations, type declarations, and finally, program clauses.

The lists module in Appendix A, for example, illustrates most of this format. During an

execution, all subgoals generated by clauses in a module will have access to the clauses of

the current environment plus any in the modules directly imported by this module. Thus

if module a imports module b, the clauses in b can be used in solving subgoals generated

by clauses in a. If b imports c, the clauses of c are not directly available to a. Thus only

one level in the import hierarchy is used to determine which clauses are available. Kind

and type declarations on the other hand are visible all the way up the hierarchy. Thus the

signature items in c are also signature items for a.

In eLP, all infix symbols must be specified in a grammar which is loaded upon enter-

ing the interpreter. All infix symbols used in this dissertation are listed in Appendix B

15

according to their order of precedence. In assigning types to symbols that appear in the

grammar, the symbols must be quoted. For example, the list constructor :: is declared

as follows in the lists module.

type ’::’ A -> (list A) -> (list A).

In Chapter 1, we distinguished between specifications and implementations. Note that

both specifications and implementations are programs since a program is simply a set

of definite clauses associated with a signature. As stated, specifications will have both

a declarative reading and an operational reading with respect to the non-deterministic

interpreter described in Section 2.3. Implementations are programs that we additionally

expect to execute with respect to the deterministic interpreter described in Section 2.4.

16

Chapter 3

Specifying Sequent and Natural

Deduction Style Theorem Provers

for First-Order Intuitionistic

Logic

In this chapter and the next, we will illustrate the specification of theorem provers and

proof checkers in hohh using several examples from both first-order and higher-order logics.

We begin in this chapter by considering the specification of both sequent style and natural

deduction proof systems for first-order intuitionistic logic. Since we will be specifying logics

within a logic, to avoid confusion we will refer to hohh as the meta-logic and the logic being

specified as the object logic.

There are two parts to a specification of a theorem prover in our language. First, we

specify the syntax of a given object logic by introducing typed constants to represent the

constants and connectives of the logic. Then, we give a set of clauses which encode the

inference rules of a particular proof system for the object logic. Such a set of clauses

provides a declarative account of the content of the proof system and, with respect to

the non-deterministic interpreter given in the previous chapter, provides a specification

for a theorem prover. In addition, we will specify the construction of object-level proofs.

For this task, we introduce typed constants which serve as proof constructors. Programs

containing proofs will serve as specifications of both theorem provers and proof checkers.

3.1 Specifying A Sequential Proof System

To represent a first-order logic, we introduce two primitive types: form for the object-level

formulas and i for first-order individuals. The new type form serves to distinguish formulas

17

of the object logic from formulas of the meta-logic (which have type o). The connectives of

the meta-logic have a set meaning, for example as given by the non-deterministic interpreter

of the previous chapter, while the object-level connectives will have only the meaning

attributed to them by the programs that use them. Given these new primitive types, we

introduce constants for the object level connectives. These constants are declared with

their types in the fol module. For example, the infix constant and is introduced for

module fol.

kind i type.

kind form type.

type ’and’ form -> form -> form.

type ’or’ form -> form -> form.

type ’imp’ form -> form -> form.

type neg form -> form.

type forall (i -> form) -> form.

type exists (i -> form) -> form.

type false form.

Module fol: Logical Connectives for First-Order Logic

conjunction and is given the type form -> form -> form. It is a constructor that takes

two formulas as arguments and forms their conjunction. Often, a fixed set of constants,

function symbols, propositions, and predicates is given for a particular first-order logic.

We must also introduce constants for these objects, and give them types. For example, for

a logic containing a constant c, a binary function symbol f , a binary predicate p, a unary

predicate q, and a proposition r, we give the following declarations.

type c i.

type f i -> i -> i.

type p i -> i -> form.

type q i -> form.

type r form.

Using these definitions, the first-order formula ∀x∃y(P (x, y) ⊃ Q(f(x, y))), for example,

is represented by the λ-term:

(forall X\ (exists Y\ ((p X Y) imp (q (f X Y)))))

By declaring forall and exists to take functional arguments, we have defined object-

level binding of variables by quantifiers in terms of lambda abstraction, the meta-level

binding operator. Thus, bound variables of the object language are identified with bound

variables of the meta-language (of type i). Note that a similar use of λ-terms to represent

formulas is also adopted in the meta-language. There, the quantifiers pi and sigma have

polymorphic type (A -> o) -> o. As stated in Chapter 2, this representation of formulas

18

was introduced by Church [Chu40], and in fact has been adopted by many others [Pau86,

MN87, HHP89, CH88] to express the higher-order abstract syntax of object logics [PE88].

In this chapter and the next, we will specify sequent style and natural deduction proof

systems for both first-order intuitionistic and classical logic. The proof systems we specify

will be variants of the L and N systems originally given in [Gen69]. The formulations used

here will be called LI , LC , NI , and NC , for an intuitionistic sequent calculus, a classical

sequent calculus, an intuitionistic natural deduction proof system, and a classical natural

deduction proof system, respectively.

We begin the specification of theorem provers for first-order logic with the sequent

system LI , whose formulation is very similar to the L system in [Dum77]. In this system

a sequent is written Γ −→ A where Γ is a set of formulas, and A is a formula. Following

convention, we write A,Γ to denote the set Γ ∪ {A}. An initial sequent has the form

Γ −→ A where A ∈ Γ. The inference rules are given in Figure 3.1. There are no structural

Γ −→ A Γ −→ B
∧-R

Γ −→ A ∧ B
A,B,Γ −→ C

∧-L
A ∧ B,Γ −→ C

Γ −→ A
∨-R

Γ −→ A ∨ B
Γ −→ B

∨-R
Γ −→ A ∨ B

A,Γ −→ C B,Γ −→ C
∨-L

A ∨ B,Γ −→ C

A,Γ −→ B
⊃-R

Γ −→ A ⊃ B
Γ −→ A B,Γ −→ C

⊃-L
A ⊃ B,Γ −→ C

A,Γ −→⊥
¬-R

Γ −→ ¬A
Γ −→ A

¬-L
¬A,Γ −→⊥

Γ −→ [y/x]A
∀-R

Γ −→ ∀xA
[t/x]A,Γ −→ C

∀-L
∀xA,Γ −→ C

Γ −→ [t/x]A
∃-R

Γ −→ ∃xA
[y/x]A,Γ −→ C

∃-L
∃xA,Γ −→ C

Γ −→⊥
⊥-R

Γ −→ A
Γ −→ A A,Γ −→ C

cut
Γ −→ C

The ∀-R and ∃-L rules have the proviso that the variable y cannot appear free in the

lower sequent.

Figure 3.1: The LI Sequent Proof System for First-Order Intuitionistic Logic

rules in this presentation. The ⊥-R rule is as in the specification of sequent systems in

[Pra65], and corresponds to the usual rule for thinning on the right. We also include the

cut rule. We will call the formula to which a rule is applied (e.g. A ∧ B in the ∧-L rule)

the principle formula.

We will represent sets using lists where the order and number of copies of each element

is not significant. We introduce a new primitive type seq for sequents and make the

19

following declaration.

type ’-->’ (list form) -> form -> seq.

The constant --> is an infix operator whose antecedent is a list of formulas and succedent

is a single formula.

In this example, we will retain proofs as they are built, so we introduce another primi-

tive type lprf for the type of sequential proofs. We will see that there are many choices in

representing and constructing proofs. The examples given here serve merely to illustrate.

Of course, a theorem prover need not build explicit proofs at all.

The basic relation between a sequent and its proofs will be represented as a binary

relation at the meta-level by the infix constant >- declared as follows.

type ’>-’ lprf -> seq -> o.

The inference rules of the sequent calculus will be expressed as simple declarative facts

about this relation. Operationally, >- can be viewed as the theorem proving predicate. In

presenting the clauses for the inference rules, we will discuss both their declarative and

operational meanings.

First, consider the ∧-R inference rule in Figure 3.1 which introduces a conjunction on

the right side of the sequent. The declarative reading of this inference rule is captured by

the following definite clause.1

(and_r Q1 Q2) >- (Gamma --> (A and B)) :- Q1 >- (Gamma --> A), Q2 >- (Gamma --> B).

This clause may be read as: if Q1 is a proof of (Gamma --> A) and Q2 is a proof of

(Gamma --> B), then (and r Q1 Q2) is a proof of (Gamma --> (A and B)). The rule

can also be viewed as defining the constant and r: it is a function from two proofs

(the premises of the ∧-R rule) to a new proof (its conclusion). Its logic program type

is lprf -> lprf -> lprf.

Operationally, this rule can be employed when the sequent to be proved has a conjunc-

tion on the right of the arrow. Using the BACKCHAIN search command, the sequent and

proof of the query must unify with the proof in the head of this clause. If there is a match,

the AND search operation is used to verify the two new subgoals in the body of this clause.

The unification here is essentially first-order.

Next, consider the two inference rules for proving disjunctions, the ∨-R rules in Fig-

ure 3.1. These rules have a very natural rendering as the following definite clause.

(or_r Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> A); Q >- (Gamma --> B).

Declaratively, this clause specifies the meaning of a proof of a disjunction. For (or_r Q)

to be a proof of (Gamma --> (A or B)), Q must be a proof of either (Gamma --> A) or

1Many programs in this dissertation build or manipulate sequent-style or natural deduction proofs. We

adopt the convention that Q, Q1, Q2, etc. will be used for sequent proof variables, and P, P1, P2, etc. for

natural deduction proof variables.

20

(Gamma --> B). Operationally, this clause would cause an OR search operation to be used

to determine which of the subgoals in the body should succeed.

Alternatively, we could choose to specify the two rules for ∨-R with two clauses, and

introduce two constructors or r1 and or r2, which serve to indicate which instance of the

rule is used. The corresponding definite clauses would then be as follows.

(or_r1 Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> A).

(or_r2 Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> B).

Introductions of logical constants into the antecedent of a sequent can be achieved

similarly. The main difference here is that the antecedent is a list instead of a single

formula. Consider the implication introduction rule, the ⊃-L rule in Figure 3.1. This rule

could be specified as the following definite clause.

(imp_l Q1 Q2) >- (Gamma --> C) :- memb (A imp B) Gamma,

Q1 >- (Gamma --> A),

Q2 >- ((B::Gamma) --> C).

Here, memb is the version of the procedure for testing list membership that does not use

cut. (See Appendix A.)

Note that in the ⊃-L rule in Figure 3.1 the principle formula A ⊃ B appears in the set

A ⊃ B,Γ, but in any particular instance of the rule, this formula may or may not appear

in the premises. In contrast, in the definite clause specification, the most general form

of the rule is used, where the formula (A imp B) always appears in the list Gamma in the

subgoals.

All propositional rules for Gentzen sequential systems can be very naturally understood

as combining a first-order unification step with possibly an AND or an OR search operation.

We now look at specifying quantifier introduction rules. Here, the operational reading of

definite clauses will use the INSTANCE and GENERIC search operations and second-order

unification. Consider the ∃-R inference rule which can be written as the following definite

clause.

(exists_r Q) >- (Gamma --> (exists A)) :- sigma T\ (Q >- (Gamma --> (A T))).

The existential formula of the conclusion of this rule is written (exists A) where the logic

variable A has functional type i -> form. Thus A is an abstraction over individuals and

(A T) represents the formula that is obtained by substituting T for the bound variable

in A. Note the use of β-conversion at the meta-level to specify substitution at the object

level. Declaratively, this clause reads: if there exists a term T (of type i) such that Q is a

proof of (Gamma --> (A T)), then (exists r Q) is a proof of (Gamma --> (exists A)).

Operationally, we rely on second-order unification to instantiate the logic variable A. The

existential instance (A T) is obtained via the interpreter’s operation of β-reduction. Of

course, the implementation of INSTANCE will choose a logic variable with which to instan-

tiate T. By making T a logic variable, we do not need to commit to a specific term for the

21

substitution. It will later be assigned a value through unification if there is such a value

which results in a proof.

The use of sigma in the above definite clause makes explicit the correspondence of exis-

tential introduction at the meta-level with existential introduction for this particular object

logic. Note, though, that its use is not required here. The ∃-R rule could alternatively be

specified as below:

(exists_r Q) >- (Gamma --> (exists A)) :- Q >- (Gamma --> (A T)).

where a meta-level negative occurrence of an existential quantifier is replaced with a pos-

itive occurrence of a meta-level universal quantifier (not shown explicitly here since, by

convention, we assume universal closure at the top level). The two hohh formulas are

equivalent.

This rule provides another example where there are other options in specifying the proof

object. For example, it might be sensible to store inside the proof the actual substitution

term used. In this case, the exists r constant could be given the type i -> nprf ->

nprf, and the inference rule specified as follows.

(exists_r T Q) >- (Gamma --> (exists A)) :- Q >- (Gamma --> (A T)).

Here, since T appears in both the head and body of the clause, it must be in the scope of

a universal quantifier over the whole clause.

Now we consider the ∀-R rule which has the additional proviso that y is not free in Γ

or ∀xA. Although our programming language does not contain a check for “not free in” it

is still possible to specify this inference rule. This proviso is handled by using a universal

quantifier at the meta-level.

(forall_r Q) >- (Gamma --> (forall A)) :- pi Y\ ((Q Y) >- (Gamma --> (A Y))).

Again A has functional type. In this case, so does Q, and the type of forall r is

(i -> lprf) -> lprf. Declaratively, this clause reads: if we have a function Q that maps

arbitrary terms Y to proofs (Q Y) of the sequent (Gamma --> (A Y)), then (forall r Q)

is a proof of (Gamma --> (forall A)).

Operationally, the GENERIC search operation is used to insert a new constant of type

i into the sequent. Since that constant will not be permitted to appear in Gamma or A

the proviso will be satisfied. In the case when proof objects are defined so that they may

contain formulas or first-order terms inside them, this new constant may appear in the

proof term of the subgoal. Thus, it is necessary to introduce a λ-abstraction over type i

into proof objects as we have done. Note that if the representation of proofs was such that

neither formulas or terms ever appeared inside proof terms, such an abstraction would not

be necessary. In this case, the clause could be specified as follows:

(forall_r Q) >- (Gamma --> (forall A)) :- pi Y\ (Q >- (Gamma --> (A Y))).

22

and forall r would have type lprf -> lprf.

The remaining quantifier rules are specified similarly. The final rules are the ⊥-R and

cut rules which may be specified as follows.

(false_r Q) >- (Gamma --> A) :- Q >- (Gamma --> false).

(cut Q1 Q2) >- (Gamma --> C) :- Q1 >- (Gamma --> A), Q2 >- ((A::Gamma) --> C).

The specification is completed by the following simple definite clause for initial sequents,

that is, a sequent whose succedent appears as one of the formulas in the antecedent.

(initial A) >- (Gamma --> A) :- memb A Gamma.

Here the constant initial is of type form -> lprf.

Note that this clause represents the only way in which formulas get placed inside proof

terms in this specification. Depending on the later use made of proofs, it may be desirable

to store other formulas inside proofs. For example, the principle formula in any of the

inference rules could be stored inside proof terms making this information more directly

accessible to programs manipulating these terms.

It also might be desirable, again depending on how proofs are used, for proof objects

to contain less information than we have specified. For example, we may want a single

sequential proof to be a proof of many different sequents, that is, the proof terms should

be polymorphic. In that case, it might be desirable for the initial proof term not to store

a formula within the proof. Instead, initial could have the simpler type lprf. In this

case, it records that we have an initial sequent, but not which one. For example, the proof

term (imp r (and l initial)) represents a proof of Γ −→ p∧ q ⊃ p and Γ −→ p∧ q ⊃ q

for any Γ, p, and q.

Of course, as was stated earlier, proof objects do not need to be built at all. The

predicate --> could be replaced with a similar predicate, say provable or true, of type

seq -> o.

In specifying LI , we made use of the built-in lists of the meta-language, and the aux-

iliary memb predicate for extracting formulas of a particular form. Alternatively, we could

have represented lists directly as λ-terms, in the manner used by Huet and Lang in [HL78]

and by Paulson in the Isabelle theorem prover. For each type τ , a new primitive type τ̄ is

introduced. A list of elements of type τ will have functional type τ̄ → τ̄ . A constant Cτ of

type τ → τ̄ → τ̄ serves as the list constructor, and a list of elements a1, . . . , an of type τ is

denoted λu.Cτa1(C
τa2 . . . (Cτanu) . . .). The set of lists containing the constant A is then

represented as the pattern λu.l1(C
τA(l2u)) where l1 and l2 are variables of type τ̄ → τ̄ .

To specify LI using this list representation, we add the new primitive type lform to be

used in constructing lists of terms of type form. We also introduce the constant cons as

the list constructor, and modify the type of --> accordingly as follows.

type cons form -> lform -> lform.

type --> (lform -> lform) -> form -> seq.

23

Using this list representation, the definite clauses for rules that introduce formulas on the

right of the sequent arrow remain unchanged. For the rules that introduce formulas on the

left, we replace the call to the memb program with a pattern for a list containing a formula

of the appropriate shape. For example, the ⊃-L rule will now be specified by the following

clause.

(imp_l Q1 Q2) >- (U\(L1 (cons (A imp B) (L2 U))) --> C) :-

Q1 >- (U\(L1 (cons (A imp B) (L2 U))) --> A),

Q2 >- (U\(cons B (L1 (cons (A imp B) (L2 U)))) --> C).

Second-order matching is now required to match U\(L1 (cons (A imp B) (L2 U))) to an

arbitrary list containing (A imp B). By specifying all the rules that introduce connectives

on the left of the sequent arrow in this fashion, we obtain a specification of LI that does

not require any auxiliary predicates. For readability, in the examples that follow, we

will continue to use the built-in lists of the meta-language, and auxiliary predicates for

manipulating them. In each case though, such lists can be replaced by λ-terms as above,

and auxiliary predicates can be replaced by pattern matching on these λ-terms.

3.2 A Specification of Natural Deduction in First-Order Logic

We next consider specifying inference rules for the natural deduction NI system, which we

take to be the I system as presented in [Pra65]. The inference rules for NI are given in

Figure 3.2.

We introduce a new constant nprf to be the type of proofs constructed by this theorem

prover. Here, the basic proof relation is between proofs and formulas (instead of sequents).

We again introduce a binary infix operator, in this case #, with the following declaration.

type ’#’ nprf -> form -> o.

Several of the introduction rules for this system resemble rules that apply to succedents

in the sequential system just considered. Those that correspond to the example clauses

given in the previous section can be specified naturally as the definite clauses below.

(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.

(or_i P) # (A or B) :- P # A; P # B.

(exists_i P) # (exists A) :- sigma T\ (P # (A T)).

(forall_i P) # (forall A) :- pi Y\ (P # (A Y)).

Note that the ∀-I rule also has a proviso, in this case, that y cannot appear free in ∀xA, or

in any assumption on which [y/x]A depends. Again, a universal quantifier at the meta-level

is used. The condition that y cannot appear in ∀xA is similar to the proviso on the ∀-R

rule in the sequent system in Figure 3.1, and it is easy to see that this part of the proviso

is similarly handled by meta-level universal quantification. We will see shortly that this

use of meta-level universal quantification also handles the restriction on assumptions. In

24

A B
∧-I

A ∧ B
A ∧ B

∧-E
A

A ∧ B
∧-E

B

A
∨-I

A ∨ B
B

∨-I
A ∨ B A ∨ B

(A)
C

(B)
C

∨-E
C

(A)
B

⊃-I
A ⊃ B

A A ⊃ B
⊃-E

B

(A)
⊥

¬-I
¬A

A ¬A
¬-E

⊥

[y/x]A
∀-I

∀xA
∀xA

∀-E
[t/x]A

[t/x]A
∃-I

∃xA ∃xA
([y/x]A)

B
∃-E

B
⊥

⊥IA

The ∀-I rule has the proviso that the variable y cannot appear free in ∀xA, or in any

assumption on which [y/x]A depends.

The ∃-E rule has the proviso that the variable y cannot appear free in ∃xA, in B, or

in any assumption on which the upper occurrence of B depends.

Figure 3.2: The NI Natural Deduction Proof System for First-Order Intuitionistic Logic

this specification, we have assumed that there will be no way for either formulas or terms

to appear inside proofs. Thus P in the clause for ∀-I is not an abstraction. Again, we have

choices in specifying these rules. For example, we can specify ∨-I as two definite clauses

as we did for ∨-R in the previous section. We can also include substitution terms in the

clause for ∃-I as we did for ∃-R. If we do so, then first-order terms may appear in proofs,

and ∀-I must be re-specified so that P is an abstraction over terms. The clauses reflecting

these modifications are as follows.

(or_i1 P) # (A or B) :- P # A.

(or_i2 P) # (A or B) :- P # B.

(exists_i T P) # (exists A) :- P # (A T).

(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).

In natural deduction, unlike sequential systems, we have the additional task of specify-

ing the operation of discharging assumptions. Consider the implication introduction rule.

25

This rule can very naturally be specified using the definite clause below.

(imp_i P) # (A imp B) :- pi PA\ ((PA # A) => ((P PA) # B)).

This clause represents the fact that if P is a “proof function” which maps an arbitrary proof

of A, say PA, to a proof of B, namely (P PA), then (imp i P) is a proof of (A imp B). Here,

the proof of an implication is represented by a function from proofs to proofs. The constant

imp i is declared with the following type:

type imp_i (nprf -> nprf) -> nprf.

Notice that while sequential proofs only contain abstractions of type i, natural deduction

proofs may contain abstractions of both types i and nprf.

Operationally, the AUGMENT search operation plays a role in implementing the dis-

charge of assumptions. In this case, to solve the subgoal (pi PA\((PA # A) =>

((P PA) # B))), the GENERIC operation is used to choose a new object, say pa, to play

the role of a proof of the formula A. The AUGMENT goal is used to add this assumption

about A and pa, that is (pa # A), to the current set of program clauses. This clause is then

available to use in the search for a proof of B, i.e., in solving the subgoal ((P pa) # B).

The proof of B will most likely contain instances of the proof of A (the term pa). The

function P is then the result of abstracting pa out of the proof of B.

As was stated, the proviso on the ∀-I rule requires that the variable y does not appear

in any assumptions on which the premise depends. We now can see how this restriction is

handled by a universal quantifier at the meta-level. At any point in the construction of a

proof, the current available assumptions will be in the form of program clauses (where the

assumed formula will be associated with its proof). When the GENERIC search operation

introduces a new constant for Y, this constant will not appear in any program clauses (in

addition to not occurring in the current goal). Thus, the restriction on the occurrences of

y in assumptions will be enforced.

Elimination rules are specified similarly to the introduction rules. We give two exam-

ples, the ⊃-E and the ∃-E rules which are specified by the following definite clauses.

(imp_e P1 P2) # B :- P1 # A, P2 # (A imp B).

(exists_e P1 P2) # B :- P1 # (exists A),

pi Y\ (pi P\ ((P # (A Y)) => ((P2 P) # B))).

The ∃-E rule contains both a proviso handled by a universal quantifier at the meta-level,

and the discharge of an assumption, again handled by meta-level universal quantifica-

tion and implication. Here, P2 is an abstraction over just the proof term P. The proof

constructor exists e is declared as follows.

type exists_e nprf -> (nprf -> nprf) -> nprf.

Again, if terms or formulas appear in proofs, P2 would have to be an abstraction over Y

also. Then the proof constructor exists e would declared as follows:

26

type exists_e nprf -> (i -> nprf -> nprf) -> nprf.

and the definite clause for ∃-E would be as below.

(exists_e P1 P2) # B :- P1 # (exists A),

pi Y\ (pi P\ ((P # (A Y)) => ((P2 Y P) # B))).

The final rule of NI is the ⊥I rule specified below, completing the specification of this

proof system.

(false_i P) # A :- P # false.

3.3 Explicit vs. Implicit Representation of Assumptions in

Natural Deduction

In specifying NI we showed that it was quite natural to specify the discharge of assumptions

using universal quantification and implication at the meta-level. This representation of

assumptions is implicit in the sense that assumptions are manipulated by the programming

language, and no explicit programmer control is necessary. It is also possible to explicitly

keep track of assumptions by storing them in a list and making the manipulation of these

lists explicit in the definite clauses specifying the inference rules. Such assumption lists

will contain pairs of formulas associated with their proofs, and each definite clause will

have an extra argument corresponding to the current list of assumptions at the time the

rule is applied. The constant # will still be a relation between a formula and its proof, but

now will be declared as below using the new primitive type judg since it represents the

basic judgment for natural deduction.

type ’#’ nprf -> form -> judg.

In this specification, we use the sequent arrow --> as our theorem proving predicate as in

the sequential system, but now it will be used to form “judgment sequents,” declared with

the following type.

type ’-->’ (list judg) -> judg -> o.

A list of assumptions associated with their proofs appears on the left of the arrow, and

the formula to be proved and its proof appear on the right. We will call such lists of pairs

contexts. We obtain the explicit context specification of NI via a systematic modification

of the definite clauses of the “implicit context” specification of Section 3.2. For those

clauses that do not involve the discharge of assumptions, we simply add a list and sequent

arrow to form a judgment sequent in the head and subgoals of each clause. For example,

the clauses for ∧-I and ∧-E are as follows.

Gamma --> (and_i P1 P2) # (A and B) :- Gamma --> P1 # A, Gamma --> P2 # B.

Gamma --> (and_e P) # A :- Gamma --> P # (A and B); Gamma --> P # (B and A).

27

The discharge of assumptions as in the ⊃-I rule is specified as below where the new as-

sumption gets added to the context rather than the program.

Gamma --> (imp_i P) # (A imp B) :- pi PA\ (((PA # A)::Gamma) --> (P PA) # B).

The remaining rules that discharge assumptions are given below. They are obtained by

similarly modifying the corresponding definite clause of the implicit context specification

described in Section 3.2.

Gamma --> (neg_i P) # (neg A) :- pi PA\ (((PA # A)::Gamma) --> (P PA) # false).

Gamma --> (or_e P P1 P2) # C :- Gamma --> P # (A or B),

pi PA\ (((PA # A)::Gamma) --> (P1 PA) # C),

pi PB\ (((PB # B)::Gamma) --> (P2 PB) # C).

Gamma --> (exists_e P1 P2) # B :- Gamma --> P1 # (exists A),

pi Y\ (pi P\ (((P # (A Y))::Gamma) --> (P2 P) # B)).

In addition we will need the following clause to complete proofs.

Gamma --> P # A :- memb (P # A) Gamma.

The membership test in the above clause is equivalent to unification of a goal with an

atomic clause in the implicit context specification of the NI proof system.

As a result of these simple modifications we obtain a new specification that is equivalent

to the previous one. In fact, the procedure outlined above provides a mechanical method

of formulating a corresponding sequent system for any natural deduction system. We will

see in Chapter 8 that a further modification of the explicit context specification for the NI

system will correspond to the LI sequent proof system.

In Chapter 7, we will see that the use of lists to represent assumptions has an additional

advantage. For implementation purposes, it will often be desirable to have explicit control

over the manipulation of assumptions. For example, removing an assumption when it is

known that it is no longer needed can reduce the size of the search space. For this task,

list manipulation provides extra flexibility that meta-level implication cannot.

3.4 Proof Terms for Natural Deduction

In discussing the specification of the inference rules for LI and NI in the previous sections,

we indicated that there were often many choices in how rules were represented as definite

clauses. Although, as stated earlier, the choice of proof term will ultimately depend on

what the proofs will be used for, in this section we examine the choices for NI in more

detail, leading up to a representation that, given a proof term, allows us to fully recover

the deduction tree that it represents. We first give a precise definition of deductions in

NI , so that we may better see the correspondence between proof terms and the deduction

trees they represent. The definition of deduction that we present is based on the definition

28

in [Pra65] that uses discharge functions. First, we slightly modify the inference rules

of Figure 3.2 to make them more precise. Those rules which are modified are given in

Figure 3.3. In particular the two versions of the ∧-E and ∨-I rules are each given different

A ∧ B
∧-E1

A
A ∧ B

∧-E2
B

A
∨-I1

A ∨ B
B

∨-I2
A ∨ B

[y/x]A
∀-I(y)

∀xA
∀xA

∀-E(t)
[t/x]A

[t/x]A
∃-I(t)

∃xA ∃xA
([y/x]A)

B
∃-I(y)

B

Figure 3.3: Modified Rules for a Precise Formulation of the NI Proof System

names, to avoid ambiguous applications of either, e.g., concluding A ∨ A from A by an

application of ∨-I. Also the quantifier rules are parameterized by the substitution term or

variable t or y, so that when the variable bound by quantification doesn’t appear in the

formula, it is still possible to retrieve the substitution term.

In the rules of NI , discharge of assumptions is indicated by parentheses. For example,

in the ⊃-I rule, (A) indicates the discharge of zero or more occurrences of A. The role

of discharge functions is to make explicit which hypotheses are discharged by which rule

application in a given deduction. To formalize this notion, we introduce several definitions

based on those in [Pra65]. First, we say that the premise of an elimination rule containing

the connective for which the rule is named is the major premise, and other premises are

minor premises. In the ⊃-E rule, for example, A ⊃ B is the major premise, and A is the

minor premise. We call a tree constructed using these inference rules as schemas in the

obvious way a deduction tree. The formula occurring at the root in a deduction tree is the

end-formula. We distinguish between formulas and occurrences of formulas as they appear

in deduction trees by defining an occurrence to be a pair consisting of a tree address and

a formula occurring at that address. An assumption is an occurrence that appears as a

leaf in a deduction. Given a deduction tree Π, a discharge function F on Π is a partial

function mapping assumptions to occurrences in Π.

An NI deduction of C depending on Γ is then defined to be a pair (Π,F) such that the

following conditions hold.

1. Π is a deduction tree whose end-formula is C.

29

2. F is a discharge function on Π such that whenever F(A) = B, A is a leaf in the

subtree whose root is B, and either

(a) B is the premise of ⊃-I whose conclusion is A ⊃ B, and A is an occurrence of

A,

(b) B is the middle premise of ∨-E whose major premise is A ∨ B, and A is an

occurrence of A,

(c) B is the rightmost premise of ∨-E whose major premise is B ∨ A, and A is an

occurrence of A,

(d) B is the minor premise of ∃-E(y) whose major premise is ∃xA, and A is an

occurrence of [y/x]A.

3. Γ is the set of assumptions in Π that are not in the domain of F .

Whenever F(A) = B, we say that A is discharged at B in Π. A deduction (Π,F) is an NI

proof of A if (Π,F) is a deduction of A depending on ∅. In other words, (Π,F) is a proof

when F is a total function on the assumptions in Π.

Consider the proof in Figure 3.4 of ∀xq(x) ⊃ ∃xq(x) in a language that contains at

least a constant c, a proposition p, and a unary predicate q, with a discharge function that

maps p to itself and ∀xq(x) to the premise of the lower application of ⊃-I: ∃xq(x). Using

∀xq(x)
∀-E(c)

q(c)
p

⊃-I
p ⊃ p

∧-I
q(c) ∧ (p ⊃ p)

∧-E1
q(c)

∃-I(c)
∃xq(x)

⊃-I
∀xq(x) ⊃ ∃xq(x)

Figure 3.4: NI Proof of ∀xq(x) ⊃ ∃xq(x)

the representation for proof terms of Section 3.2 that did not include substitution terms,

the proof term for this deduction is:

(imp_i P\(exists_i (and_e1 (and_i (forall_e P) (imp_i Q\Q))))).

This representation is minimal in the sense that proofs contain enough information to

uniquely determine which definite clause was used at each step in its construction, but

no more. Using this representation, there will be proof terms that correspond to many

deductions. For example, from the above proof term, it is impossible to know that the

subterm (imp i Q\Q) is a proof of p ⊃ p. It could also be a proof of q(c) ⊃ q(c) for

example. In fact, the above proof term represents any deduction of the above form with

the substitution term c replaced by any first-order term, the proposition p replaced by any

formula, and the formula q(x) replaced by any formula.

30

There are various ways in which we can add information to proof terms to distinguish

proof terms for different deductions from one another. One way to make proof terms more

precise is to include substitution terms, as discussed in Section 3.1 and 3.2. We modify

the proof term given previously as follows.

(imp_i P\(exists_i c (and_e1 (and_i (forall_e c P) (imp_i Q\Q)))))

By including this information in proof terms, deduction trees of the same form that contain

different substitution terms will no longer be identified. Including formulas in proofs will

provide further information. For example, the proof term below provides the missing

conjunct in the application of ∧-E in the above deduction.

(imp_i P\(exists_i c (and_e1 (p imp p) (and_i (forall_e c P) (imp_i Q\Q)))))

Including this information allows us to determine that the subproof (imp i Q\Q) is a proof

of (p imp p).

One way to include information to uniquely determine the end-formula of a deduc-

tion is to pair each proof term with the term of type form representing the end-formula.

Continuing our example, the above proof may be paired with the following formula.

((forall X\ (q X)) imp (exists X\ (q X)))

For this example, the above tree is now the unique deduction corresponding to this proof

term/formula pair.

Note that in the above proof term, the meta-variables P and Q represent proofs of the

assumptions ∀xq(x) and p, respectively. The fact that P is bound in the argument to the

outer occurrence of imp i corresponds to the fact that ∀xq(x) is discharged at the premise

of the lower application of ⊃-I and similarly for Q bound by the inner occurrence of imp i,

and the corresponding assumption p. Figure 3.5 (a) illustrates a deduction in which there

are two possible discharge functions that make it a proof. The assumption p could be

p
⊃-I

p ⊃ p
⊃-I

p ⊃ (p ⊃ p)

∀x(q(x) ∧ p)
∀-E(y)

q(y) ∧ p
∧-E1

q(y)
∀-I(y)

∀xq(x)
⊃-I

∀x(q(x) ∧ p) ⊃ ∀xq(x)

(a) (b)

Figure 3.5: NI Proofs of p ⊃ (p ⊃ p) and ∀x(q(x) ∧ p) ⊃ ∀xq(x)

discharged by either application of ⊃-I. The following two proof terms correspond to the

discharge of p at the lower and upper application of ⊃-I respectively.

(imp_i P\(imp_i Q\P))

(imp_i P\(imp_i Q\Q))

31

As another example, consider the proof in Figure 3.5 (b) of ∀x(q(x)∧p) ⊃ ∀xq(x). The

proviso on the ∀-I rule states that the variable y used to instantiate the formula ∀xq(x)

cannot appear in the conclusion of the rule or in any assumptions that are not discharged

in the subtree above the application of this rule. As a result we can consider the variable y

as being bound in the subtree in which it is introduced. We identify deductions up to the

names of these “bound variables,” i.e. the variables appearing as arguments to ∀-I and ∃-E.

For example, we want to identify the proof in Figure 3.5 (b) with all proof trees that can

be obtained by replacing all occurrences of y in the subtree above the application of ∀-I(y)

with any other variable. (The same identification is made in [Pra71].) This identification

corresponds to identifying α-convertible proof terms. For example, the renaming of y in

the above tree corresponds to the renaming of Y in the corresponding proof term:

(imp_i P\(forall_i Y\(and_e1 p (forall_e Y P)))).

The first example illustrated that the and e1 proof constructor must take as an argu-

ment the conjunct that is dropped in applying the rule if proof terms are to be constructed

in such a way that the deduction trees they represent can be recovered. In general, in order

for proof terms to stand in a one-to-one relation to deductions, up to the equivalence just

described, other proof constructors for the elimination rules must take formulas as addi-

tional arguments. The constants used in constructing such proof terms and their types

are given in the nprf module on page 33. This module imports the fol module which

introduces the primitive types i and form and contains declarations for the connectives of

first-order logic (see page 18).

The use of this proof representation requires a slight modification to the clauses for

the elimination rules to include certain formulas inside proof terms. The clauses for the

introduction and ⊥I rules need not be modified from those given in the previous section.

The complete set of clauses is given in the niprover module on page 34. Note that there

are two clauses for ∨-I and ∧-E, and that clauses include substitution information. Also, as

discussed in Section 3.2, since substitution terms are included in proof terms, the argument

to forall i and the third argument to exists e must be abstractions over type i.

An alternate approach to representing proofs so that they stand in a one-to-one relation

to deductions, up to the desired equivalence is to introduce a “maximal” proof represen-

tation, in the sense that proof terms contain even more formulas, enough so that proof

terms alone (without an associated formula) stand in a one-to-one relation to deductions.

We will see in Chapter 5 that in compiling LF signatures specifying various object logics

into definite clauses, we obtain such a maximal representation for proofs. With such a

representation it is always possible to determine the end-formula of a deduction by ex-

tracting the information directly from the proof term. In contrast, in the “intermediate”

representation we have described, the proof term must be paired with a formula in order

to recover in full the deduction which it represents.

32

module nprf.

import fol.

kind nprf type.

type and_i nprf -> nprf -> nprf.

type and_e1 form -> nprf -> nprf.

type and_e2 form -> nprf -> nprf.

type or_i1 nprf -> nprf.

type or_i2 nprf -> nprf.

type or_e form -> form -> nprf ->

(nprf -> nprf) -> (nprf -> nprf) -> nprf.

type imp_i (nprf -> nprf) -> nprf.

type imp_e form -> nprf -> nprf -> nprf.

type neg_i (nprf -> nprf) -> nprf.

type neg_e form -> nprf -> nprf -> nprf.

type exists_i i -> nprf -> nprf.

type exists_e (i -> form) -> nprf -> (i -> nprf -> nprf) -> nprf.

type forall_i (i -> nprf) -> nprf.

type forall_e i -> (i -> form) -> nprf -> nprf.

type false_i nprf -> nprf.

Module nprf: Proof Term Constructors for NI

3.5 A Theorem Prover That Constructs Normal NI Proofs

Note that in the specification of LI , we can leave out the clause for the cut rule since,

by Gentzen’s cut-elimination result [Gen69], the proof system remains complete without

it. Without this clause, we have a specification of an LI theorem prover that builds cut-

free proofs. A corresponding notion to cut-free proofs in L systems is normal proofs in

N systems. In this section, we specify a theorem prover that only builds normal natural

deduction proofs. In NI it is not a matter of simply adding or removing clauses, but of

specifying the rules in a different manner.

The main condition for an NI deduction to be normal is that it must contain no

maximal formula, that is, a formula that is the conclusion of an I-rule or ⊥I and the major

premise of an E-rule, since such applications are redundant (as in the example in Figure 3.6

(a) on page 35). For the fragment of NI without the ∨ and ∃ connectives, this condition

is taken as the definition of normal. With these connectives in the logic the condition

must be made slightly stronger, and requires some further definitions. A segment in a

deduction is defined to be a sequence of occurrences A1, . . . , An such that A1 is not the

conclusion of an application of ∨-E or ∃-E, for i = 1, . . . , n − 1, Ai is a minor premise of

an application of ∨-E or ∃-E, and An is not the minor premise of an application of ∨-E or

∃-E. All occurrences in a segment are occurrences of the same formula. The deduction in

33

module niprover.

import nprf.

type ’#’ nprf -> form -> o.

(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.

(or_i1 P) # (A or B) :- P # A.

(or_i2 P) # (A or B) :- P # B.

(imp_i P) # (A imp B) :- pi PA\ ((PA # A) => ((P PA) # B)).

(neg_i P) # (neg A) :- pi PA\ ((PA # A) => ((P PA) # false)).

(exists_i T P) # (exists A) :- P # (A T).

(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).

(false_i P) # A :- P # false.

(and_e1 B P) # A :- P # (A and B).

(and_e2 A P) # B :- P # (A and B).

(or_e A B P P1 P2) # C :- P # (A or B),

pi PA\ ((PA # A) => ((P1 PA) # C)),

pi PB\ ((PB # B) => ((P2 PB) # C)).

(imp_e A P1 P2) # B :- P1 # A, P2 # (A imp B).

(neg_e A P1 P2) # false :- P1 # A, P2 # (neg A).

(exists_e A P1 P2) # B :- P1 # (exists A),

pi Y\ (pi P\ ((P # (A Y)) => ((P2 Y P) # B))).

(forall_e T A P) # (A T) :- P # (forall A).

Module niprover: Specification of NI

Figure 3.6 (b) contains a segment of length 3 of occurrences of A ∧ B. As in [Pra65], we

will say a segment is the premise of an application of a rule when its last formula is the

premise of the rule. A maximal segment is a segment that begins with a conclusion of an

application of an I-rule or ⊥I and ends with a major premise of an E-rule. The segment

of length 3 in Figure 3.6 (b) is in fact maximal. Note that a maximal formula is a special

case of a maximal segment. A normal deduction is then defined to be a deduction that

contains no maximal segment.

Normal deductions can be characterized in terms of the form of certain sequences of

formulas called paths. A path in a deduction is a sequence of occurrences A1, . . . , An such

that the following conditions hold. (1) A1 is a leaf that is not discharged by an application

of ∨-E or ∃-E. (2) For i = 1, . . . , n − 1, Ai is not the minor premise of an application of

⊃-E or ¬-E. If Ai is the major premise of an application of ∨-E or ∃-E, then Ai+1 is an

assumption discharged by this application. Otherwise, Ai+1 is the conclusion of the rule

for which Ai is a premise. (3) An is either the minor premise of ⊃-E or ¬-E or the end-

formula of the deduction. In a normal deduction, each path contains a series of segments

divided into three parts, an E-part followed by a minimum segment, followed by an I-part.

The E-part and I-part may be empty. Each segment in the E-part is a major premise of an

34

A B
∧-I

A ∧ B
∧-E

A
∃yD

∃xC
A B

∧-I
A ∧ B

∃-E
A ∧ B

∃-E
A ∧ B

∧-E
A

(a) (b)

C
A ∨ B

A A ⊃ (C ⊃ D) (1)
⊃-E

C ⊃ D (2)

B B ⊃ (C ⊃ D)
⊃-E

C ⊃ D
∨-E

C ⊃ D (2)
⊃-E

D(3)
⊃-I

C ⊃ D (4)

(c)

A ∨ B

C
A A ⊃ (C ⊃ D)

⊃-E
C ⊃ D

⊃-E
D

⊃-I
C ⊃ D

C
B B ⊃ (C ⊃ D)

⊃-E
C ⊃ D

⊃-E
D

⊃-I
C ⊃ D

∨-E
C ⊃ D

(d)

Figure 3.6: Some Example Fragments of NI Deductions

E-rule. The minimum segment is either the last segment or the premise of an I-rule or ⊥I .

Each segment in the I-part is a conclusion of an I-rule. Figure 3.6 (c) illustrates a path

of length 5 (containing 4 segments) in a normal deduction. The other paths in Figure 3.6

(c) are (1) a similar path starting with B ⊃ (C ⊃ D), (2) A ∧ B,A (3) A ∧ B,B and (4)

C. Note that since applications of ∨-E and ∃-E occur in the middle of segments, their

minor premises and conclusion may appear in the E-part, I-part, or the minimum segment

of paths through them. In Figure 3.6 (c), the application of ∨-E occurs in the E-part of

the segment shown there.

We define an E-part deduction to be a deduction whose end-formula is in the minimum

segment of all paths through it. In other words, all paths through the end-formula only have

a minimum segment and possibly an E-part, but no I-part. For example, the subtree rooted

at D in Figure 3.6 (c) is an E-part deduction. It is the minimum segment of the following

2 paths: (1) A ⊃ (C ⊃ D), C ⊃ D,C ⊃ D,D and (2) B ⊃ (C ⊃ D), C ⊃ D,C ⊃ D,D.

We present several variations of specifications that build normal NI deductions. The

division of normal deductions into E-parts and I-parts will be reflected in these specifi-

cations. The first specification we present here can be viewed as a modification of the

niprover module presented in Section 3.4 (see page 34). As in niprover, we will adopt

35

the “intermediate” proof representation, which includes substitution terms and some for-

mulas in proofs and provides two clauses each for the ∧-E and ∨-I rules. We will use two

relations in specifying the definite clauses for the inference rules, one for building E-parts,

and one for building I-parts. We introduce the constant #e for the E-part relation, and

also again use #, this time to relate a formula with a normal deduction. Both have type

(nprf -> form -> o). If a goal of the form (P #e A) is provable, then P represents an

E-part deduction of A. A goal of the form (P # A) is provable if P is a normal deduction

of A. Operationally, the clauses for the #e relation will apply E-rules, and the clauses for

the # relation will apply I-rules and join I-parts and E-parts at the minimum segment.

The introduction rules and ⊥I are specified below. They are all specified as before in

niprover, except that discharged assumptions are added as facts about the #e relation

since they will occur at the leaves in deductions and will always occur in the E-parts or

minimum segments of paths through them.

(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.

(or_i1 P) # (A or B) :- P # A.

(or_i2 P) # (A or B) :- P # B.

(imp_i P) # (A imp B) :- pi PA\ ((PA #e A) => ((P PA) # B)).

(neg_i P) # (neg A) :- pi PA\ ((PA #e A) => ((P PA) # false)).

(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).

(exists_i T P) # (exists A) :- P # (A T).

(false_i P) # A :- P # false.

The elimination rules except for ∨-E and ∃-E are specified as follows using the #e

predicate since the major premise of these rules can only appear in E-parts of proofs.

(and_e1 B P) #e A :- P #e (A and B).

(and_e2 A P) #e B :- P #e (A and B).

(imp_e A P1 P2) #e B :- P1 # A, P2 #e (A imp B).

(neg_e A P1 P2) #e false :- P1 # A, P2 #e (neg A).

(forall_e T A P) #e (A T) :- P #e (forall A).

Note that the minor premise of the ⊃-E rule (and similarly for ¬-E) is specified as the

subgoal (P1 # A). This reflects the fact that the subproof at the minor premise can be an

arbitrary normal proof. By the definition of path, the root of this subproof will always be

the last formula occurrence in the paths through it.

∨-E and ∃-E are each specified by two definite clauses, the first corresponding to when

the minor premises and conclusion occur in the I-parts (or minimum segment) of paths,

and the second when they occur in E-parts (or minimum segment).

(or_e A B P P1 P2) # C :- P #e (A or B),

pi PA\ ((PA #e A) => ((P1 PA) # C)),

pi PB\ ((PB #e B) => ((P2 PB) # C)).

(or_e A B P P1 P2) #e C :- P #e (A or B),

pi PA\ ((PA #e A) => ((P1 PA) #e C)),

36

pi PB\ ((PB #e B) => ((P2 PB) #e C)).

(exists_e A P1 P2) # B :- P1 #e (exists A),

pi Y\ (pi P\ ((P #e (A Y)) => ((P2 Y P) # B))).

(exists_e A P1 P2) #e B :- P1 #e (exists A),

pi Y\ (pi P\ ((P #e (A Y)) => ((P2 Y P) #e B))).

We must also add the additional clause below which serves to join I-parts and E-parts at

the minimum segment.

P # A :- P #e A.

Its declarative reading is that an E-part deduction is a normal deduction.

We now discuss several modifications that can be made to this specification. Our

goals in this presentation are twofold. The first is simply to present alternative ways of

specifying the rules of NI so that only normal proofs get constructed. The second is to

obtain a specification that corresponds to the clauses in the specification of LI presented

in Section 3.1 which, without the clause for the cut rule, constructs cut-free proofs. In

Chapter 8, we will see that from such a specification, we can rather directly obtain a

program that translates LI proofs to NI proofs.

In any NI deduction, any occurrence of ⊥ is always in the minimum segment of paths

through it, since it cannot be the major premise of an E-rule or the conclusion of an I-

rule. As a result, we have the option of specifying the ¬-E rule as follows where the only

difference is the use of # instead of #e in the head of the clause.

(neg_e A P1 P2) # false :- P1 # A, P2 #e (neg A).

With this clause replacing the one given earlier, the role of the clauses for the # relation

is to build I-parts in a goal directed fashion, and possibly also add the last segment in the

E-parts of paths through false. Clauses for #e will then add the remaining E-parts.

We can simplify the above specification of the NI rules if we consider the following

refinement of normal deductions. We define an E-segment in a normal deduction to be a

segment whose last occurrence is the conclusion of an application of ∨-E or ∃-E and the

major premise of an E-rule. Note that maximal segments are a special case of E-segments.

As pointed out to Prawitz by Martin-Löf [Pra71], the definition of normal can be sharpened

to require that normal deductions contain no E-segments or maximal formulas. We call

such deductions E-normal deductions. In an E-normal deduction all minor premises and

conclusions of applications of ∨-E and ∃-E will appear only in I-parts or minimum segments

of paths. Note that the deduction in Figure 3.6 (c), although it is normal, is not E-normal.

Figure 3.6 (d) contains a modification of the proof in (c) that meets the extra restriction

on segments to make it E-normal.

We can modify the above clauses to reflect this sharpened normal form by simply elim-

inating the clauses for ∨-E and ∃-E with the #e relation in the head, those for applications

37

such that the minor premises and conclusion appear in E-parts. By eliminating these two

clauses, we obtain a theorem prover that builds E-normal deductions.

We now illustrate an alternative specification that builds E-normal proofs and will

correspond to the specification of LI that builds cut-free proofs. This specification will only

have clauses for the # predicate. Atomic clauses for the #e predicate will associate formulas

with E-part deductions and will only get added dynamically during program execution.

Note that the specification that builds E-normal deductions removed two clauses with #e in

the head, and the alternate specification of the ¬-E rule illustrated how to remove another

and replace it with a clause with # in the head. The remaining clauses with #e in the head

are those specifying the ∧-E, ⊃-E, and ∀-E rules. These rules can also be modified. The

two rules for ∧-E, for example, can be specified by the following clause with # in the head.

PC # C :- P #e (A and B),

(((and_e1 B P) #e A) => (((and_e2 A P) #e B) => (PC # C))).

Operationally, in attempting to find a normal proof for any formula C, this clause will

look for an E-part deduction of a conjunction (A and B), apply both versions of the ∧-E

rule to it to obtain two new E-part deductions, add the new subproofs as atomic program

clauses, and attempt to find a normal proof for C in the environment extended with these

new assumptions. We can similarly specify the ⊃-E and ∀-E rules as the following clauses.

PC # C :- P2 #e (A imp B), P1 # A,

(((imp_e A P1 P2) #e B) => (PC # C)).

PC # C :- P #e (forall A),

(((forall_e T A P) #e (A T)) => (PC # C)).

The full specification of NI with these modifications is given in the ninormal module.

As stated and proved in [Pra65], normal deductions have the subformula property, that

is, every formula occurring in a normal deduction of A from Γ is a subformula of A or of

some formula in Γ. In fact, every formula occurring in an E-part of a path is a subformula

of a formula in Γ, every formula occurring in an I-part of a path is a subformula of A, and

every formula occurring in a minimum segment is a subformula of both A and some formula

in Γ. This property is reflected in the following operational description of the ninormal

module. The clauses for the I-rules apply the rules in a backward direction so that the

formulas in the subgoals (which correspond to the premises) are always subformulas of

the formula in the head of the clause (the conclusion). In contrast, the clauses for the

E-rules (except ∨-E and ∃-E) apply the rules in a forward direction from the assumptions

so that the conclusion is always a subformula of the major premise. In applying E-rules,

new E-part deductions get built from existing E-part deductions and are then added to

the program as new facts about the #e relation.

38

module ninormal.

import nprf.

type ’#’ nprf -> form -> o.

type ’#e’ nprf -> form -> o.

P # A :- P #e A.

(and_i P1 P2) # (A and B) :- P1 # A, P2 # B.

(or_i1 P) # (A or B) :- P # A.

(or_i2 P) # (A or B) :- P # B.

(imp_i P) # (A imp B) :- pi PA\ ((PA #e A) => ((P PA) # B)).

(neg_i P) # (neg A) :- pi PA\ ((PA #e A) => ((P PA) # false)).

(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).

(exists_i T P) # (exists A) :- P # (A T).

(false_i P) # A :- P # false.

PC # C :- P #e (A and B),

(((and_e1 B P) #e A) => (((and_e2 A P) #e B) => (PC # C))).

PC # C :- P2 #e (A imp B), P1 # A,

(((imp_e A P1 P2) #e B) => (PC # C)).

PC # C :- P #e (forall A),

(((forall_e T A P) #e (A T)) => (PC # C)).

(neg_e A P1 P2) # false :- P1 # A, P2 #e (neg A).

(or_e A B P P1 P2) # C :- P #e (A or B),

pi PA\ ((PA #e A) => ((P1 PA) # C)),

pi PB\ ((PB #e B) => ((P2 PB) # C)).

(exists_e A P1 P2) # B :- P1 #e (exists A),

pi Y\ (pi P\ ((P #e (A Y)) => ((P2 Y P) # B))).

Module ninormal: Specification of NI that Constructs Normal Deductions

39

Chapter 4

Specifying Other Logics

All of the example specifications presented so far have been for first-order intuitionistic

logic. In this chapter, we examine several others including classical logic, the λ-calculus,

and higher-order logic.

4.1 Specification of Proof Systems for Classical Logic

Classical logic can be specified similarly to intuitionistic logic. We begin with a sequential

system LC . LC can be obtained from the LI system in Figure 3.1 by allowing more than

one formula on the right of a sequent, and modifying the inference rules accordingly. The

complete proof system appears in Figure 4.1. In this system, an initial sequent has the

form Γ −→ ∆ where Γ and ∆ contain a common formula. The ⊥-I rule as in Figure 3.1 is

no longer needed, and the ∨-R rule becomes the dual of the ∧-L rule.

To specify this system, the sequent arrow --> will have the modified type (list form)

-> (list form) -> seq to reflect the fact that the right of the sequent also contains a set

of formulas. All rules that apply to formulas on the right must now test for list membership

also. For example, the ∧-R rule becomes:

(and_r P1 P2) >- (Gamma --> Delta) :- memb (A and B) Delta,

P1 >- (Gamma --> [A| Delta]),

P2 >- (Gamma --> [B| Delta]).

A similar modification to all of the rules that operate on the succedent provides a complete

specification for this proof system. We will return to this example in Chapter 6 where we

implement an automatic theorem prover for classical first-order logic based on the LC proof

system.

40

Γ −→ A,∆ Γ −→ B,∆
∧-R

Γ −→ A ∧ B,∆
A,B,Γ −→ ∆

∧-L
A ∧ B,Γ −→ ∆

Γ −→ A,B,∆
∨-R

Γ −→ A ∨ B,∆
A,Γ −→ ∆ B,Γ −→ ∆

∨-L
A ∨ B,Γ −→ ∆

A,Γ −→ B,∆
⊃-R

Γ −→ A ⊃ B,∆
Γ −→ A,∆ B,Γ −→ ∆

⊃-L
A ⊃ B,Γ −→ ∆

A,Γ −→ ∆
¬-R

Γ −→ ¬A,∆
Γ −→ A,∆

¬-L
¬A,Γ −→ ∆

Γ −→ [y/x]A,∆
∀-R

Γ −→ ∀xA,∆
[t/x]A,Γ −→ ∆

∀-L
∀xA,Γ −→ ∆

Γ −→ [t/x]A,∆
∃-R

Γ −→ ∃xA,∆
[y/x]A,Γ −→ ∆

∃-L
∃xA,Γ −→ ∆

Γ −→ A,∆ A,Γ −→ ∆
cut

Γ −→ ∆

The ∀-R and ∃-L rules have the proviso that the variable y cannot appear free in the

lower sequent.

Figure 4.1: The LC Sequent Proof System for First-Order Classical Logic

The natural deduction system NC for classical logic differs from NI only in the re-

placement of the ⊥I rule with the ⊥C rule below. NC is the same as the C system in

[Pra65].

(¬A)
⊥

⊥CA

We simply replace the definite clause for ⊥I presented in Section 3.2 with the following

clause for ⊥C to obtain the specification of a natural deduction theorem prover for classical

logic.

(false_c P) # A :- pi P1\ ((P1 # (neg A)) => ((P P1) # false)).

4.2 Specifying the Untyped and Simply-Typed λ-Calculus

We now turn to an example that is somewhat different from previous ones. We begin

in this section by specifying untyped λ-terms and certain operations on them. We then

specify a proof system for type-checking and inference in the simply-typed λ-calculus.

We introduce the type tm for untyped terms, and two constants abs and app declared

below for encoding terms.

41

type abs (tm -> tm) -> tm.

type app tm -> tm -> tm.

Using these two constants all closed untyped terms can be encoded. For example, the term

λfλn.(f(fn)) is represented as

(abs F\ (abs N\ (app F (app F N)))).

This encoding is essentially the one used in [Mey81]: abs corresponds to the function Ψ,

for coercing functions into terms, and app corresponds to the function Φ for coercing terms

into functions.

By making the argument to abs functional, we use abstraction at the meta-level to

represent abstraction at the object-level, and thus the bound variables of each level are

identified, just as bound variables in first-order logic were identified with meta-variables

in previous specifications. As a result, this representation does not distinguish between

α-convertible terms at the object-level.

(λx.M)N → [N/x]M (β) λx.Mx → M (η)

M → N
ξ

λx.M → λx.N
M → P

CONG1
MN → PN

N → P
CONG2

MN → MP

M → N
RED

M =βη N
M =βη M (REFL)

M =βη N
SYM

N =βη M

M =βη P P =βη N
TRANS

M =βη N

The η axiom has the proviso that the variable x cannot appear free in M .

Figure 4.2: A Proof System for βη-Convertibility of λ-Terms

We now illustrate that it is straightforward to specify βη-convertibility for untyped

λ-terms. Figure 4.2 provides a formulation of βη-convertibility. → specifies the relation

“reduces in one step to,” while =βη is the reflexive, symmetric, transitive closure of →.

Our specification will reflect the formulation given by these proof rules. We first introduce

the following three predicates.

type redex tm -> tm -> o.

type red1 tm -> tm -> o.

type conv tm -> tm -> o.

The redex predicate is use to specify the first two axioms in Figure 4.2 which reduce

top-level β and η redexes. These axioms are specified by the following definite clauses.

42

redex (app (abs M) N) (M N).

redex (abs X\(app M X)) M.

Operationally, if a term unifies with the pattern in the left term in the first clause, then it

is a β-redex whose reduced form appears on the right. The substitution of N for the bound

variable in M is specified by application of λ-terms at the meta-level (M N). The second

clause illustrates an aspect of higher-order abstract syntax that we have not yet seen.

Consider the instances of the variable M in the first argument. If such an instance were to

contain a free occurrence of the variable X, the bound variable name in the above pattern

would have to be changed to avoid capture. Thus, any instance of M will not contain any

free occurrences of the bound variable in the above pattern, and so the proviso on this

rule will be satisfied. The redex of a term matching this pattern is simply M. Note that the

βη-long form of this clause is given above. It could also be written in its βη-normal form:

redex (abs (app M)) M.

The predicate red1 relates two λ-terms if one arises from the other by replacing exactly

one redex, and is defined by the following clauses.

red1 M N :- redex M N.

red1 (abs M) (abs N) :- pi X\ (red1 (M X) (N X)).

red1 (app M N) (app P N) :- red1 M P.

red1 (app M N) (app M P) :- red1 N P.

The first clause states that a term can be reduced in one step if it is a β or η redex.

The second clause specifies the ξ rule for reducing inside the scope of an abstraction.

Operationally, if a term matches with (abs M) on the left of the arrow, the clause must

then descend through the abstraction. The universal quantifier (pi) is used to generate a

new meta-level signature item, say c. β-reduction at the meta-level of (M c) performs the

substitution of the new item for the object level abstracted variable in M. In effect, the new

signature item plays the role of the name of the object level bound variable. If the subgoal

succeeds, then (N c) is some term reachable in one step from (M c). N is the abstraction

not containing c. Declaratively, the clause reads: (abs M) reduces in one step to (abs N)

if for arbitrary term X, M applied to X reduces in one step to N applied to X. The last two

clauses specify the CONG1 and CONG2 rules for reducing an application. An application

reduces in one step if either the term on the left or the term on the right reduces in one

step.

Finally the reflexive, symmetric, and transitive closure of red1 is specified as follows

using the conv predicate.

conv M N :- red1 M N.

conv M M.

conv M N :- conv N M.

conv M N :- conv M P, conv P N.

43

Note that this specification of convertibility doesn’t build proof terms. Such terms

could be included as an extra argument to the redex, red1 and conv predicates, and used

to record the sequence of steps used to convert one term to the other.

Next, we consider associating simple types with terms, and illustrate how to specify a

type assignment system which can be used to recognize the subclass of untyped terms that

make up the simply-typed λ-terms. We introduce the new meta-type ty, and the infix

arrow -->, used to construct functional types in the usual way, declared as follows.

type ’-->’ ty -> ty -> ty.

Note that both object-level types and terms will be represented by terms of the meta-

language. To avoid confusion we will refer to types and terms of the meta-language as

meta-types and meta-terms.

We introduce the infix predicate #t to represent the basic relation between a term and

its type,

type ’#t’ tm -> ty -> o.

with the intended meaning that the atomic proposition (M #t S) holds when the term M

has type S.

(x : τ1)
M : τ2

ABS
λx.M : τ1 → τ2

M : τ1 → τ2 N : τ1
APP

MN : τ2

The ABS rule has the proviso that the variable x cannot appear free in any assumption

on which M : τ2 depends.

Figure 4.3: Type Assignment for the Simply-Typed λ-Calculus

Figure 4.3 contains two natural deduction style rules for type-checking and inference

in the simply-typed λ-calculus. They are typical of type assignment systems such as that

found in [HS86]. These rules are specified by the following clauses.

(abs M) #t (R --> S) :- pi X\ ((X #t R) => ((M X) #t S)).

(app M N) #t S :- M #t (R --> S), N #t R.

The first formula encodes the fact that an abstraction (abs M) has functional type R -->

S if for arbitrary term X, X has type R implies that (M X) has type S. Operationally, this

clause would introduce a new signature item, say c of meta-type tm, then extend the #t

relation with the assumption that c has object-level type R, (c #t R), and then attempt

to prove that the β-normal form of (M c), the result of replacing the bound variable of M

with the name c, has type S. Note that both the proviso and the discharge of assumptions

is handled as in the clauses for natural deduction in Section 3.2. The GENERIC search

44

operation introduces a new constant c that cannot occur in the current program. Thus

it will not occur in the clauses that represent the current assumptions. The AUGMENT

search operation adds the new assumption (c #t R) to the program. The second formula

specifies the rule for application. An application (app M N) has type S if M has functional

type (R --> S) and N has type R.

To provide a set of base types, we introduce meta-constants of type ty. We can then

introduce object-level constants whose types are built up from these base types. To do

so, we introduce meta-constants of type tm and include a type assignment clause for each

constant. For example, if i is a type, and f is a function of type (i --> i) --> i, we

include the following declarations and atomic clause.

type i ty.

type f tm.

f #t (i --> i) --> i.

Note that we could also use a formulation of the simply-typed λ-calculus where type

information is explicitly attached to bound variables. To do this, we simply include the

type of the bound variable as an extra argument to an abstraction:

type abs ty -> (tm -> tm) -> tm.

and modify the clause for type-checking abstractions as follows.

(abs R M) #t (R --> S) :- pi X\ ((X #t R) => ((M X) #t S)).

Such a representation that includes explicit type information inside terms will be adopted

in the next chapter when we specify the LF type system.

4.3 Correctness of Specifications

In the examples in this and the previous chapter, terms, formulas, and proofs of an object

logic were specified as simply typed λ-terms, while inference rules were specified as hohh

formulas. In the specifications, there was always a clear correspondence between objects of

the object language and objects in the meta-language. We now illustrate how to formalize

this connection using the specification in the previous section of βη-convertibility in the

untyped λ-calculus as an example. We will define a bijective mapping from untyped

λ-terms to terms of the meta-language of type tm, and use this bijection to prove the

correctness of our representation for untyped terms. We then prove the correctness of the

program for βη-convertibility given by the clauses specifying the proof system of Figure 4.2

in the previous section. This specification is repeated in the convert module below.

This presentation serves as an illustration for establishing correctness results in general

for specifications of object logics in hohh. We will see that the encoding of λ-terms can

45

module convert.

kind tm type.

type abs (tm -> tm) -> tm.

type app tm -> tm -> tm.

type redex tm -> tm -> o.

type red1 tm -> tm -> o.

type conv tm -> tm -> o.

redex (app (abs M) N) (M N). % beta

redex (abs X\(app M X)) M. % eta

red1 M N :- redex M N.

red1 (abs M) (abs N) :- pi X\ (red1 (M X) (N X)). % xi

red1 (app M N) (app P N) :- red1 M P. % cong1

red1 (app M N) (app M P) :- red1 N P. % cong2

conv M N :- red1 M P. % red

conv M M. % refl

conv M N :- conv N M. % sym

conv M N :- conv M P, conv P N. % trans

Module convert: βη-Convertibility in the Simply-Typed λ-Calculus

be adapted quite directly to encode formulas in any of the example logics we have pre-

sented. One reason for choosing this proof system as our example in this section is that

in Chapter 5, we extend the encoding of λ-terms to an encoding on LF terms, and specify

β-conversion for LF. The results presented here easily extend to this richer calculus.

4.3.1 Mappings Between Object Terms and Meta-Terms

We begin by formalizing the connection between terms of the object language and meta-

terms of type tm. In the proofs in this section there are several notions of equality at both

the object and meta-level. We use the = symbol to denote syntactic equality between

terms of both the object and meta-language. In either language, when we want to denote

that two terms M and N are α-convertible, we write explicitly M =α N . We continue

to use =βη for βη-convertibility in both languages, though we consider only meta-terms

that are in βη-long normal form in this section. Finally, we use the symbol ≡ to denote

definitional equality. It is important to note that in contrast to previous sections, in this

section we use first-order syntax for meta-terms since one goal of the proofs below is to

show the correctness of the “higher-order” notion of syntax.

We assume the object language consists of a fixed set of constants and a countably infi-

nite set of variables, and that terms are built up from these constants and variables in the

46

usual way. We define an encoding between untyped terms and terms in the meta-language

of type tm in βη-long normal form. We will see that the domain of the encoding is actually

the α-equivalence classes of untyped terms, while the codomain is the α-equivalence classes

of meta-terms in βη-long normal form of type tm. To encode constants, we assume the

existence of a mapping Φ, called a constant mapping, from the constants of the object

language to some fixed set of constants of the meta-language of type tm. We assume that

Φ is bijective, so that each constant is mapped to a distinct meta-constant. In all of the

results that follow, we assume a fixed Φ.

We must also consider the encoding of variables. For this task, we need several defi-

nitions. We define a variable encoding ρ to be a bijective function whose domain is a set

of untyped variables, and whose codomain is a set of variables of the meta-language of

type tm. As we do for substitutions, we represent a variable encoding ρ as a set of pairs of

the form 〈x, X〉. Here X is the encoding of x. Like Φ, ρ is assumed to be bijective so that

distinct variables will have distinct encodings. Updating of variable encodings is defined

and denoted similarly to the updating of substitutions. In the definitions that follow, in

updating a variable encoding, e.g., 〈x, X〉 + ρ, it will always be the case that X is a new

variable of the meta-language not already in cod(ρ), so that the updating operation does

not alter the bijectivity of ρ. We say that a variable encoding ρ is well-defined on term

M if all of the free variables in M are in dom(ρ). We say that a variable encoding is

well-defined on a set of terms if it is well-defined on every member of the set. Since for

any two terms M and N such that M =α N , M and N have the same free variables, it

is easy to see that for any variable encoding ρ, ρ is well-defined of M iff it is well-defined

on N . 〈〈M〉〉ρ will denote the encoding of M with respect to a variable encoding ρ. When

we write 〈〈M〉〉ρ, it will often be assumed without explicitly stating that ρ is well-defined

on M . The full encoding is defined inductively in Figure 4.4. It is easy to see that for

〈〈c〉〉ρ := Φ(c) for constant c ∈ dom(Φ)

〈〈x〉〉ρ := ρ(x) for variable x ∈ dom(ρ)

〈〈MN〉〉ρ := (app 〈〈M〉〉ρ 〈〈N〉〉ρ)

〈〈λx.M〉〉ρ := (abs X\ 〈〈M〉〉〈x,X〉+ρ) X /∈ cod(ρ)

Figure 4.4: Encoding of Untyped Terms

any untyped term M , and variable encoding ρ well-defined on M , 〈〈M〉〉ρ is a meta-term in

βη-long form.

Given a set of variables V, we denote the set of untyped terms whose free variables are

in V as UT (V). At the meta-level, given a set of variables V of type tm, we denote the set

of terms of type tm in βη-long normal form built up from the the constants app and abs,

the constants in cod(Φ), and variables of type tm whose free variables are in V as T (V).

Note that for any V, all of the variables and constants other than app and abs appearing

47

in a term in T (V) have type tm.

Lemma 4.1 Let M be a term, and ρ a variable encoding that is well-defined on M . Then
〈〈M〉〉ρ is a term in T (cod(ρ)), i.e., a term of type tm in βη-long form whose free variables
are in cod(ρ).

Proof: The proof is by induction on the structure of M .

Base: If M is a constant c, c must be in dom(Φ) and 〈〈c〉〉ρ = Φ(c), and by definition

of a constant mapping Φ(c) is a constant of type tm.

If M is a variable x, x must be in dom(ρ). 〈〈x〉〉ρ = ρ(x), and by definition of variable

encodings, ρ(x) is a variable of type tm.

Case: If M has the form NP , then 〈〈NP 〉〉ρ ≡ (app 〈〈N〉〉ρ 〈〈P 〉〉ρ). By the induction

hypothesis, 〈〈N〉〉ρ and 〈〈P 〉〉ρ are terms of type tm in βη-long form whose free variables are

in cod(ρ). Thus, so is (app 〈〈N〉〉ρ 〈〈P 〉〉ρ).

Case: If M is a term of the form λx.N , then 〈〈λx.N〉〉ρ ≡ (abs X\ 〈〈N〉〉〈x,X〉+ρ) where

X is a variable of type tm such that X /∈ cod(ρ). Since the free variables of λx.N are in

dom(ρ), the free variables of N are all in dom(〈x, X〉 + ρ), so by the induction hypothesis,

〈〈N〉〉〈x,X〉+ρ is a term of type tm in βη-long form whose free variables are in cod(〈x, X〉+ ρ).

Thus, (abs X\ 〈〈N〉〉〈x,X〉+ρ) is a term of type tm in βη-long form whose free variables are

in cod(ρ).

The following lemma will be used often in the arguments that follow. It is proved by

a simple induction on the structure of terms.

Lemma 4.2 Let M be an untyped term, and ρ a variable encoding that is well-defined
on M .

1. If y ∈ dom(ρ), then ρ(y) is free in 〈〈M〉〉ρ iff y is free in M .

2. If Y is a variable of type tm such that Y /∈ cod(ρ), then Y is not free in 〈〈M〉〉ρ.

We now prove that the encoding on terms is well-defined, i.e., the encodings of two

α-convertible untyped terms are α-convertible meta-terms. This proof will require substi-

tutions at the object and meta-level. To distinguish between the two, we call substitutions

of the object language object variable substitutions, and substitutions of the meta-language

meta-variable substitutions. For the special case when the domain of a meta-variable sub-

sitution contains only variables of some type a, we call the substitution an a-substitution.

In this section, meta-variable substitutions will always be tm-substitutions.

Given an object variable substitution σ, if ρ1 is a variable encoding well-defined on

dom(σ) and ρ2 is a variable encoding well-defined on cod(σ), then σρ1,ρ2 denotes the

following tm-substitution.

σρ1,ρ2 = {〈ρ1(x), 〈〈P 〉〉ρ2
〉|〈x, P 〉 ∈ σ}

The well-definedness of the encoding on terms is a corollary of the following lemma.

48

Lemma 4.3 Let σ be an object variable substitution, and let M and N be terms such
that σ(M) =α N . Let ρ1 be a variable encoding well-defined on M and dom(σ), and ρ2

a variable encoding well-defined on N and cod(σ) such that ρ1 and ρ2 agree on common
domain elements that are free in both σ(M) and N . Then

σρ1,ρ2(〈〈M〉〉ρ1
) =α 〈〈N〉〉ρ2

.

Proof: The proof is by induction on the structure of M .

Base: If M is a constant, then N is the same constant. σρ1,ρ2(〈〈M〉〉ρ1
) ≡ σρ1,ρ2(Φ(M)) =

Φ(M) and 〈〈N〉〉ρ2
≡ Φ(N). Since M = N , clearly Φ(M) = Φ(N).

If M is a variable, then either 〈M,N〉 ∈ σ or M /∈ dom(σ) and N is M . If 〈M,N〉 ∈ σ

then 〈ρ1(M), 〈〈N〉〉ρ2
〉 ∈ σρ1,ρ2 and thus

σρ1,ρ2(〈〈M〉〉ρ1
) ≡ σρ1,ρ2(ρ1(M)) =α 〈〈N〉〉ρ2

.

If M /∈ dom(σ) and N is M , then ρ1 and ρ2 must map M to the same meta-variable. Thus

ρ1(M) = ρ2(N) and ρ1(M) /∈ dom(σρ1,ρ2). Thus,

σρ1,ρ2(〈〈M〉〉ρ1
) ≡ σρ1,ρ2(ρ1(M)) = ρ1(M) = ρ2(N) ≡ 〈〈N〉〉ρ2

.

Thus in either case σρ1,ρ2(〈〈M〉〉ρ1
) =α 〈〈N〉〉ρ2

.

Case: If M is P1P2, then N has the form Q1Q2 and σ(P1P2) =α Q1Q2. We must

show that σρ1,ρ2(〈〈P1P2〉〉ρ1
) =α 〈〈Q1Q2〉〉ρ2

. By properties of substitution, and α-conversion,

σ(P1P2) =α σ(P1)σ(P2), and thus σ(P1) =α Q1 and σ(P2) =α Q2. Then by the induction

hypothesis, σρ1,ρ2(〈〈P1〉〉ρ1
) =α 〈〈Q1〉〉ρ2

and σρ1,ρ2(〈〈P2〉〉ρ1
) =α 〈〈Q2〉〉ρ2

. Thus

σρ1,ρ2(〈〈P1P2〉〉ρ1
)

≡ σρ1,ρ2(app 〈〈P1〉〉ρ1
〈〈P2〉〉ρ1

) by definition of the encoding

=α (app σρ1,ρ2(〈〈P1〉〉ρ1
) σρ1,ρ2(〈〈P2〉〉ρ1

) by substitution

=α (app 〈〈Q1〉〉ρ2
〈〈Q2〉〉ρ2

) by the induction hypothesis

≡ 〈〈Q1Q2〉〉ρ2
by definition of the encoding.

Case: If M has the form λx.P , then N has the form λy.Q and σ(λx.P) =α λy.Q. We

must show that σρ1,ρ2(〈〈λx.P 〉〉ρ1
) =α 〈〈λy.Q〉〉ρ2

. Let X and Y be variables of type tm such

that X /∈ cod(ρ1) and Y /∈ cod(ρ2). Then by definition of the encoding,

σρ1,ρ2(〈〈λx.P 〉〉ρ1
) ≡ σρ1,ρ2(abs X\〈〈P 〉〉〈x,X〉+ρ1

) and

〈〈λy.Q〉〉ρ2
≡ (abs Y\〈〈Q〉〉〈y,Y〉+ρ2

).

Since σ(λx.P) =α λy.Q, by Lemma 2.1 (1) it follows that (〈x, y〉 + σ)(P) =α Q. Then by

the induction hypothesis,

(〈x, y〉 + σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
(〈〈P 〉〉〈x,X〉+ρ1

) =α 〈〈Q〉〉〈y,Y〉+ρ2
.

49

(〈x, y〉+σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
differs from σρ1,ρ2 in that (a) the pair 〈X, Y〉 appears in the former

and not in the latter, (b) if x ∈ dom(σ), the pair 〈ρ1(x), 〈〈(σ(x))〉〉ρ2
〉 appears in the latter

but not the former, and (c) if y ∈ dom(ρ2), every occurrence of ρ2(y) in the terms in

cod(σρ1,ρ2) is replaced by Y in cod((〈x, y〉 + σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
). Let σ1 be the following

subset of σρ1,ρ2,

σ1 = {〈ρ1(z), 〈〈T 〉〉ρ2
〉|〈z, T 〉 ∈ σ, y is free in T , z 6= x}

and σ2 be the following subset of (〈x, y〉 + σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
,

σ2 = {〈ρ1(z), 〈〈T 〉〉〈y,Y〉+ρ2
〉|〈z, T 〉 ∈ σ, y is free in T , z 6= x}.

Then (〈x, y〉 + σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
is the substitution ((〈X, Y〉 + σρ1,ρ2) − σ1) ∪ σ2. Thus

(〈x, y〉 + σ)〈x,X〉+ρ1,〈y,Y〉+ρ2
(〈〈P 〉〉〈x,X〉+ρ1

) and (((〈X, Y〉 + σρ1,ρ2) − σ1) ∪ σ2)(〈〈P 〉〉〈x,X〉+ρ1
)

are the same term. Since y is not free in λy.Q and σ(λx.P) =α λy.Q, y is also not free in

σ(λx.P). For 〈z, T 〉 ∈ σ such that y is free in T , z is not free in λx.P . Assume that z is

different from x. Then z is not free in P , and thus, by Lemma 4.2 (1) (〈x, X〉 + ρ1)(z) is

not free in 〈〈P 〉〉〈x,X〉+ρ1
. Since z is different from x, ρ1(z) is not free in 〈〈P 〉〉〈x,X〉+ρ1

. Thus,

the variables in dom(σ1) and dom(σ2) are not free in 〈〈P 〉〉〈x,X〉+ρ1
. Then,

(((〈X, Y〉 + σρ1,ρ2) − σ1) ∪ σ2)(〈〈P 〉〉〈x,X〉+ρ1
) =α (〈X, Y〉 + σρ1,ρ2)(〈〈P 〉〉〈x,X〉+ρ1

).

Thus we can conclude that

(〈X, Y〉 + σρ1,ρ2)(〈〈P 〉〉〈x,X〉+ρ1
) =α 〈〈Q〉〉〈y,Y〉+ρ2

.

In order to apply Lemma 2.1 (2), we must show that if X is different from Y, then Y

is not free in σρ1,ρ2(X\〈〈P 〉〉〈x,X〉+ρ1
). Since Y /∈ dom(ρ2), by Lemma 4.2 (2), Y does not

appear free in the terms in cod(σρ1,ρ2). Thus for any term T, there will be no new free

occurrences of Y in σρ1,ρ2(T) that weren’t already in T. There are two subcases depending

on whether or not Y ∈ cod(〈x, X〉 + ρ1). If Y /∈ cod(〈x, X〉 + ρ1), by Lemma 4.2 (2), Y is

not free in 〈〈P 〉〉〈x,X〉+ρ1
. Thus Y is not free in σρ1,ρ2(X\〈〈P 〉〉〈x,X〉+ρ1

). On the other hand, if

Y ∈ cod(〈x, X〉+ ρ1), then there is a z different from x such that 〈z, Y〉 ∈ ρ1. There are two

subcases depending on whether or not z ∈ dom(σ). If z ∈ dom(σ), then Y ∈ dom(σρ1,ρ2),

and thus for any term T, Y does not appear free in σρ1,ρ2(T). If z /∈ dom(σ), we can show

that z is not free in P . If it were, then since z is different from x, z is also free in λx.P .

Since z /∈ dom(σ), z is free in σ(λx.P). Since σ(λx.P) =α λy.Q, z is free in λy.Q. Since ρ2

is well-defined on λy.Q, z ∈ dom(ρ2). Since ρ1 and ρ2 agree on common domain elements

that are free in σ(λx.P) and λy.Q, ρ2(z) = Y, a contradiction since Y /∈ cod(ρ2). Thus z

is not free in P . Thus, by Lemma 4.2 (2), Y is not free in 〈〈P 〉〉〈x,X〉+ρ1
. Thus Y is not free

50

in σρ1,ρ2(X\〈〈P 〉〉〈x,X〉+ρ1
). We have shown that in any case, when X is different from Y, Y is

not free in σρ1,ρ2(X\〈〈P 〉〉〈x,X〉+ρ1
). So, by Lemma 2.1 (2),

σρ1,ρ2(X\〈〈P 〉〉〈x,X〉+ρ1
) =α Y\〈〈Q〉〉〈y,Y〉+ρ2

.

Thus

σρ1,ρ2(abs X\〈〈P 〉〉〈x,X〉+ρ1
) =α (abs Y\〈〈Q〉〉〈y,Y〉+ρ2

)

and hence by the definition of the encoding,

σρ1,ρ2(〈〈λx.P 〉〉ρ1
) =α 〈〈λy.Q〉〉ρ2

.

Corollary 4.4 (Well-Definedness of Encoding for Untyped Terms)
Let M and N be two terms such that M =α N . Let ρ1 and ρ2 be two variable encodings

that are well-defined on M and N , and that agree on the free variables of M and N . Then
〈〈M〉〉ρ1

=α 〈〈N〉〉ρ2
.

Corollary 4.5 (Substitution Commutes with Encoding)
Let M and P be terms, and x a variable. Let ρ1 be a variable encoding well-defined

on M and x, and ρ2 a variable encoding well-defined on [P/x]M and P such that ρ1 and
ρ2 agree on common domain elements free in [P/x]M . Then

[〈〈P 〉〉ρ2
/〈〈x〉〉ρ1

]〈〈M〉〉ρ1
=α 〈〈[P/x]M〉〉ρ2

.

Proof: The proof follows from Lemma 4.3 with σ = {〈x, P 〉} and N = [P/x]M .

We also define the reverse operation, which we call a decoding, from terms in βη-long

form of type tm whose free variables have type tm to untyped terms. As was the case for the

encoding, the decoding is up to the =α relation on both the object and meta-language. To

decode constants, we will use the inverse of the constant mapping Φ. To decode variables,

we will use a variable decoding where the domain is a set of meta-variables of type tm and

the codomain is a set of variables of the object language. We will use a bar, e.g., ρ̄, to

denote variable decodings. ρ̄ is well-defined on M if all of the free variables in M are in

dom(ρ̄). ρ̄ is well-defined on a set of terms if it is well-defined on every member of the

set. The decoding of M with respect to variable decoding ρ̄ is denoted by ||M||ρ̄. The full

decoding is defined in Figure 4.5.

Given a tm-substitution σ, if ρ̄1 is a variable decoding well-defined on dom(σ) and

ρ̄2 is a variable decoding well-defined on cod(σ), then σρ̄1,ρ̄2 denotes the following object

variable substitution.

σρ̄1,ρ̄2 = {〈ρ̄1(X), ||P||ρ̄2
〉|〈X, P〉 ∈ σ}

We now state the analogues of Lemmas 4.1, 4.2, 4.3 and Corollaries 4.4 and 4.5 for the

decoding. The proofs are analogous to the corresponding proofs for the encoding.

51

||c||ρ̄ := Φ−1(c) for c ∈ cod(Φ)

||X||ρ̄ := ρ̄(X) for X ∈ dom(ρ̄)

||app M N||ρ̄ := ||M||ρ̄ ||N||ρ̄
||abs P||ρ̄ := (λx.||M||〈X,x〉+ρ̄)

where X is the bound variable in P, M is the body, and x /∈ cod(ρ̄)

Figure 4.5: Decoding of Untyped Terms

Lemma 4.6 Let M be a term of type tm in βη-long form, and ρ̄ a variable decoding that
is well-defined on M. Then ||M||ρ̄ is a term in UT (cod(ρ̄)), i.e., an untyped term whose free
variables are in cod(ρ̄).

Lemma 4.7 Let M be a term of type tm in βη-long form, and let ρ̄ be a variable decoding
that is well-defined on M.

1. If Y ∈ dom(ρ̄), then ρ̄(Y) is free in ||M||ρ̄ iff Y is free in M.

2. If y is a variable such that y /∈ cod(ρ̄), then y is not free in ||M||ρ.

Lemma 4.8 Let σ be a tm-substititution, and let M and N be terms of type tm in βη-long
form such that σ(M) =α N. Let ρ̄1 be a variable decoding well-defined on M and dom(σ) and
ρ̄2 a variable decoding well-defined on N and cd(σ) such that ρ̄1 and ρ̄2 agree on common
domain elements that are free in both σ(M) and N. Then

σρ̄1,ρ̄2(||M||ρ̄1
) =α ||N||ρ̄2

.

Corollary 4.9 (Well-Definedness of Decoding for Untyped Terms)
Let M and N be terms of type tm in βη-long form such that M =α N. Let ρ̄1 and ρ̄2 be two

variable decodings that are well-defined on M and N, and that agree on the free variables
of M and N. Then ||M||ρ̄1

=α ||N||ρ̄2
.

Corollary 4.10 (Substitution Commutes with Decoding)
Let M and P be terms of type tm in βη-long form and X a variable of type tm. Let ρ̄1

be a variable decoding well-defined on M and X, and ρ̄2 a variable decoding well-defined on
[P/X]M and P such that ρ̄1 and ρ̄2 agree on common domain elements free in [P/X]M. Then

[||P||ρ̄2
/||X||ρ̄1

]||M||ρ̄1
=α ||[P/X]M||ρ̄2

.

52

Note that given a variable encoding ρ, UT (dom(ρ)) is exactly the set of untyped terms

over which ρ is well-defined. Similarly, given a variable decoding ρ̄, T (dom(ρ̄)) is exactly

the set of meta-terms over which ρ̄ is well-defined.

Theorem 4.11 (Correctness of Encoding and Decoding of Untyped Terms)
Let ρ be a variable encoding. The encoding 〈〈〉〉ρ is a bijection from the α-equivalence

classes of UT (dom(ρ)) to the α-equivalence classes of T (cod(ρ)), i.e., a bijective mapping
from sets of untyped terms with free variables in dom(ρ), to sets of simply-typed terms of
type tm in βη-long form with free variables in cod(ρ). Furthermore, the decoding ||||ρ−1 is
the inverse of 〈〈〉〉ρ.

Proof: We proceed by induction on the structure of terms. By Lemma 4.1, we know that

〈〈〉〉ρ maps terms in UT (dom(ρ)) to meta-terms in T (cod(ρ)). By Lemma 4.6, we know

that ||||ρ−1 maps meta-terms in T (cod(ρ)) to terms in UT (dom(ρ)). We show that for an

untyped term M whose free variables are in dom(ρ), ||〈〈M〉〉ρ||ρ−1 =α M . The proof that for

a meta-term M of type tm in βη-long form whose free variables are in cod(ρ), 〈〈||M||ρ−1〉〉ρ =α M

is analogous.

Base: If M is a constant, then ||〈〈M〉〉ρ||ρ−1 ≡ ||Φ(M)||ρ−1 ≡ Φ−1(Φ(M)) = M.

If M is a variable, then ||〈〈M〉〉ρ||ρ−1 ≡ ||ρ(M)||ρ−1 ≡ ρ−1(ρ(M)) = M.

Case: If M has the form PQ, then

||〈〈PQ〉〉ρ||ρ−1 ≡ ||(app 〈〈P 〉〉ρ 〈〈Q〉〉ρ)||ρ−1 ≡ ||〈〈P 〉〉ρ||ρ−1 ||〈〈Q〉〉ρ||ρ−1 .

By the induction hypothesis, ||〈〈P 〉〉ρ||ρ−1 =α P , and ||〈〈Q〉〉ρ||ρ−1 =α Q. So the latter expres-

sion above is α-equivalent to PQ.

Case: If M has the form λx.N , assume x /∈ dom(ρ), otherwise rename the bound

variable in λx.N . Such renaming is allowed by Corollary 4.4. Let X be a variable of type

tm such that X /∈ cod(ρ).

||〈〈λx.N〉〉ρ||ρ−1 ≡ ||(abs X\〈〈N〉〉〈x,X〉+ρ)||ρ−1 ≡ λx.||〈〈N〉〉〈x,X〉+ρ||〈X,x〉+ρ−1 .

By the induction hypothesis, ||〈〈N〉〉〈x,X〉+ρ||〈X,x〉+ρ−1 =α N. Thus

λx.||〈〈N〉〉〈x,X〉+ρ||〈X,x〉+ρ−1 = λx.N.

This result establishes the correctness of identifying abstraction at the object-level

with abstraction at the meta-level. The same result can easily be established for our

representation of formulas which identifies variables bound by quantification in formulas

with variables bound by λ-abstraction at the meta-level. For example, the two clauses

below illustrate the encoding of universally and existentially quantified formulas in first-

order logic.

53

〈〈∀xA〉〉ρ := (forall X\ 〈〈A〉〉〈x,X〉+ρ) X /∈ cod(ρ)

〈〈∃xA〉〉ρ := (exists X\ 〈〈A〉〉〈x,X〉+ρ) X /∈ cod(ρ)

In such an encoding, the codomain of variable encodings would be meta-variables of type

i. Of course, a decoding can be defined similarly. Such an encoding for first-order terms

and formulas is essentially the same as the encoding of first-order terms and formulas in

LF given in [HHP89]. There, the encoding of terms and formulas is defined within the

sublanguage of LF that corresponds to the simply-typed λ-calculus. As a result, the above

proof is similar to the proofs for Adequacy of Syntax, I and II where βη-long forms in

this presentation correspond to LF canonical forms. (See Chapter 5 for a definition of

canonical.)

4.3.2 Correctness of the Specification of βη-Convertibility

We are now ready to prove the correctness of the conv program in the convert module.

Here, we establish a correspondence between provable atomic goals of the form (conv M

N) and βη-convertible λ-terms. We divide the result into two parts, showing the corre-

spondence in each direction. In this subsection, since Theorem 4.11 established the fact

that the domain and codomain of the encoding and decoding are α-equivalence classes of

terms, we will no longer distinguish between two α-convertible terms. Now, when we write

M = N for object level terms M and N , we will assume that M is α-convertible to N ,

and similarly for terms at the meta-level.

Let ρ be a variable encoding, and let Ξ be a proof of M =βη N . We say that ρ is

well-defined on Ξ if for every node of the form P =βη Q in Ξ, ρ is well-defined on P and

Q. In the results below, we take Σ0 to be the set of declarations of constants and their

types that appears in the convert module. Let V be a set of variables of type tm. The

correspondence between the subset of H(Σ0 ∪ V) of terms of type tm and the set T (V)

can be described as follows: H(Σ0 ∪ V) contains βη-equivalence classes of terms of type

tm while T (V) contains the βη-long representatives from each class. This correspondence

is important in the proofs below.

Theorem 4.12 (Correctness IA)
Let Ξ be a proof of M =βη N and let ρ be a variable encoding well-defined on Ξ. Let

Σ be the signature Σ0 ∪ cod(ρ). Then the following judgment holds.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

Proof: The proof is by induction on the height of a proof of M =βη N in the proof system

of Figure 4.2. We prove simultaneously that if Ξ is a proof of M → N and ρ a variable

encoding well-defined on M and N , then the following judgment holds.

Σ; convert ⊢I red1 〈〈M〉〉ρ 〈〈N〉〉ρ

54

Case: (REFL) M =βη N is provable in one step by the REFL axiom. Then N is M , and

〈〈M〉〉ρ = 〈〈N〉〉ρ. Thus (conv 〈〈M〉〉ρ 〈〈N〉〉ρ) is an instance of the atomic clause specifying

the REFL axiom, so clearly the following judgment holds.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

Case: (TRANS) The last step in a proof of M =βη N is an application of the TRANS

rule whose premises are M =βη P and P =βη N . We must show that:

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ.

Since ρ is well-defined on Ξ, ρ is well-defined on P . Thus 〈〈P 〉〉ρ is in T (cod(ρ)), and hence

is also in H(Σ). The above judgment holds if by BACKCHAIN on the clause specifying the

TRANS rule, the following judgment holds,

Σ; convert ⊢I (conv 〈〈M〉〉ρ 〈〈P 〉〉ρ), (conv 〈〈P 〉〉ρ 〈〈N〉〉ρ)

and by the AND search operation, the following judgments hold.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈P 〉〉ρ Σ; convert ⊢I conv 〈〈P 〉〉ρ 〈〈N〉〉ρ

These judgments hold by the conv induction hypothesis.

Case: (SYM) The last step in a proof of M =βη N is an application of the SYM rule

whose premise is N =βη M . We must show that:

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ.

This judgment holds if by BACKCHAIN on the clause specifying the SYM rule, the following

judgment holds.

Σ; convert ⊢I conv 〈〈N〉〉ρ 〈〈M〉〉ρ

This judgment holds by the conv induction hypothesis.

Case: (RED) The last step in a proof of M =βη N is an application of the RED rule

whose premise is M → N . We must show that

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

This judgment holds if by BACKCHAIN on the clause specifying the RED rule, the following

judgment holds.

Σ; convert ⊢I red1 〈〈M〉〉ρ 〈〈N〉〉ρ

This judgment holds by the red1 induction hypothesis.

Case: (β) M → N is provable in one step by the β axiom. Then M has the form

(λx.P)Q, N is [Q/x]P , and (λx.P)Q → [Q/x]P . We must show that:

Σ; convert ⊢I red1 〈〈(λx.P)Q〉〉ρ 〈〈[Q/x]P 〉〉ρ.

55

This judgment holds if by BACKCHAIN on the first red1 clause, the following judgment

holds.

Σ; convert ⊢I redex 〈〈(λx.P)Q〉〉ρ 〈〈[Q/x]P 〉〉ρ

Let X be a variable such that X /∈ cod(ρ). By the definition of the encoding

〈〈(λx.P)Q〉〉ρ ≡ (app (abs X\ 〈〈P 〉〉〈x,X〉+ρ) 〈〈Q〉〉ρ).

The variable encodings ρ and 〈x, X〉 + ρ agree on common domain elements that are free

in [Q/x]P . Thus, by Corollary 4.5,

〈〈[Q/x]P 〉〉ρ = [〈〈Q〉〉ρ/X]〈〈P 〉〉〈x,X〉+ρ.

By β-conversion at the meta-level,

[〈〈Q〉〉ρ/X]〈〈P 〉〉〈x,X〉+ρ =βη (X\〈〈P 〉〉〈x,X〉+ρ 〈〈Q〉〉ρ).

Thus, the above judgment is equivalent to:

Σ; convert ⊢I redex (app (abs X\ 〈〈P 〉〉〈x,X〉+ρ) 〈〈Q〉〉ρ) (X\〈〈P 〉〉〈x,X〉+ρ 〈〈Q〉〉ρ).

This judgment holds since it is an instance of the atomic clause specifying the β axiom.

Case: (η) M → N is provable in one step by the η axiom. Then M has the form

λx.Px, N is P , x is a variable that does not appear free in P , and λx.Px → P . We must

show that:

Σ; convert ⊢I red1 〈〈λx.Px〉〉ρ 〈〈P 〉〉ρ.

This judgment holds if by BACKCHAIN on the first red1 clause, the following judgment

holds.

Σ; convert ⊢I redex 〈〈λx.Px〉〉ρ 〈〈P 〉〉ρ

Let X be a variable such that X /∈ cod(ρ). By the definition of the encoding

〈〈λx.Px〉〉ρ ≡ (abs X\(app 〈〈P 〉〉〈x,X〉+ρ X)).

Since x does not appear free in P , it follows by Corollary 4.4 that 〈〈P 〉〉〈x,X〉+ρ = 〈〈P 〉〉ρ.

Thus the above judgment is equivalent to the following judgment.

Σ; convert ⊢I redex (abs X\(app 〈〈P 〉〉ρ X)) 〈〈P 〉〉ρ

Since X /∈ cod(ρ), by Lemma 4.2 (2), X does not appear free in 〈〈P 〉〉ρ. Thus the above

subgoal is an instance of the atomic clause specifying the η axiom.

Case: (CONG1) The last step in a proof of M → N is an application of the CONG1 rule.

Then M has the form PT , N has the form QT , the conclusion of the rule is PT → QT

and the premise is P → Q. We must show that:

Σ; convert ⊢I red1 〈〈PT 〉〉ρ 〈〈QT 〉〉ρ.

56

By the definition of the encoding,

〈〈PT 〉〉ρ ≡ (app 〈〈P 〉〉ρ 〈〈T 〉〉ρ) and 〈〈QT 〉〉ρ ≡ (app 〈〈Q〉〉ρ 〈〈T 〉〉ρ).

Thus, the above judgment is equivalent to:

Σ; convert ⊢I red1 (app 〈〈P 〉〉ρ 〈〈T 〉〉ρ) (app 〈〈Q〉〉ρ 〈〈T 〉〉ρ).

This judgment holds if by BACKCHAIN on the clause specifying the CONG1 rule, the fol-

lowing judgment holds.

Σ; convert ⊢I red1 〈〈P 〉〉ρ 〈〈Q〉〉ρ

This judgment holds by the red1 induction hypothesis.

Case: (CONG2) This case is similar to the above case for CONG1.

Case: (ξ) The last step in a proof of M → N is an application of the ξ rule. Then M

has the form λx.P , N has the form λx.Q, the conclusion of the rule is λx.P → λx.Q and

the premise is P → Q. We must show that:

Σ; convert ⊢I red1 〈〈λx.P 〉〉ρ 〈〈λx.Q〉〉ρ.

Let X be a variable such that X /∈ cod(ρ). 〈x, X〉 + ρ is well-defined on P and Q. By the

definition of the encoding,

〈〈λx.P 〉〉ρ ≡ (abs X\ 〈〈P 〉〉〈x,X〉+ρ) and 〈〈λx.Q〉〉ρ ≡ (abs X\ 〈〈Q〉〉〈x,X〉+ρ).

Thus, the above judgment is equivalent to:

Σ; convert ⊢I red1 (abs X\ 〈〈P 〉〉〈x,X〉+ρ) (abs X\ 〈〈Q〉〉〈x,X〉+ρ).

This judgment holds if by BACKCHAIN on the clause specifying the ξ rule, the following

judgment holds.

Σ; convert ⊢I pi X\(red1 (X\ 〈〈P 〉〉〈x,X〉+ρ X) (X\ 〈〈Q〉〉〈x,X〉+ρX))

X does not appear in Σ, so this judgment holds if by AUGMENT the following judgment

holds.

Σ ∪ {X : tm}; convert ⊢I red1 (X\ 〈〈P 〉〉〈x,X〉+ρ X) (X\ 〈〈Q〉〉〈x,X〉+ρX)

By β-conversion at the meta-level,

(X\ 〈〈P 〉〉〈x,X〉+ρ X) =βη 〈〈P 〉〉〈x,X〉+ρ and (X\ 〈〈Q〉〉〈x,X〉+ρ X) =βη 〈〈Q〉〉〈x,X〉+ρ.

Thus the above judgment is equivalent to the following judgment.

Σ ∪ {X : tm}; convert ⊢I red1 〈〈P 〉〉〈x,X〉+ρ 〈〈Q〉〉〈x,X〉+ρ

57

This judgment holds by the red1 induction hypothesis.

Note that in the above result, we had to start with a particular proof and then use a

variable encoding ρ that was well-defined on the proof. This was necessary to insure that

in each application of the (TRANS) rule, the term P that appears in the premises of the

rule but not the conclusion is in UT (dom(ρ)). Then it can be encoded with respect to ρ

and its encoding will be in T (cod(ρ)) and hence in H(Σ). We can remove this dependency

on proofs by making use of the Church-Rosser property for untyped terms. This property

states that for any two terms such that M =βη N , there is a term P such that M →∗ P

and N →∗ P where →∗ is the reflexive transitive closure of →. Based on this property, we

can prove the following lemma and stronger correctness result.

Lemma 4.13 Let ρ be a variable encoding and M and N terms in UT (dom(ρ)). Let Σ
be the signature Σ0 ∪ cod(ρ).

1. If M →∗ N , then Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ holds.

2. If M → N , then Σ; convert ⊢I red1 〈〈M〉〉ρ 〈〈N〉〉ρ holds.

Proof: If M →∗ N , we can construct a proof of M =βη N such that there are no

applications of (SYM) and for every application of the (TRANS) rule with conclusion M ′ =βη

N ′ and premises M ′ =βη P ′ and P ′ =βη N ′, it is the case that M ′ →∗ P ′ and P ′ →∗ N ′.

We prove (1) and (2) by simultaneous induction on a proof of M =βη N of this form, and

on any proof of M → N . All cases are similar to Theorem 4.12 except the case when the

last step in the proof is an application of the (TRANS) rule. For this case, we must show

that the following judgment holds.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

In this case, if M =βη P and P =βη N are the premises of this application of (TRANS),

then we know that M →∗ P and P →∗ N . For any terms Q1 and Q2, if Q1 → Q2 (or

Q1 →∗ Q2), then the free variables in Q2 are a subset of the free variables in Q1. Thus the

free variables in P are a subset of the free variables in M , so ρ is well-defined on P , and

〈〈P 〉〉ρ is in T (cod(ρ)) and hence in H(Σ). Thus the above judgment holds if by BACKCHAIN

on the clause specifying the (TRANS) rule followed by AND search, the following judgments

hold.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈P 〉〉ρ Σ; convert ⊢I conv 〈〈P 〉〉ρ 〈〈N〉〉ρ

These judgments hold by the induction hypothesis for (1).

58

Corollary 4.14 (Correctness IB)
Let ρ be a variable encoding and M and N terms in UT (dom(ρ)). Let Σ be the

signature Σ0 ∪ cod(ρ). If M =βη N , then the following judgment holds.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

Proof: By the Church-Rosser property, there is a term P such that M →∗ P and N →∗ P .

We must show that the following judgment holds.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈N〉〉ρ

Since the free variables in P are a subset of the free variables in M and N , ρ is well-

defined on P and 〈〈P 〉〉ρ is in T (cod(ρ)) and hence in H(Σ). Thus the above judgment

holds if by BACKCHAIN on the clause specifying the (TRANS) rule followed by AND search,

the following judgments hold.

Σ; convert ⊢I conv 〈〈M〉〉ρ 〈〈P 〉〉ρ Σ; convert ⊢I conv 〈〈P 〉〉ρ 〈〈N〉〉ρ

The first judgment holds by Lemma 4.13. The second judgment holds if by BACKCHAIN

on the clause specifying the (SYM) rule, the following judgment holds.

Σ; convert ⊢I conv 〈〈N〉〉ρ 〈〈P 〉〉ρ

This judgment also holds by Lemma 4.13.

Theorem 4.15 (Correctness II)
Let ρ̄ be a variable decoding and M and N terms in T (dom(ρ̄)). Let Σ be the signature

Σ0 ∪ dom(ρ̄). If the judgment Σ; convert ⊢I conv M N holds, then ||M||ρ̄ =βη ||N||ρ̄.

Proof: The proof is by induction on the height of a proof of Σ;convert ⊢I conv M N.

We prove simultaneously that if the judgment Σ; convert ⊢I red1 M N holds, then ||M||ρ̄ →

||N||ρ̄.

Case: (REFL) The last step in a proof of (conv M N) is a BACKCHAIN on the clause

specifying the REFL axiom. Then N is M, and ||M||ρ̄ = ||N||ρ̄. Thus, by the REFL axiom,

||M||ρ̄ =βη ||N||ρ̄.

Case: (TRANS) The last step in a proof of (conv M N) is a BACKCHAIN on the clause

specifying the TRANS rule. By BACKCHAIN on this clause followed by AND search, the

following judgments hold,

Σ; convert ⊢I conv M P and Σ; convert ⊢I conv P N

59

where P is a term of type tm in H(Σ). Thus, its βη-long form is in T (dom(ρ̄)). By the

induction hypothesis for conv, ||M||ρ̄ =βη ||P||ρ̄ and ||P||ρ̄ =βη ||N||ρ̄. Thus, by an application

of the TRANS rule ||M||ρ̄ =βη ||N||ρ̄.

Case: (SYM) This case is similar to the above case for TRANS (without the AND search

operation).

Case: (RED) The last step in a proof of (conv M N) is a BACKCHAIN on the clause

specifying the RED rule. Thus the judgment Σ; convert ⊢I (red1 M N) holds. By the

induction hypothesis for red1, ||M||ρ̄ → ||N||ρ̄. Thus, by an application of the RED rule

||M||ρ̄ =βη ||N||ρ̄.

Case: (β) The last step in a proof of (red1 M N) is a BACKCHAIN on the first red1

clause, and the last step in the proof of the resulting subgoal (redex M N) is a BACKCHAIN

on the redex clause specifying the β axiom. Then M has the form (app (abs R) Q) where

X is the bound variable in R and P is the body, and N is the βη-long form of (R Q). By

β-conversion at the meta-level (R Q) =βη [Q/X]P. Since R and Q are in βη-long form and Q

has base type tm, it is easy to see that [Q/X]P is in βη-long form. We must show that

||(app (abs R) Q)||ρ̄ → ||[Q/X]P||ρ̄.

Let x be a variable such that x /∈ cod(ρ̄). By the definition of the decoding

||(app (abs R) Q)||ρ̄ ≡ (λx.||P||〈X,x〉+ρ̄)||Q||ρ̄

By the β axiom of the object language,

(λx.||P||〈X,x〉+ρ̄)||Q||ρ̄ → [||Q||ρ̄/x]||P||〈X,x〉+ρ̄.

The variable decodings ρ̄ and 〈X, x〉 + ρ̄ agree on common domain elements that are free

in [Q/X]P. Thus, by Corollary 4.10,

[||Q||ρ̄/x]||P||〈X,x〉+ρ̄ = ||[Q/X]P||ρ̄.

Thus

||(app (abs R) Q)||ρ̄ → ||[Q/X]P||ρ̄.

Case: (η) The last step in a proof of (red1 M N) is a BACKCHAIN on the first red1

clause, and the last step in the proof of the resulting subgoal (redex M N) is a BACKCHAIN

on the redex clause specifying the η axiom. Then M has the form (abs X\(app P X)) and

N is P, and as discussed in Section 4.2, X does not occur in P. We must show that

||(abs X\(app P X))||ρ̄ → ||P||ρ̄.

Let x be a variable such that x /∈ cod(ρ̄). By the definition of the decoding

||(abs X\(app P X))||ρ̄ ≡ λx.(||P||〈X,x〉+ρ̄)x

60

By Lemma 4.7 (1), x does not occur free in ||P||〈X,x〉+ρ̄. Thus, by the η axiom of the object

level,

λx.(||P||〈X,x〉+ρ̄)x → ||P||〈X,x〉+ρ̄.

Since x does not occur free in ||P||〈X,x〉+ρ̄, by Corollary 4.9, ||P||〈X,x〉+ρ̄ = ||P||ρ̄. Thus

||(abs X\(app P X))||ρ̄ → ||P||ρ̄.

Case: (CONG1) The last step in a proof of (red1 M N) is a BACKCHAIN on the clause

specifying the CONG1 rule. Then M has the form (app P T), N has the form (app Q T),

and by BACKCHAIN the following judgment holds.

Σ; convert ⊢I (red1 P Q)

By the definition of the decoding,

||(app P T)||ρ̄ ≡ ||P||ρ̄||T||ρ̄ and ||(app Q T)||ρ̄ ≡ ||Q||ρ̄||T||ρ̄.

By the induction hypothesis for red1,

||P||ρ̄ → ||Q||ρ̄.

By an application of the CONG1 rule,

||P||ρ̄||T||ρ̄ → ||Q||ρ̄||T||ρ̄.

Thus,

||(app P T)||ρ̄ → ||(app Q T)||ρ̄.

Case: (CONG2) This case is similar to the above case for CONG1.

Case: (ξ) The last step in a proof of (red1 M N) is a BACKCHAIN on the clause

specifying the ξ rule. Then M has the form (abs R) where X is the bound variable in R and

P is the body, and N has the form (abs S) where X is the bound variable in S and Q is the

body. We assume that X does not appear in Σ, otherwise it can be renamed in R and S.

By BACKCHAIN the following judgment holds.

Σ; convert ⊢I pi X\(red1 (R X) (S X))

By the GENERIC search operation, the following judgment holds.

Σ ∪ {X : tm}; convert ⊢I red1 (R X) (S X)

By β-conversion at the meta-level (R X) =βη P and (S X) =βη Q, and since R and S are

βη-long forms, so are P and Q. Let x be a variable such that x /∈ cod(ρ̄). Then 〈X, x〉 + ρ̄

61

is well-defined on P and Q and these terms are in T (dom(〈X, x〉 + ρ̄)). By the induction

hypothesis for red1,

||P||〈X,x〉+ρ̄ → ||Q||〈X,x〉+ρ̄.

By an application of the ξ rule,

λx.||P||〈X,x〉+ρ̄ → λx.||Q||〈X,x〉+ρ̄.

By the definition of the decoding,

||(abs R)||ρ̄ ≡ λx.||P||〈X,x〉+ρ̄ and ||(abs S)||ρ̄ ≡ λx.||Q||〈X,x〉+ρ̄.

Thus,

||(abs R)||ρ̄ → ||(abs S)||ρ̄.

Note that these proofs illustrated more than just correctness of the conv program. They

in fact illustrated a step-by-step correspondence between proofs in the object language and

proofs in the meta-language. Each application of a rule at the object level corresponds to

a BACKCHAIN on a particular clause at the meta-level. Similar results for any of the other

specifications in this and the previous chapter can be established. One aspect that this

example did not illustrate is the discharge of assumptions that occurs in natural deduction

style proof systems. In specifications for proof systems that include this operation, not

only signature items as in the above example but also program clauses get added via the

AUGMENT operation as the proof proceeds.

In the specifications that construct proof terms, the step-by-step correspondence be-

tween object and meta-proofs gets recorded more precisely, since the constant at the head

of the proof term determines which clause was used at each step of the meta-proof. When

proof terms contain enough information, it is possible to define an encoding and decoding

between proof terms and object-level proof trees, and proceed to establish correctness by

showing the bijectivity of these functions. For example, in Section 3.4, a proof representa-

tion was given that should be sufficient to establish a one-to-one correspondence between

proof terms constructed by the niprover specification and natural deduction trees in the

style of [Pra65] as defined in Section 3.4 up to an equivalence which identifies deductions

that are the same except for the names of parameters to the ∀-I and ∃-E rules.

As we will see, the specification of β-conversion in LF in Chapter 5 is quite similar to

the convert module. Thus the results proven in this section extend rather directly to a

proof of correctness of that specification. In addition, in that chapter, we also will consider

not only convertibility but also normalization of λ-terms.

62

4.4 Specification of a Higher-Order Logic

In Chapter 3, we saw many specifications for first-order logic. We now demonstrate the

specification of a higher-order logic. In the specification of a first-order logic, it was

convenient to introduce i as the type of all first-order individuals, and then define the

quantifiers in terms of meta-level abstractions over this type. Thus, both forall and

exists had type (i -> form) -> form. In fact, we could easily have extended such a

specification to a many-sorted logic (with a finite set of sorts), declaring one primitive type

corresponding to each sort of the object logic, thus identifying types of the object logic

with types of the meta-language. We would then need to introduce quantifiers over each

sort, i.e., for each primitive type s, we declare:

type exists_s (s -> form) -> form.

type forall_s (s -> form) -> form.

In addition, we would need quantifier inference rules for each sort.

In higher-order logic, on the other hand, we need to quantify over not only primitive

types but also types at any functional level. For example, a second-order formula could

contain a quantification over a predicate, say of arity 2, which in our formulation is an

object of type i -> i -> form. One approach would be to declare polymorphic quantifiers

as follows:

type exists (S -> form) -> form.

type forall (S -> form) -> form.

where the type variable S indicates that the argument to exists or forall can be an

abstraction over an object of any meta-level type. There are several reasons to avoid the

use of type variables here. Consider the following specification of the ∃-I rule.

(exists_i P) # (exists X\(A X)) :- P # (A T).

When exists has polymorphic type (S -> form) -> form, A has polymorphic type

(S -> form). Thus, this clause allows instances of X\(A X) where the type of X is any

one of an infinite number of types such as i, i --> i, i --> form, etc. Operationally, in

backchaining over this clause, even if the term unifying with (A T) were a closed term, a

correct implementation of unification would branch infinitely in finding unifiers for A and

T. In a particular unification problem, not only are there an infinite number of instantces

of S, there may be infinitely many solutions for some fixed instance of S. For example,

consider unifying the closed term (p c) with (A T) where p has type i -> form and c

has type i. When the type variable S is instantiated with base type i, there are just two

solutions to this unification problem: (1) A is Y\(p Y) and T is c, or (2) A is Y\(p c) and

T is itself. But when S is the functional type i -> i, we have the following infinite set

of solutions: A is F\(p (Fn c)) and T is Y\Y, where n ≥ 0. In addition, the type for X

is allowed to be any meta-type including types we may not intend to quantify over, such

63

as the type of formulas of the meta-language (type o), or more complicated types such as

(list o -> o).

Instead, as in the specification of the λ-calculus, we will specify object-level types as

terms of the meta-language having meta-type ty. Now, instead of introducing constants

such as i and form as primitive meta-types as in the specification of first-order logic, we

declare them as constants of type ty as follows.

type i ty.

type form ty.

Formulas are now a subclass of terms of meta-type tm, and we declare the connectives as

object-level term constructors as follows.

type ’and’ tm -> tm -> tm.

type ’or’ tm -> tm -> tm.

type ’imp’ tm -> tm -> tm.

type neg tm -> tm.

type forall ty -> (tm -> tm) -> tm.

type exists ty -> (tm -> tm) -> tm.

type false tm.

We also include the abs and app constants and their types as in Section 4.2:

type abs (tm -> tm) -> tm.

type app tm -> tm -> tm.

The quantifiers exists and forall are specified so that the type of the quantified object

appears as an extra argument in the quantified expression. Thus the first argument to

exists and forall is a term of meta-type ty. For operations such as quantifier instantia-

tion, we must now check that the (object-level) type of the substitution term matches the

type of the quantified variable before performing the operation. In addition, formulas must

be type-checked in order to insure that they are well-formed. The type-checking of the

meta-language only insures that they have meta-type tm. They must also have object-level

type form. We implement a type-checking program to perform such checks. This program

will include the two clauses in the previous section for type-checking λ-terms. In addition,

we will need one clause for each logical connective and one for each non-logical constant

of the object language. The clauses for the logical connectives are as follows.

(A and B) #t form :- A #t form, B #t form.

(A or B) #t form :- A #t form, B #t form.

(A imp B) #t form :- A #t form, B #t form.

(neg A) #t form :- A #t form.

(exists S A) #t form :- pi X\ ((X #t S) => ((A X) #t form)).

(forall S A) #t form :- pi X\ ((X #t S) => ((A X) #t form)).

Formulas with a propositional connective at the top-level are well-formed if their subfor-

mulas are well-formed. In the quantified formula (exists S A), S is the object-level type

of the variable bound by λ-abstraction in A. The clause above for type checking terms of

64

this form reads: for arbitrary X of type S, if (A X) is a formula, then (exists S A) is a

formula. As in the clause in the previous section for abs, a new constant of meta-type

tm is introduced for X and substituted for the bound variable in A. An assumption about

the object-level type of this new object is added to the program, which may be used in

subsequent type checking subgoals. Type checking for forall is similar.

Consider a language with a constant c of type i, functions f and g having types i →

i → i and (i → i) → i → i, respectively, and a predicate q that takes one argument of type

i. We introduce meta-constants c, f, g, and q which are declared with the following types.

type c tm.

type f tm -> tm -> tm.

type g (tm -> tm) -> tm -> tm.

type q tm -> tm.

The following clauses are needed to type-check terms built from these constants.

c #t i.

(f X Y) #t i :- X #t i, Y #t i.

(g F X) #t i :- pi Y\ ((Y #t i) => ((F Y) #t i)), X #t i.

(q X) #t form :- X #t i.

Clauses such as these for the non-logical constants of the object language, together with

the clauses above for the connectives and the two clauses in the previous section for type-

checking λ-terms make up the complete type-checking program.

We will specify a natural deduction proof system for higher-order logic, and as in

previous examples, introduce the meta-type nprf for proofs, and an infix constant #p to

represent the basic relation between a formula and its proofs, declared as follows.

type ’#p’ nprf -> tm -> o.

This constant is analogous to # in the first-order natural deduction specification, but tagged

here by p to distinguish it from the #t relation between terms and types. We introduce #

as a top-level predicate, with the same type as #p, whose function is to insure that formulas

are well-formed in addition to checking if they are provable. This relation is defined by

the single definite clause below.

P # A :- A #t form, P #p A.

In specifying the inference rules, we will assume that the term on the right side of #p in

the head of each clause has type form. As a result, very few type-checking subgoals will

be needed in these clauses.

The propositional rules for this logic are the same as those for natural deduction in

first-order logic (see Figure 3.2). In fact, the clauses for the introduction rules for the

propositional connectives and for the ⊥-I rules need no type-checking subgoals, and thus

can be specified similarly to the corresponding rules for first-order logic. Clauses for these

rules are given below. The only difference between these clauses and clauses seen in

Section 3.2 is the use of the #p predicate instead of the # predicate.

65

(x : τ)
[y/x]A

∀-I
∀x : τ.A

∀x : τ.A t : τ
∀-E

[t/x]A

t : τ [t/x]A
∃-I

∃x : τ.A ∃x : τ.A
(y : τ) ([y/x]A)

B
∃-E

B

The ∀-I rule has the proviso that the variable y cannot appear free in ∀xA, or in any

assumption on which [y/x]A depends.

The ∃-E rule has the proviso that the variable y cannot appear free in ∃xA, in B, or

in any assumption on which the upper occurrence of B depends.

Figure 4.6: Quantifier Rules for Higher-Order Logic

(and_i P1 P2) #p (A and B) :- P1 #p A, P2 #p B.

(or_i1 P) #p (A or B) :- P #p A.

(or_i2 P) #p (A or B) :- P #p B.

(imp_i P) #p (A imp B) :- pi PA\ ((PA #p A) => ((P PA) #p B)).

(neg_i P) #p (neg A) :- pi PA\ ((PA #p A) => ((P PA) #p false)).

(false_i P) #p A :- P #p false.

The clauses for the elimination rules for the propositional connectives are also similar to the

corresponding clauses for first-order logic. In these clauses, some additional type-checking

subgoals are needed to insure all formulas have type form. These clauses are specified as

follows.

(and_e1 P) #p A :- P #p (A and B), B #t form.

(and_e2 P) #p B :- P #p (A and B), A #t form.

(or_e P P1 P2) #p C :- P #p (A or B), (A or B) #t form,

pi PA\ ((PA #p A) => ((P1 PA) #p C)),

pi PB\ ((PB #p B) => ((P2 PB) #p C)).

(imp_e P1 P2) #p B :- P1 #p A, A #t form,

P2 #p (A imp B).

(neg_e P1 P2) #p false :- P1 # A, A #t form,

P2 #p (neg A).

The quantifier rules of higher-order logic are given in Figure 4.6. They are also similar

to those for first-order logic except that the quantified object can be of any type, and

additional subproofs are needed to insure that substitution terms in the ∃-I and ∀-E rules

match the types of the quantified variable. The clause for ∃-I is as follows:

(exists_i S T P) #p (exists S A) :- T #t S, P #p (A T).

66

Here the first subgoal checks that the substitution term T has type S. The second, as in the

first-order case, checks that P is a proof of (A T), the formula resulting from substituting

T for the bound variable in A. As in the first-order case, there are many choices concerning

what information to include in proof terms. Here we have included both the substitution

term T and its type S.

The following definite clause specifies the ∀-I rule for higher-order logic.

(forall_i S P) #p (forall S A) :- pi Y\ ((Y #t S) => ((P Y) #p (A Y))).

As in the first-order case, universal quantification at the meta-level is used to handle the

proviso on this rule. Here, meta-level implication is also necessary to add an assumption

about the type of the new signature item introduced for Y. This assumption may be used

in subsequent type-checking subgoals such as those generated by applications of the ∃-I

and ∀-E rules. Like the clause for ∃-I, the object-level type S is included in the proof term.

The remaining quantifier rules, ∀-E and ∃-E, are specified similarly. They also require

subgoals for type-checking formulas.

(forall_e S T P) #p (A T) :- T #t S, (forall S A) #t form,

P #p (forall S A).

(exists_e P1 P2) #p B :-

P1 #p (exists S A), (exists S A) #t form,

pi Y\ (pi P\ ((Y #t S) => ((P #p (A Y)) => ((P2 Y P) #p B)))).

In the higher-order version of ∃-E, two assumptions are discharged, one containing the

type information for the variable used in substitution, and the other associating a proof

with the discharged formula. Since we include substitution terms in proofs, P2 must be an

abstraction over Y and P.

In higher-order logic, there is usually some notion of equality between terms, and as

a result, two different terms of type form may represent the same formula. If we choose

to define equality up to βη-convertibility, we can make use of the conv program in the

previous section and conclude our specification of higher-order logic with the following

simple clause.

(convert A B P) #p A :- B #t form, P #p B, conv A B.

Here, (convert A B P) is a proof of formula A if B has type form, P is a proof of B, and

A converts to B.

4.5 Discussion

In this and the previous chapter, we have presented several examples in support of our

claim that the meta-language hohh can be used to naturally specify theorem provers for

a variety of object logics. Certainly, many others can be specified. For example, it is also

straightforward to specify inference systems for various modal and temporal logics. In

67

addition, various other type systems such as the second-order polymorphic λ-calculus, LF,

and the calculus of constructions can be specified. (See [FM89].) Such type checking spec-

ifications are similar in spirit to the specification of the simply-typed λ-calculus presented

in Section 4.2.

Several of the higher-order features of this meta-language have been extremely valuable

in the specification of certain aspects of object logics. Yet we have only made limited use of

some of these features. For example, we have used no predicate quantification so far, and

quantification over functions has been at most second-order. For instance, the following

clause from the niprover module on page 34 for the ∀-E rule of NI illustrates the most

complex use of function quantification in any of the specifications.

(forall_e T A P) # (A T) :- P # (forall A).

In this clause the variable A has second-order type i -> form. A similar use of quantifica-

tion at the meta-level was used in all of the other specifications. The use of pi and sigma

in the subgoals of clauses is even more restricted. In our examples, such quantification has

been over only base types.

Operationally, the simple uses of function variables result in fairly simple unification

problems. In all of the specifications, second-order unification is the most that is needed. In

theorem proving, deciding which inference rule can be applied requires unifying the formula

or sequent to be proved with the formula or sequent in the heads of definite clauses. When

the sequent or formula to be proved is fully specified, deciding which clauses can be used

will require only second-order matching. In the above clause for example, in unifying a

formula with (A T), there may be more than one unifier for A and T, but finding the unifiers

will be relatively simple.

In [FM89], a sublanguage of hohh called Lλ is described. In this language, quantifi-

cation over predicates is not allowed and quantification over function variables is greatly

restricted. As a result, only very simple β-redexes occur in programs, and hence unification

problems are very simple. In fact, for this sublanguage, unification is decidable and most

general unifiers always exist. All of the specifications in this and the previous chapter with

only minor modification, do in fact fall within this sublanguage.

In specifying various object logics, certain identifications were made between aspects

of the object and meta-logic. For example, in first-order logic, bound variables in each lan-

guage were identified, and first-order terms and formulas were identified with meta-terms

of type i and form, respectively. The specification of higher-order logic illustrated that

more complex logics can also be naturally specified as hohh formulas, yet their specification

is not quite as direct as that for simpler logics. For example, we demonstrated the need

for an encoding of terms and formulas as meta-terms of type tm. Object level types were

represented as meta-terms also. As a result, auxiliary type-checking subgoals were often

needed. In addition, a program for βη-conversion had to be employed since unification

68

at the meta-level could not be used to solve object level equations. On the other hand,

the encoding of any term or formula of higher-order logic is a meta-term of order two

or less, and thus unification problems were no more complex than those occurring in the

specifications for first-order logics.

The Isabelle theorem prover [Pau88] contains a specification language based on a frag-

ment of higher-order logic with implication and universal quantification. This language

is used to specify inference rules for various object logics. That fragment is essentially

a subset of higher-order hereditary Harrop formulas. Hence, many of the object logics

we have specified here could be very similarly specified in the specification language of Is-

abelle. More will be said about Isabelle in the discussion of the implementation of theorem

provers in Chapter 7. The LF type theory [HHP89] is another language in which object

logics can be specified. In the next chapter, we examine in more detail the correspondence

between specifying a logic in LF and in hohh.

69

Chapter 5

LF Signatures as Logic Programs

The Edinburgh Logical Framework (LF) [HHP89] is a typed λ-calculus developed for the

purpose of specifying a wide class of logics so that commonalities among these logics can

be exploited in implementing theorem provers and proof systems. In this chapter, we

illustrate how logics specified in LF can be specified as logic programs. We present a

translation for “compiling” LF signatures into logic programs and LF judgments into logic

programming queries. First, in Section 5.1, we present a modified form of the LF system.

Proofs in this modified system will correspond closely to proofs constructed by the non-

deterministic interpreter in executing the programs obtained from compiled LF signatures.

In Section 5.2, we provide a specification of β-normalization in LF. We represent terms

in a manner similar to the representation of untyped λ-terms in Section 4.2. In fact, the

specification of β-conversion is quite similar to the convert program for the untyped λ-

calculus, and thus the correctness proofs of Section 4.3 easily extend to the program given

here. In addition, we consider not only conversion but also normalization of LF terms.

Normalization will play an important role in the execution of compiled LF signatures. In

Section 5.3, we present the translation from LF signatures to logic programs and prove

it correct, and finally in Section 5.4, we illustrate the translation on a subset of an LF

signature specifying natural deduction for first-order intuitionistic logic.

5.1 Canonical LF

The LF system is a typed λ-calculus with dependent products. We begin here by presenting

the simplified algorithmic version of LF as defined in [HHP89]. One difference in the richer

system is that it contains both signatures which associate constants with their types, and

contexts which associate variables with their types. The simplified system unifies these two

as contexts. We continue, however, to use the term signature to mean a set of variables

associated with their types that specify an object logic.

70

The system has three levels of terms: objects (often called just terms), types and

families of types, and kinds. The syntax of LF is given by the following classes of objects.

Γ := 〈〉 | Γ, x : K | Γ, x : A

K := Type | Πx : A.K

A := x | Πx : A.B | λx : A.B | AM

M := x | λx : A.M | MN

Here Γ represents a context, M and N range over expressions for objects, A and B over

types and families of types, K over kinds, and x over variables. We will use P and Q to

range over arbitrary objects, families, or kinds. We call a variable that is a type a type

variable, and a variable that is an object a term variable. A type or kind of the form

Πx : A.P will often be abbreviated A → P when x does not occur in P .

The three kinds of assertions in LF are as follows.

Γ ⊢ K ⇒ kind (K is a kind in Γ)

Γ ⊢ A ⇒ K (A has kind K in Γ)

Γ ⊢ M ⇒ A (M has type A in Γ)

We write Γ ⊢ α for an arbitrary assertion.

Equality of terms, types, and kinds in LF is up to β-conversion, specified by the proof

system in Figure 5.1. A normal form is a term, type, or kind with no subterms of the

form (λx : A.P)M . It is shown in [HHP89] that the Church-Rosser property holds for LF,

and that well-typed expressions are strongly normalizing. We will write P β to denote the

β-normal form of term, type, or kind P , and similarly for families and kinds. We say that

a context Γ is in β-normal form, if for every item x : P in Γ, P is in β-normal form. We

right Γβ to denote the β-normal form of a context Γ. Normal forms have the following

characterization.

1. A kind K is a normal form iff it has the form Πx1 : A1 . . . Πxn : An.Type where n ≥ 0

and for i = 1, . . . , n, Ai is a normal form type.

2. A type A is a normal form iff it has the form

λx1 : A1 . . . λxn : An.Πy1 : B1 . . . Πym : Bm.xM1 . . . Mk

where n,m, k ≥ 0, for i = 1, . . . , n, Ai is a normal form type, for i = 1, . . . ,m, Bi is

a normal form type, x is a type variable, and for i = 1, . . . , k, Mi is a normal form

term.

3. A term M is a normal form iff it has the form λx1 : A1 . . . λxn : An.xM1 . . . Mk where

n, k ≥ 0, for i = 1, . . . , n, Ai is a normal form type, x is a term variable, and for

i = 1, . . . , k, Mi is a normal form term.

71

(λx : A.M)N →β [N/x]M (β-OBJ) (λx : A.B)N →β [N/x]B (β-FAM)

M →β M ′

(ξ-ABS-OBJ)
λx : A.M →β λx : A.M ′

B →β B′

(ξ-ABS-FAM)
λx : A.B →β λx : A.B′

A →β A′

(B-ABS-OBJ)
λx : A.M →β λx : A′.M

A →β A′

(B-ABS-FAM)
λx : A.B →β λx : A′.B

B →β B′

(ξ-PI-FAM)
Πx : A.B →β Πx : A.B′

K →β K ′

(ξ-PI-KIND)
Πx : A.K →β Πx : A.K ′

A →β A′

(B-PI-FAM)
Πx : A.B →β Πx : A′.B

A →β A′

(B-PI-KIND)
Πx : A.K →β Πx : A′.K

M →β M ′

(CONG1-OBJ)
MN →β M ′N

N →β N ′

(CONG2-OBJ)
MN →β MN ′

A →β A′

(CONG1-FAM)
AN →β A′N

N →β N ′

(CONG2-FAM)
AN →β AN ′

P1 →β P2
(RED)

P1 =β P2
P =β P (REFL)

P1 =β P2
(SYM)

P2 =β P1

P1 =β P2 P2 =β P3
(TRANS)

P1 =β P3

Figure 5.1: β-Convertibility in LF

The inference rules of LF are given in Figure 5.2. The set of variables on the left of the

colon in a context Γ is denoted as dom(Γ). We often write Γ ⊢ α to mean that the indicated

assertion is provable in the system. A proof of an assertion of the form Γ ⊢ Type ⇒ kind

proves that Γ is a valid context.

72

⊢ Type ⇒ kind (A-TYPE-KIND)

Γ ⊢ K ⇒ kind x /∈ dom(Γ)
(A-K-VAR)

Γ, x : K ⊢ Type ⇒ kind

Γ ⊢ A ⇒ Type x /∈ dom(Γ)
(A-T-VAR)

Γ, x : A ⊢ Type ⇒ kind

Γ ⊢ A ⇒ Type Γ, x : A ⊢ K ⇒ kind
(A-PI-KIND)

Γ ⊢ Πx : A.K ⇒ kind

Γ ⊢ Type ⇒ kind x : K ∈ Γ
(A-VAR-FAM)

Γ ⊢ x ⇒ Kβ

Γ ⊢ A ⇒ Type Γ, x : A ⊢ B ⇒ Type
(A-PI-FAM)

Γ ⊢ Πx : A.B ⇒ Type

Γ ⊢ A ⇒ Type Γ, x : A ⊢ B ⇒ K
(A-ABS-FAM)

Γ ⊢ λx : A.B ⇒ Πx : Aβ.K

Γ ⊢ A ⇒ Πx : B.K Γ ⊢ M ⇒ B
(A-APP-FAM)

Γ ⊢ AM ⇒ ([M/x]K)β

Γ ⊢ Type ⇒ kind x : A ∈ Γ
(A-VAR-OBJ)

Γ ⊢ x ⇒ Aβ

Γ ⊢ A ⇒ Type Γ, x : A ⊢ M ⇒ B
(A-ABS-OBJ)

Γ ⊢ λx : A.M ⇒ Πx : Aβ .B

Γ ⊢ M ⇒ Πx : A.B Γ ⊢ N ⇒ A
(A-APP-OBJ)

Γ ⊢ MN ⇒ ([N/x]B)β

Figure 5.2: The Edinburgh Logical Framework

73

LF is based on the judgments-as-types principle in which a basic judgment of an object

logic such as “the formula A is provable” is encoded as a type. An LF term inhab-

iting such a type represents an object level proof. This is the view of LF terms that

we are interested in, since it corresponds to the use of terms of our meta-language (the

simply typed λ-terms) in previous chapters to represent object level proofs. Notice that

the proof terms we presented were always in normal form. For example, in Section 3.4,

the meta-term (imp i P\(imp i Q\P)) was given as a natural deduction proof term for

p ⊃ (p ⊃ p). Since terms in the meta-language are equated up to βη-convertibility, the

term (imp i P\(imp i Q\((W\W) P))), for example, will represent the same proof. Yet,

normal forms were always used in presentation since that is the form in which proof terms

can be seen to correspond to the object level proofs which they represent, and in which ma-

nipulations of these terms can be described. Note that the term (imp i P\(imp i Q\Q))

is a different meta-term and represents a different object-level proof of the same formula.

In LF, as in logic programming, there will be different meta-proofs to construct different

object-level proofs, but there may also be different meta-proofs to construct proof terms

that are β-equivalent. Since we are concerned with the interpretation of LF terms as object

level proofs, we will consider β-equivalent terms to represent the same object level proof,

and will thus restrict our attention to LF terms in normal form. Note that normal proofs

at the object level (in NI for example) is a different concept. Even non-normal object-

level proofs have been represented thus far as normal meta-terms. Determining whether or

not a proof term represents an object level normal proof involves examining the structure

of the term. The remainder of this section is devoted to the presentation of a modified

form of LF that builds proofs of only normal terms. In fact, we will only consider terms

in canonical form, a further restriction which corresponds to βη-long form as defined for

the simply typed λ-calculus. Proofs in this modified LF will in fact correspond closely to

meta-level proofs built by executing programs derived from LF signatures.

Several more definitions from [HHP89] are required. We define the arity of a type or

kind to be the number of Πs in the prefix of its normal form. The arity of a variable with

respect to a context is the arity of its type in that context. The arity of a bound variable

occurrence in a term is the arity of the type label attached to its binding occurrence. We

say that an occurrence of a variable x in a term is fully applied with respect to a context

if it occurs in a subterm of the form xM1, . . . Mn, where n is the arity of x. A term P is

canonical with respect to a context Γ if every variable occurrence in P is fully applied with

respect to Γ. A term has a canonical form if its normal form is canonical. We say that a

context Γ is in or has canonical form if for every item x : P in Γ, P is in or has canonical

form with respect to Γ.

The following characterization of canonical forms will be useful in the proofs in this

chapter.

74

1. If K is a canonical kind with respect to Γ, then it is of the form

Πx1 : A1 . . . Πxn : An.Type

where for i = 1, . . . , n, Ai is canonical with respect to Γ, x1 : A1, . . . , xi−1 : Ai−1.

2. If A is a canonical form with canonical kind

Πx1 : A1 . . . Πxn : An.Type

with respect to Γ, then A is of the form

λx1 : A1 . . . λxn : An.Πy1 : B1 . . . Πym : Bm.xM1 . . . Mk

where k is the arity of x, for i = 1, . . . ,m, Bi is canonical with respect to

Γ, x1 : A1, . . . , xn : An, y1 : B1, . . . , yi−1 : Bi−1,

and for i = 1, . . . , k, Mi is canonical with respect to

Γ, x1 : A1, . . . , xn : An, y1 : B1, . . . , ym : Bm.

3. If M is a canonical form with canonical type

Πx1 : A1 . . . Πxn : An.xM1 . . . Mk

with respect to Γ, then M is of the form

λx1 : A1 . . . λxn : An.yN1 . . . Nl

where l is the arity of y, and for i = 1, . . . , l, Ni is canonical with respect to

Γ, x1 : A1, . . . , xn : An.

We make use of the following results about LF. The first is from [HHP89], and the

second is a simple observation about the judgments that can be proved in LF. We note

here that this latter result does not hold in more general presentations of LF, but is

important for our purposes.

Theorem 5.1 (Subject Reduction)

1. If Γ ⊢ K ⇒ kind and K →β K ′, then Γ ⊢ K ′ ⇒ kind.

2. If Γ ⊢ A ⇒ K and A →β A′, then Γ ⊢ A′ ⇒ K.

3. If Γ ⊢ M ⇒ A and M →β M ′, then Γ ⊢ M ′ ⇒ A.

75

Lemma 5.2

1. If Γ ⊢ A ⇒ K, then K is normal.

2. If Γ ⊢ M ⇒ A, then A is normal.

Proof: The proof is by induction on the height of a proof of an LF assertion. By inspection

of the inference rules, it is easy to see that whenever the terms and types on the right of

⇒ in the premises are normal, then the term or type on the right of ⇒ in the conclusion

must be normal.

We will say that a proof of an LF assertion is normal if there is no assertion which is

the conclusion of (A-ABS-FAM) and the left premise of (A-APP-FAM), and no assertion which

is the conclusion of (A-ABS-OBJ) and the left premise of (A-APP-OBJ).

Theorem 5.3 (Existence of Normal Proofs)
Let Γ be a context in normal form.

1. If Γ ⊢ K ⇒ kind, then there is a normal proof of Γ ⊢ Kβ ⇒ kind.

2. If Γ ⊢ A ⇒ K, then there is a normal proof of Γ ⊢ Aβ ⇒ Kβ.

3. If Γ ⊢ M ⇒ A, then there is a normal proof of Γ ⊢ Mβ ⇒ Aβ .

Proof: By Lemma 5.2, if Γ ⊢ A ⇒ K holds, then K is normal, and if Γ ⊢ M ⇒ A holds,

then A is normal. By Theorem 5.1 and the strong normalization property for well-typed

objects, one of the following holds.

1. Γ ⊢ Kβ ⇒ kind

2. Γ ⊢ Aβ ⇒ K

3. Γ ⊢ Mβ ⇒ A

The proof is by simultaneous induction on the height of a proof of the above assertions.

We show the case when the last inference is an application of (A-APP-OBJ). The case for

(A-APP-FAM) is similar. For all other cases, by assuming that there is a normal proof of the

premises, we obtain a normal proof of the conclusion by an application of the corresponding

rule.

The conclusion of (A-APP-OBJ) is Γ ⊢ MN ⇒ ([N/x]B)β . Since MN is normal, M is

not an abstraction. By the induction hypothesis for the premises, Γ ⊢ M ⇒ Πx : A.B and

Γ ⊢ N ⇒ A have normal proofs. Since M is not an abstraction, the last rule in the proof

of Γ ⊢ M ⇒ Πx : A.B is not (A-ABS-OBJ). Then by an application of (A-APP-OBJ), we

obtain a normal proof of Γ ⊢ MN ⇒ ([N/x]B)β .

Corollary 5.4 (Form of Normal Proofs)
A normal proof has the form given by the following criteria.

76

1. The application of rules (A-VAR-OBJ) and (A-APP-OBJ) occur only in proof fragments

of the following form:

(a) Γ ⊢ x ⇒ Πx1 : A1 . . . Πxn : An.B (n ≥ 0) is the conclusion of an application of

(A-VAR-OBJ) and the left premise of a series of n applications of (A-APP-OBJ).

(b) For i = 1, . . . , n − 1, the conclusion of the ith application and the left premise

of the (i + 1)st application of (A-APP-OBJ) is

Γ ⊢ xN1 . . . Ni ⇒ ([N1/x1, . . . ,Ni/xi]Πxi+1 : Ai+1 . . . Πxn : An.B)β

The conclusion of the nth application of (A-APP-OBJ) is

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β.

(c) For i = 1, . . . , n, the right premise of the ith application of (A-APP-OBJ) is

Γ ⊢ Ni ⇒ ([N1/x1, . . . ,Ni−1/xi−1]Ai)
β.

2. Applications of rules (A-VAR-FAM) and (A-APP-FAM) occur similarly.

Proof: The proof is by induction on the height of a normal proof. All cases follow by a

simple application of the induction hypothesis except for (A-APP-FAM) and (A-APP-OBJ).

We show the case for (A-APP-OBJ). (A-APP-FAM) is similar. When the last step in a proof

is (A-APP-OBJ), by definition of normal, the last step in the subproof of the left premise

cannot be (A-ABS-OBJ). It must be either (A-VAR-OBJ) or (A-APP-OBJ). By the induction

hypothesis, we know this subproof has the form specified by (1)-(2) above.

In the case when the last step in the subproof of the left premise is (A-VAR-OBJ), the

conclusion of this subproof must have the form Γ ⊢ x ⇒ Πz : A.B. Thus the right premise

of the application of (A-APP-OBJ) must have the form Γ ⊢ N ⇒ A and its conclusion is

Γ ⊢ xN ⇒ ([N/z]B)β . Thus the entire proof has the form satisfying (1)-(2), where the root

is the conclusion of a fragment of the above form with a single application of (A-APP-OBJ).

In the case when the last step in the subproof of the left premise is (A-APP-OBJ), since

we know that its proof has the form specified by (1)-(2) above, the conclusion of this

subproof must have the form:

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β

where n ≥ 1. In fact, since it is followed by another application of (A-APP-OBJ), B must

have the form Πz : A.B′. The type ([N1/x1, . . . ,Nn/xn]Πz : A.B′)β is equal to:

Πz : ([N1/x1, . . . ,Nn/xn]A)β .([N1/x1, . . . ,Nn/xn]B′)β

77

so the right premise of the last application of (A-APP-OBJ) must have the form

Γ ⊢ N ⇒ ([N1/x1, . . . ,Nn/xn]A)β ,

and the conclusion has the form

Γ ⊢ xN1 . . . NnN ⇒ ([N/z]([N1/x1, . . . ,Nn/xn]B′)β)β .

The left premise of the first application of (A-APP-OBJ) has the form

Γ ⊢ x ⇒ Πx1 : A1 . . . Πxn : An.Πz : A.B′.

We can assume that x1, . . . , xn, z do not appear in N1, . . . ,Nn,N . Otherwise, they can

be renamed in the above assertion. Thus ([N/z]([N1/x1, . . . ,Nn/xn]B′)β)β is equal to

([N1/x1, . . . , Nn/xn, N/z]B′)β. Hence the entire proof has the form satisfying (1)-(2),

where the root is the conclusion of a series of n + 1 applications of (A-APP-OBJ).

Based on the form of normal proofs described by Corollary 5.4, we define Canoni-

cal LF (abbreviated C-LF) to be the proof system obtained from LF by replacing rules

(A-VAR-FAM) and (A-APP-FAM) with the (C-APP-FAM) rule in Figure 5.3, and replacing

(A-VAR-OBJ) and (A-APP-OBJ) with the (C-APP-OBJ) rule in Figure 5.3. A type A is said

to be a base type if its normal form is not an abstraction or a product.

Theorem 5.5

1. If Γ ⊢ K ⇒ kind in C-LF then Γ and K are canonical.

2. If Γ ⊢ A ⇒ K in C-LF then Γ, A,K are canonical.

3. If Γ ⊢ M ⇒ A in C-LF then Γ,M,A are canonical.

Proof: The proof is by induction on the height of the proof of the C-LF assertion, and

uses the fact that if N is a canonical LF term, P is a canonical type or kind, and x is

a term variable, then ([N/x]P)β is canonical. Note that the head of the type or term

in the conclusion of the (C-APP-FAM) and (C-APP-OBJ) rules is always fully applied. By

inspection of the inference rules, it is easy to see that whenever the terms, types, and kinds

in the premises are canonical, then the terms, types, and kinds in the conclusion must be

canonical.

Theorem 5.6 (Soundness of C-LF)
If Γ ⊢ α in C-LF, then Γ ⊢ α in LF.

Proof: The proof is by induction on the height of the C-LF proof. All cases for the rules

that occur in both C-LF and LF follow by a simple application of the induction hypothesis.

If the last rule in the proof is (C-APP-OBJ), we can apply the induction hypothesis to obtain

78

x : Πx1 : A1 . . . Πxn : An.Type ∈ Γ

Γ ⊢ Type ⇒ kind

Γ ⊢ N1 ⇒ A1

Γ ⊢ N2 ⇒ ([N1/x1]A2)
β

...

Γ ⊢ Nn ⇒ ([N1/x1, . . . ,Nn−1/xn−1]An)β
(C-APP-FAM)

Γ ⊢ xN1 . . . Nn ⇒ Type

x : Πx1 : A1 . . . Πxn : An.B ∈ Γ

Γ ⊢ Type ⇒ kind

Γ ⊢ N1 ⇒ A1

Γ ⊢ N2 ⇒ ([N1/x1]A2)
β

...

Γ ⊢ Nn ⇒ ([N1/x1, . . . ,Nn−1/xn−1]An)β
(C-APP-OBJ)

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β

In (C-APP-OBJ) B is a base type, and in both rules n ≥ 0.

Figure 5.3: Application Rules for C-LF

LF proofs of the premises. From these proofs, we can build a proof fragment in LF of the

form described by (1) in Corollary 5.4 where the first two premises of (C-APP-OBJ) become

the premises of the application of (A-VAR-OBJ), and the latter n premises become the n

successive right premises of applications of (A-APP-OBJ). The case when the last rule in

the proof is (C-APP-FAM) is similar.

Theorem 5.7 (Completeness of C-LF)
Let Γ be a canonical context.

1. If Γ ⊢ K ⇒ kind in LF and K has a canonical form, then Γ ⊢ Kβ ⇒ kind in C-LF.

2. If Γ ⊢ A ⇒ K in LF and A and K have canonical forms, then Γ ⊢ Aβ ⇒ Kβ in

C-LF.

3. If Γ ⊢ M ⇒ A in LF and M and A have canonical forms, then Γ ⊢ Mβ ⇒ Aβ in

C-LF.

Proof: By Theorem 5.3, we know that there is a normal proof in LF of (1) Γ ⊢ Kβ ⇒ kind,

(2) Γ ⊢ Aβ ⇒ Kβ, or (3) Γ ⊢ Mβ ⇒ Aβ . Note that since M,A,K have canonical forms,

Mβ, Aβ ,Kβ are canonical. The proof is by induction on the height of such a normal proof.

All cases for the rules that occur in both C-LF and LF follow by a simple application

of the induction hypothesis. If the last rule in a normal proof of (3) is (A-VAR-OBJ) or

79

(A-APP-OBJ) its root occurs in a proof fragment of the form specified by Corollary 5.4 (1),

and has the form:

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β .

This fragment contains normal subproofs of the following assertions:

Γ ⊢ x ⇒ Πx1 : A1 . . . Πxn : An.B where x : Πx1 : A1 . . . Πxn : An.B ∈ Γ

Γ ⊢ Type ⇒ kind

Γ ⊢ N1 ⇒ A1

Γ ⊢ N2 ⇒ ([N1/x1]A2)
β

...

Γ ⊢ Nn ⇒ ([N1/x1, . . . , Nn−1/xn−1]An)β

Since Γ is canonical, Πx1 : A1 . . . Πxn : An.B is a canonical type, and thus A1, . . . , An, B

are canonical types. Since xN1 . . . Nn is a canonical term N1, . . . ,Nn are canonical terms.

Hence, A1, ([N1/x1]A2)
β, . . . , ([N1/x1, . . . ,Nn−1/xn−1]An)β are canonical types. Thus, we

can apply the induction hypothesis to all of the assertions above to obtain C-LF proofs.

Since xN1 . . . Nn is a canonical term that is not an abstraction, ([N1/x1, . . . ,Nn/xn]B)β

must be a base type. Thus we can apply (C-APP-OBJ) to these subproofs, and obtain a

proof in C-LF of:

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β .

The case when the last rule in a normal proof of (2) is (A-VAR-FAM) or (A-APP-FAM) is

similar.

In the translation of LF signatures to logic programs, each signature item will be com-

piled into a definite clause. We will see that an application of (C-APP-OBJ) or (A-APP-FAM)

in a C-LF proof corresponds to a BACKCHAIN on the corresponding program clause.

5.2 A Specification of β-Convertibility for LF

Several of the C-LF rules, including (C-APP-OBJ) and (C-APP-FAM) involve substitution

and β-reduction. In the logic programs obtained from the translation of LF signatures,

these operations will correspond to a need to execute a normalization program on the

encoded LF objects. In this section, we represent LF terms, types, and kinds and specify β-

conversion in much the same way that we represented terms and specified βη-conversion in

Section 4.2 for the untyped λ-calculus. The proofs that the representation and specification

are correct are analogous to the results in Section 4.3 for untyped terms. We then extend

the specification of β-conversion to a program for β-normalization, and prove it correct.

We define an encoding between LF terms, types, and kinds, and terms in the simply-

typed λ-calculus of type tm, ty, and ki, respectively. As in the encoding of Section 4.3, this

encoding will be with respect to a variable encoding, which in this case will be a bijective

80

function between term variables and meta-variables of type tm, and type variables and

meta-variables of type ty. A variable encoding ρ is well-defined on a term, type, or kind

P if all of the free term and type variables in P are in dom(ρ) and are mapped to variables

of type tm and ty, respectively. The encoding of P with respect to variable encoding

ρ is denoted 〈〈P 〉〉ρ and defined in Figure 5.4. The types of the meta-constants used to

〈〈x〉〉ρ := ρ(x) for variable x ∈ dom(ρ)

〈〈Type〉〉ρ := typ

〈〈Πx : A.K〉〉ρ := (prod_ki X\ 〈〈K〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

where X is a variable of type tm such that X /∈ cod(ρ).

〈〈Πx : A.B〉〉ρ := (prod_ty X\ 〈〈B〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

where X is a variable of type tm such that X /∈ cod(ρ).

〈〈λx : A.B〉〉ρ := (abs_ty X\ 〈〈B〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

where X is a variable of type tm such that X /∈ cod(ρ).

〈〈AM〉〉ρ := (app_ty 〈〈A〉〉ρ 〈〈M〉〉ρ)

〈〈λx : A.M〉〉ρ := (abs_tm X\ 〈〈M〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

where X is a variable of type tm such that X /∈ cod(ρ).

〈〈MN〉〉ρ := (app_tm 〈〈M〉〉ρ 〈〈N〉〉ρ)

Figure 5.4: Encoding of LF Terms

represent abstraction, products, and application are given in the lfsig module below.

Also included in this module are the declarations for two predicates which will be used

later in the translation of LF signatures to definite clauses.

module lfsig.

kind ki type.

kind ty type.

kind tm type.

type typ ki.

type prod_ki (tm -> ki) -> ty -> ki.

type prod_ty (tm -> ty) -> ty -> ty.

type abs_ty (tm -> ty) -> ty -> ty.

type abs_tm (tm -> tm) -> ty -> tm.

type app_ty ty -> tm -> ty.

type app_tm tm -> tm -> tm.

type is_type ty -> o.

type has_type tm -> ty -> o.

Module lfsig: Signature for LF Terms, Types, and Kinds

Similarly, we can define a decoding as we did in Section 4.3 for untyped λ-terms. Again

81

the decoding is with respect to a variable decoding, which in this case is a bijective function

between meta-variables of type tm and term variables, and meta-variables of type ty and

type variables. A variable decoding ρ̄ is well-defined on a term P of type tm, ty, or ki

if all of the free variables of type tm and ty in P are in dom(ρ̄) and are mapped to term

and type variables, respectively. The decoding of P with respect to variable decoding ρ̄ is

denoted ||P||ρ̄ and defined in Figure 5.5.

||X||ρ̄ := ρ̄(X) for variable X ∈ dom(ρ̄)

||typ||ρ̄ := Type

||(prod ki P A)||ρ̄ := Πx : ||A||ρ̄.||K||〈X,x〉+ρ̄

where X is the bound variable in P, K is the body, and

x is a term variable such that x /∈ cod(ρ̄).

||(prod ty P A)||ρ̄ := Πx : ||A||ρ̄.||B||〈X,x〉+ρ̄

where X is the bound variable in P, B is the body, and

x is a term variable such that x /∈ cod(ρ̄).

||(abs ty P A)||ρ̄ := λx : ||A||ρ̄.||B||〈X,x〉+ρ̄

where X is the bound variable in P, B is the body, and

x is a term variable such that x /∈ cod(ρ̄).

||(app ty A M)||ρ̄ := ||A||ρ̄ ||M||ρ̄
||(abs tm P A)||ρ̄ := λx : ||A||ρ̄.||M||〈X,x〉+ρ̄

where X is the bound variable in P, M is the body, and

x is a term variable such that x /∈ cod(ρ̄).

||(app tm M N)||ρ̄ := ||M||ρ̄ ||N||ρ̄

Figure 5.5: Decoding of LF Terms

We need several other concepts analogous to those in Section 4.3. Given a set of LF

term and type variables V, we denote the set of LF terms, types, and kinds whose free

variables are in V as LF (V). At the meta-level, given a set of variables V of type tm and

ty, we denote the set of terms of type tm, ty, and ki in βη-long normal form built up from

the constants in the lfsig module, whose free variables are in V, as T (V).

We will again need object variable and meta-variable substitutions. Here object vari-

able substitutions will contain only term variables, and meta-variable substitutions will

always be tm-substitutions. Recall the following definitions. Given an object variable sub-

stitution σ, if ρ1 is a variable encoding well-defined on dom(σ) and ρ2 is a variable encoding

well-defined on cod(σ), then σρ1,ρ2 denotes the following tm-substitution.

σρ1,ρ2 = {〈ρ1(x), 〈〈P 〉〉ρ2
〉|〈x, P 〉 ∈ σ}

Given a tm-substitution σ, if ρ̄1 is a variable decoding well-defined on dom(σ) and ρ̄2 is a

variable decoding well-defined on cod(σ), then σρ̄1,ρ̄2 denotes the following object variable

82

substitution.

σρ̄1,ρ̄2 = {〈ρ̄1(X), ||P||ρ̄2
〉|〈X, P〉 ∈ σ}

We state the following results for the encoding and decoding which correspond to

Lemma 4.1, Lemma 4.3, Corollary 4.4, Corollary 4.5, Lemma 4.6, Lemma 4.8, Corollary 4.9,

Corollary 4.10, and Theorem 4.11 in Section 4.3. As in that section, we write explicitly

P =α Q when two terms, types, or kinds are α-convertible, and similarly for terms at the

meta-level. We omit the proofs since they are analogous to the corresponding proofs for

the encoding and decoding of untyped λ-terms in Section 4.3. The main differences are

that now we have three classes of objects at the object level, terms of three primitive types

at the meta-level, and two kinds of binding operators in the object language: products

and abstractions. It is easy to see that the encoding maps kinds to meta-terms of type ki,

types to meta-terms of type ty, and terms to meta-terms of type tm, and conversely for

the decoding.

Lemma 5.8 Let P be an LF term, type, or kind, and ρ a variable encoding that is well-
defined on P . Then 〈〈P 〉〉ρ is a term in T (cod(ρ)), i.e., a term of type tm, ty, or ki,
respectively, in βη-long form whose free variables are in cod(ρ).

Lemma 5.9 Let σ be an object variable substitution, and let P and Q be LF terms,
types, or kinds such that σ(P) =α Q. Let ρ1 be a variable encoding well-defined on P
and dom(σ), and ρ2 a variable encoding well-defined on Q and cod(σ) such that ρ1 and ρ2

agree on common domain elements that are free in both σ(P) and Q. Then

σρ1,ρ2(〈〈P 〉〉ρ1
) =α 〈〈Q〉〉ρ2

.

Corollary 5.10 (Well-Definedness of Encoding for LF Terms, Types, and Kinds)
Let P and Q be two LF terms, types, or kinds such that P =α Q. Let ρ1 and ρ2 be two

variable encodings that are well-defined on P and Q, and that agree on the free variables
of P and Q. Then 〈〈P 〉〉ρ1

=α 〈〈Q〉〉ρ2
.

Corollary 5.11 (Substitution Commutes with Encoding)
Let N be an LF term, P an LF term, type, or kind, and x a term variable. Let ρ1

be a variable encoding well-defined on P and x, and ρ2 a variable encoding well-defined
on [N/x]P and N such that ρ1 and ρ2 agree on common domain elements free in [N/x]P .
Then

[〈〈N〉〉ρ2
/〈〈x〉〉ρ1

]〈〈P 〉〉ρ1
=α 〈〈[N/x]P 〉〉ρ2

.

83

Lemma 5.12 Let P be a term of type tm, ty, or ki in βη-long form, and ρ̄ a variable
decoding that is well-defined on P. Then ||P||ρ̄ is a term in LF (cod(ρ̄)), i.e., a term, type,
or kind, respectively, whose free variables are in cod(ρ̄).

Lemma 5.13 Let σ be a tm-substitution, and let P and Q be terms of type tm, ty, or ki

in βη-long form such that σ(P) =α Q. Let ρ̄1 be a variable decoding well-defined on P and
dom(σ) and ρ̄2 a variable decoding well-defined on Q and cod(σ) such that ρ̄1 and ρ̄2 agree
on common domain elements that are free in both σ(P) and Q. Then

σρ̄1,ρ̄2(||P||ρ̄1
) =α ||Q||ρ̄2

.

Corollary 5.14 (Well-Definedness of Decoding for LF Terms, Types, and Kinds)
Let P and Q be terms of type tm, ty, or ki in βη-long form such that P =α Q. Let ρ̄1

and ρ̄2 be two variable decodings that are well-defined on P and Q, and that agree on the
free variables of P and Q. Then ||P||ρ̄1

=α ||Q||ρ̄2
.

Corollary 5.15 (Substitution Commutes with Decoding)
Let N be a term of type tm in βη-long form, P a term of type tm, ty, or ki in βη-long

form, and X a variable of type tm. Let ρ̄1 be a variable decoding well-defined on P and
X, and ρ̄2 a variable decoding well-defined on [N/X]P and N such that ρ̄1 and ρ̄2 agree on
common domain elements free in [N/X]P. Then

[||N||ρ̄2
/||X||ρ̄1

]||P||ρ̄1
=α ||[N/X]P||ρ̄2

.

Theorem 5.16 (Correctness of Encoding and Decoding of LF Terms, Types, and Kinds)
Let ρ be a variable encoding. The encoding 〈〈〉〉ρ is a bijection from the α-equivalence

classes of LF (dom(ρ)) to the α-equivalence classes of T (cod(ρ)), i.e., a bijective mapping
from sets of LF terms, types, and kinds with free variables in dom(ρ), to sets of simply-
typed terms of type tm, ty, and ki, respectively, in βη-long form whose free variables are
in cod(ρ). Furthermore, the decoding ||||ρ−1 is the inverse of 〈〈〉〉ρ.

The lfconv module on page 85 specifies β-convertibility for LF as given by the proof

system in Figure 5.1. The clauses are similar to those in the convert module on page 46

specifying βη-convertibility for the untyped λ-calculus, and so we do not discuss it further

here.

84

module lfconv.

import lfsig.

type redex_ty ty -> ty -> o.

type redex_tm tm -> tm -> o.

type red1_ki ki -> ki -> o.

type red1_ty ty -> ty -> o.

type red1_tm tm -> tm -> o.

type conv_ki ki -> ki -> o.

type conv_ty ty -> ty -> o.

type conv_tm tm -> tm -> o.

redex_ty (app_ty (abs_ty B A) N) (B N).

redex_tm (app_tm (abs_tm M A) N) (M N).

red1_ki (prod_ki K1 A) (prod_ki K2 A) :- pi X\ (red1_ki (K1 X) (K2 X)).

red1_ki (prod_ki K A1) (prod_ki K A2) :- red1_ty A1 A2.

red1_ty A1 A2 :- redex_ty A1 A2.

red1_ty (prod_ty B1 A) (prod_ty B2 A) :- pi X\ (red1_ty (B1 X) (B2 X)).

red1_ty (prod_ty B A1) (prod_ty B A2) :- red1_ty A1 A2.

red1_ty (abs_ty B1 A) (abs_ty B2 A) :- pi X\ (red1_ty (B1 X) (B2 X)).

red1_ty (abs_ty B A1) (abs_ty B A2) :- red1_ty A1 A2.

red1_ty (app_ty A1 N) (app_ty A2 N) :- red1_ty A1 A2.

red1_ty (app_ty A N1) (app_ty A N2) :- red1_tm N1 N2.

red1_tm M1 M2 :- redex_tm M1 M2.

red1_tm (abs_tm M1 A) (abs_tm M2 A) :- pi X\ (red1_tm (M1 X) (M2 X)).

red1_tm (abs_tm M A1) (abs_tm M A2) :- red1_ty A1 A2.

red1_tm (app_tm M1 N) (app_tm M2 N) :- red1_tm M1 M2.

red1_tm (app_tm M N1) (app_tm M N2) :- red1_tm N1 N2.

conv_ki K K.

conv_ki K L :- conv_ki L K.

conv_ki K L :- conv_ki K Q, conv_ki Q L.

conv_ki K L :- red1_ki K L.

conv_ty A A.

conv_ty A B :- conv_ty B A.

conv_ty A B :- conv_ty A C, conv_ty C B.

conv_ty A B :- red1_ty A B.

conv_tm M M.

conv_tm M N :- conv_tm N M.

conv_tm M N :- conv_tm M P, conv_tm P N.

conv_tm M N :- red1_tm M N.

Module lfconv: β-Convertibility in LF

85

module lfnorm.

import lfconv.

type normal_ki ki -> o.

type normal_ty ty -> o.

type normal_ty1 ty -> o.

type normal_ty2 ty -> o.

type normal_tm tm -> o.

type normal_tm1 tm -> o.

type norm_ki ki -> ki -> o.

type norm_ty ty -> ty -> o.

type norm_tm tm -> tm -> o.

normal_ki typ.

normal_ki (prod_ki K A) :- normal_ty A, pi X\ (normal_tm1 X => normal_ki (K X)).

normal_ty (abs_ty B A) :- normal_ty A, pi X\ (normal_tm1 X => normal_ty (B X)).

normal_ty A :- normal_ty1 A.

normal_ty1 (prod_ty B A) :- normal_ty A,

pi X\ (normal_tm1 X => normal_ty1 (B X)).

normal_ty1 A :- normal_ty2 A.

normal_ty2 (app_ty A N) :- normal_ty2 A, normal_tm N.

normal_tm (abs_tm M A) :- normal_ty A, pi X\ (normal_tm1 X => normal_tm (M X)).

normal_tm M :- normal_tm1 M.

normal_tm1 (app_tm M N) :- normal_tm1 M, normal_tm N.

norm_tm M N :- conv_tm M N, normal_tm N.

norm_ty A B :- conv_ty A B, normal_ty B.

norm_ki K L :- conv_ki K L, normal_ki L.

Module lfnorm: β-Normalization in LF

The lfnorm module above specifies β-normalization for terms, types, and kinds. The

last three clauses are the top-level clauses of the normalization programs for each class of

objects. Consider the following clause from that module, which specifies normalization for

LF terms.

norm_tm M N :- conv_tm M N, normal_tm N.

Its declarative reading is that N is the normal form of M if M converts to N, and N is in

normal form. Operationally, this clause makes use of the conv tm program in the lfconv

module, and then examines the form of N to see if it is normal. The normal tm program

is specified by the following clauses.

normal_tm (abs_tm M A) :- normal_ty A, pi X\ (normal_tm1 X => normal_tm (M X)).

86

normal_tm M :- normal_tm1 M.

normal_tm1 (app_tm M N) :- normal_tm1 M, normal_tm N.

It uses two predicates: normal tm and normal tm1. A goal of the form (normal tm M)

succeeds if M is normal, while a goal of the form (normal tm1 M) succeeds under slightly

stronger conditions: M must be a normal term that contains no outermost abstractions.

Recall that a normal LF term has the form λx1 : A1 . . . λxn : An.xM1 . . . Mk where n, k ≥ 0,

for i = 1, . . . , n, Ai is a normal form type, x is a term variable, and for i = 1, . . . , k, Mi

is a normal form term. The above program reflects this characterization. Consider the

declarative reading of the first clause. An abstraction (abs tm M A) is normal if A is

a normal type, and for arbitrary term X, if X is a normal term that contains no outer

abstractions, then the term resulting from substituting the bound variable in M with X is

normal. Operationally, the GENERIC search operation introduces a new signature item of

type tm, and the AUGMENT search operation adds the assumption that this new item is

a normal term that contains no abstractions. β-conversion at the meta-level is used to

replace the bound variable in M with the new signature item. The subgoal (normal tm

(M X)) ensures that this subterm in normal. The second normal tm clause states that

a normal term with no outer abstractions is normal, and the last clause reads that an

application is normal if the first term is normal and has no outer abstractions, and the

second term is an arbitrary normal term. Operationally, the normal tm program strips

off outer abstractions, while the normal tm1 program handles the inner applications and

variables. The normal ty and normal ki programs are similar. The normal ty program

requires two auxiliary predicates. An atomic formula of the form (normal ty1 A) states

that A is a normal type that is not an abstraction, while a formula of the form (normal ty2

A) states that A is a normal type that is not an abstraction or product.

Correctness results similar to Theorem 4.12, Lemma 4.13, Corollary 4.14, and The-

orem 4.15 hold for the conv ki, conv ty, and conv tm programs. The theorems below

extend these results to the norm ki, norm ty, and norm tm programs. In these theorems,

we take Σ0 to be the set of declarations of constants and their types that appears in the

lfsig, lfconv, and lfnorm modules, and P0 to be the set of clauses in lfconv and lfnorm.

We state the analogue of Lemma 4.13 (1) since it will be needed below. Its proof is similar

to the proof of Lemma 4.13 (1) and so is not repeated. Here, →∗
β is the reflexive transitive

closure of →β.

Lemma 5.17 Let ρ be a variable encoding and P and Q LF terms, types, or kinds in
LF (dom(ρ)) such that P →∗

β Q. Let Σ be the signature Σ0 ∪ cod(ρ).

1. If P and Q are terms, then Σ; lfconv ⊢I conv tm 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

2. If P and Q are types, then Σ; lfconv ⊢I conv ty 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

3. If P and Q are kinds, then Σ; lfconv ⊢I conv ki 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

87

We will need the following definition in the proofs below. Given a set V of variables of

type tm and ty, we define PV to be the following set of clauses:

PV := {normal ty2 X|X : ty ∈ V} ∪ {normal tm1 X|X : tm ∈ V}

These clauses state that a variable of type ty represents an LF type in normal form that is

not an abstraction or product, and a variable of type tm represents an LF term in normal

form that is not an abstraction. These clauses will be needed in checking whether or not

terms that contain these variable are in normal form.

Theorem 5.18 (Correctness I)
Let ρ be a variable encoding and P and Q LF terms, types, or kinds in LF (dom(ρ))

such that P =β Q, and Q is β-normal. Let Σ be the signature Σ0 ∪ cod(ρ), and let P be
the program P0 ∪ Pcod(ρ).

1. If P and Q are terms, then Σ;P ⊢I norm tm 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

2. If P and Q are types, then Σ;P ⊢I norm ty 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

3. If P and Q are kinds, then Σ;P ⊢I norm ki 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds.

Proof: (1) The judgment Σ;P ⊢I norm tm 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds if by BACKCHAIN and AND

search, the following judgments hold.

Σ;P ⊢I conv tm 〈〈P 〉〉ρ 〈〈Q〉〉ρ (1)

Σ;P ⊢I normal tm 〈〈Q〉〉ρ (2)

(2) The judgment Σ;P ⊢I norm ty 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds if by BACKCHAIN and AND search,

the following judgments hold.

Σ;P ⊢I conv ty 〈〈P 〉〉ρ 〈〈Q〉〉ρ (3)

Σ;P ⊢I normal ty 〈〈Q〉〉ρ (4)

(3) The judgment Σ;P ⊢I norm ki 〈〈P 〉〉ρ 〈〈Q〉〉ρ holds if by BACKCHAIN and AND search,

the following judgments hold.

Σ;P ⊢I conv ki 〈〈P 〉〉ρ 〈〈Q〉〉ρ (5)

Σ;P ⊢I normal ki 〈〈Q〉〉ρ (6)

Since Q is normal, P →∗
β Q. Thus (1), (3), or (5) holds by Lemma 5.17. We prove (2),

(4), or (6) by simultaneous induction on the structure of Q. We show the cases when Q is

a type. The cases when when Q is a term or kind are similar.

Base: Q is a type variable. (4) holds if by BACKCHAIN on the second clause for

normal ty followed by BACKCHAIN on the second clause for normal ty1, the following

judgment holds.

Σ;P ⊢I normal ty2 〈〈Q〉〉ρ

88

Since Q is a variable, Q must be in dom(ρ), and thus 〈〈Q〉〉ρ ≡ ρ(Q). The term ρ(Q) is a

variable of type ty, and the clause (normal ty2 ρ(Q)) is in Pcod(ρ), so the above judgment

holds.

Case: Q has the form Πx : A.B. Let X be a variable of type ty that does not appear

cod(ρ). By the definition of the encoding 〈〈Πx : A.B〉〉ρ ≡ (prod ty X\〈〈B〉〉〈x,X〉+ρ 〈〈A〉〉ρ).

We must show that the following judgment holds.

Σ;P ⊢I normal ty (prod ty X\〈〈B〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

This judgment holds if by BACKCHAIN the following judgment holds.

Σ;P ⊢I normal ty1 (prod ty X\〈〈B〉〉〈x,X〉+ρ 〈〈A〉〉ρ)

The above judgment holds if by BACKCHAIN, and AND search, the following judgments

hold.

Σ;P ⊢I normal ty 〈〈A〉〉ρ

Σ;P ⊢I pi X\(normal ty X => normal ty1 (X\〈〈B〉〉〈x,X〉+ρ X))

The first judgment holds by the induction hypothesis. Since X /∈ cod(ρ), X is not in Σ.

The second judgment holds if by GENERIC followed by AUGMENT, the following judgment

holds.

Σ ∪ {X : tm};P ∪ {normal tm1 X} ⊢I normal ty1 (X\〈〈B〉〉〈x,X〉+ρ X) (7)

By β-conversion at the meta-level, (X\〈〈B〉〉〈x,X〉+ρ X) ≡ 〈〈B〉〉〈x,X〉+ρ. By the induction

hypothesis, the following judgment holds.

Σ ∪ {X : tm};P ∪ {normal tm1 X} ⊢I normal ty 〈〈B〉〉〈x,X〉+ρ

Since Q is normal, we know that B is not an abstraction. Thus the constant at the head

of the term 〈〈B〉〉〈x,X〉+ρ is not abs ty. Thus the last step in a proof of the latter judgment

must be a BACKCHAIN on the second clause for normal ty. Hence (7) holds.

Case: Q has the form λx : A.B. This case is similar to the previous one.

Case: Q has the form AM . By the definition of the encoding

〈〈AM〉〉ρ ≡ (app ty 〈〈A〉〉ρ 〈〈M〉〉ρ).

We must show that the following judgment holds.

Σ;P ⊢I normal ty (app ty 〈〈A〉〉ρ 〈〈M〉〉ρ)

This judgment holds if by a BACKCHAIN on the second clause for normal ty, then a

BACKCHAIN on the second clause for normal ty1, then a BACKCHAIN on the first clause

for normal ty2, followed by AND search, the following judgments hold.

Σ;P ⊢I normal ty2 〈〈A〉〉ρ (8)

Σ;P ⊢I normal tm 〈〈M〉〉ρ

89

The latter judgment holds by the induction hypothesis. The following judgment also holds

by the induction hypothesis.

Σ;P ⊢I normal ty 〈〈A〉〉ρ

Since AM is normal, we know that A is not an abstraction or product. Thus the constant

at the head of the term 〈〈A〉〉ρ is not abs ty or prod ty. Thus the last steps in a proof of

the former judgment must be a BACKCHAIN on the second clause for normal ty, followed

by a BACKCHAIN on the second clause for normal ty1. Hence (8) holds.

Theorem 5.19 (Correctness II)
Let ρ̄ be a variable decoding and P and Q terms in T (dom(ρ̄)). Let Σ be the signature

Σ0 ∪ dom(ρ̄), and let P be the program P0 ∪ Pdom(ρ̄). If one of the following judgments
hold,

1. Σ;P ⊢I norm tm P Q

2. Σ;P ⊢I norm ty P Q

3. Σ;P ⊢I norm ki P Q

then ||P||ρ =β ||Q||ρ and ||Q||ρ is β-normal.

Proof: (1) By BACKCHAIN, the following judgments hold.

Σ;P ⊢I conv tm P Q (9)

Σ;P ⊢I normal tm Q (10)

(2) By BACKCHAIN, the following judgments hold.

Σ;P ⊢I conv ty P Q (11)

Σ;P ⊢I normal ty Q (12)

(3) By BACKCHAIN, the following judgments hold.

Σ;P ⊢I conv ki P Q (13)

Σ;P ⊢I normal ki Q (14)

From (9), (11), or (13) we can show that ||P||ρ̄ =β ||Q||ρ̄ by a proof similar to Theorem 4.15.

To show that ||Q||ρ̄ is a normal form, we prove the following statements by simultaneous

induction on the height of the meta-proofs of (10), (12), and (14).

1. If (10) holds, then Q is a normal term.

2. If (12) holds, then Q is a normal type.

3. If (14) holds, then Q is a normal kind.

90

4. If Σ;P ⊢I normal tm1 Q holds, then Q is a normal term that is a not an abstraction.

5. If Σ;P ⊢I normal ty1 Q holds, then Q is a normal type that is a not an abstraction.

6. If Σ;P ⊢I normal ty2 Q holds, then Q is a normal type that is a not an abstraction

or product.

We show the cases for (5) and (6). The others are similar.

Base: Σ;P ⊢I normal ty2 Q is provable in one step. Then the clause (normal ty2 Q)

is in Pdom(ρ̄). Thus Q is in dom(ρ̄). Since Q has type ty, ||Q||ρ̄ is a type variable, and hence

Q is in normal form and is not an abstraction or product.

Case: The last step in a proof of Σ;P ⊢I normal ty2 Q is a BACKCHAIN on the

clause in lfnorm for normal ty2. Then Q has the form (app ty A N). By the decoding

||(app ty A N)||ρ̄ ≡ ||A||ρ̄ ||N||ρ̄. By BACKCHAIN, the following judgments hold.

Σ;P ⊢I normal ty2 A

Σ;P ⊢I normal tm N

By the induction hypothesis ||A||ρ̄ is a normal type that is not an abstraction or product,

and ||N||ρ̄ is normal term. Thus ||A||ρ̄ ||N||ρ̄ is a normal type.

Case: The last step in a proof of Σ;P ⊢I normal ty1 Q is a BACKCHAIN on the second

clause for normal ty1. Thus Σ;P ⊢I normal ty2 Q holds. By the induction hypothesis,

||Q||ρ̄ is normal type that is not an abstraction or product.

Case: The last step in a proof of Σ;P ⊢I normal ty1 Q is a BACKCHAIN on the first

clause for normal ty1. Then Q has the form (prod ty B A), where X is the bound variable

in B and C is the body. We assume that X does not appear in Σ, otherwise we rename

it. Let x be a variable that does not occur in cod(ρ̄). By the definition of the decoding

||(prod ty B A)||ρ̄ ≡ Πx : ||A||ρ̄.||C||〈X,x〉+ρ̄. By BACKCHAIN and AND search, the following

judgments hold.

Σ;P ⊢I normal ty A

Σ;P ⊢I pi X\(normal tm1 X => normal ty1 (B X))

By the induction hypothesis ||A||ρ̄ is a normal type. By GENERIC followed by AUGMENT on

the latter judgment, the following holds.

Σ ∪ {X : tm};P ∪ {normal tm1 X} ⊢I normal ty1 (B X)

By β-conversion at the meta-level (B X) =βη C. Thus by the induction hypothesis, ||C||〈X,x〉+ρ̄

is a normal type that is not an abstraction. Thus Πx : ||A||ρ̄.||C||〈X,x〉+ρ̄ is a normal type.

Corollary 5.20 Let ρ be a variable encoding. Let P be an LF term, type, or kind in
LF (dom(ρ)), and P a term of type tm, ty, or ki in T (cod(ρ)). Let Σ be the signature
Σ0∪ cod(ρ), and let P be the program P0∪Pcod(ρ). If one of the following judgments hold,

91

1. Σ;P ⊢I norm tm 〈〈P 〉〉ρ P

2. Σ;P ⊢I norm ty 〈〈P 〉〉ρ P

3. Σ;P ⊢I norm ki 〈〈P 〉〉ρ P

then P is 〈〈P β〉〉ρ.

Proof: By Theorem 5.16, showing that P is 〈〈P β〉〉ρ is equivalent to showing that ||P||ρ−1 is

P β. By Lemma 5.8, 〈〈P 〉〉ρ is in T (cod(ρ)). Thus we can apply Theorem 5.19 to obtain the

fact that ||P||ρ−1 is the normal form of ||〈〈P 〉〉ρ||ρ−1. By Theorem 5.16, ||〈〈P 〉〉ρ||ρ−1 = P , and

hence we have our result.

Note that Theorems 5.18 and 5.19, and Corollary 5.20 will hold when the program P

is larger, but does contain any interfering clauses, i.e., clauses for any of the normalization

or convertibility predicates in lfconv or lfnorm other than those that are already in

those modules. In applying these results in the next section, programs will often contain

additional clauses for the has type and is type predicates.

5.3 Translating LF Signatures to Logic Programs

In Section 4.2, after specifying βη-convertibility for untyped λ-terms, we specified a type

assignment system for the simply typed λ-calculus. Similarly, for LF, we could specify the

inference rules of Figure 5.2 as a set of clauses, and obtain a program for type checking LF

assertions. Such an approach is taken in [FM89]. Here, we will instead start with an LF

signature, and compile each signature item into a definite clause. Using this approach, no

auxiliary clauses specifying the LF inference rules are needed in solving goals obtained by

translating LF judgments of the form K ⇒ kind, A ⇒ K, or M ⇒ A The only auxiliary

clauses required are those for normalization in lfconv and lfnorm.

We define both a “negative” translation and a “positive” translation. The negative

translation maps canonical signature items to definite clauses, while the positive translation

maps canonical judgments (i.e., P ⇒ Q or P ⇒ kind where P and Q are canonical) to goal

formulas. Like term encodings, the translation is with respect to a variable encoding. A

variable encoding ρ is well-defined on a context item, or a judgment if it is well-defined on

the terms on the left and right of the colon or arrow. We use double brackets subscripted by

a variable encoding and superscripted by a sign [[]]−ρ and [[]]+ρ for the negative and positive

translations respectively. We say that a variable encoding is well-defined on a context

Γ, if it is well-defined on all of the pairs in Γ. A variable encoding is well-defined on a

judgment P ⇒ Q if it is well defined on both P and Q. We write [[Γ]]−ρ to denote the set

of clauses containing [[x : P]]−ρ for every x : P ∈ Γ. The negative translation is defined in

Figure 5.6 and the positive translation is defined in Figure 5.7. Note that these definitions

are mutually recursive.

92

[[B : Πx : A.K]]−ρ := pi X\
(

[[x ⇒ A]]+〈x,X〉+ρ => [[Bx : K]]−〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[A : Type]]−ρ := is type 〈〈A〉〉ρ where A is a base type.

[[M : Πx : A.B]]−ρ := pi X\
(

[[x ⇒ A]]+〈x,X〉+ρ => [[Mx : B]]−〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[M : A]]−ρ := pi B\(norm ty 〈〈A〉〉ρ B => has type 〈〈M〉〉ρ B)

where A is a base type and

B is a variable of type ty such that B /∈ cod(ρ).

Figure 5.6: Negative Translation of LF Judgments to Definite Clauses

The negative translation maps a signature item to a formula of the form:

pi X1\(G1 => . . . pi Xn\(Gn => D). . .).

Such formulas can also be written in the following two ways where we assume that for

i = 1, . . . , n, Xi+1, . . . , Xn do not appear in Gi or D.

pi X1\. . .pi Xn\((G1, . . . ,Gn) => D)

D :- G1, . . . ,Gn.

The latter form is the way we have been writing definite clauses, where the universal quan-

tification is implicit. The formulas obtained by translating signature items are clauses for

the has type and is type predicates. Note that these clauses will contain normalization

subgoals. These subgoals reflect the normalization that occurs in the inference rules of

C-LF after substituting terms for variables inside types.

93

[[Πx : A.K ⇒ kind]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[K ⇒ kind]]+〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[Type ⇒ kind]]+ρ := true

[[Πx : A.B ⇒ Type]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[B ⇒ Type]]+〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[λx : A.B ⇒ Πx : A.K]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[B ⇒ K]]+〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[B ⇒ Πx : A.K]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[Bx ⇒ K]]+〈x,X〉+ρ

)

where B is not an abstraction and

X is a variable of type tm such that X /∈ cod(ρ).

[[A ⇒ Type]]+ρ := sigma B\(norm ty 〈〈A〉〉ρ B, is type B)

where A is a base type and

B is a variable of type ty such that B /∈ cod(ρ).

[[λx : A.M ⇒ Πx : A.B]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[M ⇒ B]]+〈x,X〉+ρ

)

where X is a variable of type tm such that X /∈ cod(ρ).

[[M ⇒ Πx : A.B]]+ρ := [[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X =>

[[x : A]]−〈x,X〉+ρ => [[Mx ⇒ B]]+〈x,X〉+ρ

)

where M is not an abstraction and

X is a variable of type tm such that X /∈ cod(ρ).

[[M ⇒ A]]+ρ := sigma N\(sigma B\(norm tm 〈〈M〉〉ρ N,

norm ty 〈〈A〉〉ρ B, has type N B))

where A is a base type, N is a variable of type tm and

B is variables of type ty such that N, B /∈ cod(ρ).

Figure 5.7: Positive Translation of LF Judgments to Goal Formulas

94

To illustrate this translation, we consider a simple example from an LF signature

specifying natural deduction for first-order logic. The following is a declaration which

introduces the constant for universal quantification and gives it a type: ∀ : (i → form) →

form. Let ρ be a variable encoding that contains {〈i, i〉, 〈form, form〉, 〈∀, forall〉}. The

translation of this signature item is as follows.

[[∀ : (i → form) → form]]−ρ ≡

pi A\([[i ⇒ Type]]+〈A,A〉+ρ,

pi X\(normal tm1 X =>[[x : i]]−〈x,X〉+〈A,A〉+ρ => [[Ax ⇒ form]]+〈x,X〉+〈A,A〉+ρ) =>

[[∀A ⇒ form]]−〈A,A〉+ρ) ≡

has_type (app_tm forall A) B :-

norm_ty form B,

sigma B1\ (norm_ty i B1, is_type B1),

pi X\ (normal_tm1 X => (pi B2\ (norm_ty i B2 => has_type X B2)) =>

(sigma N\ sigma B3\ (norm_tm (app_tm A X) N, norm_ty form B3,

has_type N B3))).

Clearly this clause can be simplified. We defer further discussion until Section 5.4 where we

present, in full, a program obtained by translating a signature specifying natural deduction

for a subset of first-order intutionistic logic.

We will now proceed to prove the correctness of the translations. Before doing so, we

prove a lemma demonstrating that in the clauses and goals resulting from the translation,

terms and types are normalized (via norm ty and norm tm) appropriately. To see why these

normalization subgoals are necessary, consider the (C-APP-OBJ) rule. Each application of

this rule involves a signature item of the form x : Πx1 : A1 . . . Πxn : An.B. In this signature

item, for i = 2, . . . , n, the type Ai may have occurrences of the bound variables x1, . . . , xi−1.

In an application of the rule, these bound variables x1, . . . , xn get “instantiated” with the

terms N1, . . . , Nn and the resulting types are then normalized. In the corresponding logic

program, the “instantiation” step corresponds to instantiating the universally quantified

variables in backchaining on a particular clause. The calls to the norm ty program are then

needed to normalize the instantiated types. We will see that the calls to norm tm simply

replace bound variables with free variables. While normalization can clearly be used to

perform this task (as is done here), a simpler operation could in fact be implemented

instead.

It is interesting to note that if the equations for β-reduction for LF terms as specified

in the lfconv program were built into the unifier of the meta-language, the positive and

negative translations could be defined so that they are the same translation. The definition

of the translation above must differentiate between normalization subgoals generated by

the positive translation that must be solved by the interpreter, and normalization subgoals

generated by the negative translation which appear in the bodies of clauses.

95

Recall that in proving the correctness of the encodings of object level terms as meta-

terms, we proved that substitution commutes with the encoding operation (and similarly

for decodings). Here we actually prove that both substitution and normalization commute

with the translation operation. For example, consider a given LF judgment for which we

perform a substitution of terms for variables and normalize at the object level, and then

perform the translation on the resulting judgment obtaining a provable goal. We will show

that if we first translate the original judgment, encode the terms used in the substitution

separately, perform the corresponding instantiation of the encoded terms for the meta-

variables at the meta-level, and then do normalization via the normalization programs,

the result will also be a provable goal.

We need the following definition for the induction in this lemma. We define the order

of a type in β-normal form as follows: the order of a base type is 0, and the order of a type

of the form λx1 : A1 . . . λxn : An.Πy1 : B1 . . . Πym : Bm.C where C is a base type is one

greater than the maximum order of the types A1, . . . , An, B1, . . . , Bm. Similarly, we define

the order of a kind in β-normal form. The order of Type is 0, and the order of a kind of

the form Πx1 : A1 . . . Πxn : An.Type is one greater than the maximum order of the types

A1, . . . , An. The order of an arbitrary type or kind is the order of its normal form.

As in Section 4.3, we no longer distinguish between two α-convertible terms. Now,

when we write P = Q, it is understood that P is α-convertible to Q, and similarly for

terms at the meta-level.

Lemma 5.21 Let Γ be a context. Let N1, . . . ,Nn be canonical LF terms with respect to
Γ, and let x, x1, . . . , xn be variables. Let N be the variable x or a canonical LF term with
respect to Γ. Let σ be the substitution

{〈x,N〉, 〈x1,N1〉, . . . , 〈xn,Nn〉}.

Let A be a canonical LF type with respect to Γ. Let ρ1 be a variable encoding well-defined
on A and dom(σ), and ρ2 a variable encoding well-defined on σ(A) and cod(σ), such that
ρ1 and ρ2 agree on common domain elements that are free in σ(A). Let Σ be a signature
that includes the declarations of lfsig, lfconv, lfnorm, and the variables in cod(ρ2).
Let P be a set of definite clauses that includes lfconv, lfnorm, Pcod(ρ2), and possibly
clauses for the is type and has type predicates all of whose constants are in Σ. Then the
following hold.

1. Σ;P ⊢I [[N ⇒ σ(A)β]]+ρ2
iff Σ;P ⊢I σρ1,ρ2([[x ⇒ A]]+ρ1

).

2. Σ;P ⊢I [[σ(A)β ⇒ Type]]+ρ2
iff Σ;P ⊢I σρ1,ρ2([[A ⇒ Type]]+ρ1

).

3. If y is a variable that is not in dom(σ), but is in dom(ρ1) and dom(ρ2) and ρ1(y) =

ρ2(y), and G is any goal formula, then

Σ;P, [[y : σ(A)β]]−ρ2
⊢I G iff Σ;P, σρ1,ρ2([[y : A]]−ρ1

) ⊢I G.

96

Proof: We prove the forward and backward direction of (1), (2), and (3) by simultaneous

induction on the order of A. We show only the cases for the forward direction. The other

direction is similar.

Base: (1) A is a base type. Let N be a variable of type tm and B a variable of type ty

that do not appear in cod(ρ1) or cod(ρ2). By the translation:

[[N ⇒ σ(A)β]]+ρ2
≡ sigma N\(sigma B\(norm tm 〈〈N〉〉ρ2

N,

norm ty 〈〈σ(A)β〉〉ρ2
B,

has type N B))

By Corollary 5.20 we know that the instances of N and B for which this goal is provable are

〈〈N〉〉ρ2
and 〈〈σ(A)β〉〉ρ2

, respectively. Thus, by 2 applications of the INSTANCE operation,

followed by 2 applications of AND search, the following judgments hold.

Σ;P ⊢I norm tm 〈〈N〉〉ρ2
〈〈N〉〉ρ2

Σ;P ⊢I norm ty 〈〈σ(A)β〉〉ρ2
〈〈σ(A)β〉〉ρ2

Σ;P ⊢I has type 〈〈N〉〉ρ2
〈〈σ(A)β〉〉ρ2

(15)

Since 〈x,N〉 ∈ σ, 〈〈〈x〉〉ρ1
, 〈〈N〉〉ρ2

〉 ∈ σρ1,ρ2. Thus, 〈〈N〉〉ρ2
= σρ1,ρ2(〈〈x〉〉ρ1

). Since N is

canonical, by Theorem 5.18 we can conclude that the following judgment holds.

Σ;P ⊢I norm tm σρ1,ρ2(〈〈x〉〉ρ1
) 〈〈N〉〉ρ2

(16)

By Lemma 5.9, 〈〈σ(A)〉〉ρ2
= σρ1,ρ2(〈〈A〉〉ρ1

). Since σ(A) = σ(A)β , by Theorem 5.18, we can

conclude that the following judgment holds.

Σ;P ⊢I norm ty σρ1,ρ2(〈〈A〉〉ρ1
) 〈〈σ(A)β〉〉ρ2

(17)

By the translation (with the substitution moved inward as far as possible):

σρ1,ρ2([[x ⇒ A]]+ρ1
) ≡ sigma N\(sigma B\(norm tm σρ1,ρ2(〈〈x〉〉ρ1

) N,

norm ty σρ1,ρ2(〈〈A〉〉ρ1
) B,

has type N B))

From (16), (17), and (15), respectively, it follows that the three conjuncts of this goal are

provable from program Σ;P with instances 〈〈N〉〉ρ2
and 〈〈σ(A)β〉〉ρ2

for N and B respectively.

Base: (2) A is a base type. Let B be a variable of type ty that does not appear in

cod(ρ1) or cod(ρ2). By the translation:

[[σ(A)β ⇒ Type]]+ρ2
≡ sigma B\(norm ty 〈〈σ(A)β〉〉ρ2

B, is type B)

By Corollary 5.20 we know that the instance of B for which this goal is provable is

〈〈σ(A)β〉〉ρ2
. Thus, by the INSTANCE operation, followed by AND search, the following

97

judgments hold.

Σ;P ⊢I norm ty 〈〈σ(A)β〉〉ρ2
〈〈σ(A)β〉〉ρ2

Σ;P ⊢I is type 〈〈σ(A)β〉〉ρ2
(18)

By Lemma 5.9, 〈〈σ(A)〉〉ρ2
= σρ1,ρ2(〈〈A〉〉ρ1

). Since σ(A) =β σ(A)β , by Theorem 5.18, we

can conclude that the following judgment holds.

Σ;P ⊢I norm ty σρ1,ρ2(〈〈A〉〉ρ1
) 〈〈σ(A)β〉〉ρ2

(19)

By the translation (with the substitution moved inward as far as possible):

σρ1,ρ2([[A ⇒ Type]]+ρ1
) ≡ sigma B\(norm ty σρ1,ρ2(〈〈A〉〉ρ1

) B, is type B)

From (19) and (18), respectively, it follows that the two conjuncts of this goal are provable

from program Σ;P with instance 〈〈σ(A)β〉〉ρ2
for B.

Base: (3) A is a base type. We prove this case by a second induction on the height of

a proof of:

Σ;P, [[y : σ(A)β]]−ρ2
⊢I G.

All cases follow by a simple application of the subinduction hypothesis except for the case

when the last step in the proof of the above judgment is a BACKCHAIN on [[y : σ(A)β]]−ρ2
. Let

B be a variable of type ty that does not appear in cod(ρ1) or cod(ρ2). By the translation:

[[y : σ(A)β]]−ρ2
≡ pi B\(norm ty 〈〈σ(A)β〉〉ρ2

B => has type 〈〈y〉〉ρ2
B)

Thus G has the form (has type 〈〈y〉〉ρ2
C), where C is an instance of B. By BACKCHAIN,

the following judgment holds.

Σ;P, [[y : σ(A)β]]−ρ2
⊢I norm ty 〈〈σ(A)β〉〉ρ2

C

By Corollary 5.20, C must be 〈〈σ(A)β〉〉ρ2
. By Lemma 5.9, 〈〈σ(A)〉〉ρ2

= σρ1,ρ2(〈〈A〉〉ρ1
). Since

σ(A) =β σ(A)β , by Theorem 5.18, we can conclude that the following judgment holds.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I norm ty σρ1,ρ2(〈〈A〉〉ρ1

) 〈〈σ(A)β〉〉ρ2
(20)

By the translation (with the substitution moved inward as far as possible):

σρ1,ρ2([[y : A]]−ρ1
) ≡ pi B\(norm ty σρ1,ρ2(〈〈A〉〉ρ1

) B => has type σρ1,ρ2(〈〈y〉〉ρ1
) B)

From (20), by BACKCHAIN on this clause (in the forward direction) with 〈〈σ(A)β〉〉ρ2
as the

instance of B we can conclude that the following judgment holds.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I has type σρ1,ρ2(〈〈y〉〉ρ1

) 〈〈σ(A)β〉〉ρ2
(21)

98

Since y /∈ dom(σ), ρ1(y) /∈ dom(σρ1,ρ2). We also know that ρ1(y) = ρ2(y). Thus

σρ1,ρ2(〈〈y〉〉ρ1
) = 〈〈y〉〉ρ1

= 〈〈y〉〉ρ2
. Hence the goal formula (has type σρ1,ρ2(〈〈y〉〉ρ1

) 〈〈σ(A)β〉〉ρ2
)

is the same as the goal formula (has type 〈〈y〉〉ρ2
C), which is the goal formula G that we

set out to prove.

This completes the three base cases. We now show that (1), (2), and (3) hold when

the type A has order n, assuming that they hold for types of order less than n. We will

refer to these assumptions as induction hypotheses (1), (2), and (3).

Case: (1) A is Πz1 : A1 . . . Πzm : Am.B where B is a base type. We assume that

z1, . . . , zm do not appear in dom(σ) or cod(σ), otherwise we rename them. Then

σ(A)β = Πz1 : σ(A1)
β . . . Πzm : σ(Am)β.σ(B)β .

We show the case when N is a canonical term. The case when N is x is simpler. In order

to apply the translation N must have the form

λz1 : σ(A1)
β . . . λzm : σ(Am)β .P.

Let Z1, . . . , Zm, N be distinct variables of type tm and B a variable of type ty that do not

occur in cod(ρ1) or cod(ρ2). Note that these variables also do not appear in Σ. For

i = 1, . . . ,m, let

ρi
1 := 〈z1, Z1〉 + · · · + 〈zi, Zi〉 + ρ1

ρi
2 := 〈z1, Z1〉 + · · · + 〈zi, Zi〉 + ρ2

Σi := Σ ∪ {Z1:tm,...,Zi:tm}

Pi := P ∪ {normal tm1 Z1, . . . , normal tm1 Zi}

For i = 1, . . . ,m, note that ρi
1 ⊆ ρ1, ρi

2 ⊆ ρ2, and zi /∈ dom(σ). Thus the subsitution σρi
1,ρi

2

is the same substitution as σρ1,ρ2 . By the translation:

[[λz1 : σ(A1)
β . . . λzm : σ(Am)β .P ⇒ Πz1 : σ(A1)

β . . . Πzm : σ(Am)β .σ(B)β]]+ρ2
≡

[[σ(A1)
β ⇒ Type]]+ρ2

, pi Z1\(normal tm1 Z1 => [[z1 : σ(A1)
β]]−

ρ1
2
=>

...

[[σ(Am)β ⇒ Type]]+
ρm−1
2

, pi Zm\(normal tm1 Zm => [[zm : σ(Am)β]]−ρm
2

=>

sigma N\(sigma B\(norm tm 〈〈P 〉〉ρm
2

N,

norm ty 〈〈σ(B)β〉〉ρm
2

B,

has type N B). . .)

By m alternate applications of AND, GENERIC, and AUGMENT twice each time, the follow-

ing judgments hold.

Σ;P ⊢I [[σ(A1)
β ⇒ Type]]+ρ2

99

Σ1;P1, [[z1 : σ(A1)
β]]−

ρ1
2
⊢I [[σ(A2)

β ⇒ Type]]+
ρ1
2

...

Σm−1;Pm−1, [[z1 : σ(A1)
β]]−

ρ1
2
, . . . , [[zm−1 : σ(Am−1)

β]]−
ρm−1
2

⊢I [[σ(Am)β ⇒ Type]]+
ρm−1
2

Σm;Pm, [[z1 : σ(A1)
β]]−

ρ1
2
, . . . , [[zm : σ(Am)β]]−ρm

2
⊢I sigma N\(sigma B\

(norm tm 〈〈P 〉〉ρm
2

N, norm ty 〈〈σ(B)β〉〉ρm
2

B, has type N B))

By induction hypothesis (2) in the forward direction, the following judgments hold.

Σ;P ⊢I σρ1,ρ2([[A1 ⇒ Type]]+ρ1
)

Σ1;P1, [[z1 : σ(A1)
β]]−

ρ1
2
⊢I σρ1

1,ρ1
2
([[A2 ⇒ Type]]+

ρ1
1
)

...

Σm−1;Pm−1, [[z1 : σ(A1)
β]]−

ρ1
2
, . . . , [[zm−1 : σ(Am−1)

β]]−
ρm−1
1

⊢I σρm−1
1 ,ρm−1

2
([[Am ⇒ Type]]+

ρm−1
2

)

By repeated applications of induction hypothesis (3) in the forward direction, the following

judgments hold.

Σ;P ⊢I σρ1,ρ2([[A1 ⇒ Type]]+ρ1
) (22)

Σ1;P1, σρ1
1,ρ1

2
([[z1 : A1]]

−
ρ1
1
) ⊢I σρ1

1,ρ1
2
([[A2 ⇒ Type]]+

ρ1
1
)

...

Σm−1;Pm−1, σρ1
1,ρ1

2
([[z1 : A1]]

−
ρ1
1
), . . . , σ

ρm−1
1 ,ρm−1

2
([[zm−1 : Am−1]]

−
ρm−1
1

)

⊢I σρm−1
1 ,ρm−1

2
([[Am ⇒ Type]]+

ρm−1
1

)

Σm;Pm, σρ1
1,ρ1

2
([[z1 : A1]]

−
ρ1
1
), . . . , σρm

1 ,ρm
2

([[zm : Am]]−ρm
1

) ⊢I sigma N\(sigma B\

(norm tm 〈〈P 〉〉ρm
2

N, norm ty 〈〈σ(B)β〉〉ρm
2

B, has type N B)) (23)

By Corollary 5.20 we know that the instances of N and B for which (23) hold are 〈〈P 〉〉ρm
2

and 〈〈σ(B)β〉〉ρm
2

, respectively. Let P ′ be the following set of clauses.

P ′ := {σρ1,ρ2([[z1 : A1]]
−
ρ1
1
), . . . , σρ1,ρ2([[zm : Am]]−ρm

1
)}.

Thus, by 2 applications of the INSTANCE operation, followed by 2 applications of AND

search, the following judgments hold.

Σm;Pm,P ′ ⊢I norm tm 〈〈P 〉〉ρm
2

〈〈P 〉〉ρm
2

Σm;Pm,P ′ ⊢I norm ty 〈〈σ(B)β〉〉ρm
2

〈〈σ(B)β〉〉ρm
2

Σm;Pm,P ′ ⊢I has type 〈〈P 〉〉ρm
2

〈〈σ(B)β〉〉ρm
2

(24)

100

By assumption, 〈x, λz1 : σ(A1)
β . . . λzm : σ(Am)β .P 〉 ∈ σ, so by β-conversion and substi-

tution:

P =β (λz1 : σ(A1)
β . . . λzm : σ(Am)β .P)z1 . . . zm = σ(xz1 . . . zm).

Since P is canonical, by Theorem 5.18, the following holds.

Σm;Pm,P ′ ⊢I norm tm 〈〈σ(xz1 . . . zm)〉〉ρm
2

〈〈P 〉〉ρm
2

By Lemma 5.9, 〈〈σ(xz1 . . . zm)〉〉ρm
2

= σρm
1 ,ρm

2
(〈〈xz1 . . . zm〉〉ρm

1
). Also σρm

1 ,ρm
2

= σρ1,ρ2, so the

above judgment is equivalent to:

Σm;Pm,P ′ ⊢I norm tm σρ1,ρ2(〈〈xz1 . . . zm〉〉ρm
1

) 〈〈P 〉〉ρm
2

(25)

By Lemma 5.9, 〈〈σ(B)〉〉ρm
2

= σρm
1 ,ρm

2
(〈〈B〉〉ρm

1
). Since σ(B) =β σ(B)β, and σρm

1 ,ρm
2

= σρ1,ρ2 ,

it follows by Corollary 5.20 that the following judgment holds.

Σm;Pm,P ′ ⊢I norm ty σρ1,ρ2(〈〈B〉〉ρm
1

) 〈〈σ(B)β〉〉ρm
2

(26)

We must show that the following judgment holds.

Σ;P ⊢I σρ1,ρ2([[x ⇒ Πz1 : A1 . . . Πzm : Am.B]]+ρ1
)

By the translation σρ1,ρ2([[x ⇒ A]]+ρ1
) ≡

σρ1,ρ2([[A1 ⇒ Type]]+ρ1
, pi Z1\(normal tm1 Z1 => [[z1 : A1]]

−
ρ1
1
=>

...

[[An ⇒ Type]]+
ρm−1
1

, pi Zn\(normal tm1 Z1 => [[zm : Am]]−ρm
1

=>

sigma N\(sigma B\(norm tm 〈〈xz1 . . . zm〉〉ρm
1

N,

norm ty 〈〈B〉〉ρm
1

B,

has type N B). . .))

Since Z1, . . . , Zm, N, B do not appear in cod(ρ1) or cod(ρ2), they do not appear in σρ1,ρ2 ,

so we can move the substitution as far inward as possible. Thus the above judgment

holds if by m alternate applications of AND, GENERIC, and AUGMENT twice each time, the

following judgments hold.

Σ;P ⊢I σρ1,ρ2([[A1 ⇒ Type]]+ρ1
)

Σ1;P1, σρ1,ρ2([[z1 : A1]]
−
ρ1
1
) ⊢I σρ1,ρ2([[A2 ⇒ Type]]+

ρ1
1
)

...

Σm−1;Pm−1, σρ1,ρ2([[z1 : A1]]
−
ρ1
1
), . . . , σρ1,ρ2([[zm−1 : Am−1]]

−
ρm−1
1

)

⊢I σρ1,ρ2([[Am ⇒ Type]]+
ρm−1
1

)

Σm;Pm, σρ1,ρ2([[z1 : A1]]
−
ρ1
1
), . . . , σρ1,ρ2([[zm : Am]]−ρm

1
) ⊢I sigma N\(sigma B\

(norm tm σρ1,ρ2(〈〈xz1 . . . zm〉〉ρm
1

) N, norm ty σρ1,ρ2(〈〈B〉〉ρm
1

) B, has type N B))

101

We know that for i = 1, . . . ,m, it is the case that σρ1,ρ2 = σρi
1,ρi

2
. Thus, the first m judg-

ments are the same as the m judgments starting with (22) that were shown to hold above.

It follows from (25), (26), and (24), respectively, with instances 〈〈P 〉〉ρm
2

and 〈〈σ(B)β〉〉ρm
2

for

N and B respectively, that the three conjuncts of the latter judgment hold.

Case: (2) The inductive case for (2) is similar to the inductive case for (1).

Case: (3) A is Πz1 : A1 . . . Πzm : Am.B where B is a base type. Again, we prove this

case by a second induction on the height of a proof of:

Σ;P, [[y : σ(A)β]]−ρ2
⊢I G.

The induction hypothesis of this subinduction will be called (3a). All cases follow by a

simple application of induction hypothesis (3a) except for the case when the last step in the

proof of the above judgment is a BACKCHAIN on [[y : σ(A)β]]−ρ2
. We assume that z1, . . . , zm

do not appear free in dom(σ) or cod(σ), and for i = 1, . . . ,m, zi, . . . , zm do not appear

free in Ai, otherwise we rename them. Then

σ(A)β = Πz1 : σ(A1)
β . . . Πzm : σ(Am)β.σ(B)β .

Let Z1, . . . , Zm be distinct variables of type tm and B a variable of type ty that do not

occur in cod(ρ1), cod(ρ2). For i = 1, . . . ,m, let

ρi
1 = 〈z1, Z1〉 + · · · + 〈zi, Zi〉 + ρ1 and ρi

2 = 〈z1, Z1〉 + · · · + 〈zi, Zi〉 + ρ2.

By the translation:

[[y : Πz1 : σ(A1)
β . . . Πzm : σ(Am)β .σ(B)β]]−ρ2

≡

pi Z1\([[z1 ⇒ σ(A1)
β]]+

ρ1
2
=>

...

pi Zm\([[zm ⇒ σ(Am)β]]+ρm
2

pi B\(norm ty 〈〈σ(B)β〉〉ρm
2

B =>

has type (app tm . . . (app tm ρm
2 (y) Z1) . . . Zm) B). . .)

Thus for some instances M1, . . . , Mm, C of Z1, . . . , Zm, B, G is

(has type (app tm . . . (app tm ρm
2 (y) M1) . . . Mm) C)

The terms M1, . . . , Mm are in H(Σ) and thus their βη-long forms are in T (cod(ρ2)). Hence,

there are terms M1, . . . ,Mm such that for i = 1, . . . ,m 〈〈Mi〉〉ρ2
= Mi. Let σ′ be the

substitution

{〈z1,M1〉, . . . , 〈zm,Mm〉}.

Then

σ′
ρm
2 ,ρ2

= {〈Z1, M1〉, . . . , 〈Zm, Mm〉} and σ′
ρm
1 ,ρ2

= {〈Z1, M1〉, . . . , 〈Zm, Mm〉}.

102

Then for j = 1 or 2, G can be written:

σ′
ρm

j
,ρ2

(has type (app tm . . . (app tm ρm
2 (y) Z1) . . . Zm) C).

By BACKCHAIN on the above clause, followed by m applications of AND search, the follow-

ing judgments hold.

Σ;P, [[y : σ(A)β]]−ρ2
⊢I σ′

ρm
2 ,ρ2

([[z1 ⇒ σ(A1)
β]]+

ρ1
2
)

...

Σ;P, [[y : σ(A)β]]−ρ2
⊢I σ′

ρm
2 ,ρ2

([[zm ⇒ σ(Am)β]]+ρm
2

)

Σ;P, [[y : σ(A)β]]−ρ2
⊢I norm ty σ′

ρm
2 ,ρ2

(〈〈σ(B)β〉〉ρm
2

) C

By Lemma 5.9,

σ′
ρm
2 ,ρ2

(〈〈σ(B)β〉〉ρm
2

) = 〈〈σ′(σ(B)β)〉〉ρ2
.

By Corollary 5.20, C must be 〈〈σ′(σ(B))β〉〉ρ2
. Since z1, . . . , zm do not appear free in dom(σ)

or cod(σ), σ′(σ(B))β = ((σ′ ∪ σ)(B))β . By induction hypothesis (3a) the following hold.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I σ′

ρm
2 ,ρ2

([[z1 ⇒ σ(A1)
β]]+

ρ1
2
)

...

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I σ′

ρm
2 ,ρ2

([[zm ⇒ σ(Am)β]]+ρm
2

)

By induction hypothesis (1) in the backward direction, the following hold.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I [[M1 ⇒ σ′(σ(A1))

β]]+ρ2

...

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I [[Mm ⇒ σ′(σ(Am))β]]+ρ2

)

Since z1, . . . , zm do not appear free in dom(σ) or cod(σ), for i = 1, . . . ,m,

σ′(σ(Ai))
β = ((σ′ ∪ σ)(Ai))

β.

So, by induction hypothesis (1) in the forward direction, the following hold.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I (σ′ ∪ σ)ρm

1 ,ρ2([[z1 ⇒ A1]]
+
ρm
1

) (27)

...

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I (σ′ ∪ σ)ρm

1 ,ρ2([[zm ⇒ Am]]+ρm
1

)

We must show that the following judgment holds.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) (28)

⊢I (has type (app tm . . . (app tm ρm
2 (y) M1) . . . Mm) 〈〈((σ′ ∪ σ)(B))β〉〉ρ2

)

103

We can do so by backchaining on σρ1,ρ2([[y : A]]−ρ1
). By the translation (with the substitution

moved inward as far as possible):

σρ1,ρ2([[y : A]]−ρ1
) = σρ1,ρ2([[y : Πz1 : A1 . . . Πzm : Am.B]]−ρ1

) ≡

pi Z1\(σρ1,ρ2([[z1 ⇒ A1]]
+
ρ1
1
) =>

...

pi Zm\(σρ1,ρ2([[zm ⇒ Am]]+ρm
1

)

pi B\(norm ty σρ1,ρ2(〈〈B〉〉ρm
1

) B =>

has type (app tm . . . (app tm ρm
1 (y) Z1) . . . Zm) B). . .)

Since ρ1(y) = ρ2(y), it follows that ρm
1 (y) = ρm

2 (y). Thus, (28) holds if, by BACKCHAIN on

the above clause with instances M1, . . . , Mm, 〈〈((σ′ ∪ σ)(B))β〉〉ρ2
for Z1, . . . , Zm, B, followed

by m applications of AND search, the following judgments hold.

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I σ′

ρm
1 ,ρ2

(σρ1,ρ2([[z1 ⇒ A1]]
+
ρ1
1
))

...

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I σ′

ρm
1 ,ρ2

(σρ1,ρ2([[zm ⇒ Am]]+ρm
1

))

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I norm ty σ′

ρm
1 ,ρ2

(σρ1,ρ2(〈〈B〉〉ρm
1

)) 〈〈((σ′ ∪ σ)(B))β〉〉ρ2

It is an easy consequence of Lemma 5.9 that since for i = 1, . . . ,m, zi, . . . , zm do not

appear free in Ai, [[zi ⇒ Ai]]
+
ρi = [[zi ⇒ Ai]]

+
ρm
1

. Also, σρ1,ρ2 = σρm
1 ,ρ2 , and the variables

Z1, . . . , Zm do not appear free in dom(σρm
1 ,ρ2) or cod(σρm

1 ,ρ2). Thus for i = 1, . . . ,m,

σ′
ρm
1 ,ρ2

(σρ1,ρ2([[zi ⇒ Ai]]
+
ρm
1

)) = ((σ′
ρm
1 ,ρ2

∪ σρm
1 ,ρ2)([[zi ⇒ Ai]]

+
ρm
1

))

= ((σ′ ∪ σ)ρm
1 ,ρ2([[zi ⇒ Ai]]

+
ρm
1

)).

By the same argument, σ′
ρm
1 ,ρ2

(σρ1,ρ2(〈〈B〉〉ρm
1

)) = ((σ′ ∪ σ)ρm
1 ,ρ2(〈〈B〉〉ρm

1
)). Thus the above

judments can be rewritten as:

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I (σ′ ∪ σ)ρm

1 ,ρ2([[z1 ⇒ A1]]
+
ρm
1

)

...

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I (σ′ ∪ σ)ρm

1 ,ρ2([[zm ⇒ Am]]+ρm
1

)

Σ;P, σρ1,ρ2([[y : A]]−ρ1
) ⊢I norm ty (σ′ ∪ σ)ρm

1 ,ρ2(〈〈B〉〉ρm
1

) 〈〈((σ′ ∪ σ)(B))β〉〉ρ2

From the m judgments starting with (27), it follows that the first m judgments above hold.

By Lemma 5.9,

(σ′ ∪ σ)ρm
1 ,ρ2(〈〈B〉〉ρm

1
) = 〈〈(σ′ ∪ σ)(B)〉〉ρ2

.

Since (σ′ ∪ σ)(B) =β ((σ′ ∪ σ)(B))β , by Theorem 5.18, we can conclude that the latter

judgment holds.

104

Theorem 5.22 (Correctness of Translation I)
Let Γ ⊢ α be an assertion provable in C-LF. Let ρ be a variable encoding well-defined

on Γ and α. Let Σ be a signature that includes the declarations of lfsig, lfconv, lfnorm,
and the variables in cod(ρ). Let P be a set of definite clauses that includes lfconv, lfnorm,
and Pcod(ρ). Then

Σ;P, [[Γ]]−ρ ⊢I [[α]]+ρ .

Proof: The proof is by induction on the height of a C-LF proof of the assertion.

Base: (A-TYPE-KIND) [[Type ⇒ kind]]+ρ ≡ true. Clearly the judgment Σ;P ⊢I true

holds.

Case: (A-K-VAR) Clearly, the judgment Σ;P, [[Γ, x : K]]−ρ ⊢I true holds.

Case: (A-T-VAR). Clearly, the judgment Σ;P, [[Γ, x : A]]−ρ ⊢I true holds.

Case: (A-ABS-OBJ) We assume that the variable x does not appear free in Γ, otherwise

we rename it. Let X be a variable of type tm such that X /∈ cod(ρ). By the translation:

[[λx : A.M ⇒ Πx : A.B]]+ρ ≡

[[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X => [[x : A]]−〈x,X〉+ρ => [[M ⇒ B]]+〈x,X〉+ρ

)

We must show that the following judgments hold.

Σ;P, [[Γ]]−ρ ⊢I [[A ⇒ Type]]+ρ

Σ;P, [[Γ]]−ρ ⊢I pi X\
(

normal tm1 X => [[x : A]]−〈x,X〉+ρ => [[M ⇒ B]]+〈x,X〉+ρ

)

The first one holds by the induction hypothesis for the left premise. The second one holds,

if by GENERIC, followed by AUGMENT twice, the following judgment holds.

Σ ∪ {X : tm};P, [[Γ]]−ρ , normal tm1 X, [[x : A]]−〈x,X〉+ρ ⊢I [[M ⇒ B]]+〈x,X〉+ρ

It is an easy consequence of Corollary 5.10 that since x is not free in Γ, [[Γ]]−ρ = [[Γ]]−〈x,X〉+ρ.

Thus

[[Γ]]−〈x,X〉+ρ, [[x : A]]−〈x,X〉+ρ = [[Γ, x : A]]−〈x,X〉+ρ,

so the above judgment holds by the induction hypothesis for the right premise.

Cases: (A-PI-KIND), (A-PI-FAM), and (A-ABS-FAM). Similar to (A-ABS-OBJ).

Case: (C-APP-OBJ) We assume that x1, . . . , xn do not appear free in N1, . . . ,Nn, and

that for i = 1, . . . , n, xi, . . . , xn do not appear free in Ai, otherwise we rename them in

x : Πx1 : A1 . . . Πxn : An.B. We must show that

Σ;P, [[Γ]]−ρ ⊢I [[xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β]]+ρ (29)

Let N be a variable of type tm and B a variable of type ty that do not appear in cod(ρ).

105

By the translation:

[[xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β]]+ρ ≡

sigma N\(sigma B\(norm tm 〈〈xN1 . . . Nn〉〉ρ N,

norm ty 〈〈([N1/x1, . . . ,Nn/xn]B)β〉〉ρ B,

has type N B))

By Theorem 5.5 xN1 . . . Nn is canonical. By Theorem 5.18, the following two judgments

hold.

Σ;P, [[Γ]]−ρ ⊢I norm tm 〈〈xN1 . . . Nn〉〉ρ 〈〈xN1 . . . Nn〉〉ρ

Σ;P, [[Γ]]−ρ ⊢I norm ty 〈〈([N1/x1, . . . ,Nn/xn]B)β〉〉ρ 〈〈([N1/x1, . . . ,Nn/xn]B)β〉〉ρ

Thus, (29) holds if we can show that (has type N B) is provable with instances

〈〈xN1 . . . Nn〉〉ρ and 〈〈([N1/x1, . . . ,Nn/xn]B)β〉〉ρ for N and B, respectively, i.e., we must show

the following judgment holds.

Σ;P, [[Γ]]−ρ ⊢I has type 〈〈xN1 . . . Nn〉〉ρ 〈〈([N1/x1, . . . ,Nn/xn]B)β〉〉ρ (30)

By the encoding:

〈〈xN1 . . . Nn〉〉ρ ≡ (app tm . . . (app tm ρ(x) 〈〈N1〉〉ρ) . . . 〈〈Nn〉〉ρ).

We know x : Πx1 : A1 . . . Πxn : An.B ∈ Γ. Let X1, . . . , Xn, B be distinct variables of type

tm that do not occur in cod(ρ). For i = 1, . . . , n, let ρi = 〈x1, X1〉 + · · · + 〈xi, Xi〉 + ρ. By

the translation:

[[x : Πx1 : A1 . . . Πxn : An.B]]−≡

pi X1\([[x1 ⇒ A1]]
+
ρ1 =>

...

pi Xn\([[xn ⇒ An]]+ρn =>

pi B\(norm ty 〈〈B〉〉ρn B =>

has type (app tm . . . (app tm ρ(x) X1) . . . Xn) B). . .)

It is an easy consequence of Lemma 5.9 that since for i = 1, . . . , n, xi, . . . , xn do not appear

free in Ai, [[xi ⇒ Ai]]
+
ρi = [[xi ⇒ Ai]]

+
ρn . Let σ be the substitution

{〈x1,N1〉, . . . , 〈xn,Nn〉}.

Then

([N1/x1, . . . , Nn/xn]B)β = σ(B)β and σρn,ρ = {〈X1, 〈〈N1〉〉ρ〉, . . . , 〈Xn, 〈〈Nn〉〉ρ〉.

106

To prove (30), we can BACKCHAIN on the above clause with the instances of the universally

quantified variables given by the substitution σρn,ρ ∪ {〈B, 〈〈σ(B)β〉〉ρ〉}. We must then show

that the following judgments hold.

Σ;P, [[Γ]]−ρ ⊢I σρn,ρ([[x1 ⇒ A1]]
+
ρn)

...

Σ;P, [[Γ]]−ρ ⊢I σρn,ρ([[xn ⇒ An]]+ρn)

Σ;P, [[Γ]]−ρ ⊢I norm ty σρn,ρ(〈〈B〉〉ρn) 〈〈σ(B)β〉〉ρ

By Lemma 5.9, σρn,ρ(〈〈B〉〉ρn) = 〈〈σ(B)〉〉ρ. Since σ(B) =β σ(B)β , by Theorem 5.18, the

latter judgment holds. By Lemma 5.21 (1), the first n judgments hold if the following

judgments hold.

Σ;P, [[Γ]]−ρ ⊢I [[N1 ⇒ σ(A1)
β]]+ρ

...

Σ;P, [[Γ]]−ρ ⊢I [[Nn ⇒ σ(An)β]]+ρ

For i = 1, . . . , n, σ(Ai)
β = ([N1/x1, . . . ,Ni−1/xi−1]Ai)

β. Thus, the above judgments hold

by the induction hypothesis for the latter n premises of the (C-APP-OBJ) rule.

Case: (C-APP-FAM). Similar to (C-APP-OBJ).

Theorem 5.23 (Correctness of Translation II)
Let Γ be a valid canonical context and α a canonical judgment. Let ρ be a variable

encoding well-defined on Γ and α. Let Σ be a signature that includes the declarations of
lfsig, lfconv, lfnorm, and the variables in cod(ρ). Let P be a set of definite clauses
that includes lfconv, lfnorm, and Pcod(ρ). If Σ;P, [[Γ]]−ρ ⊢I [[α]]+ρ is provable, then Γ ⊢ α
in C-LF.

Proof: The judgment α has the form K ⇒ kind, A ⇒ K ′, or M ⇒ A′. The proof is by

induction on the structure of K,A,M respectively.

Case: M is an abstraction. Then M has the form λx : A.M and A′ has the form

Πx : A.B. We assume that the variable x does not appear free in Γ, otherwise we rename

it. Let X be a variable of type tm such that X /∈ cod(ρ). By the translation:

[[λx : A.M ⇒ Πx : A.B]]+ρ ≡

[[A ⇒ Type]]+ρ , pi X\
(

normal tm1 X => [[x : A]]−〈x,X〉+ρ => [[M ⇒ B]]+〈x,X〉+ρ

)

Thus, the following judgments hold.

Σ;P, [[Γ]]−ρ ⊢I [[A ⇒ Type]]+ρ

Σ;P, [[Γ]]−ρ ⊢I pi X\
(

normal tm1 X => [[x : A]]−〈x,X〉+ρ => [[M ⇒ B]]+〈x,X〉+ρ

)

107

By the induction hypothesis, the assertion Γ ⊢ A ⇒ Type is provable. By GENERIC,

followed by AUGMENT twice, the following judgment holds.

Σ ∪ {X : tm};P, [[Γ]]−ρ , normal tm1 X, [[x : A]]−〈x,X〉+ρ ⊢I [[M ⇒ B]]+〈x,X〉+ρ

It is an easy consequence of Corollary 5.10 that since x is not free in Γ, [[Γ]]−ρ = [[Γ]]−〈x,X〉+ρ.

Thus

[[Γ]]−〈x,X〉+ρ, [[x : A]]−〈x,X〉+ρ = [[Γ, x : A]]−〈x,X〉+ρ.

So by the induction hypothesis, the assertion Γ, x : A ⊢ M ⇒ B is provable. Thus, by an

application of (A-ABS-OBJ), Γ ⊢ λx : A.M ⇒ Πx : A.B is provable.

Case: A is an abstraction. This case is similar to the previous one with an application

of (A-ABS-FAM).

Case: A is a product and K ′ is Type. This case is similar to the previous one with an

application of (A-PI-FAM).

Case: K is a product. This case is similar to the previous one with an application of

(A-PI-KIND).

Case: M is a variable or an application. Then M has the form xN1 . . . Nn and A′ is a

base type. Let N be a variable of type tm and B a variable of type ty that do not appear

in cod(ρ). By the translation:

[[xN1 . . . Nn ⇒ A′]]+ρ ≡

sigma N\(sigma B\(norm tm 〈〈xN1 . . . Nn〉〉ρ N, norm ty 〈〈A′〉〉ρ B, has type N B))

Then for some instances M and C of N and B, respectively, the following judgments hold.

Σ;P, [[Γ]]−ρ ⊢I norm tm 〈〈xN1 . . . Nn〉〉ρ M

Σ;P, [[Γ]]−ρ ⊢I norm ty 〈〈A′〉〉ρ C

Σ;P, [[Γ]]−ρ ⊢I has type M C

Since xN1 . . . Nn and A′ are canonical, by Corollary 5.20, M is 〈〈xN1 . . . Nn〉〉ρ and C is 〈〈A′〉〉ρ.

By the encoding

〈〈xN1 . . . Nn〉〉ρ ≡ (app tm . . . (app tm ρ(x) 〈〈N1〉〉ρ) . . . 〈〈Nn〉〉ρ).

Thus, the following judgment holds.

Σ;P, [[Γ]]−ρ ⊢I has type (app tm . . . (app tm ρ(x) 〈〈N1〉〉ρ) . . . 〈〈Nn〉〉ρ) 〈〈A′〉〉ρ (31)

The last step in a proof of the above judgment must have been a BACKCHAIN on a has type

clause. It is easy to see that such a clause must be the translation of an element in Γ of

the form x : Πx1 : A1 . . . Πxn : An.B. We assume that x1, . . . , xn do not appear free in

108

N1, . . . , Nn, and that for i = 1, . . . , n, the variables xi, . . . , xn do not appear free in Ai,

otherwise we rename them. Let X1, . . . , Xn be distinct variables of type tm, and B a variable

of type ty that do not occur in cod(ρ). For i = 1, . . . , n, let ρi = 〈x1, X1〉+ · · ·+ 〈xi, Xi〉+ρ.

By the translation:

[[x : Πx1 : A1 . . . Πxn : An.B]]−ρ ≡

pi X1\([[x1 ⇒ A1]]
+
ρ1 =>

...

pi Xn\([[xn ⇒ An]]+ρn =>

pi B\(norm ty 〈〈B〉〉ρn B =>

has type (app tm . . . (app tm ρ(x) X1) . . . Xn) B). . .)

It is an easy consequence of Lemma 5.9 that since for i = 1, . . . , n, the variables xi, . . . , xn

do not appear free in Ai, [[xi ⇒ Ai]]
+
ρi = [[xi ⇒ Ai]]

+
ρn . Let σ be the substitution

{〈x1,N1〉, . . . , 〈xn,Nn〉}.

Then, σρn,ρ = {〈X1, 〈〈N1〉〉ρ〉, . . . , 〈Xn, 〈〈Nn〉〉ρ〉. In backchaining on the above clause to prove

(31), the instances of the universally quantified variables are given by the substitution

σρn,ρ ∪ {〈B, 〈〈A′〉〉ρ〉}. Thus the following judgments hold.

Σ;P, [[Γ]]−ρ ⊢I σρn,ρ([[x1 ⇒ A1]]
+
ρn)

...

Σ;P, [[Γ]]−ρ ⊢I σρn,ρ([[xn ⇒ An]]+ρn)

Σ;P, [[Γ]]−ρ ⊢I norm ty σρn,ρ(〈〈B〉〉ρn) 〈〈A′〉〉ρ (32)

By Lemma 5.9, σρn,ρ(〈〈B〉〉ρn) = 〈〈σ(B)〉〉ρ. Thus, by Corollary 5.20, 〈〈A′〉〉ρ is 〈〈σ(B)β〉〉ρ.

Thus A′ = σ(B) = ([N1/x1, . . . ,Nn/xn]B)β. By Lemma 5.21 (1), the following judgments

also hold.

Σ;P, [[Γ]]−ρ ⊢I [[N1 ⇒ σ(A1)
β]]+ρ

...

Σ;P, [[Γ]]−ρ ⊢I [[Nn ⇒ σ(An)β]]+ρ

For i = 1, . . . , n, σ(Ai)
β = ([N1/x1, . . . ,Ni−1/xi−1]Ai)

β . Thus, by the induction hypothe-

sis, the following assertions are provable in C-LF.

Γ ⊢ N1 ⇒ A1

Γ ⊢ N2 ⇒ ([N1/x1]A2)
β

...

Γ ⊢ Nn ⇒ ([N1/x1, . . . ,Nn−1/xn−1]An)β

109

Γ ⊢ Type ⇒ kind holds since Γ is a valid context by assumption. Then, by an application

of (C-APP-OBJ),

Γ ⊢ xN1 . . . Nn ⇒ ([N1/x1, . . . ,Nn/xn]B)β

Case: A is a variable or an application. This case is similar to the previous one with

an application of (C-APP-FAM).

Case: K is Type. By the assumption that Γ is a valid context, Γ ⊢ Type ⇒ kind is

provable.

As was the case for the results in Chapter 4 which proved the correctness of the speci-

fication of βη-convertibility, the theorems here illustrate a precise correspondence between

proofs in LF with respect to a particular signature, and proofs in the meta-language with

respect to the program obtained from the translation of this signature. In bottom-up con-

struction of a proof in C-LF, the structure of the objects in the judgment determine which

rule must be applied. For example, a judgment of the form xN1 . . . Nn ⇒ A requires an

application of the (C-APP-OBJ) rule, and the variable x determines exactly which signature

item in Γ must be used to apply the rule. The corresponding notion in solving a logic

programming goal of the form (has type N A) is that the constant at the head of N will

uniquely determine which definite clause must be used in backchaining. Since each clause

corresponds to a particular signature item, it is easy to see the correspondence of this

aspect of constructing proofs in the two systems. Also, consider the C-LF PI or ABS rules.

In applying any of these rules in a backward fashion, a new item is added to the context

in the right premise. The above proofs illustrate that this operation in LF corresponds

to the logic programming operations of introducing a logic programming signature item

and adding a clause which encodes information about its LF type via the GENERIC and

AUGMENT search operations.

In Theorem 5.23, we assumed that the initial context was valid. We can relax this

assumption, and have the program prove the context is valid before proving that a judgment

holds. To do so, we introduce a third translation which takes arbitrary LF assertions as

arguments and produces a goal formula. This translation again uses a variable encoding. A

variable encoding is well-defined on an assertion if all of the free variables in the assertion

are in its domain. We again use double brackets, but this time without a superscript. The

rules for this translation are in Figure 5.8. The goal formula obtained from translating an

assertion Γ ⊢ α will check that each type and kind in the context Γ is valid, and then add a

clause obtained by the positive translation of each context item via meta-level implication.

Finally, the goal formula obtained by the negative translation of the judgment α is the

innermost subgoal.

110

[[x : K,Γ ⊢ α]]ρ = [[K ⇒ kind]]+ρ , pi X\
(

[[x ⇒ K]]−〈x,X〉+ρ => [[Γ ⊢ α]]〈x,X〉+ρ

)

[[x : A,Γ ⊢ α]]ρ = [[A ⇒ Type]]+ρ , pi X\
(

[[x ⇒ A]]−〈x,X〉+ρ => [[Γ ⊢ α]]〈x,X〉+ρ

)

[[⊢ α]]ρ = [[α]]+ρ

Figure 5.8: Translation of Arbitrary LF Assertions

5.4 Translation of a Signature for Natural Deduction

To illustrate the translation, we present an LF signature for the fragment of NI with the ∧,

⊃, and ∀ connectives only. The signature ΓFOL in Figure 5.9 is taken from [HHP89]. Let

i : Type

form : Type

∧ : form → form → form

⊃ : form → form → form

∀ : (i → form) → form

true : form → Type

∧-I : ΠA : form.ΠB : form.true(A) → true(B) → true(A ∧ B)

∧-E1 : ΠA : form.ΠB : form.true(A ∧ B) → true(A)

∧-E2 : ΠA : form.ΠB : form.true(A ∧ B) → true(B)

⊃-I : ΠA : form.ΠB : form.(true(A) → true(B)) → true(A ⊃ B)

⊃-E : ΠA : form.ΠB : form.true(A) → true(A ⊃ B) → true(B)

∀-I : ΠA : i → form.(Πy : i.true(Ay)) → true(∀A)

∀-E : ΠA : i → form.Πt : i.true(∀A) → true(At)

Figure 5.9: LF Signature for a Fragment of NI

ρ be the following variable encoding which will be used to translate the above signature:

{〈i, i〉, 〈form, form〉, 〈∧, and〉, 〈⊃, imp〉, 〈∀, forall〉, 〈true, ttrue〉,

〈∧-I, and i〉, 〈∧-E1, and e1〉, 〈∧-E2, and e2〉, 〈⊃-I, imp i〉, 〈⊃-E, imp e〉,

〈 ∀-I, forall i〉, 〈 ∀-E, forall e〉}

In the previous section, we illustrated the translation with the signature item ∀ : (i →

form) → form, and obtained the following clause.

has_type (app_tm forall A) B :-

norm_ty form B,

sigma B1\ (norm_ty i B1, is_type B1),

pi X\ (normal_tm1 X => (pi B2\ (norm_ty i B2 => has_type X B2)) =>

(sigma N\ sigma B3\ (norm_tm (app_tm A X) N, norm_ty form B3,

has_type N B3))).

111

In general clauses obtained from the literal translation can be simplified, and this clause

illustrates a few simplifications that occur quite frequently. First of all, notice that the

types involved are quite simple and as a result, most of the norm ty normalization subgoals

are unnecessary. Removing these unnecessary subgoals, the clause becomes:

has_type (app_tm forall A) form :-

is_type i,

pi X\ (normal_tm1 X => has_type X i =>

sigma N\ (norm_tm (app_tm A X) N, has_type N form)).

Clearly this clause can be further simplified by removing the (is type i) subgoal since

we know that this goal will always succeed since i is the encoding of an LF type. This

subgoal is redundant, and in fact corresponds to redundant subproofs that will appear

in LF proofs involving the ∀ constant. In general, translation of LF signature items will

have both normalization and is type subgoals which can be removed. The complete (and

simplified) translation of the signature in Figure 5.9 is contained in the lf fol and lf ni

modules on pages 112 and 114.

module lf_fol.

import lfnorm.

type i ty.

type form ty.

type and tm.

type imp tm.

type forall tm.

type ttrue ty.

type and_i tm.

type and_e1 tm.

type and_e2 tm.

type imp_i tm.

type imp_e tm.

type forall_i tm.

type forall_e tm.

is_type i.

is_type form.

has_type (app_tm (app_tm and A) B) form :- has_type A form, has_type B form.

has_type (app_tm (app_tm imp A) B) form :- has_type A form, has_type B form.

has_type (app_tm forall A) form :-

pi X\ (normal_tm1 X => has_type X i =>

sigma N\ (norm_tm (app_tm A X) N, has_type N form)).

is_type (app_ty ttrue A) :- has_type A form.

Module lf fol: Translation of LF Signature for First-Order Logic

112

It is easy to see by inspection of the clauses in these modules that all terms and types

are normalized before new has type and is type subgoals are formed. All terms and types

in an initial goal will be in normal form if they are obtained by translating an LF judgment

in canonical form. Thus, in simplifying the clauses to obtain these modules, we made the

assumption that terms and types will always be in normal form before backchaining on any

clause for has type and is type. This assumption in fact allowed us to remove several

more unnecessary normalization subgoals.

The modules lf fol and lf ni, together with lfsig on page 81, lfconv on page 85,

and lfnorm on page 86 make up the complete program needed to prove goals obtained

from translating LF assertions with respect to the signature ΓFOL. Because there is exactly

one clause per signature item, it is easy to see that the has type or is type clause used

in backchaining at each step can be uniquely determined. In the has type clauses, the

constant at the head of the first argument identifies the signature item from which it was

translated, e.g., and, imp, and forall in the three has type clauses in the lf fol module.

Similarly the constant at the head of the argument in is type predicates identifies its

corresponding signature item. The only “non-deterministic” aspect of this program are the

programs for β-convertibility, e.g., because of the clause for symmetry. These programs are

used by the clauses for normalization. Since normalization, rather than full convertibility

is what is actually required for type checking LF assertions, we can clearly modify the

program for normalization so that it operates more directly and even deterministically.

By replacing lfnorm and lfconv with a deterministic program, we obtain a program that

operates as a complete and deterministic type checker under the interpreter described in

Section 2.4 for goals obtained by translation of LF assertions with respect to the signature

ΓFOL. With a deterministic normalization program, the translation of any LF signature

will in fact provide a deterministic type checker.

The normalization program can in fact be simplified even further. Notice that although

arbitrary signatures and judgments can be translated, the resulting clauses and goals never

contain terms of type ki nor types containing the constants abs ty and prod ty. As a

result, in lfnorm, neither the norm ki nor the full norm ty programs will be necessary.

This simplification can, of course, be incorporated into any deterministic program for

normalization.

In Sections 3.2 and 3.4, we discussed the direct specification and representation of

proofs for the NI proof system. It is interesting to compare the clauses presented there

with those obtained by translating the LF signature for this proof system. Consider clauses

from each specifying the ⊃-I rule. The clauses from the niprover module of Section 3.4

and the lf ni module are repeated below for comparison.

113

module lf_ni.

import lf_fol lfnorm.

has_type (app_tm (app_tm (app_tm (app_tm and_i A) B) P1) P2)

(app_ty ttrue (app_tm (app_tm and A) B)) :-

has_type A form, has_type B form,

has_type P1 (app_ty ttrue A), has_type P2 (app_ty ttrue B).

has_type (app_tm (app_tm (app_tm and_e1 A) B) P) (app_ty ttrue A) :-

has_type A form, has_type B form,

has_type P (app_ty ttrue (app_tm (app_tm and A) B)).

has_type (app_tm (app_tm (app_tm and_e2 A) B) P) (app_ty ttrue B) :-

has_type A form, has_type B form,

has_type P (app_ty ttrue (app_tm (app_tm and A) B)).

has_type (app_tm (app_tm (app_tm imp_i A) B) P)

(app_ty ttrue (app_tm (app_tm imp A) B)) :-

has_type A form, has_type B form,

pi Q\ (normal_tm1 Q => has_type Q (app_ty ttrue A) =>

sigma N\ (norm_tm (app_tm P Q) N, has_type N (app_ty ttrue B))).

has_type (app_tm (app_tm (app_tm (app_tm imp_e A) B) P1) P2)

(app_ty ttrue B) :-

has_type A form, has_type B form,

has_type P1 (app_ty ttrue A),

has_type P2 (app_ty ttrue (app_tm (app_tm imp A) B)).

has_type (app_tm (app_tm forall_i A) P) (app_ty ttrue (app_tm forall A)) :-

pi X\ (normal_tm1 X => has_type X i =>

sigma N\ (norm_tm (app_tm A X) N, has_type N form)),

pi Y\ (normal_tm1 X => has_type Y i =>

sigma N\ (sigma B\ (norm_tm (app_tm P Y) N,

norm_ty (app_ty ttrue (app_tm A Y)) B,

has_type N B))).

has_type (app_tm (app_tm (app_tm forall_e A) T) P) B :-

norm_ty (app_ty ttrue (app_tm A T)) B,

pi X\ (normal_tm1 X => has_type X i =>

sigma N\ (norm_tm (app_tm A X) N, has_type N form)),

has_type T i,

has_type P (app_ty ttrue (app_tm forall A)).

Module lf ni: A Slight Simplification of the Translation of an LF Signature for Natural

Deduction

114

(imp_i P) # (A imp B) :- pi PA\ ((PA # A) => ((P PA) # B)).

has_type (app_tm (app_tm (app_tm imp_i A) B) P)

(app_ty ttrue (app_tm (app_tm imp A) B)) :-

has_type A form, has_type B form,

pi PA\ (normal_tm1 PA => has_type PA (app_ty ttrue A) =>

sigma N\ (norm_tm (app_tm P PA) N, has_type N (app_ty ttrue B))).

Of course, the latter clause is a bit more complicated since it is obtained via a general

translation algorithm on a very general specification language, while the former is simpler

since it uses features of the meta-language more directly. For example, the special predi-

cate # was introduced specifically for relating formulas and terms representing NI proofs.

Additionally, i and form were introduced as meta-types instead of meta-terms of type ty

and thus the encoding of terms and type-checking subgoals for terms of type i and form

are not needed. Also, β-conversion of the meta-language is used directly for substitution

at the object level, while in the latter substitution it is handled via β-normalization in LF

(encoded here via norm tm, norm ty, and norm ki). Despite these differences, both make

use of universal quantification and implication in the same way to handle the discharge

of assumptions. Operationally, in both cases, GENERIC and AUGMENT are used to first

introduce a new signature item, and then add a clause asserting that this signature item

is a proof of the formula A. As another example, consider the two clauses from niprover

and lf ni respectively for the ∀-I rule.

(forall_i P) # (forall A) :- pi Y\ ((P Y) # (A Y)).

has_type (app_tm (app_tm forall_i A) P) (app_ty ttrue (app_tm forall A)) :-

pi X\ (normal_tm1 X => has_type X i =>

sigma N\ (norm_tm (app_tm A X) N, has_type N form)),

pi Y\ (normal_tm1 X => has_type Y i =>

sigma N\ (sigma B\ (norm_tm (app_tm P Y) N,

norm_ty (app_ty ttrue (app_tm A Y)) B,

has_type N B))).

Both use universal quantification at the meta-level to handle the proviso on this rule. In

the latter, implication is also necessary to associate the type i with the quantified variable

Y, while in the former, this is not necessary since Y has meta-type i.

In Chapter 3, we presented several choices in representing proof terms for natural de-

duction. The clauses above from niprover use the “intermediate” proof representation

discussed in Section 3.4. Note that the translation of LF signatures provides yet another

representation. For example, the proof term in lf ni whose head is and i has four argu-

ments: two formulas and two proof terms. The proof term whose head is forall i has two

arguments: abstractions from terms of type i to a formula and to a proof term respectively.

This representation in fact corresponds to the “maximal” representation of proof terms

mentioned in Section 3.4. Thus proof terms obtained by translating LF judgments contain

enough information to fully reconstruct the deduction trees to which they correspond.

115

Chapter 6

Executing Specifications Directly

In specifying theorem provers for various logics in Chapters 3 and 4, we considered not

only the declarative aspects of the specifications but also their operational behavior with

respect to a non-deterministic interpreter. Here, we consider executing these specifications

using the deterministic depth-first interpreter described in Chapter 2. In this chapter (and

the remainder of this dissertation), we assume that logic program signatures contain only

constants. Thus, when we speak of “free variables,” we will always mean logic variables.

As executable programs, the specifications in these chapters may serve several different

purposes depending on the content of a query to the program. For example, in a query

of the form (P # A) to the program made up of the clauses specifying NI in Section 3.2,

if initially both P and A are closed terms, the program behaves as a proof checker. In

fact, for proof checking queries, variables of type i are allowed to appear in P and A since

determining the value of these variables will require only first-order unification. On the

other hand, if P is a logic variable, or a partially specified proof term (i.e., contains logic

variables with types other than i), the program behaves as a theorem prover, and P gets

constructed as the interpreter proceeds in attempting to solve the query. Similarly, all of

the specifications of natural deduction and sequent proof systems in Chapters 3 and 4 can

be viewed as both proof checkers and theorem provers.

Another relation, the #t relation between terms and their types was introduced in the

type-checking specifications in Sections 4.2 and 4.4. When both arguments are specified

in a query of the form (T #t S), the programs behave as type checkers. In queries where

the first argument, T, is specified and the second argument, S, is left fully or partially

unspecified, the program performs type inference. By the Curry-Howard isomorphism

relating proof checking to type checking [How80], the two kinds of relations in Chapters 3

and 4, one between a formula and its proof, and the other between a term and its type can

be viewed similarly. As a result, in this discussion we will consider each of the programs

uniformly in three ways: as proof or type checkers (both arguments specified), as theorem

provers (first argument unspecified), and as type inferencers (second argument unspecified).

116

6.1 A Depth-First Strategy for Proof Checking in First-

Order Logic

We first consider the behavior of the specifications for first-order logic as proof check-

ing programs with respect to the depth-first interpreter. Consider a query of the form

(Q >- Gamma --> A) to the specification in Section 3.1 of the LI sequent system for first-

order intuitionistic logic. In an initial proof checking query, the proof term Q will be closed

or possibly contain logic variables of type i. As a result, all subsequent goals will also be

closed (or contain variables of type i). The top-level constant of a proof term completely

determines the unique definite clause which can be used in backchaining. If the clause

fails, there will be no other to try. As a result, under depth-first search, the program will

always succeed or fail, indicating whether or not the proof term represents a proof of the

sequent.

Note that at certain points, some backtracking may be necessary. For example, when

backchaining on the following clause for or r:

(or_r Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> A); Q >- (Gamma --> B).

the interpreter will first try to show that the subproof Q is a proof of the sequent

(Gamma --> A) where A is the first disjunct, and if that fails, will backtrack and try

the second, (Gamma --> B). Also, backtracking may be necessary whenever there is more

than one hypothesis with the same top-level connective. For example, the following clause

for imp l:

(imp_l Q1 Q2) >- (Gamma --> C) :- memb (A imp B) Gamma,

Q1 >- (Gamma --> A),

Q2 >- ((B::Gamma) --> C).

always operates on the first implication in the hypothesis list first. If failure is encountered,

the interpreter will backtrack and try the next, and so on.

In a proof checking query, new logic variables of type i may be introduced during

execution. For example, in the clause for exists r:

(exists_r Q) >- (Gamma --> (exists A)) :- sigma T\ (Q >- (Gamma --> (A T))).

a logic variable is introduced for T into the subgoal (whenever the quantification on A is not

vacuous). This term corresponds to the substitution term used in applying the rule. The

clause for forall l similarly introduces a logic variable. Such logic variables will always

get resolved, though not necessarily instantiated to closed terms, in backchaining on the

following clause for initial.

(initial A) >- (Gamma --> A) :- memb A Gamma.

Note that if the proof term in an initial query is closed, the term (initial A) will be

closed. Thus any logic variables of type i in the terms matching the other occurrences of

A in this clause will get instantiated to closed terms.

117

A similar analysis applies to all of the specifications for proof systems for first-order

logic where the constant at the head of the proof term uniquely determines which definite

clause must be used at each step. Thus most of the specifications for NI including the

specification of Section 3.2, the explicit context specification of Section 3.3, the niprover

module on page 34 of Section 3.4, and the first presentation of a specification that con-

structs normal proofs in Section 3.5 may serve as programs for proof checking. In addition

the specifications discussed in Section 4.1 for the LC and NC proof systems for classical

logic may also serve as programs for proof checking. In each of these programs there are

backtracking points, but they do not affect the completeness of the programs as proof

checkers. For example, the following clause specifying the ∀-E rule illustrates that back-

tracking may be necessary when there is more than one possible unifier for logic variables.

(forall_e P) # (A T) :- P # (forall A).

In backchaining over this clause, the formula in the goal must match the pattern (A T).

This requires second-order matching and may have more than one solution.

In several of the specifications for natural deduction, in addition to logic variables of

type i, logic variables of type form may be introduced in the subgoals of the clauses for

the elimination rules. For example, in both of the following clauses specifying the ⊃-E

rule, the logic variable A is introduced.

(imp_e P1 P2) # B :- P1 # A, P2 # (A imp B).

Gamma --> (imp_e P1 P2) # B :- Gamma --> P1 # A, Gamma --> P2 # (A imp B).

Like logic variables of type i, these variables will not affect the completeness of the pro-

grams as proof checkers. Such logic variables will not occur during execution of niprover

as a proof checker because of the presence of formulas inside proof terms. For example, in

backchaining over the following clause:

(imp_e A P1 P2) # B :- P1 # A, P2 # (A imp B).

if the proof term (imp e A P1 P2) does not contain logic variables of type form, A will

not be a logic variable, as it is in the two clauses above.

Even when a query to any of these programs contains free variables of type form in the

formula or sequent to be proven (a “type inference” query), the behavior is similar. There

may be additional backtracking points in finding unifiers for these variables, but as long as

there is a constant at the head of the proof term at each step, there will always be only one

definite clause that is applicable, and thus execution will always terminate with success

or failure. For a query where the formula or sequent to be proven contains logic variables

of type form, upon successful completion, some formulas may still contain logic variables.

For example, in the specifications of NI , the natural deduction proof term (imp i X\X)

is a proof of (P imp P) for variable P. We may think of this formula as a “polymorphic

118

type,” i.e., the proof term is a proof of (P imp P) where P may be instantiated with any

formula.

The ninormal module on page 39 of Section 3.5 cannot serve as a proof checker. To

see why, consider the clause for and e below.

PC # C :- P #e (A and B),

(((and_e1 B P) #e A) => (((and_e2 A P) #e B) => (PC # C))).

The head of the clause will unify with any atomic goal of the form (PC # C). If, for

example, an atomic clause of the form (P #e (A and B)) is added to the program, this

clause will then always be applicable and could cause the interpreter to enter an infinite

loop. The clauses for imp e and forall e are similar. Thus, this specification is too

“non-deterministic” even to serve as a proof checker. On the other hand, in contrast to

other specifications for NI , logic variables of type form will never be introduced into proof

checking subgoals during execution. To illustrate this point, we contrast the following two

clauses for the ⊃-E rule.

(imp_e P1 P2) #e B :- P1 # A, P2 #e (A imp B).

PC # C :- P2 #e (A imp B), P1 # A,

(((imp_e A P1 P2) #e B) => (PC # C)).

The first introduces the logic variable A of type form into subgoals. The second is from

the ninormal module. In executing ninormal as a proof checker, all clauses for the #e

predicate will be atomic clauses added to the program dynamically, and all formulas on the

right of #e in these clauses will be subformulas of the formula in the original query. Thus,

as long as the formula to be proven in the original query is fully specified except possibly

for free variables of type i, the instances of (A imp B) in the above clause, and thus also

A in the subgoal (P1 # A) will not be logic variables, or contain logic variables of type

form. These clauses illustrate the two kinds of non-determinism in proof checking queries

to specifications of NI . The first clause can introduce logic variables of type form into

subgoals, yet is from a program which can serve as a proof checker because the constant

at the head of the proof term uniquely determines which clause to use at each step. In

contrast, the ninormal program in which the second clause appears never introduces logic

variables of type form, but can enter an infinite loop during proof checking since it contains

this clause and two others whose head contains a logic variable PC that can unify with any

proof term.

6.2 Depth-First Theorem Proving in First-Order Logic

Theorem proving is a much more complicated task than proof checking, and simple-minded

depth-first search will rarely be sufficient. First, consider the specification for LI in Sec-

tion 3.1. When proof terms in queries are variables, in general there will be multiple

119

definite clauses that could be applied to any one sequent. Also, if there is any non-atomic

hypothesis on the left of the sequent arrow, the rule for its top level connective will always

be applicable. For example, consider the clause for and l.

(and_l Q) >- (Gamma --> C) :- memb (A and B) Gamma,

Q >- ((A::B::Gamma) --> C).

Just as for proof checking using ninormal, whenever there is a conjunctive hypothesis, the

interpreter may enter an infinite loop repeatedly applying the rule. One possible solution

is to specify each definite clause so that the principle formula is removed from the list,

and does not appear in any of the subgoals of the clause. This approach may sacrifice

completeness, since in any first-order sequential proof system, there are certain formulas

that may need to be used more than once. Various formulations of sequent systems handle

duplication of formulas that may be used more than once in different ways. In the LI

system of Section 3.1 sets are used to represent hypotheses and as a result, each rule that

introduces a formula on the left of a sequent arrow allows duplication of the principle

formula. In the following rule for ∀-L, for example:

[t/x]A,Γ −→ C
∀-L

∀xA,Γ −→ C

the conclusion contains the set of hypotheses ∀xA,Γ, where the principle formula ∀xA

may appear in Γ. As a result, ∀xA may appear in both the conclusion and premise of an

application of the rule. The Gentzen LJ system [Gen69], another formulation of a sequent

proof system for first-order intuitionistic logic, uses lists to represent hypotheses. In that

system, the principle formula is always removed from the list when applying a rule. The

∀-L rule, for example, is formulated exactly as above, but ∀xA,Γ is the list such that the

principle formula ∀xA is the head, and Γ is the tail. LJ includes the following contraction

rule for explicitly duplicating formulas.

A,A,Γ −→ C
contract

A,Γ −→ C

Thus, the duplication of formulas is isolated to one rule. Of course, a direct specification

of such a rule will cause similar looping problems in a depth-first interpreter.

The LC and LK systems for classical logic are similar to the LI and LJ systems except

that sets and lists, respectively, are also used to represent conclusions which appear on

the right side of the sequent arrow, and in each case, duplication of conclusions is handled

exactly as duplication of hypotheses. For classical logic, it is known that only universally

quantified hypotheses, and existentially quantified conclusions need to be duplicated for

multiple use. The sequent system in [Kle67], and the similar Gentzen system G in [Gal86]

reflect this fact by restricting duplication to occur only in the ∀-L and ∃-R rules.

[t/x]A,∀xA,Γ −→ ∆
∀-L

∀xA,Γ −→ ∆
Γ −→ [t/x]A,∃xA,∆

∃-R
Γ −→ ∃xA,∆

120

Of course, the program given by the direct specification of these proof systems will still

contain two clauses that may cause looping. We now illustrate that we can exploit the fact

that only two kinds of formulas ever need to be duplicated to modify the direct specification

and obtain a program that implements a complete theorem prover with respect to a depth-

first interpreter.

If we restrict the proof system G to propositional rules, specification of these rules will

provide an implementation of a theorem prover for propositional logic that is complete with

respect to a depth-first interpreter. In any proof tree for a propositional sequent, it will

always be the case that the sequents at any one level will contain one less logical connective

than the sequents in the level below. Termination is guaranteed in searching for a proof

using such a specification, since although the number of sequents to prove may increase as

the proof branches, each sequent will eventually be reduced to a sequent containing only

atoms. (See [Mil83] for an analysis of the complexity.) If the original sequent is provable,

the sequents containing only atoms will all be initial sequents. Otherwise the theorem

prover will fail.

A strategy for a theorem prover for full first-order logic can be described as follows:

(1) Apply all rules except ∀-L and ∃-R until nothing more can be done. The result is a set

of sequents with atomic and universally quantified formulas on the left, and atomic and

existentially quantified formulas on the right. Iterate the following steps for each resulting

sequent. (2) Apply all rules including versions of the rules for ∀-L and ∃-R that remove

the quantified formula after applying the rule, and try to complete the proof. (3) Stop if

a proof is successfully completed. Otherwise, add an additional copy of each quantified

formula to the sequents obtained from step 1, and repeat.

A program applying this strategy is contained in the modules lc prove, lc iter, and

lc auto on pages 123-125. The complete program includes two modules of declarations:

the fol module from Chapter 3 (page 18) introducing the connectives of first-order logic,

and the lprf module on page 122 introducing the proof constructors for LI and LC proofs.

(Only those for cut-free LC are used in this program.) This program uses two relations,

>-1 and >-2, between proofs and sequents. All of the rules except ∀-L and ∃-R are

specified using the first relation, and all of the rules including versions of ∀-L and ∃-R that

remove the principle formula after applying the rule are specified using the second. The

memb and rest predicate is used in this program to remove the principle formula from the

list of hypotheses or conclusions. It is similar to the memb program but includes an extra

argument for the list with the selected item removed. See Appendix A for its definition.

Clauses for the >-1 predicate are in the root module lc auto. They are used to perform

step 1 and then begin the iteration by calling the nprove predicate which appears in

the lc iter module imported by lc auto. nprove performs the iteration by repeatedly

calling first the amplify predicate to add an additional copy of each quantified formula,

121

module lprf.

import fol.

kind lprf type.

type initial form -> lprf.

type and_l lprf -> lprf.

type and_r lprf -> lprf -> lprf.

type or_l lprf -> lprf -> lprf.

type or_r lprf -> lprf.

type or_r1 lprf -> lprf.

type or_r2 lprf -> lprf.

type imp_r lprf -> lprf.

type imp_l lprf -> lprf -> lprf.

type neg_r lprf -> lprf.

type neg_l lprf -> lprf.

type exists_r i -> lprf -> lprf.

type exists_l (i -> lprf) -> lprf.

type forall_r (i -> lprf) -> lprf.

type forall_l i -> lprf -> lprf.

type false_r lprf -> lprf.

type cut lprf -> lprf -> lprf.

Module lprf: Proof Term Constructors for LI and LC

and then >-2 to apply all the rules and attempt to complete the proof. The clauses for

>-2 are in lc prove which is imported by lc iter. The program stops only when a proof

is successfully completed.

The order of the the clauses in lc auto and lc prove for the >-1 and >-2 predicates

is not important except that the clause in lc auto that calls the nprove program must be

placed last. The others could be placed in any order without affecting the completeness of

the theorem prover. As presented on pages 123 and 125, the clauses that add or remove

formulas from the right hand side of a sequent are placed last. Of the remaining rules, those

that do not cause branching in the proof search, i.e., those that correspond to inference

rules with only one premise are placed first, followed by those that cause branching.

122

module lc_prove.

import lprf lists.

kind seq type.

type ’-->’ (list form) -> (list form) -> seq.

type ’>-2’ lprf -> seq -> o.

(initial A) >-2 (Gamma --> Delta) :- memb A Gamma, memb A Delta.

(and_l Q) >-2 (Gamma --> Delta) :-

memb_and_rest (A and B) Gamma Gamma1, Q >-2 ((A::B::Gamma1) --> Delta).

(imp_r Q) >-2 (Gamma --> Delta) :-

memb_and_rest (A imp B) Delta Delta1, Q >-2 ((A::Gamma) --> (B::Delta1)).

(exists_l Q) >-2 (Gamma --> Delta) :-

memb_and_rest (exists A) Gamma Gamma1,

pi T \ ((Q T) >-2 (((A T)::Gamma1) --> Delta)).

(forall_r Q) >-2 (Gamma --> Delta) :-

memb_and_rest (forall A) Delta Delta1,

pi T \ ((Q T) >-2 (Gamma --> ((A T)::Delta1))).

(exists_r T Q) >-2 (Gamma --> Delta) :-

memb_and_rest (exists A) Delta Delta1, Q >-2 (Gamma --> ((A T)::Delta1)).

(forall_l T Q) >-2 (Gamma --> Delta) :-

memb_and_rest (forall A) Gamma Gamma1, Q >-2 (((A T)::Gamma1) --> Delta).

(or_l Q1 Q2) >-2 (Gamma --> Delta) :-

memb_and_rest (A or B) Gamma Gamma1,

Q1 >-2 ((A::Gamma1) --> Delta), Q2 >-2 ((B::Gamma1) --> Delta).

(and_r Q1 Q2) >-2 (Gamma --> Delta) :-

memb_and_rest (A and B) Delta Delta1,

Q1 >-2 (Gamma --> (A::Delta1)), Q2 >-2 (Gamma --> (B::Delta1)).

(imp_l Q1 Q2) >-2 (Gamma --> Delta) :-

memb_and_rest (A imp B) Gamma Gamma1,

Q1 >-2 ((B::Gamma1) --> Delta), Q2 >-2 (Gamma1 --> (A::Delta)).

(neg_r Q) >-2 (Gamma --> Delta) :-

memb_and_rest (neg A) Delta Delta1, Q >-2 ((A::Gamma) --> Delta1).

(or_r Q) >-2 (Gamma --> Delta) :-

memb_and_rest (A or B) Delta Delta1, Q >-2 (Gamma --> (A::B::Delta1)).

(neg_l Q) >-2 (Gamma --> Delta) :-

memb_and_rest (neg A) Gamma Gamma1, Q >-2 (Gamma1 --> (A::Delta)).

Module lc prove: Main Search Component for Automatic Theorem Prover for LC

123

module lc_iter.

import lc_prove.

type add_copies int -> form -> (list form) -> (list form) -> o.

type amplify_forall int -> (list form) -> (list form) -> o.

type amplify_exists int -> (list form) -> (list form) -> o.

type amplify int -> seq -> seq -> o.

type nprove int -> lprf -> seq -> o.

add_copies 1 A Lis (A::Lis).

add_copies N A Lis (A::Lis1) :-

(N > 1), M is (N - 1),

add_copies M A Lis Lis1.

amplify_forall N nil nil.

amplify_forall N ((forall A)::Gamma) Gamma2 :-

amplify_forall N Gamma Gamma1,

add_copies N (forall A) Gamma1 Gamma2.

amplify_forall N (A::Gamma) (A::Gamma1) :-

amplify_forall N Gamma Gamma1.

amplify_exists N nil nil.

amplify_exists N ((exists A)::Delta) Delta2 :-

amplify_exists N Delta Delta1,

add_copies N (exists A) Delta1 Delta2.

amplify_exists N (A::Delta) (A::Delta1) :-

amplify_exists N Delta Delta1.

amplify 1 Seq Seq :- !.

amplify N (Gamma1 --> Delta1) (Gamma2 --> Delta2) :-

amplify_forall N Gamma1 Gamma2,

amplify_exists N Delta1 Delta2.

nprove N Q Seq1 :-

nl, writesans "Attempting to prove the following sequent at amplification ",

write N, nl, write Seq1, nl,

amplify N Seq1 Seq2,

Q >-2 Seq2,

writesans "successful".

nprove N Q Seq :-

M is (N + 1), nprove M Q Seq.

Module lc iter: Iteration Loop for Automatic Theorem Prover for LC

124

module lc_auto.

import lc_iter lists.

type ’>-1’ lprf -> seq -> o.

(initial A) >-1 (Gamma --> Delta) :- memb A Gamma, memb A Delta.

(and_l Q) >-1 (Gamma --> Delta) :-

memb_and_rest (A and B) Gamma Gamma1, Q >-1 ((A::B::Gamma1) --> Delta).

(imp_r Q) >-1 (Gamma --> Delta) :-

memb_and_rest (A imp B) Delta Delta1, Q >-1 ((A::Gamma) --> (B::Delta1)).

(exists_l Q) >-1 (Gamma --> Delta) :-

memb_and_rest (exists A) Gamma Gamma1,

(pi T \ ((Q T) >-1 (((A T)::Gamma1) --> Delta))).

(forall_r Q) >-1 (Gamma --> Delta) :-

memb_and_rest (forall A) Delta Delta1,

(pi T \ ((Q T) >-1 (Gamma --> ((A T)::Delta1)))).

(or_l Q1 Q2) >-1 (Gamma --> Delta) :-

memb_and_rest (A or B) Gamma Gamma1,

Q1 >-1 ((A::Gamma1) --> Delta), Q2 >-1 ((B::Gamma1) --> Delta).

(and_r Q1 Q2) >-1 (Gamma --> Delta) :-

memb_and_rest (A and B) Delta Delta1,

Q1 >-1 (Gamma --> (A::Delta1)), Q2 >-1 (Gamma --> (B::Delta1)).

(imp_l Q1 Q2) >-1 (Gamma --> Delta) :-

memb_and_rest (A imp B) Gamma Gamma1,

Q1 >-1 ((B::Gamma1) --> Delta), Q2 >-1 (Gamma1 --> (A::Delta)).

(neg_r Q) >-1 (Gamma --> Delta) :-

memb_and_rest (neg A) Delta Delta1, Q >-1 ((A::Gamma) --> Delta1).

(or_r Q) >-1 (Gamma --> Delta) :-

memb_and_rest (A or B) Delta Delta1, Q >-1 (Gamma --> (A::B::Delta1)).

(neg_l Q) >-1 (Gamma --> Delta) :-

memb_and_rest (neg A) Gamma Gamma1, Q >-1 (Gamma1 --> (A::Delta)).

Q >-1 Seq :- nprove 1 Q Seq.

Module lc auto: Root Module for Automatic Theorem Prover for LC

125

The lc prove module contains the propositional rules plus versions of the quantifier

rules that remove the quantified formula from the sequent. As in a propositional theorem

prover, in executing this program it will be the case that in any proof tree, the sequents at

any one level will contain one less logical connective than the sequents in the level below.

Thus step (2) above will always terminate. The duplication of quantified formulas at step

(3) in the above procedure is reminiscent of the amplification step in the matings procedure

for automated theorem proving given in [And81]. Although the matings method is quite

different from the one outlined above, the completeness of the above procedure follows

from the fact proved in [And81] that duplication of outermost quantifiers is all that is

necessary to obtain a complete procedure, and the fact that step (2) will always terminate.

If there is a proof, the procedure will find it after some finite number of iterations, but will

never terminate for sequents that are not provable.

It is interesting to compare this theorem prover to the well-known UT prover which is

also an implemention of a theorem prover based on a sequent calculus [Ble77, Ble83]. Some

aspects of the UT prover have been designed to handle quantifiers and substitutions in a

principled fashion. In the UT prover, the IMPLY procedure is based on a set of rules for

a “Gentzen type” system for first-order logic. In this procedure, formulas keep their basic

propositional structure although their quantifiers are removed. In the AND-SPLIT rule of

this prover (which corresponds to the ∧-R rule in a sequent system), the first conjunctive

subgoal returns a substitution which must then be applied to the second subgoal before

it is attempted. In logic programming, such composition of substitutions obtained from

separate subgoals is handled automatically via shared logical variables. An issue that

arises as a result of the AND-SPLIT rule is the occurrence of “conflicting bindings” due

to the need to instantiate a quantified formula more than once. The UT prover uses

generalized substitutions [TB79] to handle such multiple instances. A substitution is the

final result returned when a complete proof is found. In contrast, in the logic programming

setting, by representing quantification using λ-abstraction, we do not need to remove

quantifiers before attempting a proof. Instead, the duplication of quantified formulas

allows multiple instantiations by introducing a new logical variable for each one. As the

result of a successful proof we obtain a proof term rather than a substitution. These proof

terms are defined to include the substitution information. Such proof terms could in fact

be simplified to only return substitution information. Such simplified proof terms would

be very similar to the generalized substitutions of the UT prover.

Like the specifications for LI and LC , specifications for NI and NC cannot serve directly

as theorem provers for natural deduction. In fact, much of the non-determinism comes

from the same source as that for sequent systems: a rule can be applied to a non-atomic

hypothesis infinitely many times. In specifications that use meta-level implication to add

object level hypotheses as program clauses, this problem cannot be remedied. For example,

126

in proving a formula of the form ((p and q) imp r), in backchaining over the following

clause for imp i from Section 3.2:

(imp_i P) # (A imp B) :- pi PA\ ((PA # A) => ((P PA) # B)).

followed by applying GENERIC with constant pa for PA, and then AUGMENT, a clause of the

form (pa # (p and q)) will be added to the program. From this point on, in attempting

to prove r the following clause for and e will always be applicable.

(and_e P) # A :- P # (A and B); P # (B and A).

Once a hypothesis is added it cannot be removed (except after the goal that introduced

it has succeeded or failed). As a result, although meta-level implication is very useful in

specification, it will not be practical for implementing theorem provers. The alternate way

of specifying natural deduction, using lists to handle assumptions, provides more control.

This control is necessary for regulating the duplication of hypotheses, an essential aspect

of developing complete implementations under depth-first search, and as we will see in

Chapter 7, a useful mechanism in interactive proof search.

6.3 Depth-First Search With a Higher-Order Object Logic

We next consider various queries to the programs of Sections 4.2 and 4.4 specifying type-

checking and proof rules for a higher-order logic. We first consider the specification for the

simply-typed λ-calculus and queries of the form (M #t S) to the two-line program given

by the definite clauses for the #t predicate in Section 4.2.

(abs M) #t (R --> S) :- pi X\ ((X #t R) => ((M X) #t S)).

(app M N) #t S :- M #t (R --> S), N #t R.

As in first-order logic, the constant at the head of a closed term uniquely determines the

definite clause that must be used at each backchaining step. If the clauses in Section 4.4

for type-checking formulas and terms built up from the non-logical constants are included,

the same analysis applies. Thus depth-first interpretation of this specification is complete

for type checking.

Type inference for the #t program is also complete for the same reason: the constant

at the head of a closed term uniquely determines the definite clause that must be used at

each backchaining step. In a successful query of the form (M #t S) where S starts out

unspecified, the resulting instantiation for S may contain logic variables. For example, the

term

(abs F\ (abs N\ (app F (app F N))))

will have inferred “polymorphic” type (R --> S) --> R --> S. If types of bound vari-

ables in abstractions are included as an argument to abs, and the program is modified

accordingly, closed terms will get closed types. For example, the term

127

(abs F\ (abs N\ (app F (app F N)) i) (i -->i))

will get type (i --> i) --> i --> i.

Theorem proving, or asking if a type is inhabited by a term, is not feasible in the

program for #t as it is specified. The clause for app will always be applicable and could

take the interpreter down an infinite path.

In proof checking goals of higher-order logic of the form (P #p A), when both the proof

P and the formula A are closed, in all subgoals of the form (Q #p B), Q will be closed, and

in all subgoals of the form (M #t S), M will be closed. Thus, for all subgoals of either

form, there will be only one definite clause to use at each step. The λ-convertibility pro-

gram, on the other hand, is very non-deterministic. The clause for symmetry alone can

cause a depth-first interpreter to go into an infinite loop. There are many ways to specify

the equality relation between λ-terms. We could choose a “more deterministic” way to

check equality between typed terms such as always reducing them to normal form before

comparing them. The lfnorm module in Chapter 5 for normalization in LF illustrated

one approach to term normalization, yet the programs given there were not deterministic

since the normalization programs made use of the non-deterministic convertibility pro-

grams in the lfconv module. The following clauses illustrate a deterministic approach to

normalization for simply typed terms.

norm M N :- red1 M P, !, norm P N.

norm M M.

The cut (!) and order of clauses are essential to the correct behavior of this program. The

second clause must not be used until all possible reductions are done by the first clause.

In the specification in Section 4.4, the conv program could be replaced with this norm

program, and the convertibility clause modified as follows.

(convert A B P) #p A :- B #t form, P #p B, norm A N, norm B N.

With this modification, we obtain a complete deterministic proof checker for our higher-

order logic. Since termination depends only on the fact that the proof term is closed, the

program will still be complete for queries of the form (P #p A) where the formula A is not

fully specified.

Note that the top-level predicate # given by the following single definite clause:

P # A :- A #t form, P #p A.

cannot be used when A is not specified since it will first try to check that variable A is a

formula. As just discussed, queries of the form (A #t S) where A is not specified cannot

be executed using depth-first control. We may simply omit the first subgoal with the

understanding that when (P # A) is provable, P is a proof of all instances of A where the

free variables of A get instantiated to terms of the appropriate object-level type as long as

these types are inhabited.

128

Not surprisingly, depth-first theorem proving in higher-order logic is even more prob-

lematic than depth-first theorem proving for first-order natural deduction. There are

several more sources of non-determinism. For example, consider the type-checking subgoal

in the clause for exists i.

(exists_i S T P) #p (exists S A) :- T #t S, P #p (A T).

When the proof term is unspecified, the term T will also be unspecified. In solving the

subgoal (T #t S), the interpreter is asked to find a term T that inhabits the type S before

finding a proof P of the formula (A T). As discussed, such a query cannot be executed

deterministically under depth-first control. The two subgoals may be reversed, but only

in the case when T gets instantiated to a closed term does the second goal becomes a type

checking goal which can be handled by the deterministic interpreter. A similar problem

occurs in the above clause for convertibility between λ-terms. If B is unspecified in the

proof term (convert A B P), the subgoal (B #t form) cannot be feasibly solved under

depth-first search. Non-determinism will also be a problem in any program specifying

convertibility between object level terms. We have already seen that the conv may loop

indefinitely, even when both terms are closed. Although the implementation of a norm

program was suggested to solve this problem, it too will fail when logic variables in terms

are permitted. For example, in the above clause for convertibility, if A is unspecified,

normalization will loop indefinitely on the subgoal (norm A N).

129

Chapter 7

Implementing Interpreters for

Theorem Provers

As we have seen, it is sometimes possible to write theorem provers that are complete with

respect to a depth-first interpreter. In general, though, it is desirable to have more control

over which definite clauses are applied at different points during the search for proofs. One

way to provide such control is to write interpreters in our logic programming language that

define some other form of control. We argue that logic programming is well-suited for the

task of implementing such interpreters. We focus largely on the implementation of a tactic

style interpreter. We retain depth-first control for the meta-language, so the interpreters

themselves must function well under depth-first search.

7.1 Defining and Interpreting Goal Structures

First, we need to introduce new goal structures that will be manipulated by the programs

that implement interpreters. In the next subsection, we define one goal constructor cor-

responding to each of the search operations of the logic programming interpreter. These

constructors are used in building compound goals. In subsection 7.1.2, we discuss the form

of atomic goals in tactic theorem provers. Then in subsection 7.1.3 we define a primitive

operation of all of the interpreters: interpreting compound goals.

7.1.1 Goal Structures

We first introduce a new base type goal for the new goal structures. We will call goals

of type o meta-goals to distinguish them from the new goals. Meta-goals have a specific

meaning given to them by the depth-first interpreter. Goals of type goal, on the other

hand, will be given meaning by the new programs we write to implement various inter-

preters. We want to have each of the search operations of the meta-language available

130

to our interpreters, so we introduce one goal constructor corresponding to each and give

them types as in the goals module below. In this module, tt corresponds to the trivially

module goals.

kind goal type.

type tt goal.

type ff goal.

type ’&&’ goal -> goal -> goal.

type ’vv’ goal -> goal -> goal.

type all (A -> goal) -> goal.

type some (A -> goal) -> goal.

type ’==>>’ A -> goal -> goal.

Module goals: Goal Constructors for Meta-Goals

satisfied goal, ff corresponds to failure, && corresponds to the AND search operation, vv to

OR, all to GENERIC, some to INSTANCE, and ==>> to AUGMENT. Note that all of the goals

except ==>> have types similar to their corresponding meta-goals with the type o replaced

by goal everywhere. The reason why the type for ==>> is not goal -> goal -> goal

will become apparent later. Note that the goal quantifiers all and some have polymorphic

type. In general, for each theorem prover, quantification in goals will be limited to a small

number of base types. An alternative approach to defining quantified goals is to introduce

a quantifier for each such type. For example, if tm is one of the base types, we would have

the following declarations.

type all_tm (tm -> goal) -> goal.

type some_tm (tm -> goal) -> goal.

Using this approach, the definition of an interpreter would depend on the particular ap-

plication and its base types. We choose to take the more general approach, so that one

interpreter can be adopted without modification by different application programs. In

practice, the instances of A will be restricted to a subset of the base types of a particular

application program.

The specifications of proof systems in Chapters 3 and 4, on several occasions, made

use of disjunctive, existential, and implicational goals in the bodies of clauses, which op-

erationally correspond to the use of the OR, INSTANCE, and AUGMENT search operations,

respectively. While useful for specification, in general these three search connectives are

not essential. Disjunctive goals in the bodies of clauses, can be eliminated by introducing

a clause for each disjunct. For example, in the liprover specification of LI in Section 3.1,

we saw that the clause for the ∨-R rule with a disjunctive subgoal could be replaced by two

clauses, one for each subgoal. In fact it will usually be desirable to have multiple clauses, so

that our interpreters have control in choosing which one to use. Existential quantification

131

in subgoals can be eliminated by replacing it with universal quantification over the whole

clause. Meta-level implication was used in the natural deduction specifications of Chap-

ter 3 to specify the discharge of assumptions. As noted there, lists can be used instead

to provide more flexibility in the manipulation of assumptions. In general, the three goal

structures vv, some, and ==>> will not be used in implementations of theorem provers in

this chapter, but we will include them to be complete.

7.1.2 Inference Rules as a Relation on Goals

Note that we can view definite clauses as the specification of a binary relation on meta-

goals. In each clause, the first goal is given by the head of the clause which can be viewed

operationally as an “input goal.” It may unify with any goal that the interpreter is trying to

solve. The second goal is the body of the clause which can be viewed as the “output goal.”

Its instances provide new subgoals which must subsequently be proved. In the specification

of inference rules of various proof systems in Chapters 3 and 4, this input/output relation

was between a conclusion of a rule and its premises. In the specification of inference rules

using the new goal structures, this relation will be made explicit. Inference rules will

be specified as clauses of a special form; they will be named facts where the name is a

predicate of type goal -> goal -> o where the first argument is the input goal specifying

the conclusion, and the second is the output goal specifying the premises. Basic goals will

again encode the relation between a formula and its proof, a sequent and its proof, a term

and its type, etc. as they did in Chapters 3 and 4. For example, to implement a theorem

prover for the natural deduction system NI , we may again use the infix constant # to

encode the relation between a formula and its proof, but in this case it will have type

nprf -> form -> goal. Goals of the form (P # A) would be the atomic goals of such a

prover, in contrast to compound goals which will be built using the goal constructors from

the last section. As an example, the inference rule for the ∧-I rule of NI can be specified

by the following clause, where the input goal is an atomic goal and the output goal is a

conjunctive compound goal.

and_i_tac ((and_i P1 P2) # (A and B)) ((P1 # A) && (P2 # B)).

While this clause differs in syntax from the corresponding clause in Section 3.2, its meaning

is similar. The declarative reading is exactly the same: if P1 is a proof of A and P2 is a

proof of B, then (and i P1 P2) is a proof of (A and B). In Chapters 3 and 4, the use

of search connectives in clauses provided an operational reading with respect to a non-

deterministic interpreter. Here, the operational reading is similar but indirect since it

depends on the fact that the goal structures &&, vv, etc. will be implemented in terms of

their corresponding search connectives. Clauses of the above form which state facts about

the relation between goals will be called tactics. They will be the primitive operations of

our theorem provers.

132

7.1.3 Interpreting Compound Goal Structures

Any interpreter we write must have the ability to break down compound goal structures, so

that primitive operations can be applied to atomic goals. The maptac program on page 133

is a general program that will handle this task in all of the interpreters we specify. It takes

a tactic as an argument and applies it to the input goal in a manner consistent with the

meaning of the goal structure. The type of maptac is:

(goal -> goal -> o) -> goal -> goal -> o.

That is, the metalevel predicate maptac takes as its first argument a metalevel predicate

which represents a tactic. Its second and third arguments are an input and output goal.

On an && structure, maptac will apply the tactic to each subgoal separately, forming a new

module maptac.

import goals.

type maptac (goal -> goal -> o) -> goal -> goal -> o.

type memo A -> o.

maptac Tac tt tt.

maptac Tac (InGoal1 && InGoal2) (OutGoal1 && OutGoal2) :-

maptac Tac InGoal1 OutGoal1, maptac Tac InGoal2 OutGoal2.

maptac Tac (all InGoal) (all OutGoal) :-

pi T\ (maptac Tac (InGoal T) (OutGoal T)).

maptac Tac (InGoal1 vv InGoal2) OutGoal :-

maptac Tac InGoal1 OutGoal; maptac Tac InGoal2 OutGoal.

maptac Tac (some InGoal) OutGoal :-

sigma T\ (maptac Tac (InGoal T) OutGoal).

maptac Tac (D ==>> InGoal) (D ==>> OutGoal) :-

(memo D) => (maptac Tac InGoal OutGoal).

maptac Tac InGoal OutGoal :- Tac InGoal OutGoal.

Module maptac: Interpreting Compound Goal Structures

&& structure to combine the results. The clause for all is implemented using the universal

quantifier pi of the meta-language to introduce a new constant for T which gets substituted

for the bound variable in InGoal. OutGoal is the result of abstracting over this constant.

The next three clauses for vv, some, and ==>> are not needed as illustrated earlier, but to

be complete, we include them here. The clause for vv attempts to apply the tactic to the

first disjunct, and if that fails tries the second. The clause for some introduces a new logic

133

variable into the input goal via the existential quantifier sigma of the meta-language. In

the clause implementing ==>>, note that an auxiliary predicate memo (of polymorphic type

A -> o) was introduced. This allows the introduction of new clauses into the program.

Its polymorphic type allows arbitrary information to be added as clauses. The particular

information and its use will, of course, depend on the particular application. The use

of memo to introduce clauses avoids the possibility of introducing clauses with predicate

variables as disallowed in the meta-theory. The last clause above is used once the goal is

reduced to an atomic form. It simply applies the tactic directly.

7.2 NI Inference Rules as Tactics

In this section, we present in full a specification of the NI inference rules as tactics. This

specification will provide an example to be used in later sections for illustrating the behavior

of various interpreters. In addition, in this section, we address the issue of how best to

specify the rules of NI as tactics. As we saw in Chapter 3, there are many ways to specify

NI . We choose one that is well-suited for interactive proof search.

The clauses we present here are based on the clauses in the ninormal module on

page 39. This core set of tactics will only build normal proofs. Later we will add tactics that

allow more flexibility in user-guided proof search. The clauses presented here are obtained

from the clauses of ninormal by two mechanical changes of syntax. First, we modify them

to use judgment sequents with explicit context lists as described in Section 3.3. Then,

we further modify them so that they are named clauses expressing a relation between two

goals, as discussed in Section 7.1.2. In this setting --> will be the atomic goal constructor.

The declarations needed for the primitive goals of this prover are in the ndgoal module

below. It imports the goals module presented in this chapter, and the nprf module on

page 33 in Chapter 3. Again, the only difference in these declarations and the ones for the

module ndgoal.

import goals nprf.

kind judg type.

type ’#’ nprf -> form -> judg.

type ’-->’ (list judg) -> judg -> goal.

Module ndgoal: Primitive Goal Constructors for NI

direct explicit context specifications of NI is the occurrence of goal in place of o.

A complete set of tactics for NI appears in the ndtac module on pages 137 and 138.

The change of syntax needed to obtain the tactics for the introductions rules and ⊥I from

134

the clauses of ninormal is very straightforward. For example, the tactic for the ∧-I rule is

as follows.

and_i_tac (Gamma --> (and_i P1 P2) # (A and B))

((Gamma --> P1 # A) && (Gamma --> P2 # B)).

In Section 3.5, we showed that operationally, the clauses for the E-rules of the ninormal

module apply inference rules in a forward direction from the current set of assumptions.

Using explicit contexts, this behavior corresponds to looking for a formula of a particular

form in the assumption list, applying an E-rule to it, and adding the new partial proof to

the assumption lists of the subgoals. In the tactic specification, we provide the additional

capability to choose a specific formula within the list to which the rule will be applied.

We add an integer argument to each tactic which specifies the position in the list of a

particular assumption. For example, the clause for and e is specified as follows.

and_e_tac N (Gamma --> PC # C)

((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C) :-

nth_item N (P # (A and B)) Gamma.

The nth item predicate is given in Appendix A. In the above clause, the call to this

predicate will succeed if there is a conjunction in position N in Gamma. When N is 0, nth item

calls the memb program, which in this case will find the first occurrence of a conjunction in

Gamma. Notice that and e tac itself is not a proper tactic, although (and e tac N) is for

any integer N.

It is also possible to specify programs that manipulate lists, such as nth item, as

tactics, and include such subgoals in the output goal structure so that they must also be

solved by the tactic interpreter instead of the logic programming interpreter. Then the

above tactic could be modified as follows.

and_e_tac N (Gamma --> PC # C)

((nth_item N (P # (A and B)) Gamma) &&

((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C)).

Since all of the list manipulations we use behave well under depth-first search, we continue

to specify such subgoals as meta-goals. The remaining tactics for the elimination rules are

similar. (See pages 137 and 138.)

As stated in Section 3.3, it is also possible and often useful to specify rules that apply

to assumptions so that they remove the assumption from the hypothesis list after applying

the rule. Here, we can include these new tactics by adding them to the existing set of

tactics and giving them different names. For example, the tactic that removes a universally

quantified hypothesis can be defined as follows.

forall_e_tacr N (Gamma --> PC # C)

((((forall_e T A P) # (A T))::Gamma1) --> PC # C) :-

nth_and_rest N (P # (forall A)) Gamma Gamma1.

135

The nth and rest predicate also is given in Appendix A. In the above clause, Gamma1 is

the list Gamma with the pair (P # (forall A)) removed. This tactic and similar tactics

for the other elimination rules are also in the ndtac module on page 138.

Finally, the following tactic is needed to complete proofs.

close_tac N (Gamma --> P # A) tt :- nth_item N (P # A) Gamma.

Again, an integer argument allows the user to choose a particular assumption from Gamma

during interactive proof. Notice that the only compound goal constructors that appear in

the tactics of ndtac are && and all.

There are several reasons for choosing ninormal with explicit contexts as the starting

point for specifying the basic tactics of a natural deduction theorem prover. First of

all, since any information contained inside atomic goals will be readily accessible to the

interpreter, including explicit assumption lists inside goals allows operations on them to

be easily accomplished. For example, we were able to specify versions of the inference rule

tactics that remove the principle formula from the context at the time the rule is applied.

Other useful operations such as printing out all of the assumptions during an interactive

session are also straightforward to implement. In contrast, consider the following tactic

for imp i which uses implicational goals to specify the discharge of assumptions.

imp_i_tac ((imp_i P) # (A imp B))

(all PA\ ((PA # A) ==>> (P PA) # B)).

Using this clause, object level hypotheses get added as memo clauses via meta-level impli-

cation. With this formulation, certain tasks become much more difficult, and others, such

as removing hypotheses become impossible.

Specifying the elimination rules so that they look in the assumption list for a formula

of a particular form also has several advantages. First of all, as discussed in Section 6.1,

such a specification prevents new logic variables of type form from appearing in goals. In

contrast, consider the following tactic for and e1.

and_e1_tac (Gamma --> (and_e1 B P) # A) (Gamma --> P # (A and B)).

This tactic introduces a logic variable for formula B in the output goal whenever the proof

in the input goal is unspecified at the time the tactic is applied. By always applying

elimination rules to assumptions, on the other hand, as long as Gamma in the original query

contains no variables of type form, the output goal will contain no variables of type form.

All logic variables inside formulas, if any, will have type i. Thus, in interactive theorem

proving, the user need not keep track of formula variables and their potential unifiers.

In addition the capability to reason forward from the hypotheses is useful in interactive

theorem proving.

136

module ndtac.

import ndgoal lists.

type close_tac int -> goal -> goal -> o.

type and_i_tac goal -> goal -> o.

type or_i1_tac goal -> goal -> o.

type or_i2_tac goal -> goal -> o.

type imp_i_tac goal -> goal -> o.

type neg_i_tac goal -> goal -> o.

type forall_i_tac goal -> goal -> o.

type exists_i_tac goal -> goal -> o.

type false_i_tac goal -> goal -> o.

type and_e_tac int -> goal -> goal -> o.

type imp_e_tac int -> goal -> goal -> o.

type neg_e_tac int -> goal -> goal -> o.

type forall_e_tac int -> goal -> goal -> o.

type or_e_tac int -> goal -> goal -> o.

type exists_e_tac int -> goal -> goal -> o.

type and_e_tacr int -> goal -> goal -> o.

type imp_e_tacr int -> goal -> goal -> o.

type neg_e_tacr int -> goal -> goal -> o.

type forall_e_tacr int -> goal -> goal -> o.

type or_e_tacr int -> goal -> goal -> o.

type exists_e_tacr int -> goal -> goal -> o.

close_tac N (Gamma --> P # A) tt :- nth_item N (P # A) Gamma.

and_i_tac (Gamma --> (and_i P1 P2) # (A and B))

((Gamma --> P1 # A) && (Gamma --> P2 # B)).

or_i1_tac (Gamma --> (or_i1 P) # (A or B)) (Gamma --> P # A).

or_i2_tac (Gamma --> (or_i2 P) # (A or B)) (Gamma --> P # B).

imp_i_tac (Gamma --> (imp_i P) # (A imp B))

(all PA\ (((PA # A)::Gamma) --> (P PA) # B)).

neg_i_tac (Gamma --> (neg_i P) # (neg A))

(all PA\ (((PA # A)::Gamma) --> (P PA) # false)).

forall_i_tac (Gamma --> (forall_i P) # (forall A))

(all Y\ (Gamma --> (P Y) # (A Y))).

exists_i_tac (Gamma --> (exists_i T P) # (exists A)) (Gamma --> P # (A T)).

false_i_tac (Gamma --> (false_i P) # A) (Gamma --> P # false).

and_e_tac N (Gamma --> PC # C)

((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C) :-

nth_item N (P # (A and B)) Gamma.

Module ndtac Part I: Tactics for NI

137

imp_e_tac N (Gamma --> PC # C)

((Gamma --> P1 # A) &&

((((imp_e A P1 P2) # B)::Gamma) --> PC # C)) :-

nth_item N (P2 # (A imp B)) Gamma.

neg_e_tac N (Gamma --> PC # C)

((Gamma --> P1 # A) &&

((((neg_e A P1 P2) # false)::Gamma) --> PC # C)) :-

nth_item N (P2 # (neg A)) Gamma.

forall_e_tac N (Gamma --> PC # C)

((((forall_e T A P) # (A T))::Gamma) --> PC # C) :-

nth_item N (P # (forall A)) Gamma.

or_e_tac N (Gamma --> (or_e A B P P1 P2) # C)

((all PA\ (((PA # A)::Gamma) --> (P1 PA) # C)) &&

(all PB\ (((PB # B)::Gamma) --> (P2 PB) # C))) :-

nth_item N (P # (A or B)) Gamma.

exists_e_tac N (Gamma --> (exists_e A P1 P2) # B)

(all Y\ (all P\ (((P # (A Y))::Gamma) --> (P2 Y P) # B))) :-

nth_item N (P1 # (exists A)) Gamma.

and_e_tacr N (Gamma --> PC # C)

((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma1) --> PC # C) :-

nth_and_rest N (P # (A and B)) Gamma Gamma1.

imp_e_tacr N (Gamma --> PC # C)

((Gamma --> P1 # A) &&

((((imp_e A P1 P2) # B)::Gamma1) --> PC # C)) :-

nth_and_rest N (P2 # (A imp B)) Gamma Gamma1.

neg_e_tacr N (Gamma --> PC # C)

((Gamma --> P1 # A) &&

((((neg_e A P1 P2) # false)::Gamma1) --> PC # C)) :-

nth_and_rest N (P2 # (neg A)) Gamma Gamma1.

forall_e_tacr N (Gamma --> PC # C)

((((forall_e T A P) # (A T))::Gamma1) --> PC # C) :-

nth_and_rest N (P # (forall A)) Gamma Gamma1.

or_e_tacr N (Gamma --> (or_e A B P P1 P2) # C)

((all PA\ (((PA # A)::Gamma1) --> (P1 PA) # C)) &&

(all PB\ (((PB # B)::Gamma1) --> (P2 PB) # C))) :-

nth_and_rest N (P # (A or B)) Gamma Gamma1.

exists_e_tacr N (Gamma --> (exists_e A P1 P2) # B)

(all Y\ (all P\ (((P # (A Y))::Gamma1) --> (P2 Y P) # B))) :-

nth_and_rest N (P1 # (exists A)) Gamma Gamma1.

Module ndtac Part II: Tactics for NI

138

7.3 Some Simple Interpreters

We begin the implementation of interpreters in the next subsection by illustrating a simple

depth-first interpreter. Such an interpreter will behave the same as the depth-first logic

programming interpreter, although it will be less efficient because of the extra level of

interpretation. Its purpose here will be to serve as a starting point for the implementation

of interpreters for other more complex strategies.

Breadth-first search, another common search strategy, operates by building a search

tree one level at a time. Its main advantage is that it is a complete search strategy. If there

is some path that terminates with success, this success node will eventually be reached.

An interpreter implementing breadth-first control, together with a set of tactics for any

proof system or type system would implement a complete theorem prover, proof checker,

and type inferencer. The main problem with this strategy is that it is very space-inefficient

since it must keep track of all of the search paths. Although it could be implemented using

the goal structures and maptac program illustrated so far, it is not practical in building

efficient implementations, and we do not implement it here.

Depth-first iterative deepening [Kor85, ST85], like breadth-first is a complete search

strategy, but like depth-first does not require huge amounts of memory. Iterative deepening

operates by first performing a depth-first search to depth one, then discarding the results

and performing a depth-first search to depth two, and so on. Discarding the results at each

iteration does not greatly affect efficiency because most of the work is done at the deepest

level. It was argued in [Sti86] that this strategy is very suitable for automated deduction in

first-order logic. We will see that this strategy can be implemented by slightly modifying

the depth-first interpreter.

In the sections following this one, we implement a tactic interpreter which can be used

to create an environment for theorem proving that can integrate any or all of the search

strategies discussed in this section with interactive theorem proving and other kinds of

search strategies and proof search heuristics.

7.3.1 A Depth-First Interpreter

The program for the depth-first interpreter is contained in the dfs module below. It uses

the three predicates app tac, dfs, and dfs interp. The app tac predicate takes a list of

tactics to use in the search, an input goal, and an output goal. Its role is to perform one

step of the search at a time. It traverses the list of tactics and attempts them one by one

until one succeeds (or they all fail). The dfs predicate is the main predicate for depth-first

search. The input goal to dfs is assumed to be atomic. First, the app tac procedure

is called to apply a tactic, resulting in an intermediate goal structure. Then maptac is

called to break down any possible compound structure of the intermediate goal, and call

139

module dfs.

import lists maptac.

type app_tac list (goal -> goal -> o) -> goal -> goal -> o.

type dfs list (goal -> goal -> o) -> goal -> goal -> o.

type dfs_interp list (goal -> goal -> o) -> goal -> o.

app_tac (Tac::Rest) InGoal OutGoal :- Tac InGoal OutGoal.

app_tac (Tac::Rest) InGoal OutGoal :- app_tac Rest InGoal OutGoal.

dfs Tacs InGoal OutGoal :- app_tac Tacs InGoal MidGoal,

maptac (dfs Tacs) MidGoal OutGoal.

dfs_interp Tacs InGoal :- maptac (dfs Tacs) InGoal OutGoal.

Module dfs: A Depth-First Interpreter

dfs again on each of the atomic subgoals. The recursion between dfs and maptac forms

the main loop for this search strategy. When a subgoal is reduced to tt, the first clause

of the maptac program succeeds without calling dfs again, terminating a branch of the

search. If all subgoals are reduced to tt, the top-level call to dfs terminates with success.

OutGoal will then be a compound goal structure containing only tt as its atomic subgoals.

Otherwise depth-first search fails. dfs interp is the top-level predicate. It simply calls

maptac with the tactic (dfs Tacs) to decompose the initial compound goal structure

before beginning the depth-first loop. This predicate does not include an argument for

the output goal since the program will either completely solve the input goal or loop

indefinitely. Thus, the output goal will contain no useful information.

For theorem proving in natural deduction, we can attempt depth-first search over the

list of tactics implementing the inference rules given in Section 7.2. For some formula A

and some proof term P, a query of the form:

dfs_interp ((close_tac 0)::and_i_tac::or_i1_tac::or_i2_tac::imp_i_tac::

neg_i_tac::forall_i_tac::exists_i_tac::false_i_tac::

(and_e_tac 0)::(imp_e_tac 0)::(forall_e_tac 0)::(neg_e_tac 0)::

(or_e_tac 0)::(exists_e_tac 0)::nil)

(nil --> P # A).

will behave the same as a query of the form (P # A) to ninormal, or a query of the form

(nil --> P # A) to the explicit context version of ninormal.

7.3.2 A Depth-First Iterative Deepening Interpreter

To implement iterative deepening, the main modification to ordinary depth-first search

is that at each step, we must compare the current depth of search to the current bound

140

on search. Search must fail on a particular subgoal if the bound has been reached and

the subgoal is not completed. The idfs module below implements this strategy. Like the

module idfs.

import lists maptac.

type app_tac list (goal -> goal -> o) -> goal -> goal -> o.

type idfs int -> int -> list (goal -> goal -> o)

-> goal -> goal -> o.

type idfs_interpb int -> int -> int -> list (goal -> goal -> o)

-> goal -> o.

type idfs_interp int -> int -> list (goal -> goal -> o) -> goal -> o.

app_tac (Tac::T) InGoal OutGoal :- Tac InGoal OutGoal.

app_tac (Tac::T) InGoal OutGoal :- app_tac T InGoal OutGoal.

idfs Bnd N Tacs InGoal OutGoal :-

N =< Bnd,

app_tac Tacs InGoal MidGoal,

M is (N + 1),

maptac (idfs Bnd M Tacs) MidGoal OutGoal.

idfs_interpb Bnd Incr UpBnd Tacs InGoal :-

maptac (idfs Bnd 1 Tacs) InGoal OutGoal.

idfs_interpb Bnd Incr UpBnd Tacs InGoal :-

Bnd1 is (Bnd + Incr), Bnd1 =< UpBnd,

idfs_interpb Bnd1 Incr UpBnd Tacs InGoal.

idfs_interp Bnd Incr Tacs InGoal :- maptac (idfs Bnd 1 Tacs) InGoal OutGoal.

idfs_interp Bnd Incr Tacs InGoal :- Bnd1 is (Bnd + Incr),

idfs_interp Bnd1 Incr Tacs InGoal.

Module idfs: An Iterative Deepening Interpreter

depth-first interpreter of the previous section, this interpreter uses app tac to perform

each single step of the search. The idfs predicate is a modified form of the dfs predicate

of the depth-first interpreter. Here it must also perform a check on the search bound. Thus

it has two additional integer arguments for the current depth of search and the bound.

The first subgoal will fail if the bound has been exceeded. Otherwise app tac is called

to perform one step in the search. The current bound is then incremented before calling

maptac and re-entering the search loop.

The idfs interpreter contains two top-level predicates, idfs interpb for bounded

search, and idfs interp for unbounded search. They are both modified forms of

dfs interp. The idfs interpb predicate has three integer arguments for the current

bound, an increment for increasing the bound, and an upper bound on the depth of search.

The first clause begins search using the bound initially specified by Bnd, and setting the

141

current depth to 1. If it fails, the second clause increments the bound by the amount

specified, and checks the new bound against the upper bound. If the bound has not been

exceeded search begins again with the new bound. Otherwise, if the upper bound has

been exceeded, search fails. The search bound is useful for controlling the amount of effort

spent on a particular goal. Note however, that because of this bound, this search strategy

is not complete.

The idfs interp predicate is the same as dfs interpb except that the check of the

bound against an upper bound is omitted. Thus if the input goal is not provable, search will

continue indefinitely. Without an upper bound on the depth of search, iterative deepening,

like breadth-first search, is a complete strategy. Thus idfs interp will act as a complete

theorem prover, proof checker, and type inferencer for any proof system or type system

that can be specified as a set of tactics. In fact, such execution can be more efficient than

breadth-first search since iterative deepening avoids the memory overhead (see [Kor85]).

Note that neither top-level predicate distinguishes failure caused by exhausting the

search space from failure caused by some branch exceeding the depth bound. Such a test

could be incorporated into either implementation. For the idfs interp predicate, search

may then terminate rather than loop indefinitely on some unprovable subgoals.

Consider the execution of this interpreter on a set of tactics specifying the inference

rules of the LC proof system introduced in Section 4.1. There is a correspondence between

its behavior under an iterative deepening interpreter, and the behavior of lc auto, the

automatic theorem prover for LC given in Section 6.2 that operates under depth-first

search. In the execution of the former, the bound on the depth of search induces a limit on

the number of times an inference rule can be applied to the same formula. In the latter,

the number of rule applications is limited by the number of copies of the formula. Under

iterative deepening, the interpreter handles the constraints on applying inference rules at

each iteration. The tactics need not be modified. In contrast, in lc auto, the constraints

are explicitly a part of the program. Note that lc auto behaves like the unbounded

interpreter idfs interp since it will never terminate for sequents that are not provable.

On the other hand, a bound on the number of allowable copies of quantified formulas could

easily be incorporated into lc auto.

7.4 A Tactic Interpreter

Tactic style theorem provers were first built in the early LCF systems and, as mentioned

earlier, have been adopted as a central mechanism in such notable theorem proving sys-

tems as Edinburgh LCF [GMW79], HOL [Gor85], Nuprl [C+86], and Isabelle [Pau88]. In

these systems, as is the case here, primitive tactics generally implement inference rules

while compound tactics are built from these using a compact but powerful set of tacticals.

142

Tacticals provide the basic control over search. Tactics and tacticals have proved valuable

for several reasons. They promote modular design and provide flexibility in controlling the

search for proofs. They also allow for blending automatic and interactive theorem proving

techniques in one environment. This environment can also be grown incrementally.

We have already discussed the implementation of tactics. In addition, we have discussed

the implementation of the maptac program which will be just one of the basic control

primitives or tacticals of this interpreter. Here, we also implement several other tacticals.

They are some of the familiar ones found in many tactic style theorem provers.

Generally tactics and tacticals have been implemented in the functional programming

language ML. The λProlog implementation is very natural and extends the usual mean-

ing of tacticals by permitting them to have access to logic variables and all six search

operations. A comparison between the ML and λProlog implementations is contained in

Section 7.9.

Six common tacticals are implemented in the tacticals module on page 143. The

module tacticals.

import maptac goalred.

type then (goal -> goal -> o)

-> (goal -> goal -> o) -> goal -> goal -> o.

type orelse (goal -> goal -> o)

-> (goal -> goal -> o) -> goal -> goal -> o.

type idtac goal -> goal -> o.

type repeat (goal -> goal -> o) -> goal -> goal -> o.

type try (goal -> goal -> o) -> goal -> goal -> o.

type complete (goal -> goal -> o) -> goal -> goal -> o.

then Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal MidGoal,

maptac Tac2 MidGoal OutGoal.

orelse Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal; Tac2 InGoal OutGoal.

idtac Goal Goal.

repeat Tac InGoal OutGoal :-

orelse (then Tac (repeat Tac)) idtac InGoal OutGoal.

try Tac InGoal OutGoal :- orelse Tac idtac InGoal OutGoal.

complete Tac InGoal tt :- Tac InGoal OutGoal, goalreduce OutGoal tt.

Module tacticals: Some Common Tacticals

then tactical performs the composition of tactics. Tac1 is applied to the input goal, and

then Tac2 is applied to the resulting goal. In this tactical and all others, we assume

143

that the input goal is atomic. maptac is used in the second case since the application

of Tac1 may result in an output goal (MidGoal) with compound structure. This tactical

plays a fundamental role in combining the results of step-by-step proof construction. The

substitutions resulting from applying these separate tactics get combined correctly since

MidGoal provides the necessary sharing of logic variables between these two calls to tactics.

The orelse tactical simply uses the OR search operation so that Tac1 is attempted, and if it

fails (in the sense that the logic programming interpreter cannot satisfy the corresponding

meta-level goal), then Tac2 is tried. The third tactical, idtac, returns the input goal

unchanged. This tactical is useful in constructing compound tactic expressions such as the

one found in the repeat tactical. repeat is recursively defined using the three tacticals,

then, orelse, and idtac. It repeatedly applies a tactic until it is no longer applicable.

This tactical could also be defined directly by the following clauses.

repeat Tac InGoal OutGoal :- Tac InGoal MidGoal,

maptac (repeat Tac) MidGoal OutGoal.

repeat Tac Goal Goal.

The try tactical prevents failure of the given tactic by using idtac when Tac fails. It

might be used, for example, in the second argument of an application of the then tacti-

cal. It prevents failure when the first argument tactic succeeds and the second does not.

Finally the complete tactical tries to completely solve the given goal. It will fail if there

is a non-trivial goal remaining after Tac is applied. It requires an auxiliary procedure

goalreduce of type goal -> goal -> o which simplifies compound goal expressions by

removing occurrences of tt from them. The complete tactical succeeds only if the output

goal is simplified to tt. The code for goalreduce and its auxiliary procedure remove tt

is in the goalred module on page 145. Instances of cut (!) are used here for efficiency

only. The program would behave the same without them.

Note that we could build eager reduction of goals directly into the maptac program

so that it simplifies goals and removes occurrences of tt as it progresses. This requires

redefining the three maptac clauses for the &&, all, and ==>> goal structures as follows.

maptac Tac (InGoal1 && InGoal2) OutGoal :-

maptac Tac InGoal1 OutGoal1, maptac Tac InGoal2 OutGoal2.

remove_tt (OutGoal1 && OutGoal2) OutGoal.

maptac Tac (all InGoal) OutGoal :-

pi T\ (maptac Tac (InGoal T) (OutGoal1 T)), remove_tt (all OutGoal1) OutGoal.

maptac Tac (D ==>> InGoal) OutGoal :-

(memo D) => (maptac Tac InGoal OutGoal1),

remove_tt (D ==>> OutGoal1) OutGoal.

Using this implementation of maptac, occurrences of tt will never appear nested inside

compound structures since they are always removed at the earliest point possible. Thus

144

module goalred.

import goals.

type goalreduce goal -> goal -> o.

type remove_tt goal -> goal -> o.

goalreduce (Goal1 && Goal2) RGoal :- !,

goalreduce Goal1 RGoal1, goalreduce Goal2 RGoal2,

remove_tt (RGoal1 && RGoal2) RGoal.

goalreduce (all Goal) RGoal :- !,

pi T\ (goalreduce (Goal T) (RGoal1 T)), remove_tt (all RGoal1) RGoal.

goalreduce (D ==>> Goal) RGoal :- !,

goalreduce Goal RGoal1, remove_tt (D ==>> RGoal1) RGoal.

goalreduce Goal Goal.

remove_tt (Goal && tt) Goal :- !.

remove_tt (tt && Goal) Goal :- !.

remove_tt (all T\tt) tt :- !.

remove_tt (D ==>> tt) tt :- !.

remove_tt Goal Goal.

Module goalred: Simplifying Compound Goals

the simpler remove tt procedure is all that is needed. The complete tactical could then

by defined as follows.

complete Tac InGoal tt :- Tac InGoal tt.

The definite clauses in the maptac (page 133) and tacticals (page 143) modules with

the auxiliary modules that they import provide a complete implementation of tacticals,

the primitive control operations of the interpreter. Together with the primitive tactics

which specify a basic set of operations for a particular application, they provide a simple

programming language for writing search strategies. In the next sections, we illustrate the

use of this language, and how it can be modularly extended to include other capabilities.

We begin, in the next section, by adding an interactive component to the basic interpreter.

7.5 Interactive Component for the Tactic Interpreter

In this section we define the clauses that make up an interactive component for the tactic

interpreter. The complete set of clauses is in the inter tacs module on page 150 at the

end of this section.

We first present an alternative implementation of the orelse tactical that will be useful

here. Note that in the version from the maptac module:

orelse Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal; Tac2 InGoal OutGoal.

145

if Tac1 succeeds, a backtracking point will be set up so that if there is a subsequent failure,

control may return to this clause, and Tac2 will be attempted. We may define another

version of this tactical which eliminates this backtracking point as follows.

orelse! Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal, !; Tac2 InGoal OutGoal.

The clause without the cut is more general in the sense that there may be more ways for

it to succeed. This is the first clause that relies on a non-logical feature (!) of the meta-

language to obtain the desired operational behavior. There will be a few other occasions

where the use of cut will be crucial in defining operational behavior in clauses in this

section since more fine-tuned control is important for good user interaction.

The orelse! tactical will be used by the query tactic, which will be the primitive

operation of the interactive component. It will query the user for the next action to take.

Its task can be divided into three steps. The first step is to output some information

about the state of the interpreter. The second step is to get input from the user about

what action to take, and the third step is to perform the action specified by the input.

In the first step, the form of the output will depend on the particular theorem prover or

other program being interpreted. For example, in a natural deduction theorem prover we

will want to display the formula to be proven, and possibly the current list of assumptions.

For each application we must write a specialized procedure to perform the output. Such a

procedure will extract information from the input goal to the query tactic. In implementing

the general query tactic, we make this function a parameter of type (goal -> o). For

the second step, the task of asking for input may be as simple as asking the user for the

next tactic to attempt. The following simple clause will perform this operation.

readtac Tac :- writesans "Enter tactic: ", read X\ (Tac = X).

Such a clause will be included in the interactive component, but for generality, in imple-

menting query, we will parameterize the input function also so that the user may specify

a different one if desired. In general, the input function will have type (goal -> goal ->

o) -> o, i.e., it takes one argument which must be a tactic.

For slightly more generality, instead of two separate parameters for output functions,

there will be one parameter to the query tactic for both input and output, so that both

of these tasks may be specified in one procedure if desired. To handle the case when they

are separate, we define the clause below which takes separate output and input predicates

as arguments.

basic_io PrintPred ReadPred Goal Tac :- PrintPred Goal, ReadPred Tac.

The query tactic is defined by the following clause.

query IO InGoal OutGoal :-

IO InGoal Tac,

((Tac = backup), !, fail;

orelse! Tac report_fail InGoal OutGoal;

query IO InGoal OutGoal).

146

Its first argument has type (goal -> (goal -> goal -> o) -> o). Thus IO is a predi-

cate with two arguments: a goal and a tactic. The subgoal (IO InGoal Tac) first performs

the output using the information in the input goal InGoal and then obtains input from the

user causing Tac to be bound to the tactic to be applied to the input goal. For example, if

ndprint is the name of a procedure to print out the state of a natural deduction theorem

prover, the IO argument may be, for example, (basic io ndprint readtac). There are

then three options in applying the tactic Tac input by the user, given by the three disjuncts

above. In the first disjunct, notice the use of cut (!) and fail. One requirement of a good

interactive system is to provide the user with some capability to back up the search to

previous points. In this implementation, the user will be allowed to incrementally backup

the search one step at a time, by invoking the backup tactic. Here backup is implemented

by causing the logic programming interpreter to fail to a previous point. The use of cut

here insures that the other two disjuncts will not be attempted. Cuts must be strategically

placed in all of the clauses that make up the interactive component so that invoking the

backup tactic takes the interpreter to the desired backtracking point, the one correspond-

ing to the last invocation of the query tactic. The second disjunct attempts to apply the

requested tactic. It either applies the tactic successfully, or reports failure when the tactic

fails. The report fail tactic has the following simple definition.

report_fail Goal Goal :- writesans "Tactic failed.", nl.

The orelse! tactical is used inside query since if the tactic succeeds, we do not want the

interpreter to be able to later report failure. The third disjunct in the query tactic handles

the case when the backup tactic is used in subsequent calls to query. To return the search

to the state it was in upon entering this particular invocation of query, it simply calls

itself recursively.

With query as the primitive operation for interaction, we can define an interactive loop

by repeatedly applying this tactic. The inter tactic below implements this loop.

inter IO InGoal OutGoal :- repeat (query IO) InGoal OutGoal.

Since the repeat tactical loops until the tactic fails, and since the query tactic only fails

when the backup tactic is invoked, the inter tactic will terminate in one of two ways. It

will fail if backed up all the way to the beginning, or will succeed when the input goal is

completely solved by the user. As in the dfs and idfs interpreters, the first clause in the

maptac module terminates each branch of the search as the input goals are reduced to tt.

A good interactive interpreter must also provide the user with the capability to stop the

search without losing the work done so far, or to stop particular branches of search in favor

of pursuing others. For this task we define a quit tactic, and a new looping tactical, called

inter repeat which terminates search when the quit tactic is invoked and returns the

current input goal as the output goal. This tactic and tactical are defined by the following

clauses.

147

quit InGoal ff.

inter_repeat Tac InGoal OutGoal :-

Tac InGoal MidGoal,

((MidGoal = ff), !, (OutGoal = InGoal);

maptac (inter_repeat Tac) MidGoal OutGoal).

The quit tactic stops search by causing the tactic interpreter to fail (returning ff as the

output goal). The logic programming interpreter, on the other hand, does not fail. The

inter repeat clause checks for the ff token, and terminates successfully assigning the

value of InGoal to OutGoal. Note that quit is defined in terms of failure of the tactic

interpreter, while backup is defined in terms of failure of the logic programming interpreter.

Using inter repeat, we can redefine the inter tactic as follows.

inter IO InGoal OutGoal :- inter_repeat (query IO) InGoal OutGoal.

This tactic provides a top-level interactive loop that allows both backing up and stopping

search branches.

In implementing a particular theorem prover, it may be useful to include tactics which

ask the user for input at various stages of proof search. For example, consider the tactic

for the ∃-I rule in NI .

exists_i_tac (Gamma --> (exists_i T P) # (exists A)) (Gamma --> P # (A T)).

In proving (exists A), the logic variable T is introduced, and in completing the proof,

may later get instantiated. It may also be desirable to provide a version of this tactic that

allows the user to input a substitution term at the time the rule is invoked. Such a tactic

could be specified as follows.

exists_i_query (Gamma --> (exists_i T P) # (exists A)) (Gamma --> P # (A T)) :-

writesans "Enter substitution term: ", read T.

Another tactic which may be useful is the following modus ponens tactic which allows

the user to add a hypothesis as a lemma, prove it, and then use it in proving the original

theorem.

modus_ponens (Gamma --> P # A)

((Gamma --> Q # B) && (((Q # B)::Gamma) --> P # A)) :-

writesans "Enter lemma: ", read B.

As stated in Section 7.2, ndtac is the set of tactics corresponding to the explicit context

specification of the clauses in ninormal which only build normal proofs. One invariant

in using these tactics alone is that only E-part proofs ever appear in any hypothesis list

Gamma. With the addition of the modus ponens tactic, since Q is not restricted to being an

E-part proof, this invariant may no longer hold. As a result, proofs will not necessarily be

normal. In fact, the addition of this tactic allows arbitrary NI proofs to be built.

Clearly the set of tactics for a natural deduction theorem prover can be extended by

simply adding tactics such as those above to ndtac. It general, though, it may be desirable

148

to organize tactics into modules containing sets of related tactics, and give the user the

flexibility to access only those that are needed at different points during proof construction.

The following with tacs tactical allows the user to dynamically add a set of tactics, and

temporarily extend the current theorem proving environment.

with_tacs M Tac InGoal OutGoal :- M ==> (Tac InGoal OutGoal).

The type of the first argument M is modul, the meta-level base type for λProlog module

names. The ==> symbol is the meta-level connective that instructs the interpreter to load

the module M into memory and add all of the clauses in M to the current program. The

tactic Tac is applied in the new environment. After successful completion or failure of this

tactic, the clauses of M will no longer be available unless explicitly added again.

In more sophisticated domains, modules could be used to organize libraries and theories.

Such modules could contain any number of items specific to a particular theory such as

definitions, theorems and their proofs, tactics implementing proof search heuristics, etc.

Such a modular organization of the search space provides a way to integrate many different

elements into one theorem proving environment, while at the same time via tacticals such

as with tacs, provides a mechanism to constrain search to a manageable subspace at any

one time.

149

module inter_tacs.

import tacticals maptac.

type orelse! (goal -> goal -> o)

-> (goal -> goal -> o) -> goal -> goal -> o.

type with_tacs modul -> (goal -> goal -> o) -> goal -> goal -> o.

type inter_repeat (goal -> goal -> o) -> goal -> goal -> o.

type query (goal -> (goal -> goal -> o) -> o) ->

goal -> goal -> o.

type backup goal -> goal -> o.

type inter (goal -> (goal -> goal -> o) -> o) ->

goal -> goal -> o.

type report_fail goal -> goal -> o.

type quit goal -> goal -> o.

type basic_io (goal -> o) -> ((goal -> goal -> o) -> o) ->

goal -> (goal -> goal -> o) -> o.

type readtac (goal -> goal -> o) -> o.

orelse! Tac1 Tac2 InGoal OutGoal :- Tac1 InGoal OutGoal,!; Tac2 InGoal OutGoal.

with_tacs M Tac InGoal OutGoal :- M ==> (Tac InGoal OutGoal).

inter_repeat Tac InGoal OutGoal :-

Tac InGoal MidGoal,

((MidGoal = ff), !, (OutGoal = InGoal);

maptac (inter_repeat Tac) MidGoal OutGoal).

query IO InGoal OutGoal :-

IO InGoal Tac,

((Tac = backup), !, fail;

orelse! Tac report_fail InGoal OutGoal;

query IO InGoal OutGoal).

inter IO InGoal OutGoal :- inter_repeat (query IO) InGoal OutGoal.

report_fail Goal Goal :- writesans "Tactic failed.", nl.

quit InGoal ff.

basic_io PrintPred ReadPred Goal Tac :- PrintPred Goal, ReadPred Tac.

readtac Tac :- writesans "Enter tactic: ", read X\ (Tac = X).

Module inter tacs: Interactive Component for Tactic Interpreter

150

7.6 A Tactic Theorem Prover for Natural Deduction

We have presented a complete tactic interpreter with an interactive component in addition

to a set of tactics for NI . The only remaining component in the implementation of a

tactic theorem prover for natural deduction is a program for printing information about

the current state of the search during interactive theorem proving. The ndprint module

module ndprint.

import ndgoal lists.

type ndoutput goal -> o.

type print_form_list list judg -> int -> o.

ndoutput (Gamma --> P # A) :-

nl, writesans "Assumptions: ",

nl, print_form_list Gamma 1,

nl, writesans "Conclusion: ",

nl, write A, nl.

print_form_list nil N.

print_form_list ((P # A)::Tail) N :-

write N, writesans " ", write A, nl,

M is (N + 1),

print_form_list Tail M.

Module ndprint: Output Program for Interactive Proof Search for NI

shown here contains a simple program which can be used for this task. The ndprint

predicate prints out all of the assumptions using the print form list program, and then

prints the conclusion. This program is meant to serve as a simple example. Certainly, other

programs could be written, for example, to allow the user more flexibility in choosing which

assumptions to print out at each step of the proof.

Finally, we include some top-level clauses in the nd module below which can be used

to begin an interactive session with the theorem prover. The first argument to the top-

level predicate inter top is an input formula, and its second argument is the proof which

generally will start out as a variable and will get bound to the proof term as far as it gets

constructed during an interactive proof session. At the end of a session, it may contain

variables which will also appear in the third argument, the goal structure containing the

goals that must still be completed in order to finish the proof. The clause for inter top

simply calls the inter tactic with ndprint as the output predicate, readtac as the input

predicate, an atomic goal containing an empty assumption list, the proof, and the formula,

and finally the output goal. load tacs is a tactic which can be called at any point during

an interactive session to load a set of clauses and enter a new top-level session.

151

module nd.

import ndtac ndprint inter_tacs.

type inter_top form -> nprf -> goal -> o.

type load_tacs modul -> goal -> goal -> o.

inter_top A P OutGoal :-

inter (basic_io ndoutput readtac) (nil --> P # A) OutGoal.

load_tacs M InGoal OutGoal :-

with_tacs M (inter (basic_io ndoutput readtac)) InGoal OutGoal.

Module nd: Root Module for NI Tactic Theorem Prover

The import structure that puts all of these components together to form a tactic prover

for natural deduction is given in Figure 7.1. The goals, ndgoal, nprf, and fol modules

contain only declarations. The fol and nprf modules are on pages 18 and 33, respectively,

in Chapter 3. All other modules appear in this chapter. The links from ndtac and ndprint

to the lists module (see Appendix A) are not shown here. As discussed in Chapter 2,

the import structure satisfies the criterion that whenever a clause calls a predicate as a

subgoal, the predicate either appears in the same module, or in a module directly imported

by the module in which the clause appears. Note that the tactic interpreter is a separate

component (comprised of inter tacs, tacticals, maptac, goalred, and goals). The

module nd containing the top-level predicate imports the tactic interpreter in addition to

the programs specific to the natural deduction theorem prover, namely ndtac and ndprint.

To develop a tactic theorem prover for any other logic, we must at least specify the basic

tactics and a print routine. Then, at the top-level, these two modules, in addition to the

tactic interpreter must be imported.

In the import structure in Figure 7.1, both the depth-first interpreter dfs, and the

iterative deepening interpreter idfs would appear immediatedly below maptac. In fact,

they can both be imported dynamically and used as tactics within the tactic interpreter.

Thus all of the interpreters can be integrated in one setting. Note that a tactic for depth-

first search can also be defined in terms of the orelse and repeat tacticals. Given a

formula A and a proof term P, the following query will have the same operational behavior

as the query to the dfs interp program given at the end of Section 7.3.1.

repeat (orelse (close_tac 0) (orelse and_i_tac (orelse or_i1_tac

(orelse or_i2_tac (orelse imp_i_tac (orelse neg_i_tac

(orelse forall_i_tac (orelse exists_i_tac (orelse false_i_tac

(orelse (and_e_tac 0) (orelse (imp_e_tac 0)

(orelse (forall_e_tac 0) (orelse (neg_e_tac 0)

(orelse (or_e_tac 0) (exists_e_tac 0)))))))))))))))

(nil --> P # A) OutGoal.

152

goals fol

/ | \ |

/ | \ |

goalred | \ nprf

| | \ |

| | \ |

| maptac ndgoal

| / | / \

| / | / \

tacticals | / \

\ | / \

\ | / \

inter_tacs ndtac ndprint

\ | /

\ | /

\ | /

\ | /

nd

Figure 7.1: The Import Structure of a Tactic Theorem Prover for NI

7.7 A Session With a Natural Deduction Tactic Prover

The following is a simple example session with the tactic theorem prover for NI where the

formula q(a) ∨ q(b) ⊃ ∃xq(x) is proved. Notice that a bad attempt to prove this formula

is backed out of before the right solution is found.

?- inter_top (((q a) or (q b)) imp (exists X\(q X))) Proof OutGoal.

Assumptions:

Conclusion:

q a or q b imp exists X\(q X)

Enter tactic: ?- imp_i_tac.

Assumptions:

1 q a or q b

Conclusion:

exists X\(q X)

Enter tactic: ?- exists_i_tac.

Assumptions:

153

1 q a or q b

Conclusion:

q T

Enter tactic: ?- or_e_tac 1.

Assumptions:

1 q a

2 q a or q b

Conclusion:

q T

Enter tactic: ?- close_tac 0.

Assumptions:

1 q b

2 q a or q b

Conclusion:

q a

Enter tactic: ?- backup.

Assumptions:

1 q a

2 q a or q b

Conclusion:

q T

Enter tactic: ?- backup.

Assumptions:

1 q a or q b

Conclusion:

q T

Enter tactic: ?- backup.

Assumptions:

1 q a or q b

Conclusion:

exists X\(q X)

Enter tactic: ?- then (or_e_tac 1) (then exists_i_tac (close_tac 0)).

Proof = (imp_i P\(or_e (q a) (q b) P (P1\(exists_i a P1)) (P2\(exists_i b P2)))

OutGoal = (all P\((all P1\tt) && (all P2\tt))).

The application of the exists i tac tactic introduces a logic variable T for the substitution

term. Then, when (close tac 0) is applied, T is instantiated to a, the proof branch is

completed, and this unifier is carried over to the second branch of the proof. Since this

branch cannot be completed, the user backs the proof up to the point where it can be

154

corrected. The final compound expression that completes the proof first applies or e tac

causing the search to branch, and then applies exists i tac followed by (close tac 0)

to each of the branches. Thus a new logic variable is introduced in each branch separately.

The first is intantiated to a and the second to b, allowing the proof to be completed. Thus

Proof is instantiated to a complete proof, and OutGoal is a compound goal expression

whose atomic subgoals are all instances of tt.

7.8 Use of Meta-Language Features in Tactic Provers

As in the programs of Chapters 3 and 4, the use of higher-order features of the meta-

language in this chapter is quite limited. Predicate variables are one feature which we had

not used previously in the specification of theorem provers but have used extensively here,

particularly in the implementation of tacticals. The use of these variables is not essential

and can be eliminated. Its main advantage is that it enhances readability. To eliminate

predicate variables, instead of giving tactics type goal -> goal -> o, we introduce a

new base type tac for tactics, and a predicate interp, declared as follows, for interpreting

tactics.

type interp tac -> goal -> goal -> o.

All tactics would be specified using this clause. For example the clause for and i tac

would be as follows.

interp and_i_tac (Gamma --> (and_i P1 P2) # (A and B))

((Gamma --> P1 # A) && (Gamma --> P2 # B)).

maptacwould then have the same type as interp, and its last clause would be the following.

maptac Tac InGoal OutGoal :- interp Tac InGoal OutGoal.

All other tactics and tacticals can be similarly modified. The same technique can be used

to eliminate the only other predicate variables, PrintPred and ReadPred in the clause

implementing basic io, and IO in the query tactic.

We also made use of λProlog’s polymorphism in defining the all and some goal con-

structors. As stated in Section 7.1.1, the instances of these type variables will generally

be base types. In the tactics for NI for example, all is used to quantify over objects of

type i and nprf.

As in Chapters 3 and 4, quantification over functions in the examples in this chapter has

been at most second-order. Here again, unification problems that arise in these programs

will be at most second-order, and will often require only second-order matching.

155

7.9 A Contrast to ML Tactic Theorem Provers

The programming language ML is the metalanguage used in all of the other tactic theorem

provers mentioned at the beginning of this chapter. There are several differences in the

implementations of both tactics and tacticals in these two languages. First, the λProlog

implementation of the then tactical is different from its ML counterpart. The λProlog

implementation of then reveals its very simple nature: then is very similar to the natural

join of two relations. In ML, the then tactical applies the first tactic to the input goal

and then maps the application of the second tactic over the list of intermediate subgoals.

The full list of subgoals must be built as well as the compound validation function from

the results. These tasks can be quite complicated, requiring some auxiliary list processing

functions. In λProlog, the analogue of a list of subgoals is a nested andgoal structure.

These are processed by the andgoal clause of maptac. The behavior of then (in conjunction

with maptac) in λProlog is actually richer than its ML counterpart since the maptac

procedure is richer than the usual notion of a mapping function in that, in addition to

nested andgoal structures, it handles all of the other goal structures corresponding to the

λProlog search operations.

In the λProlog implementation of then that we presented in Section 7.4, if the first

tactic succeeds and the second fails, the logic programming interpreter will backtrack and

try to find a new way to successfully apply the first tactic, exhausting all possibilities

before completely failing. It is also possible to implement then so that if the second tactic

fails after a successful call to the first tactic, the full tactic still fails. To do so requires

the use of cut (!) to restrict its backtracking behavior. We also saw that there were

two implementations of the orelse tactical, one in the tactical module on page 143

that attempts all possible ways to apply either tactic before failing, and the other in the

inter tacs module on page 150 whose backtracking behavior was restricted by the use

of cut. While both versions of both tacticals can and have been implemented in ML, in

λProlog we were able to make direct use of the search and backtracking mechanisms of the

logic programming interpreter to obtain the desired behavior.

Another difference between the two implementations is that in ML, tactics are functions

that take a goal as input and return a pair consisting of a list of subgoals and a validation.

In contrast, tactics in λProlog are relational, which is very natural when the relation being

modeled is “is a proof of.” The fact that input and output distinctions can be blurred

makes it possible, as described in Chapter 6, for tactics to be used in both a theorem

proving and proof checking context. The functional aspects of ML do not permit this dual

use of tactics. The ML notion of validations is replaced in our system by (potentially

much larger and more complex) proof objects. Validations like those in ML could easily

be supported.

156

A third difference is in the manipulation of quantified formulas. In ML, manipulat-

ing quantified formulas requires that the binding be separated from its body. In logic

programming, we identify a term as a universal quantification if it can be unified with

the term (forall A). However, since terms in λProlog represent βη-equivalence classes of

λ-terms, the programmer does not have access to bound variable names. Although such

a restriction may appear to limit access to the structure of λ-terms, we have seen that

sophisticated analysis of λ-terms is still possible to perform using higher-order unification

and the universal quantifier pi. In addition, there are certain advantages to such a re-

striction. For example, in the case of applying substitutions, all the renaming of bound

variables is handled by the metalanguage, freeing the programmer from such concerns.

Another difference is the use of logic variables in λProlog for lazy determination of

substitution instances. The example in Section 7.7 illustrated how such variables can

be used so that substitution instances do not have to be given at the point where the

substitution takes place.

As mentioned in Chapter 4, the Isabelle theorem prover [Pau88] contains a specifica-

tion language which is essentially a subset of the higher-order hereditary Harrop formu-

las. Hence, it seems very likely that Isabelle could be rather directly implemented inside

λProlog. Although such an implementation might achieve the same functionality as is

currently available in Isabelle, it is not likely to be nearly as efficient. This is due partly to

the fact that a λProlog implementation implements a general purpose programming lan-

guage. An alternative to implementing interpreters as programs on top of the depth-first

interpreter is to modify the interpreter to use a different control strategy. For example,

tacticals and interactive tactics could be implemented at the level of the meta-language.

The result would be an interactive logic programming language with depth-first search

possibly available as one of the tactics. This approach to control is more like that found

in Isabelle. There, the language used to specify inference rules is distinct from that used

to implement tacticals and specify tactics, namely ML.

157

Chapter 8

Operations on Proof Terms

Each of the specifications and implementations of theorem provers in this thesis provided

an illustration of how to construct proof terms that correspond to proofs or deductions

in a particular proof system. In this chapter we present several operations in which such

proof terms are the central data object.

First, in Section 8.1, we present a program that translates LI proofs to NI deductions.

We obtain such a program by merging a specification of a theorem prover for LI with one

for NI . Then in Section 8.2, we present a program for proof normalization in NI . The

procedure we present is based on the proof normalization result for first-order intuitionistic

logic given in [Pra71]. Finally, in Section 8.3, we discuss how proof terms can play a role

in reasoning by analogy. We will demonstrate how, within the framework of the tactic

interpreter presented in Chapter 7, existing proofs can be used to guide the construction

of proofs for new theorems.

8.1 Transforming LI Proofs to NI Proofs

We first present separately specifications for LI and NI that can then be merged to obtain

a specification for a theorem prover for both systems. With respect to the nondeterministic

interpreter, given any formula and set of assumptions, this program will simultaneously

construct both an LI and an NI proof term. Alternatively, if also given a proof term in

either system, this specification can be viewed as a translator from proofs in one system to

proofs in the other. As we will see, with respect to the deterministic depth-first interpreter,

the program will be complete only for translating LI proof terms to NI proof terms.

A specification of a theorem prover for LI was presented in Section 3.1. In that section,

there were often several alternatives in specifying the inference rules. Here, we use the

specification that includes separate clauses for or r1 and or r2 to correspond to the two

clauses for or i1 and or i2, and we choose the clauses that include substitution terms in

158

proofs. The complete module is given on page 162.

We have also seen that there are many options in specifying the inference rules of NI ,

and have noted that in particular the ninormal module of Section 3.5 that builds normal

natural deduction proofs was motivated in part by the desire to obtain a set of clauses for

NI that corresponds to a specification of LI . Here we further modify ninormal to obtain a

set of clauses that will match exactly those of liprover on page 162. To obtain such a set of

clauses, we simply need to perform the mechanical transformation described in Section 3.3

to obtain a specification that uses explicit context lists rather than meta-level implication

for the discharge of assumptions. (In Chapter 7, the set of tactics for NI was described as

being obtained by two transformations on the clauses of ninormal. The first of these two

transformations was the explicit context modification, the same transformation required

here.) Performing this modification, we obtain the clauses in the ninormal1 module on

page 163.

We are now ready to put these clauses together with the clauses of liprover. If proof

terms in each module are ignored, note that the two sets of clauses are identical, i.e., each

ninormal1 clause specifying an I-rule corresponds to the clause in liprover specifying the

sequent rule that introduces the same connective on the right of a sequent; each E-rule

clause corresponds to the sequent rule clause that introduces the same connective on the

left; the clause for ⊥I corresponds to the clause for ⊥-R. We now illustrate how to combine

these two modules to obtain a specification of a theorem prover that constructs both kind

of proof terms simultaneously. First, we combine the data structures for sequents and

judgments using the same constants as before, redeclared with the following types.

type ’#’ nprf -> form -> judg.

type ’-->’ (list judg) -> judg -> seq.

type ’>-’ lprf -> seq -> o.

As in liprover, >- is the top-level predicate, but here its second argument is a judgment

sequent again specified using the arrow -->. Natural deduction proofs are paired with

formulas (using #) on both sides of the sequent arrow. An atomic goal now has the form

(Q >- (Gamma --> P # A)). If such a goal succeeds then Q represents an LI proof of the

sequent (Gamma --> A), and P represents an NI deduction of A from Gamma. The following

four clauses illustrate how the clauses of liprover and ninormal1 are combined. The

complete module, named lniprover, is given on page 164.

(and_r Q1 Q2) >- (Gamma --> (and_i P1 P2) # (A and B)) :-

Q1 >- (Gamma --> P1 # A), Q2 >- (Gamma --> P2 # B).

(and_l Q) >- (Gamma --> PC # C) :- memb (P # (A and B)) Gamma,

Q >- ((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C).

(forall_r Q) >- (Gamma --> (forall_i P) # (forall A)) :-

pi Y\ ((Q Y) >- (Gamma --> (P Y) # (A Y))).

159

(imp_r Q) >- (Gamma --> (imp_i P) # (A imp B)) :-

pi PA\ (Q >- (((PA # A)::Gamma) --> (P PA) # B)).

The first two clauses illustrate how NI proof terms are associated with formulas within a

sequent on the right and left, respectively, while the LI proof terms are associated with

the entire sequent in the top-level relation. The third clause illustrates how universal

quantification at the meta-level is used to introduce a new variable Y to instantiate the

quantified formula (forall A), and to handle simultaneously the provisos on both ∀-R

and ∀-I. (See Sections 3.1 and 3.2.) Both Q and P are abstractions over this variable

since the variable may appear inside either proof term in the subgoal. The fourth clause

illustrates the discharge of assumptions in NI . Universal quantification is used to introduce

the variable PA to represent a proof for hypothesis A. PA may appear in the proof for B,

so P is an abstraction over this variable. As in the liprover clause, Q represents an LI

proof of the premise sequent of the ⊃-R rule. Of course, a natural deduction proof will

not appear inside a sequent proof term, so Q does not need to be an abstraction over PA.

As mentioned earlier, with respect to the non-deterministic interpreter, the lniprover

module can take on several roles. If only A is specified in a query of the form

(Q >- (nil --> P # A)), the program behaves as a theorem prover, and simultaneously

constructs proofs in both proof systems. If P is also specified, then the program acts as a

proof transformer, transforming an NI proof P to an LI proof Q. Conversely, an LI proof

Q can be used to guide the construction of an NI proof P. In fact, the program is complete

with respect to the deterministic depth-first interpreter for this latter transformation, for

the same reason that liprover is complete as a proof checker. The constant at the head

of the proof term Q uniquely determines which definite clause must be used at each step.

Some backtracking may be necessary, but as long as Q is a proof of (nil --> A), the

interpreter will succeed in constructing the NI proof term P. The reverse transformation,

on the other hand, is not always possible for the same reason that ninormal could not

serve as a proof checker. Any of the clauses for and e, imp e, or forall e could cause the

interpreter to enter an infinite loop when the proof term Q is not specified. Of course the

program can also serve as a simultaneous proof checker for both kinds of proof terms.

The fact that the LI proof to NI deduction transformation is deterministic illustrates

that this operation is “functional,” i.e., there is exactly one NI deduction corresponding to

each cut-free LI proof. On the other hand, there may be many LI proofs that correspond

to one NI deduction. For example, the NI deduction of ∀xq(x) ⊃ ∃xq(x) (in a language

containing a constant c) in Figure 8.1 (a) can be seen to correspond to the two sequent

proofs in Figure 8.1 (b) and (c). In a sense, sequent proofs contain extra information

corresponding to the order in which rules are applied.

As shown in Section 3.3, any specification of a natural deduction system that uses

meta-level implication for the discharge of assumptions can be converted to a specification

160

∀xq(x)
∀-E(c)

q(c)
∃-I(c)

∃xq(x)
⊃-I

∀xq(x) ⊃ ∃xq(x)

(a)

q(c) −→ q(c)
∃-R

q(c) −→ ∃xq(x)
∀-L

∀xq(x) −→ ∃xq(x)
⊃-R

−→ ∀xq(x) ⊃ ∃xq(x)

q(c) −→ q(c)
∀-L

∀xq(x) −→ q(c)
∃-R

∀xq(x) −→ ∃xq(x)
⊃-R

−→ ∀xq(x) ⊃ ∃xq(x)

(b) (c)

Figure 8.1: LI and NI Proofs of ∀xq(x) ⊃ ∃xq(x)

using explicit assumption lists. In fact, any such explicit context specification can be

viewed as a specification of a sequent style proof system for the same logic. In the case

of NI , as we have seen, the inference rules of NI could be specified in such a way that

the corresponding sequent system was exactly LI without the cut rule. The corresponding

systems for classical logic, NC and LC , on the other hand, cannot be so easily related in

this way.

The correspondence between sequential and natural deduction systems for first-order

intuitionistic logic is well-known and has been formalized in [Zuc74] and [Pot77]. There,

the relation between cut-elimination and proof normalization is also explored. Here, by

merging specifications of LI and NI , we were able to obtain both a declarative illustration

and an operational description of the correspondence between these two systems.

161

module liprover.

import lprf lists.

kind seq type.

type ’-->’ (list form) -> form -> seq.

type ’>-’ lprf -> seq -> o.

(initial A) >- (Gamma --> A) :- memb A Gamma.

(and_r Q1 Q2) >- (Gamma --> (A and B)) :- Q1 >- (Gamma --> A),

Q2 >- (Gamma --> B).

(or_r1 Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> A).

(or_r2 Q) >- (Gamma --> (A or B)) :- Q >- (Gamma --> B).

(imp_r Q) >- (Gamma --> (A imp B)) :- Q >- ((A::Gamma) --> B).

(neg_r Q) >- (Gamma --> (neg A)) :- Q >- ((A::Gamma) --> false).

(forall_r Q) >- (Gamma --> (forall A)) :- pi Y\ ((Q Y) >- (Gamma --> (A Y))).

(exists_r T Q) >- (Gamma --> (exists A)) :- Q >- (Gamma --> (A T)).

(false_r Q) >- (Gamma --> A) :- Q >- (Gamma --> false).

(and_l Q) >- (Gamma --> C) :- memb (A and B) Gamma,

Q >- ((A::B::Gamma) --> C).

(imp_l Q1 Q2) >- (Gamma --> C) :- memb (A imp B) Gamma,

Q1 >- (Gamma --> A),

Q2 >- ((B::Gamma) --> C).

(forall_l T Q) >- (Gamma --> C) :- memb (forall A) Gamma,

Q >- (((A T)::Gamma) --> C).

(neg_l Q) >- (Gamma --> false) :- memb (neg A) Gamma,

Q >- (Gamma --> A).

(or_l Q1 Q2) >- (Gamma --> C) :- memb (A or B) Gamma,

Q1 >- ((A::Gamma) --> C),

Q2 >- ((B::Gamma) --> C).

(exists_l Q) >- (Gamma --> C) :- memb (exists A) Gamma,

pi Y\ ((Q Y) >- (((A Y)::Gamma) --> C)).

Module liprover: Specification of the LI Inference Rules Without Cut

162

module ninormal1.

import nprf lists.

kind judg type.

type ’#’ nprf -> form -> judg.

type ’-->’ (list judg) -> judg -> o.

Gamma --> P # A :- memb (P # A) Gamma.

Gamma --> (and_i P1 P2) # (A and B) :- Gamma --> P1 # A,

Gamma --> P2 # B.

Gamma --> (or_i1 P) # (A or B) :- Gamma --> P # A.

Gamma --> (or_i2 P) # (A or B) :- Gamma --> P # B.

Gamma --> (imp_i P) # (A imp B) :-

pi PA\ (((PA # A)::Gamma) --> (P PA) # B).

Gamma --> (neg_i P) # (neg A) :-

pi PA\ (((PA # A)::Gamma) --> (P PA) # false).

Gamma --> (forall_i P) # (forall A) :-

pi Y\ (Gamma --> (P Y) # (A Y)).

Gamma --> (exists_i T P) # (exists A) :- Gamma --> P # (A T).

Gamma --> (false_i P) # A :- Gamma --> P # false.

Gamma --> PC # C :- memb (P # (A and B)) Gamma,

(((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C.

Gamma --> PC # C :- memb (P2 # (A imp B)) Gamma,

Gamma --> P1 # A,

(((imp_e A P1 P2) # B)::Gamma) --> PC # C.

Gamma --> PC # C :- memb (P # (forall A)) Gamma,

(((forall_e T A P) # (A T))::Gamma) --> PC # C.

Gamma --> (neg_e A P1 P2) # false :- memb (P2 # (neg A)) Gamma,

Gamma --> P1 # A.

Gamma --> (or_e A B P P1 P2) # C :- memb (P # (A or B)) Gamma,

pi PA\ (((PA # A)::Gamma) --> (P1 PA) # C),

pi PB\ (((PB # B)::Gamma) --> (P2 PB) # C).

Gamma --> (exists_e A P1 P2) # B :- memb (P1 # (exists A)) Gamma,

pi Y\ (pi P\ (((P # (A Y))::Gamma) --> (P2 Y P) # B)).

Module ninormal: Explicit Context Specification of NI that Constructs Normal Deduc-

tions

163

module lniprover.

import nprf lprf lists.

kind judg type.

type ’#’ nprf -> form -> judg.

type ’-->’ (list judg) -> judg -> seq.

type ’>-’ lprf -> seq -> o.

(initial A) >- (Gamma --> P # A) :- memb (P # A) Gamma.

(and_r Q1 Q2) >- (Gamma --> (and_i P1 P2) # (A and B)) :-

Q1 >- (Gamma --> P1 # A), Q2 >- (Gamma --> P2 # B).

(or_r1 Q) >- (Gamma --> (or_i1 P) # (A or B)) :- Q >- (Gamma --> P # A).

(or_r2 Q) >- (Gamma --> (or_i2 P) # (A or B)) :- Q >- (Gamma --> P # B).

(imp_r Q) >- (Gamma --> (imp_i P) # (A imp B)) :-

pi PA\ (Q >- (((PA # A)::Gamma) --> (P PA) # B)).

(neg_r Q) >- (Gamma --> (neg_i P) # (neg A)) :-

pi PA\ (Q >- (((PA # A)::Gamma) --> (P PA) # false)).

(forall_r Q) >- (Gamma --> (forall_i P) # (forall A)) :-

pi Y\ ((Q Y) >- (Gamma --> (P Y) # (A Y))).

(exists_r T Q) >- (Gamma --> (exists_i T P) # (exists A)) :-

Q >- (Gamma --> P # (A T)).

(false_r Q) >- (Gamma --> (false_i P) # A) :- Q >- (Gamma --> P # false).

(and_l Q) >- (Gamma --> PC # C) :- memb (P # (A and B)) Gamma,

Q >- ((((and_e1 B P) # A)::((and_e2 A P) # B)::Gamma) --> PC # C).

(imp_l Q1 Q2) >- (Gamma --> PC # C) :- memb (P2 # (A imp B)) Gamma,

Q1 >- (Gamma --> P1 # A),

Q2 >- ((((imp_e A P1 P2) # B)::Gamma) --> PC # C).

(forall_l T Q) >- (Gamma --> PC # C) :- memb (P # (forall A)) Gamma,

Q >- ((((forall_e T A P) # (A T))::Gamma) --> PC # C).

(neg_l Q) >- (Gamma --> (neg_e A P1 P2) # false) :-

memb (P2 # (neg A)) Gamma, Q >- (Gamma --> P1 # A).

(or_l Q1 Q2) >- (Gamma --> (or_e A B P P1 P2) # C) :-

memb (P # (A or B)) Gamma,

pi PA\ (Q1 >- (((PA # A)::Gamma) --> (P1 PA) # C)),

pi PB\ (Q2 >- (((PB # B)::Gamma) --> (P2 PB) # C)).

(exists_l Q) >- (Gamma --> (exists_e A P1 P2) # B) :-

memb (P1 # (exists A)) Gamma,

pi Y\ (pi P\ ((Q Y) >- (((P # (A Y))::Gamma) --> (P2 Y P) # B))).

Module lniprover: Proof Transformer from LI Proofs to NI Deductions

164

8.2 Proof Normalization in NI

Proof normalization, as presented in [Pra71], is based on proof reductions that remove

maximal formulas and reduce the length of maximal segments. (See Section 3.5 for def-

initions related to normal deductions.) These reductions are given in Figure 8.2. For

simplification, we exclude the rules for negation from this presentation. Negation can be

defined in terms of implication, e.g., ¬A is defined to be A ⊃⊥. The rules for negation are

then special cases of the rules for implication.

There are two reductions for each connective, one for the case when the maximal

formula is the conclusion of an I-rule, and one for the case when it is the conclusion of ⊥I .

The last two reductions reduce the length of maximal segments. In order for either to be

applied, the last occurrence of C in the segments ending with an application of ∨-E or ∃-E

must be the major premise of an E-rule or ⊥I , and the first occurrence of C in Π2 and/or

Π3 must be the conclusion of an I-rule. In either of these two reductions, when the E-rule

at the root is ∧-E or ∀-E, Π4 and Π5 are empty. When it is ⊃-E or ∃-E, Π5 is empty.

In the case of ⊃-E, Π4 should be written to the left. These two reductions can also be

used to reduce the length of E-segments. For this task, they can be applied whenever the

last occurrence of C is the major premise of an E-rule. The first occurrence need not be

the conclusion of an I-rule or ⊥I . Note that these last two reductions involve an implicit

change to the discharge functions. For example, consider ∨-reduction. In the deduction

on the left, any occurrence of A in Π2 that is discharged at the end-formula C in Π2 is

discharged at D, the middle premise of the application of ∨-E, in the reduced deduction.

In all reductions except the last two, the discharge functions remain unchanged. In the last

reduction, in order to insure that the proviso on the reduced deduction holds, we assume

that every parameter to an application of ∃-E occurs only in the subtree above the minor

premise. By the lemma on parameters in [Pra65], the parameters in any deduction can be

renamed to satisfy this criteria. Thus, in the last reduction in Figure 8.2, y will not occur

in D or anywhere in Π4 or Π5, and the proviso will be satisfied.

We first present a program that will use these reductions to remove E-segments, and

thus transform arbitrary deductions to E-normal deductions. First, we define a predicate

used to specify reductions. We call this predicate redex since proof reductions for NI

share some similarities with reductions in the λ-calculus. A predicate of the same name

was used in the convert module of Section 4.2 to specify β and η redexes for untyped

terms, and in the lfconv module in Section 5.2 to specify β-redexes for LF terms and

types. Here redex is declared with the following type.

type redex nprf -> nprf -> o.

165

Π1

A1

Π2

A2
∧-I

A1 ∧ A2
∧-Ei

Ai ⇒
Πi

Ai

Π1

⊥
⊥IA1 ∧ A2
∧-Ei

Ai ⇒

Πi

⊥
Ai

i = 1 or 2

Π
Ai

∨-I
A1 ∨ A2

(A1)
Π1

C

(A2)
Π2

C
∨-E

C ⇒

Π
(Ai)
Πi

C

Π
⊥

⊥IA1 ∨ A2

(A1)
Π1

C

(A2)
Π2

C
∨-E

C ⇒

Π
⊥
C

Π1

A

(A)
Π2

B
⊃-I

A ⊃ B
⊃-E

B ⇒

Π1

(A)
Π2

B

Π1

A

Π2

⊥
⊥IA ⊃ B
⊃-E

B ⇒

Π2

⊥
B

Π
[y/x]A

∀-I(y)
∀xA

∀-E(t)
[t/x]A ⇒

[t/y]Π
[t/x]A

Π
⊥

⊥I∀xA
∀-E(t)

[t/x]A ⇒

Π
⊥

[t/x]A

Π1

[t/x]A
∃-I(t)

∃xA

([y/x]A)
Π2

B
∃-E(y)

B ⇒

Π1

([t/x]A)
[t/y]Π2

B

Π1

⊥
⊥I∃xA

([y/x]A)
Π2

B
∃-E(y)

B ⇒

Π1

⊥
B

Π1

A ∨ B
Π2

C
Π3

C
∨-E

C
Π4

F
Π5

F
D ⇒

Π1

A ∨ B

Π2

C
Π4

F
Π5

F
D

Π3

C
Π4

F
Π5

F
D

∨-E
D

Π1

∃xA
Π2

C
∃-E(y)

C
Π4

F
Π5

F
D ⇒

Π1

∃xA

Π2

C
Π4

F
Π5

F
D

∃-E(y)
D

Figure 8.2: Reductions for Proof Normalization in NI

166

The first argument is any NI deduction that can be reduced by one of the above transforma-

tions, and the second is the proof term representing the reduced deduction. Operationally,

for proof normalization, the first proof term will be the input proof, and the second the

output proof. We will continue to use the proof representation given by the nprf module

on page 33 that includes substitution information and some formulas inside proof terms.

For reference, the ndredex module on page 171 contains a specification of all of the reduc-

tions in Figure 8.2. First, consider the reductions for removing maximal formulas that are

the conclusion of an I-rule. They are specified by the following 7 clauses.

redex (and_e1 B (and_i P1 P2)) P1.

redex (and_e2 A (and_i P1 P2)) P2.

redex (imp_e A P1 (imp_i P2)) (P2 P1).

redex (or_e A B (or_i1 P1) P2 P3) (P2 P1).

redex (or_e A B (or_i2 P1) P2 P3) (P3 P1).

redex (forall_e T A (forall_i P)) (P T).

redex (exists_e A (exists_i T P1) P2) (P2 T P1).

Operationally, the reductions for ∧-E1 and ∧-E2 involve pattern matching that is essentially

first-order. One of these clauses can be used whenever the input proof term matches one

of the two patterns for a deduction with a conjunctive maximal formula. The second

argument is then the appropriate subproof. The clause for implication also involves pattern

matching, but in this case P2 is functional: it is a function from proofs of A to proofs of

some formula B. In specifying and implementing theorem provers, we have seen many

times how the application of λ-terms can be used to specify the substitution of terms for

variables in first-order formulas. Here, the application of P2 to P1 very naturally specifies

⊃-reduction, the operation of substituting a proof into another proof at certain leaf nodes.

Operationally, β-conversion replaces the bound variable in P2, which serves as a “place-

holder” for proofs of A, by P1, an actual proof of A. Note that although this operation is

quite natural to specify, it can be expensive operationally since the proof P1 (which may

be large) can get substituted in many different places in P2. The reductions for disjunction

similarly apply proof functions to subproofs. In the clause for ∀-reduction, the term P is

a function from first-order terms to proofs. Again the application of λ-terms is used to

specify the desired operation, in this case for substitution of first-order terms for variables

in deductions. Finally, the clause for ∃-reduction involves the application of the proof

function P2 to both a term and a proof.

The clauses for the removal of maximal formulas that are the conclusion of ⊥I are

below. They also operate by simple pattern matching, in this case without the need for

any β-reduction.

redex (and_e1 B (false_i P)) (false_i P).

redex (and_e2 A (false_i P)) (false_i P).

redex (imp_e A (false_i P1) P2) (false_i P1).

redex (or_e A B (false_i P1) P2 P3) (false_i P).

167

redex (forall_e T A (false_i P)) (false_i P).

redex (exists_e A (false_i P1) P2) (false_i P1).

The last two reduction rules in Figure 8.2 that reduce the length of E-segments are

applicable when the last inference is any E-rule. Thus, there will be one clause for each

E-rule. The clauses for the case when the last rule is ⊃-E are as follows. The other clauses

are similar. (See page 171).

redex (imp_e C P4 (or_e A B P1 Q\(P2 Q) Q\(P3 Q)))

(or_e A B P1 (Q\ (imp_e C P4 (P2 Q))) (Q\ (imp_e C P4 (P3 Q)))).

redex (imp_e C P4 (exists_e A P1 Y\Q\(P2 Y Q)))

(exists_e A P1 (Y\Q\ (imp_e C P4 (P2 Y Q)))).

Second-order matching is required to match a proof term to the pattern given by the first

argument in each clause. The βη-long forms Q\(P2 Q), Q\(P3 Q), and Y\Q\(P2 Y Q) are

used here to make the abstractions in these terms explicit. In the second argument, the

scope of the bound variable Q (and also Y in the second clause) is modified. This change in

scope of Q corresponds to the modification of the discharge function that occurs when the

corresponding reduction in Figure 8.2 is applied. Note that in the expression (Y\Q\(imp e

C P4 (P2 Y Q))) in the second clause, Y will not occur free in P4. Operationally, when

this clause is used for proof normalization, renaming of variables at the meta-level may be

required to avoid a clash between the bound variable Y and any free variables in P4. This

renaming corresponds to the renaming of parameters that may need to occur in a deduction

to insure that every parameter to an application of ∃-E occurs only in the subtree above

the minor premise.

In [Pra71], a strong normalization result is established for natural deduction with

respect to the reductions of Figure 8.2. Thus any sequence of reductions will eventually

terminate in a normal deduction. A very simple strategy for reducing a deduction to

normal form, which we adopt here, is to traverse a tree from the root upwards, apply a

reduction to the first maximal formula or E-segment encountered, and then start over at

the root of the new tree. Although this strategy is not necessarily the most efficient, we will

see that it is quite straightforward to implement. The complete program is given by the

ndredex module just described and the ndnormalize module on page 172, which imports

ndredex. In addition to the redex predicate, we will need the following two predicates.

type red1 nprf -> nprf -> o.

type reduce nprf -> nprf -> o.

The predicate red1 relates two proof terms if the second is obtained from the first by

one reduction. The redex clauses are a special case of this relation when the maximal

formula or last occurrence in an E-segment occur just above the root. Thus we include

the following clause.

red1 P1 P2 :- redex P1 P2.

168

We must also specify clauses for reductions that occur further up in the tree. Those that

occur above the root of a tree whose last rule is an application of ∧-I and ⊃-I are as follows.

(See page 172 for the complete list.)

red1 (and_i P1 P2) (and_i POut P2) :- red1 P1 POut.

red1 (and_i P1 P2) (and_i P1 POut) :- red1 P2 POut.

red1 (imp_i P) (imp_i POut) :- pi PA\ (red1 (P PA) (POut PA)).

Operationally, the red1 clauses descend into a tree until a maximal formula or E-segment

is encountered, and then perform a reduction. In the clauses for and i the second proof

term is a reduced form of the first if a reduction is applied in either subtree. In the

clause for imp i universal quantification is used to descend through the abstraction in P.

The GENERIC search operation introduces a constant to replace the bound variable in P.

This constant serves as the bound variable name in the resulting subgoal. If the subgoal

succeeds, the proof function POut is the abstraction over that constant in the reduced

deduction.

The following clauses for the reduce predicate complete the implementation.

reduce PIn POut :- red1 PIn PMid, reduce PMid POut.

reduce P P.

Nondeterministically, a goal of the form (reduce P1 P2) succeeds if P2 is obtained from

P1 by zero or more reductions. With respect to the depth-first interpreter, the order of the

above two clauses is very important. The above order implements proof normalization,

as desired. The first clause repeatedly applies reductions until no more can be done, at

which point the second clause terminates the execution with E-normal deduction P. Thus,

(reduce P1 P2) succeeds only when P2 is in E-normal form.

There are several alternatives in implementing a normalization algorithm for NI . First,

if normal rather than E-normal deductions are desired, an extra check would be necessary

to see if the first formula in a segment is the conclusion of an I-rule or ⊥I before applying

either of the last two reductions. Additionally, in [Pra71], there are several other definitions

of normal. We define and implement one other here. A redundant application of ∨-E or

∃-E is an application such that no assumption is discharged at the end-formula in one of

the minor premises. A fully normal deduction is a deduction that contains no redundant

applications of ∨-E or ∃-E. The reductions in Figure 8.3 illustrate how to remove redundant

applications. These reductions are specified by the following clauses.

redex (or_e A B P1 Q\P2 P3) P2.

redex (or_e A B P1 P2 Q\P3) P3.

redex (exists_e A P1 Y\Q\P2) P2.

In the first clause, the term Q\P2 represents an abstraction where the bound variable Q

does not appear in P2. The other clauses are similar. Such vacuous quantification indicates

a redundant application of the corresponding rule. By adding these clauses to the ndredex

169

Π1

A ∨ B
Π2

C
Π3

C
C ⇒

Πi

C

Π1

∃xA
Π2

C
C ⇒

Π2

C

In ∨-reduction, i = 2 or 3 and no assumption is discharged at the end-formula in Πi.

In ∃-reduction, no assumption is discharged at the end-formula in Π2.

Figure 8.3: Reductions for Removing Redundant Applications of ∨-E or ∃-E

module on pages 171, the ndnormalize module on 172 becomes a program that reduces

deductions to fully E-normal form.

170

module ndredex.

import nprf.

type redex nprf -> nprf -> o.

redex (and_e1 B (and_i P1 P2)) P1.

redex (and_e2 A (and_i P1 P2)) P2.

redex (imp_e A P1 (imp_i P2)) (P2 P1).

redex (or_e A B (or_i1 P1) P2 P3) (P2 P1).

redex (or_e A B (or_i2 P1) P2 P3) (P3 P1).

redex (forall_e T A (forall_i P)) (P T).

redex (exists_e A (exists_i T P1) P2) (P2 T P1).

redex (and_e1 B (false_i P)) (false_i P).

redex (and_e2 A (false_i P)) (false_i P).

redex (imp_e A (false_i P1) P2) (false_i P1).

redex (or_e A B (false_i P1) P2 P3) (false_i P).

redex (forall_e T A (false_i P)) (false_i P).

redex (exists_e A (false_i P1) P2) (false_i P1).

redex (and_e1 C (or_e A B P1 P2 P3))

(or_e A B P1 (Q\ (and_e1 C (P2 Q))) (Q\ (and_e1 C (P3 Q)))).

redex (and_e2 C (or_e A B P1 P2 P3))

(or_e A B P1 (Q\ (and_e2 C (P2 Q))) (Q\ (and_e2 C (P3 Q)))).

redex (or_e C D (or_e A B P1 P2 P3) P4 P5)

(or_e A B P1 (Q\ (or_e C D (P2 Q) P4 P5))

(Q\ (or_e C D (P3 Q) P4 P5))).

redex (imp_e C P4 (or_e A B P1 P2 P3))

(or_e A B P1 (Q\ (imp_e C P4 (P2 Q))) (Q\ (imp_e C P4 (P3 Q)))).

redex (forall_e T C (or_e A B P1 P2 P3))

(or_e A B P1 (Q\ (forall_e T C (P2 Q))) (Q\ (forall_e T C (P3 Q)))).

redex (exists_e C (or_e A B P1 P2 P3) P4)

(or_e A B P1 (Q\ (exists_e C (P2 Q) P4)) (Q\ (exists_e C (P3 Q) P4))).

redex (and_e1 C (exists_e A P1 P2))

(exists_e A P1 (Y\Q\ (and_e1 C (P2 Y Q)))).

redex (and_e2 C (exists_e A P1 P2))

(exists_e A P1 (Y\Q\ (and_e2 C (P2 Y Q)))).

redex (or_e C D (exists_e A P1 P2) P4 P5)

(exists_e A P1 (Y\Q\ (or_e C D (P2 Y Q) P4 P5))).

redex (imp_e C P4 (exists_e A P1 P2))

(exists_e A P1 (Y\Q\ (imp_e C P4 (P2 Y Q)))).

redex (forall_e T C (exists_e A P1 P2))

(exists_e A P1 (Y\Q\ (forall_e T C (P2 Y Q)))).

redex (exists_e C (exists_e A P1 P2) P4)

(exists_e A P1 (Y\Q\ (exists_e C (P2 Y Q) P4))).

Module ndredex: Reductions for Proof Normalization in NI

171

module ndnormalize.

import ndredex.

type red1 nprf -> nprf -> o.

type reduce nprf -> nprf -> o.

red1 P1 P2 :- redex P1 P2.

red1 (and_i P1 P2) (and_i POut P2) :- red1 P1 POut.

red1 (and_i P1 P2) (and_i P1 POut) :- red1 P2 POut.

red1 (or_i1 P) (or_i1 POut) :- red1 P POut.

red1 (or_i2 P) (or_i2 POut) :- red1 P POut.

red1 (imp_i P) (imp_i POut) :- pi PA\ (red1 (P PA) (POut PA)).

red1 (forall_i P) (forall_i POut) :- pi Y\ (red1 (P Y) (POut T)).

red1 (exists_i T P) (exists_i T POut) :- red1 P POut.

red1 (and_e1 B P) (and_e1 B POut) :- red1 P POut.

red1 (and_e2 A P) (and_e2 A POut) :- red1 P POut.

red1 (imp_e A P1 P2) (imp_e A POut P2) :- red1 P1 POut.

red1 (imp_e A P1 P2) (imp_e A P1 POut) :- red1 P2 POut.

red1 (or_e A B P1 P2 P3) (or_e A B POut P2 P3) :- red1 P1 POut.

red1 (or_e A B P1 P2 P3) (or_e A B P1 POut P3) :-

pi PA\ (red1 (P2 PA) (POut PA)).

red1 (or_e A B P1 P2 P3) (or_e A B P1 P2 POut) :-

pi PB\ (red1 (P3 PB) (POut PB)).

red1 (forall_e T A P) (forall_e T A POut) :- red1 P POut.

red1 (exists_e A P1 P2) (exists_e A POut P2) :- red1 P1 POut.

red1 (exists_e A P1 P2) (exists_e A P1 POut) :-

pi Y\ (pi P\ (red1 (P2 Y P) (POut Y P))).

reduce PIn POut :- red1 PIn PMid, reduce PMid POut.

reduce P P.

Module ndnormalize: Proof Normalization for NI

8.3 Some Tactics for Proof by Analogy

Proof by analogy has been recognized as a powerful tool used in human mathematical

reasoning, one that is important yet difficult to incorporate in machine theorem provers

[Ble86, Ble77]. Work in the area has largely centered on constructing analogous proofs

based on structural similarities [BCP86, C+86, dlTC87]. In this section, we illustrate

how this kind of proof by analogy can be naturally incorporated into the tactic theorem

proving environment discussed in the previous chapter. The tactics for analogy that we

present here can be incorporated into the interpreter component (see Figure 7.1), and thus

can be made available to any tactic theorem prover or other program adopting the tactic

interpreter as its basic control mechanism.

172

The proof terms that are constructed by any of the theorem provers presented in this

dissertation can be viewed as a device for keeping a record of which inference rules were

applied at each step in the process of proving a particular formula. In proof by analogy,

we use such records to determine the sequence of steps to follow in attempting a new proof

for a different formula. In Chapter 7, we saw that basic judgments of objects logics such

as “is a proof of” were encoded as atomic goals of the tactic interpreter. For example,

(nil --> P # A) is an example of an atomic goal for the tactic theorem prover for NI

(see Section 7.1.2) encoding the fact that P is a proof of A. The programs we describe

for proof by analogy will take two such goals as input arguments. One of the two goals

(generally the first) will be the guiding goal containing a fully specified formula and proof.

The other, which we call the target goal, contains the formula for which we want to find an

analogous proof, and its proof term which generally starts out unspecified. For example, if

P and A in the above goal are fully specified and B is a formula for which we want to build

an analogous proof, then (nil --> Q # B) may serve as the target goal where Q is a logic

variable. It is important to note that the programs we present here will work for arbitrary

atomic goals, although we use natural deduction as an example throughout this section.

The tactics and tacticals that we define for proof by analogy will generally have at least

four arguments in the following order: the guiding goal, an output goal for the guiding

goal, a target goal, and an output goal for the target goal. We first present the mapcopy

program, which is analogous to the maptac program presented in Section 7.1.3. Its role is

to break down the conjunctive goal structure of the guiding and target goals in parallel.

The clauses for this program are contained in the mapcopy module below. We only include

clauses for the tt, &&, and all goal constructors. The others can be defined similarly. The

first two clauses illustrate that if either input goal is completed (is equal to tt), maptac

terminates with success. The other output goal will contain the subgoals that must still be

completed (if any) in order to finish the incomplete proof. If the target goal is unfinished,

some other means must then be used to complete it. In the clause for conjunctive goals,

the first conjunct of the guiding goal becomes the guiding goal for the first conjunct of

the target goal, and similarly for the second conjuncts of each goal. Note that in order for

this clause to be used at all, both the guiding and target goals must be conjuncts. Thus

the conjunctive branching structure of two goals must be exactly the same in order for

the copying procedure to proceed. There are two clauses for the all goal constructor, one

each for a universally quantified goal in the guiding and target goals. Operationally, the

GENERIC search operation is used in each clause separately to introduce a new constant

into the corresponding goal. As in the maptac program, the last clause above applies the

tactic Tac directly to atomic goals.

173

module mapcopy.

import goals.

type mapcopy (goal -> goal -> goal -> goal -> o) ->

goal -> goal -> goal -> goal -> o.

mapcopy Tac GGoal GGoal tt tt.

mapcopy Tac tt tt TGoal TGoal.

mapcopy Tac (GInGoal1 && GInGoal2) (GOutGoal1 && GOutGoal2)

(TInGoal1 && TInGoal2) (TOutGoal1 && TOutGoal2) :-

mapcopy Tac GInGoal1 GOutGoal1 TInGoal1 TOutGoal1,

mapcopy Tac GInGoal2 GOutGoal2 TInGoal2 TOutGoal2.

mapcopy Tac (all GInGoal) (all GOutGoal) TInGoal TOutGoal :-

pi X\ (mapcopy Tac (GInGoal X) (GOutGoal X) TInGoal TOutGoal).

mapcopy Tac GInGoal GOutGoal (all TInGoal) (all TOutGoal) :-

pi X\ (mapcopy Tac GInGoal GOutGoal (TInGoal X) (TOutGoal X)).

mapcopy Tac GInGoal GOutGoal TInGoal TOutGoal :-

Tac GInGoal GOutGoal TInGoal TOutGoal.

Module mapcopy: Processing Compound Goals in Proof By Analogy

module copy.

import mapcopy lists.

type copy1 list (goal -> goal -> o) ->

goal -> goal -> goal -> goal -> o.

type copy list (goal -> goal -> o) ->

goal -> goal -> goal -> goal -> o.

copy1 TacLis GInGoal GOutGoal TInGoal TOutGoal :-

memb Tac TacLis,

Tac GInGoal GOutGoal,

Tac TInGoal TOutGoal.

copy TacLis GInGoal GOutGoal TInGoal TOutGoal :-

copy1 TacLis GInGoal GMidGoal TInGoal TMidGoal,

mapcopy (copy TacLis) GMidGoal GOutGoal TMidGoal TOutGoal.

copy TacLis GGoal GGoal TGoal TGoal.

Module copy: Some Basic Tactics for Proof by Analogy

174

We now define a general tactic that performs one step of the proof-by-analogy process.

This tactic, called copy1 takes as arguments, a list of tactics and four goals: an atomic

guiding goal, an output goal for the guiding goal, an atomic target goal, and an output

goal for the target goal. It is defined in module copy. It traverses the list of tactics until it

finds one that succeeds on the guiding goal, then attempts to apply the same tactic to the

second goal. The copy tactic in the same module simply loops calling copy1 repeatedly,

and proceeding as far as it can in using the first proof to guide the construction of the

second. Like copy1, the copy tactical assumes that the guiding and target goals are atomic.

It first calls copy1 with the input arguments, and then calls mapcopy with (copy TacLis)

as its argument tactic to break down compound goal structure in the intermediate goals,

and then call copy1 again with the same list of tactics on each of the atomic subgoals. Once

the copying has proceeded as far as possible, the second clasue is used to halt the loop. At

that point, the target goal will contain the partial proof as far as it was constructed and

its output goal will contain the subgoals which must still be completed (if any) in order

to complete the proof. If there are incomplete subgoals, some other means must then be

used to solve them and finish the proof.

This completes the definition of the copying capabilities that will be added to the

general tactic interpreter. We now present some examples of copying tactics for natu-

ral deduction. The first tactic we define, the exactcopy tactic in the ndcopy module on

page 176 is a heuristic which operates by applying the same primitive tactic to both the

guiding and target goals at every step. It calls copy with a list containing one tactic cor-

responding to each inference rule (except ⊥I). Note that it uses and e tacr, imp e tacr,

neg e tacr, and forall e tacr, tactics which remove the hypothesis from the list. Thus

it will not complete any proof, for example, in which a universally quantified hypothesis

must be instantiated more than once. This tactic will proceed in constructing the target

proof as far as it can as long as the exact rules can be applied in the target proof that were

applied in the guiding proof.

The orcopy tactic is slightly less trivial. Its first argument is a list containing two

nested orelse tactics. The first contains primitive nonbranching tactics, i.e., tactics for

rules of NI whose output goal does not contain a conjunctive goal. The second contains

branching tactics. Together, they contain all of the same rules as exactcopy. With this list

as the argument to the copy tactic, as long as any rule within one nested orelse succeeds

on the guiding proof, any rule in the same nested orelse structure, not necessarily the

same as that applied to the guiding proof, may succeed on the target goal. The branching

and nonbranching tactics are separated because, as stated above, the copy tactic requires

that the branching structure of the guiding and target goals be the same.

175

module ndcopy.

import copy ndtac tacticals.

type exactcopy goal -> goal -> goal -> goal -> o.

type orcopy goal -> goal -> goal -> goal -> o.

exactcopy GInGoal GOutGoal TInGoal TOutGoal :-

copy ((close_tac 0)::and_i_tac::or_i1_tac::or_i2_tac::imp_i_tac::

neg_i_tac::forall_i_tac::exists_i_tac::(and_e_tacr 0)::

(imp_e_tacr 0)::(neg_e_tacr 0)::(forall_e_tacr 0)::(or_e_tac 0)::

(exists_e_tac 0)::nil)

GInGoal GOutGoal TInGoal TOutGoal.

orcopy GInGoal GOutGoal TInGoal TOutGoal :-

copy ((orelse (close_tac 0) (orelse or_i1_tac (orelse or_i2_tac

(orelse imp_i_tac (orelse neg_i_tac (orelse forall_i_tac

(orelse exists_i_tac (orelse (and_e_tacr 0)

(orelse (forall_e_tacr 0) (exists_e_tac 0))))))))))::

(orelse and_i_tac (orelse (imp_e_tacr 0) (orelse (neg_e_tacr 0)

(or_e_tac 0))))::nil)

GInGoal GOutGoal TInGoal TOutGoal.

Module ndcopy: Tactics for Proof By Analogy in NI

goals fol

/ / | \ |

/ / | \ |

/ / | \ nprf

/ / | \ |

mapcopy goalred maptac \ |

| | / | ndgoal

| | / | / \

| | / | / \

| tacticals | / \

| | \ | / \

| | \ | / \

copy | inter_tacs ndtac ndprint

\ | \ / | /

\ | \ / | /

\ | / \ | /

\| / \ | /

ndcopy nd

Figure 8.4: A Tactic Theorem Prover for NI With Proof By Analogy Tactics

176

Figure 8.4 illustrates how the three modules we have presented can be incorporated

into the tactic theorem prover for NI . The mapcopy and copy modules can be added to

the general interpreter (from goals to inter tacs and all intermediate modules in the

diagram), and thus be made available to any tactic theorem prover. The ndcopy module

containing tactics for proof by analogy specific to NI imports the copy module and ndtac,

the tactics for natural deduction. The link from copy to the lists module is not shown

here.

∀xq(x) ∨ p

∀xq(x)
∀-E

q(c)
∨-I1

q(c) ∨ p
∀-I

∀x(q(x) ∨ p)

p
∨-I2

q(c) ∨ p
∀-I

∀x(q(x) ∨ p)
∨-E

∀x(q(x) ∨ p)
⊃-I

(∀xq(x) ∨ p) ⊃ ∀x(q(x) ∨ p)

(a)

∀x(q(x) ∧ p)
∀-E

q(a) ∧ p
∧-E1

q(a)
∀-I

∀xq(x)

∀x(q(x) ∧ p)
∀-E

q(c) ∧ p
∧-E2

p
∧-I

∀xq(x) ∧ p
⊃-I

∀x(q(x) ∧ p) ⊃ (∀xq(x) ∧ p)

(b)

Figure 8.5: NI Proofs of (∀xq(x) ∨ p) ⊃ ∀x(q(x) ∨ p) and ∀x(q(x) ∧ p) ⊃ (∀xq(x) ∧ p)

The following is an example of a query using the orcopy tactic.

orcopy (nil --> (imp_i P\ (or_e (forall X\ (q X)) p P

P1\ (forall_i Y\ (or_i1 (forall_e Y X\ (q X) P1)))

P2\ (forall_i Y\ (or_i2 P2)))) #

(((forall X\ (q X)) or p) imp (forall X\ ((q X) or p))))

GOutGoal

(nil --> P2 #

((forall X\ ((q X) and z)) imp ((forall X\ (q X)) and z)))

TOutGoal.

In this query, the proof in Figure 8.5 (a) of (∀xq(x) ∨ p) ⊃ ∀x(q(x) ∨ p) is used to guide

the construction of the proof of ∀x(q(x) ∧ p) ⊃ (∀xq(x) ∧ p) in Figure 8.5 (b). Since the

guiding and target goals have the same branching structure throughout the execution, the

query will in fact successfully complete the target proof.

It is interesting to note that in a tactic theorem prover for the corresponding se-

quent system LI , the minimum criterion for two sequent proofs to be considered anal-

ogous in this framework is that their tree structure be exactly the same. This is because

177

the branching structure of goals in such a prover corresponds exactly to the branch-

ing structure of the proofs. Thus in a query similar to the one above for natural de-

duction, if given a guiding proof for −→ (∀xq(x) ∨ p) ⊃ ∀x(q(x) ∨ p) a target proof for

−→ ∀x(q(x) ∧ p) ⊃ (∀xq(x) ∧ p) could be successfully completed and would have exactly

the same tree structure as the guiding proof.

178

Chapter 9

Conclusion and Future Work

In this dissertation, we have demonstrated the use of a higher-order logic programming

language for both specifying and implementing theorem provers and other programs that

manipulate formulas and proofs. We have seen that this language is quite suitable for the

direct specification of various object logics and their inference systems. The data structures

of this language, simply typed λ-terms, proved to be useful for expressing the higher-order

abstract syntax of various object logics. Various binding operators in object logics were

directly expressible as λ-abstraction, and object level substitution was naturally specified

as meta-level β-conversion.

The connectives of the meta-language played an important role in the specification of

inference rules. Universal quantification was crucial to the correct specification of provisos

on various rules, while implication was used to naturally specify the discharge of assump-

tions in natural deduction style inference systems. For implementation purposes, universal

quantification was exploited for rather sophisticated manipulation of λ-terms. One exam-

ple that appeared repeatedly was the use of the GENERIC search operation to introduce a

constant to replace a bound variable making it possible to “descend” through an abstrac-

tion in order to manipulate the body of a λ-term. Although quite useful for specification,

implication on the other hand is quite limited for implementing theorem provers. In im-

plementing a tactic theorem prover for natural deduction for first-order logic in Chapter 7,

we argued that more programmer control over the manipulation of assumptions than could

be provided by implication was desirable. To solve this problem, explicit context lists were

adopted to store assumptions in the implementation of tactics for natural deduction.

The fact that an interpreter could be described in terms of basic search operations

corresponding to the logical connectives of the language gave a direct operational reading

to specifications. In general, this operational reading provided a description of goal directed

search for proofs in the object logic. Unification played a central role in the description of

goal directed search, in particular for instantiating inference rule schemas. We saw that

179

although the meta-language provided full higher-order unification, only restricted subcases

were necessary in the example theorem provers that were presented. In general, for theorem

proving and proof checking, second-order matching, a decidable subcase of higher-order

unification, is all that is needed.

In terms of specification, one of our main claims is that our meta-language can be used

to naturally specify a variety of object logics. Many of the examples provided were for

first-order logics for which we were able to make use of many of the features of the meta-

language directly. In more complex logics such as the higher-order object logic presented

in Section 4.4, the specification was not so direct, and required an encoding of object terms

and auxiliary specifications for type checking and λ-convertibility. On the other hand, the

operational behavior of specifications for more complex logics is no more complex than

that of programs specifying theorem provers for first-order logics: the search behavior

can be described similarly, and unification problems are generally no more complex that

second-order matching.

In this dissertation the same meta-language was used for both specification and imple-

mentation, although in terms of implementation, many choices had to be made in order

to fully describe a deterministic interpreter for the language. Our purpose here was not to

examine how to make such choices, and for the purpose of discussion we made choices sim-

ilar to those in standard logic programming languages, such as depth-first control. With

respect to this interpreter, for the task of proof checking, the distinction between specifi-

cation and implementation could be blurred since the same programs were often able to

serve as both.

For the more complicated task of theorem proving, control of execution becomes an

important issue. Although we demonstrated that it is sometimes possible to modify spec-

ifications so that they are complete implementations of automatic theorem provers, our

main concern has been the organization of a comprehensive proof system in which theorem

proving and other manipulations on formulas and proofs could be performed. For this task,

we have argued that tactic style theorem provers provide a good environment for build-

ing such a system. Several of the operational aspects of the higher-order features of our

language proved to be useful in implementing an interpreter for tactics and tacticals. In

particular, quantification over predicates was exploited to provide a simple implementation

of the basic control mechanisms used in proof search. In addition, meta-level implication

provided a notion of modules in logic programming that we were able to employ in build-

ing tactic theorem provers. We illustrated how to incorporate various capabilities such as

basic search operations for a particular object logic, interactive user-guided proof search,

and proof by analogy. These examples demonstrated that many object logics and formula

and proof manipulation programs can be integrated in a unified framework.

One consequence of the perspicuity of the specifications for inference systems is that

180

they enabled us to obtain an operational description of various proof theoretic results. For

example, based on a characterization of normal natural deduction proofs, we were able to

specify the inference rules of natural deduction so that only normal proofs get constructed.

In addition, based on the proof of normalization for natural deduction, we were able to

implement a program to transform arbitrary proofs to normal ones. Also, by recognizing

the similarity between specifications of a sequent system and natural deduction for first-

order intuitionistic logic, we were able to combine the two to obtain a specification that

both illustrates the correspondence between cut-free sequent proofs and normal natural

deduction proofs, and serves as a program to transform a proof in one system to a proof

in the other.

9.1 Future Work

A Specialized Meta-Language The higher-order features of our meta-language that

we have used extensively, arguing that they are valuable for specification and implemen-

tation of theorem provers, are actually only a subset of the features present in the full

logic programming language based on hohh. In fact with only minor modification, all

of the programs in Chapters 3-6 fall within the restricted sublanguage Lλ mentioned in

Chapter 4. The remaining programs are only mildly outside the scope of this language.

There are a couple reasons for isolating a sublanguage such as Lλ specialized to the task of

theorem proving. First, it allows us to isolate exactly which features are important for the

specification and implementation of theorem provers. Second, since unification problems

are greatly simplified, it may be possible to implement a specialized unification algorithm

much more efficiently than full higher-order unification.

It is also possible to take the opposite approach and enrich the meta-language to

increase its capabilities for specifying logics and theorem provers. The Elf language [Pfe89],

for example, is an extension over hohh without predicate quantification. It is based on

the LF type theory, which as we have seen, is a relatively rich language developed for

the purpose of specifying a large class of logics and capturing the uniformities among

them. A non-deterministic interpreter can be described for Elf in much the same way as

for hohh by providing a small set of search operations which, in this case, give types an

operational interpretation. A more complex unification procedure is required to implement

this language [Ell89], but it appears feasible that a sublanguage similar to Lλ could be

isolated for Elf. Such a language should have relatively strong specification power, but

simple operational behavior and, ideally, a decidable unification procedure.

Efficient Implementation of Theorem Provers In implementing theorem provers,

efficiency has not been a specific concern thus far. In fact, execution of the programs

181

we have presented generally is less efficient than the implementation of comparable tasks

in theorem provers which use the functional programming language ML as their meta-

language (e.g. Isabelle [Pau88]). There are other ways to address this concern besides

modifying the meta-language as suggested above. For example, although depth-first search

was adopted as the control mechanism for the deterministic interpreter, there may be other

forms of control that are more suited to implementing theorem provers. As mentioned in

Chapter 7, any of the interpreters implemented there may be implemented as the con-

trol strategy for the meta-language. Such modifications to the meta-interpreter are worth

investigating for the development of proof systems with practical import. One avenue cur-

rently being explored, which would of course have impact on theorem proving applications,

is the efficient implementation of λProlog [EP89, NJ89].

Adding to the Capabilities of Practical Theorem Provers There are many direc-

tions in which future work in implementing theorem provers could go, and only practical

experience will tell which are the most fruitful. We have provided a basic organization

for building proof systems based on tactic style theorem proving. There are many other

general and specialized theorem proving techniques to be investigated and incorporated

into such a system. Some examples include induction, rewrite systems, and equality rea-

soning. The ability to quantify over function variables suggests techniques for replacing

equals by equals in an equational logic for example. For instance, if s and t are two equal

terms of an object logic, a template of the form (F s) could be used to obtain instances

of F, which are abstractions over instances of s in an object level term. The term (F t)

is then a modification of the original term with zero or more occurrences of s replaced by

occurrences of t. In such an operation, there are potentially many unifiers. Control of

the generation and presentation of unifiers must be examined to evaluate the usefulness of

higher-order unification for this task.

For theorem proving in a mathematical domain, it will be essential to organize libraries

of definitions, theorems, and perhaps specialized strategies for proof search. The notion of

modules in our logic programming language suggests a basic organization of such libraries

which must be explored further. Mechanisms for accessing the information in libraries,

expanding definitions, etc. must be developed and incorporated into the system. The

separation of different strategies for different logics and domains into modules allows the

search space to be traversed in a systematic way: it provides a means to choose which

modules to access and to limit the number of available operations at any one time.

Proof By Analogy We have only scratched the surface of potential investigations of

proof by analogy by demonstrating how techniques for building structurally analogous

proofs can be incorporated into the tactic theorem proving setting. Although the value

182

of proof by analogy in human theorem proving is well-known, it is a difficult problem to

incorporate into computer systems. We feel that the basic mechanisms we have presented

and their incorporation into our implementation of a tactic interpreter shows promise as

a starting point for investigating this strategy.

Operational Descriptions of Results in Proof Theory As mentioned, some of the

specifications we have presented provide an operational description of certain well-known

proof-theoretic results. It seems likely that other results might similarly be given op-

erational reading by specifying them as logic programs. For example, in [Pot77], the

correspondence between cut-elimination in sequent systems and normalization in natural

deduction is described. A program that simultaneously performs both operations might

provide additional insight into this correspondence. As another example, the construc-

tion of an interpolation formula from a sequent proof is defined in [Smu68]. It should be

straightforward to construct such a formula from sequent proof structures described in

this dissertation. In addition, such programs may suggest simpler or alternative ways of

establishing the corresponding proof-theoretic results.

Operations on Proof Terms We have illustrated that it is straightforward to write

programs that manipulate proof terms of various object logics. Other operations which

have proven useful in other systems such as extracting programs from proofs or extract-

ing English explanations from proofs should also be straightforward to implement in this

setting. The main challenge that remains is to determine how to best integrate such oper-

ations into a theorem proving environment so that proofs, once discovered, serve as useful

objects in accomplishing a variety of other tasks. Much practical experience will be needed

to gain insight into this area. The examples we have shown provide evidence that the logic

programming setting is a good environment for further investigation.

183

A λProlog Programs for Manipulating Lists

module lists.

type ’::’ A -> (list A) -> (list A).

type memb A -> (list A) -> o.

type member A -> (list A) -> o.

type append (list A) -> (list A) -> (list A) -> o.

type nth_item int -> A -> (list A) -> o.

type memb_and_rest A -> (list A) -> (list A) -> o.

type nth_and_rest int -> A -> (list A) -> (list A) -> o.

memb X (X::L).

memb X (Y::L) :- memb X L.

member X (X::L) :- !.

member X (Y::L) :- member X L.

append nil K K.

append (X::L) K (X::M) :- append L K M.

memb_and_rest A (A::Rest) Rest.

memb_and_rest A (B::Tail) (B::Rest) :- memb_and_rest A Tail Rest.

nth_item 0 A List :- !, memb A List.

nth_item 1 A (A::Rest) :- !.

nth_item N A (B::Tail) :- M is (N - 1), nth_item M A Tail.

nth_and_rest 0 A List Rest :- !, memb_and_rest A List Rest.

nth_and_rest 1 A (A::Rest) Rest :- !.

nth_and_rest N A (B::Tail) (B::Rest) :-

M is (N - 1), nth_and_rest M A Tail Rest.

Module lists: Some Simple Operations on Lists

184

B Infix Operators Used in λProlog Modules

Figure B.1 contains all of the infix symbols introduced in the modules in this dissertation.

They are listed according to their order of precedence: the further down in the list, the

stronger the binding power of the operator.

=>> implicational goal for tactic theorem provers

&& vv conjunctive and disjunctive goals for tactic theorem provers

>- >-1 >-2 relations between sequents and their proofs

--> sequent arrow/type arrow for constructing simple types

#e #p relations between formulas and natural deduction proofs

#t relation between a term and its type

imp implication for object-level formulas

and or conjunction and disjunction for object-level formulas

:: list constructor

Figure B.1: Infix Operators Used in λProlog Modules

185

References

[AHM87] Arnon Avron, Furio A. Honsell, and Ian A. Mason. Using typed lambda calculus

to implement formal systems on a machine. Technical Report ECS-LFCS-87-31,

Laboratory for the Foundations of Computer Science, University of Edinburgh,

June 1987.

[And81] Peter B. Andrews. Theorem proving via general matings. Journal of the Asso-

ciation for Computing Machinery, 28:193–214, 1981.

[Bar84] Hank Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. Elsevier, revised

edition, 1984.

[BCP86] Bishop Brock, Shaun Cooper, and William Pierce. Some experiments with

analogy in proof discovery (preliminary report). Technical Report AI-347-86,

MCC, Austin, Texas, October 1986.

[Ble77] W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence, 9:1–35,

1977.

[Ble83] W. W. Bledsoe. The ut prover. Technical Report ATP-17B, University of Texas

at Austin, April 1983.

[Ble86] W. W. Bledsoe. Some thoughts on proof discovery. In Third Annual IEEE Sym-

posium on Logic Programming, pages 2–10, Salt Lake City, Utah, September

1986. MCC Tech Report AI-208-86 June 1986.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof

Development System. Prentice-Hall, 1986.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information

and Computation, 76(2/3):95–120, February/March 1988.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56–68, 1940.

[dlTC87] Thierry Boy de la Tour and Ricardo Caferra. Proof analogy in interactive theo-

rem proving: A method to express and use it via second order pattern matching.

In Proceedings of the Sixth National Conference on Artificial Intelligence, pages

95–99, Seattle, WA, July 1987. AAAI, Morgan Kaufmann.

[Dum77] Michael Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.

186

[Ell89] Conal Elliott. Higher-order unification with dependent types. In Rewriting

Techniques and Applications, pages 121–136. Springer-Verlag Lecture Notes in

Computer Science, April 1989.

[EP89] Conal Elliott and Frank Pfenning. elp, a common lisp implementation of

λprolog. May 1989.

[Fel87] Amy Felty. Implementing theorem provers in logic programming. Disserta-

tion Proposal, University of Pennsylvania, Technical Report MS-CIS-87-109,

November 1987.

[FM88] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic

programming language. In Ninth International Conference on Automated De-

duction, pages 61–80. Springer-Verlag Lecture Notes in Computer Science, May

1988.

[FM89] Amy Felty and Dale Miller. A meta language for type checking and inference.

Presented at the 1989 Workshop on Programming Logic, B̊alstad, Sweden, May

1989.

[Gal86] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theo-

rem Proving. Harper & Row, 1986.

[Gen69] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo,

editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland

Publishing Co., Amsterdam, 1969.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edin-

burgh LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes

in Computer Science. Springer-Verlag, 1979.

[Goa80] Christopher Alan Goad. Computational Uses of the Manipulation of Formal

Proofs. PhD thesis, Stanford University, August 1980.

[Gor85] Mike Gordon. HOL: A machine oriented formulation of higher-order logic.

Technical Report 68, University of Cambridge, July 1985.

[HHP89] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Submitted to the J.ACM, 1989.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transformations

expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

187

[HM88] John Hannan and Dale Miller. Enriching a meta-language with higher-order

features. In Workshop on Meta-Programming in Logic Programming, Bristol,

June 1988.

[How80] William A. Howard. The formulae-as-type notion of construction, 1969. In To

H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism,

pages 479–490. Academic Press, 1980.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic

and Lambda Calculus. Cambridge University Press, 1986.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-

puter Science, 1:27–57, 1975.

[Kle67] Stephen Cole Kleene. Mathematical Logic. John Wiley & Sons, Inc., 1967.

[Kor85] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree

search. Artificial Intelligence, 27:97–109, 1985.

[Mey81] Albert Meyer. What is a model of the lambda calculus? Information and

Control, 52(1):87–122, 1981.

[Mil83] Dale A. Miller. Proofs in Higher-order Logic. PhD thesis, Carnegie-Mellon

University, August 1983.

[Mil88] Dale Miller. Unification under a mixed prefix. Unpublished draft, September

1988.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory Lecture

Notes. BIBLIOPOLIS, Napoli, 1984.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach to manip-

ulating formulas and programs. In IEEE Symposium on Logic Programming,

pages 379–388, September 1987.

[MN88] Dale Miller and Gopalan Nadathur. λProlog Version 2.7. Distribution in C-

Prolog and Quintus sources, July 1988.

[MNPS] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. To appear in the Annals of Pure

and Applied Logic.

[MNS87] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop for-

mulas and uniform proof systems. In Second Annual Symposium on Logic in

Computer Science, pages 98–105, Ithaca, NY, June 1987.

188

[Nad87] Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.

PhD thesis, University of Pennsylvania, Technical Report MS-CIS-87-48, June

1987.

[NJ89] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for λProlog.

In Ewing Lusk and Ross Overbeek, editors, Proceedings of the North American

Conference on Logic Programming, pages 1180–1198, October 1989.

[NM88] Gopalan Nadathur and Dale Miller. Higher-order horn clauses. To appear in

the J.ACM, April 1988.

[Pau86] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of

Logic Programming, 3:237–258, 1986.

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive Proof with Cam-

bridge LCF. Cambridge University Press, 1987.

[Pau88] Lawrence C. Paulson. The foundation of a generic theorem prover. To appear

in the Journal of Automated Reasoning, March 1988.

[PE88] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceed-

ings of the ACM-SIGPLAN Conference on Programming Language Design and

Implementation, pages 199–208, 1988.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified metapro-

gramming. In Fourth Annual Symposium on Logic in Computer Science, pages

313–321, Monterey, CA, June 1989.

[Pot77] Garrel Pottinger. Normalization as a homomorphic image of cut-elimination.

Annals of Mathematical Logic, 12(3):223–357, 1977.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Pro-

ceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies

in Logic and the Foundations of Mathematics, pages 235–307. North-Holland,

1971.

[SG88] Wayne Snyder and Jean H. Gallier. Higher order unification revisited: Complete

sets of transformations. Journal of Symbolic Computation, 1988. To Appear.

[Smu68] Raymond M. Smullyan. First-Order Logic. Springer-Verlag New York Inc.,

1968.

189

[SS86] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming

Techniques. MIT Press, Cambridge MA, 1986.

[ST85] Mark E. Stickel and W. Mabry Tyson. An analysis of consecutively bounded

depth-first search with applications in automated deduction. In Proceedings of

the International Joint Conference on Artificial Intelligence 1985, pages 1073–

1075, Los Angeles, August 1985.

[Sti86] Mark E. Stickel. A prolog technology theorem prover: Implementation by an

extended prolog compiler. In Jörg H. Siekmann, editor, Eighth International

Conference on Automated Deduction, volume 230 of Lecture Notes in Computer

Science, pages 573–587. Springer-Verlag, July 1986.

[TB79] Mabry Tyson and W. W. Bledsoe. Conflicting bindings and generalized substi-

tutions. In Fourth International Conference on Automated Deduction, volume

103 of Lecture Notes in Computer Science, pages 14–18. Springer-Verlag, Febru-

ary 1979.

[Zuc74] J. I. Zucker. Cut-elimination and normalization. Annals of Mathematical Logic,

1(1):1–112, 1974.

190

