
Protocol Veri�cation in Nuprl ?Amy P. Felty1, Douglas J. Howe1, and Frank A. Stomp21 Bell Labs, Murray Hill, NJ 07974, USA. ffelty,howeg@bell-labs.com2 Dept. of Comp. Sci., UC Davis, Davis, CA 95616, USA. stomp@cs.ucdavis.eduAbstract. This paper presents work directed toward making the Nuprlinteractive theorem prover a more e�ective tool for protocol veri�cationwhile retaining existing advantages of the system, and describes appli-cation of the prover to verifying the SCI cache coherence protocol. Theveri�cation is based, in part, on formal mathematics imported from an-other theorem-proving system, exploiting a connection we implementedbetween Nuprl and HOL. We have designed and implemented a typeannotation scheme for Nuprl's logic that allows type information to bee�ectively applied by the system's automated reasoning facilities. This issigni�cant because Nuprl's powerful constructive type theory buys muchof its expressive power and
exibility at the cost of giving up the moremanageable kinds of type system found in other logics.1 IntroductionNuprl [2] is an interactive theorem-proving system in the lineage of LCF. Oneof its main distinguishing characteristics is its highly expressive formal logic, aconstructive type theory whose classical variant has expressive power equivalentto conventional set theory (ZFC) [12, 6].Nuprl has been extensively applied, and its expressive power has been shownto be a substantial advantage in a variety of domains, but little work has beenspeci�cally directed toward e�ectiveness for the kind of large-scale practical ap-plications where the bulk of the formal mathematics is highly complicated, butshallow and representationally simple.This paper describes our work in this direction, and features an applicationof Nuprl to prove safety properties of the SCI cache coherence protocol [8].We chose SCI as an example partly because its complexity is representativeof the scale of algorithms which can be currently handled by mechanized tools.Model checking systems that have been applied to the protocol su�er from stateexplosion at a small number of processors, though even so some bugs have beenfound [11]. A second reason for choosing it is that a proof method and supportedinvariants have already been worked out [3].Our work has been to improve Nuprl for these kinds of applications withoutcompromising existing advantages of the system by, e.g., adding restrictions tothe logic. There are three parts to this work.? In Proceedings of the Tenth International Conference on Computer-Aided Veri�ca-tion, June 1998.

Imported mathematics. Veri�cation using an interactive theorem-prover re-quires a great deal of basic formal mathematics about elementary data structuresand models. Building it is time-consuming, and is largely duplication of e�ortsince these basic facts tend to be similar across systems. To avoid doing thisourselves, we import some basic mathematics from HOL [5], a system that has,over the years, accumulated a large corpus of mathematics of the kind usefulfor software/hardware veri�cation. The paper [7] gives the basic design of theconnection between HOL and Nuprl, and [4] gives an extension to it and anapplication to a moderately di�cult problem in metamathematics. Our work,though just a �rst step, establishes that sharing mathematics can be useful insoftware/hardware veri�cation.Type Annotation. Nuprl buys its expressive power at the cost of some tra-ditional aspects of type systems. In particular, the type theory's
exibility is inlarge part due to the fact that terms are untyped in the sense that one cannot de-termine from the syntax of an expression what, if any, type it is a member of. Inthis way, Nuprl is similar to set theory, with types being analogous to sets. Thisis a problem for automation for two reasons. First, it is often important for termsto come with their types; for example, in term rewriting, type information canenable a useful form of conditional rewriting. Second, typing properties requireproof, so, for example, every time a lemma is instantiated, the instantiating ob-jects must be proved to have the right types. We have designed and implementedan annotation scheme where terms are decorated with types in such a way thattypes can (almost always) be e�ciently maintained during inference, but no newsyntactic restrictions are placed on the logic. We have obtained roughly a factorof 10 speedup in term rewriting (the main workhorse in Nuprl proofs). Unfor-tunately, the implementation wasn't completed until part-way through the SCIe�ort, so a good deal of work was done without its bene�t.Tactic support.We represent the protocol and its speci�cation using a familiarkind of embedding of a Unity-like language. We used Nuprl's tactic mechanismto implement a suite of automated reasoners specialized to this model.One might ask why not just use HOL (for example)? The answer is that weare aiming to make Nuprl an e�ective tool for a wide range of formal problemsrelated to protocol veri�cation. For example, we want to be able to reason aboutabstraction and re�nement methods (see [1] for an example), an area whereexpressive power can be a great advantage. Of course, there are veri�cationtasks, such as checking that the atomic state transitions of a system preserve aproperty, where expressive power may be less important and where the speed ande�ectiveness of basic inference mechanisms, such as term rewriting, is crucial.One goal of our work is to enhance the second kind of reasoning without imposingrestrictions that a�ect the �rst kind.Our proof is completely constructive (by choice). While we don't see muchapplication for this fact in this particular case, it is noteworthy that constructiv-ity has not gotten in the way. It may be possible to engineer constructive proofsof protocols from which one can synthesize, for example, programs that tracksimulations of the protocol and produce interesting data about the current state.2

In the rest of the paper we describe the SCI correctness proof and the im-provements we made to Nuprl. The proof is not yet �nished, though it is nearingcompletion. A description of what remains to be done is included later in thepaper. Details of the completed formalization will be available on the web atwww.cs.bell-labs.com/~felty/sci/.2 SCI Cache Coherence and its Formalization in NuprlThis section gives an overview of the SCI cache coherence protocol and its formal-ization in Nuprl. Before proceeding to the overview, we give a brief descriptionof Nuprl. Formal mathematics in Nuprl is organized in a single library, which isbroken into �les simulating a theory structure. Library objects can be de�nitions,display forms, theorems, comments or objects containing ML code. De�nitionsde�ne new operators, possibly with binding structure, in terms of existing Nuprlterms and previously de�ned operators. Display forms provide notations for de-�ned and primitive operators. These notations need not be parsable since Nuprluses structure editors. Theorems have tree structured proofs, possibly incom-plete. Each node has a sequent, and represents an inference step. The step isjusti�ed either by a primitive rule, or by a tactic. Nuprl's notion of tactic isderived from that of LCF, as is HOL's.Nuprl's type theory has a rich set of type constructors. The following aresome example types: �n2N :Bn ! Bn,fx2N list j x 6= nil g; � n2N :Bn; (x; y) : Z �N+==(x1y2 = y1x2):The �rst of these can be thought of as the type of functions mapping an n andan n-ary bit-vector to an n-ary bit-vector. The second is the type of nonemptylist of natural numbers, the third is the collection of pairs (n; b) such that bis an n-ary bit-vector, and the last is a quotient type representing the rationalnumbers represented as pairs of integers with the usual equivalence relation.2.1 SCI Cache CoherenceThe SCI protocol is an IEEE standard for specifying communication betweenmultiprocessors in a shared memory model [8]. Due to the space limitations wepresent a very high-level description of our model of the cache coherence part ofthat protocol. A detailed description of our model can be found in [3].Processors which try to access the store form a doubly linked list. This listcan be thought of as prioritizing processors so that read and write con
icts do notarise. The protocol is distributed; there is no global cache or global data structurefor the linked list. Instead each processor p has a set of local variables which keepstrack of, for instance, its view of the cache (cvp), knowledge of whether or not itsview is valid (csp), and its current successor (succp) and predecessor (predp) onthe linked list, if any. All communication is via point-to-point message passing.Since a very large number of processors could be on the network, a huge amount3

of concurrency is present, complicating the understanding of the protocol. (TheIEEE standard speci�es an upper bound of 64,000 processors. The proof we areformalizing proves the correctness for an arbitrary �nite number of processors.)The protocol is speci�ed as a set of guarded actions. For example, the fol-lowing is an action executed by the memory controller m.buf [m]?read cache freshQ(p)�!if statusm = Gone then buf [p]!read cache freshR(m; headm; cvm; gone)else buf [p]!read cache freshR(m; headm; cvm; ok) �;headm := p; if statusm = Home then statusm := Fresh �Here, the guard indicates that this action can be executed if the �rst messagein buf [m] (m's message bu�er) has type read cache freshQ which indicates thatprocessor p wants to read. The message is removed from the queue (received) andthe body is executed. A message read cache freshR(m; headm; cvm; gone) is sentto processor p, if some processor on the list had issued a write query (indicated bythe argument gone). Otherwise, response read cache freshR(m; headm; cvm; ok) issent to p. (Argument ok indicates that no processors are on the list which haverequested to modify the store.) Local variable statusm is used by m to recordwhether some processor is on the list which has issued a write query | its valueis then Gone; or whether processors on the list have issued read queries only |its value is then Fresh; or if no such queries have been issued and hence the listis empty | its value is then Home. Finally, local variable headm is maintainedby m to record the head of the list. As shown by this example, bodies cancontain assignments, conditionals, and sends. In addition to receives, guards canbe boolean conditions.The protocol is represented as 21 actions: 4 for memory including the oneabove and 17 for each processor. Communication is via 14 types of messages,made up of 7 pairs of query (Q) and response (R) messages. In addition to theabove action, memory has two actions responding to write requests, one from aprocessor that is already on the doubly linked list because it is reading, and onefrom a processor that is not yet on the list. It also has an action responding to aprocessor that wants to go o� the list. The 17 actions for each processor includeone read request, two write requests, actions for requesting to go on the list orto go o� the list (for example, after it has \accessed" the store), an action forpurging others o� the list when it has been given permission to write the storeand decided that it is indeed going to do so, actions for modifying the cache,as well as actions that respond to each kind of request from another processor.This high degree of communication is a main complicating factor in the protocol.Several rounds of messages must be exchanged before a processor is on the listwith succp and predp properly set. Thus, the doubly linked list is constantlymodi�ed and constitutes an abstraction of the structure which arises during anactual computation. A variable statusp keeps track of a processor p's state withrespect to the list and can take on one of 8 possible values.4

2.2 Formalization in NuprlOur formalization of correctness follows closely the proof in [3]. Our embeddingof the semantics of state transition systems in Nuprl is fairly straightforward.We de�ne a state as a pair where the �rst component is the usual mapping fromidenti�ers to values. The second component is a history variable that recordsthe sequence of messages that have been sent and received during the entireexecution. This history variable is important for reasoning about the program'scommunication behavior. The Nuprl de�nitions of the components of state aregiven below. Booleans (B), atoms, integers (Z), and lists are de�ned in the stan-dard Nuprl libraries.PId == {k:Z| k � 0 } hist_el == B � PId � Z � mesgid == Atom � PId hist == hist_el Listmesg == Z � Z List state == (id ! Z) � histFor simplicity, the values of all identi�ers (id) are assumed to be integers. The�rst component of an identi�er is its name (type Atom) and the second is theprocess identi�er (type PId) to which the variable belongs. The �rst componentof a history element (hist_el) is a boolean value indicating whether the messageis a send (tt) or a receive (ff). The remaining components are the sender,receiver, and message (type mesg). Message types such as read cache freshQ areencoded as integers as the �rst component of a message. The second componentencodes the arguments.Expressions and commands are de�ned as functions on state. As an example,we give the de�nition of the assignment command.com == state ! statex:=e == �s.<�y.if (x = y) then (e�s) else (y�s), s.h>Nuprl's display forms are used to de�ne := and � as in�x operators. The dotis used for evaluation in a state and is overloaded. Here e�s is expression eval-uation de�ned as (e s) and (y�s) maps identi�ers to values and is de�ned as(s.1 y) (where .1 denotes the projection of the �rst element of a pair). Othercommands are de�ned similarly. Note that the assignment statement updates the�rst component of the state. The send command updates the second componentby simply adding a history element to the front of the history with tt as its �rstcomponent and the new message as its last component. (Histories and bu�ersare represented in reverse order.) The receive command also adds a history el-ement to the front of the history, but is more complicated because it computesthis element from the contents of the current history h. It uses an operationqueue(p;h) which �lters out those history elements that contain messages thathave been sent and not yet received by process p. It then chooses the last (oldest)element and creates a new copy whose �rst component is ff. The message bu�erof a process p in state s, denoted (buf[p])�s, is also computed using queue.In this case, the message components of the elements of list queue(p;s.2) areprojected out.A program is de�ned as a pair containing a list of commands and an initialcondition which is a predicate on state (of type state ! P1 where P1 is the5

type of Nuprl propositions). In our model, a command is enabled if it changes thestate when applied. Thus commands whose guards are true but do not changethe state are considered disabled. A trace is de�ned in the usual way as a functionfrom natural numbers to states such that for any n, there is an action (enabledor not) such that when applied to state n results in state n+ 1.The correctness of the SCI cache coherence protocol is stated as �ve lineartemporal logic formulas. The �rst, for example, expresses that there is always aunique cache owner. The notion of cache owner is fairly complex because of thedistributed nature of the protocol. If no processor has requested to write to thecache, then memory is the owner. Otherwise, the owner roughly corresponds tothe processor p whose variable csp has value dirty. However, there are variouscases where 0 or more than 1 processor has this value. In such cases there is aalways a message in some processor's bu�er that will cause it to set its value of cspto dirty or to something else making it or some other processor the unique owner.In order to show that this uniqueness property and the other four propertieshold, we prove a series of complex invariants from which these properties follow.These invariants are expressed as 14 lemmas (spanning several pages in [3]),each with several interdependent clauses. There are also many auxiliary conceptsthat appear in the invariants. For example, there are 6 predicates on processorsindicating their degree of progress in getting on or o� the doubly linked list. Themost complex concept is a function called rank whose value re
ects how close aprocess is to getting permission to write.In related work, Stern and Dill [11] use Mur�, a veri�cation system thatemploys explicit state enumeration, to analyze SCI cache coherence. Their largestexample included three processors with one cache line each, one memory withone address and two data values, and they reported �nding several errors using asmaller example. The model they used was extracted from the C code describingthe protocol in [8], whereas our model has been constructed from the informalEnglish explanation. By abstracting at this level, inconsistencies in the lower-level description were removed. Our model also di�ers from theirs (and fromthe SCI protocol standard) in that we have assumed that messages sent fromone processor to another processor are always received in the order sent. Sternand Dill check for certain safety properties, two of which are formulated asinvariants. One of their invariants corresponds to one of our �ve correctnessproperties stating that processors in a certain state have a consistent view of thecache. The other is essentially the same as an invariant in one of our supportinglemmas stating at what point a processor is at the head of the linked list.In [10], Park and Dill use PVS to verify the FLASH cache coherence protocol.Because the protocol uses directories instead of the distributed list of SCI, itseems simpler, and also it seems that the abstraction method they employ maynot be applicable to SCI. 6

3 Imported MathematicsIn this section we describe the connection between HOL and Nuprl, and sum-marize how it was used in our proof.3.1 The Importation MechanismWe believe that much of the mathematics used in practical veri�cation is highlysharable, including theories of basic data types, and also a good deal of themathematics related to software modeling and semantic connections to externaltools. We have taken a �rst step toward this kind of sharing by borrowing someof the mathematics we needed for our veri�cation from HOL.Importation of mathematics from HOL into Nuprl is done at the theorylevel. An HOL theory consists of some type and individual constants, someaxioms (usually de�nitional) constraining the constants, and a set of theoremsfollowing from the axioms (and the axioms of ancestor theories). To import atheory, one interprets the type constants with Nuprl types and the term constantswith members of the appropriate types, and then proves the axioms. When thisis done, the theorems can then all be accepted immediately as Nuprl theorems.Typechecking is undecidable in Nuprl, so the well-typedness of interpreting termsmust be proven explicitly.Theorems directly imported from HOL are usually of a form that makes themuseless for direct application in Nuprl proofs. It turns out that massaging thetheorems into the desired form is possible, and is largely automatable.To illustrate what kind of transformations are needed on directly importedmathematics, consider an example from list theory. The following is a raw im-port of a HOL theorem stating that a non-empty list is a cons. Because Nuprlcurrently has a single
at namespace, the names of all imported constants havean \h" prepended to avoid con
icts with Nuprl objects. The outermost quanti-�er quanti�es over the type S of all (small) non-empty types (this quanti�er isimplicit in HOL).8'a:S "(hall (�l:hlist('a).himplies (hnot (hnull l))(hequal (hcons (hhd l) (htl l)) l)))Apart from the outermost quanti�er, the logical connectives themselves are im-ported constants. The transformed, \Nuprl-friendly" theorem generated fromthe above is8'a:S. 8l:'a List. :mt(l)) hd(l)::tl(l) = l.The logical connectives in HOL are all boolean-valued functions, possibly takingfunctional arguments, as in the case of the quanti�ers. The interpretations ofthese connectives use boolean logic de�ned within Nuprl. The boolean connec-tives are rewritten in the second theorem to Nuprl's normal logical connectives,which are de�ned using a propositions-as-types correspondence. The operator7

" in the imported theorem coerces a boolean into a Nuprl proposition. Theimported list type is interpreted as Nuprl's list type, and the imported tail func-tion is interpreted as Nuprl's tail function. Note however that htl is applied, as afunction, to its argument, while the Nuprl tl is a de�ned operator with a singleoperand (Nuprl also has an operator for function application, of course). Wehave used a notational device to suppress type arguments in the (pre-rewrite)imported theorem. Each of the imported constants in the theorem actually hasat least one type argument. In the rewritten theorem, there are no hidden typearguments (the Nuprl operations are \implicitly polymorphic").The most interesting point in this translation is the function for head of alist. In HOL, this is a total function on lists. When we import it into Nuprl,we must prove that the interpretation returns a value on every list, empty ornot. Since hhd is polymorphic, given an arbitrary type and the empty list as anargument, it must choose some arbitrary member of the type as output. Thuswe must give hhd a noncomputable de�nition in Nuprl. However, we can provethat this function is the same as Nuprl's hd when the list is non-empty. Thisgives us a conditional rewrite which goes through for this example theorem.3.2 HOL Math Used in the SCI Veri�cationThe main source of HOL theorems used in the SCI veri�cation is a large bodyof theorems about lists. Lists are important in two central areas of the proof.First, the de�nition and proof of properties about the contents of bu�ers requiresophisticated list manipulation since, as mentioned, they are computed from thehistory component of a state. For example, from the de�nition of bu�er, it fairlyis straightforward to prove that when a message M is sent to process p in state s,its bu�er becomes M::((buf[p])�s) where :: is the cons operator. The proofthat but_last_el((buf[p])�s) is the contents of p's bu�er after p receives amessage is signi�cantly more complex. The operator but_last_el is de�ned inan HOL library in terms of the lastn operator (the operation which extracts thelast n elements of a list) which is also de�ned in HOL. The snoc operator, whichis the opposite of cons (in particular, the property snoc(x;l) = l @ (x::[])holds, where @ is the append operator), is also de�ned in HOL and is useful forreasoning about these operators. The existing HOL theorems about these and avariety of other operators were directly usable in this and other proofs.The above two theorems are examples of lemmas used as rewrite rules. Nuprlprovides powerful automation for the application of rewrite lemmas and gooduse of this machinery is essential for a large proof such as the SCI veri�cation.We proved and make extensive use of numerous other rewrite lemmas involvinghistories and bu�ers. A variety of other theorems about histories and bu�ershave also been proved and used as support for other kinds of rewrite lemmas.One invariant (part of Lemma 9 [3]) states that any processor has at mostone outstanding message. In particular, for any Q/R pair, there is at most oneQ message for which a processor is waiting for the corresponding R message.This means that there is either 0 or 1 Q messages from a processor p in someq's bu�er, or there is 0 or 1 R messages in p's bu�er, but not both. Our rewrite8

lemmas along with various other list operators and properties from HOL play acentral role in proving this fact.The second area of the proof in which lists are important is in de�ning thenotion of rank. Rank roughly corresponds to the order in which processors haverequested to read or write to the cache. It is only de�ned for active processors,a property of processors that are on or \mostly on" the doubly linked list. Animportant property is the fact that for any processor, its rank does not increase.This property insures that the list does not contain circularities. As long as aprocess stays active (and a few other properties hold) its rank will decrease untilit becomes 0 at which point it is allowed to write if it has requested to do so. Rankis de�ned by �ltering from the history all read and write requests that memoryhas received, projecting out the sender, and keeping only the �rst occurrence ofeach active processor in the resulting list. The �rst occurrence corresponds to aprocessor's most recent request. We prove a variety of lemmas describing how aprocessor's rank changes with changes in the state. These lemmas are also usedas rewrite rules in proving invariants.4 A Type Annotation Scheme for NuprlOur type annotation scheme is a way of attaching type expressions, which wecall annotations, to all (or only some) of the subterms of a term. Our schememeets the following goals.1. Annotations are optional. Terms that do not have annotations attached tothem are treated as before by Nuprl's tactics.2. If a term t is introduced into a proof as a member of a type T , and t oc-curs somewhere in the current goal with a compatible annotation, then therequirement to prove t 2 T is eliminated.3. Annotations justify rewriting, so that a subterm with an annotation A can bereplaced by an equal term (qua member of A) without further justi�cation.4. There are no heuristics in the scheme per se. Although type inference andchecking are highly heuristic in Nuprl, this is independent of the annotationscheme. Annotations for terms are generated by examining the results ofapplying Nuprl's existing machinery.5. Annotations can be e�ectively maintained. In principal, it is possible forannotations to be lost during inference. For example, the generalized termin the induction rule needs to reannotated (or left without annotations).However, such inference steps form a tiny fraction in practice. For example,annotations are almost never lost during equational rewriting.6. There are no global tables. We retain the tree-structuring of proofs, withindependence of proof branches, that allows us, among other things, to dodependency-directed backtracking, and selective replay of subproofs.7. Soundness depends only on a �xed set of primitive inference rules that allproofs must reduce to.8. The scheme is almost entirely invisible to users.9

The type theory of the PVS system [9] has some similarities to Nuprl, suchas subtypes, (a limited form of) dependent types, and undecidable typechecking.PVS uses a typing discipline that achieves most of the goals above, but it wouldonly be applicable to an insu�ciently small subtheory of Nuprl. Some complicat-ing aspects of Nuprl, which aren't present in PVS, are: universe polymorphism;type-indexed equality, so that two terms may both be in two types, but be equalin one type and not in the other; contravariant subtyping, where a function typeis enlarged when its domain is shrunk; and general dependent types. In addition,the PVS scheme does not address 7 above.Nuprl terms have the form �(x1: e1; : : : ;xn: en) where � is an operator and ineach operand xi:ei, each of the variables in the sequence xi binds in ei. Note thatno types are associated with the variables in this syntax. An annotated term hasthe form �(: : : ;xi: ei : [�i]Ai; : : :) : Bwhere the ei are also annotated terms. The expressions [�i]Ai are the suban-notations of the term, and can be thought of as the expected types for theoperands, and B is the annotation type of the term. Informally, ei : [�i]Ai canbe thought of as meaning that under assumption �i, ei has type Ai. The �i canrefer to the variables in xi, and can contain, for example, assertions of the formx 2 T . Examples of annotated terms are fact((3 : Z) : [true]N) : N , where fact,N and Z are factorial, the natural numbers and the integers respectively, andif(b:B; e1:[b]A; e2:[:b]A): A.One of the key points is how the annotation type of a term relates to itssubannotations and to the subannotations of an immediately surrounding term.We chose the minimal requirement that supports rewriting as described above,and so we require only respect for equality. For example, in �((e : A) : [�]A0) : B;where the operand e : A is itself an annotated term, we require, �rst, that forall x 2 A0, if x = e 2 A0 then �(x) = �(e) 2 B, and, second, that for all x 2 A,if x = e 2 A then x = e 2 A0. The generalization of this requirement to thepresence of binding variables is straightforward.As with ordinary typing in Nuprl, the validity of an annotation of a term isundecidable, and must be proven. One possibility would be to generate \typechecking conditions" as PVS does, which are side conditions generated whenevera new term is introduced. This is not workable for Nuprl because tactics workby putting together appropriate primitive inference rules, and need an oppor-tunity to assemble proofs of annotation validity at the same time as the proofsjustifying the main inference. Rewriting works, for example, by taking a termand producing a rewritten term along with a proof of equality. For annotatedterms, it is natural to modify rewriting to take an annotated term, and producea new term, an equality proof, and also a proof that the new term's annotationsare correct. We therefore have two kinds of annotations: one kind we can assumeare valid during the course of a proof, and the other must be proved to be valid.The annotation scheme is justi�ed semantically, and requires a re-interpretationof the semantics of sequents. A full report is in preparation.10

5 The Correctness Proof in NuprlThe de�nition below encodes the formula 2P from linear temporal logic andis central in proving invariants. A state s is in an execution of program prg,denoted in_exec(s;prg), if s occurs in some trace of prg.inv(prg;s.I[s]) == 8s:state. in_exec(prg;s)) I[s]In a proof of this magnitude, it was essential to provide a high degree of automa-tion. Our automation falls roughly into two categories: tactics that decomposereasoning modularly, and properties expressing equality and equivalence that canbe used by Nuprl's rewriting machinery such as those mentioned in Sect. 3.2.Both the decomposition properties and rewrite theorems include general theo-rems and theorems speci�c to SCI. The rewrites for message bu�ers discussed inSect. 3.2, for example, are not speci�c to SCI, while the notion of rank is. Thedecomposition tactics rely on lemmas that we have proven, such as one statingthat to show that inv(prg;s.I[s]) holds, it su�ces to consider one case foreach action of the program and to show that the initial condition holds in theinitial state. From this general lemma, we proved decomposition lemmas for SCIwhich decompose reasoning into 21 cases, one for each memory action and onefor each processor action for some arbitrary processor p. We chose to further de-compose conditional statements into cases so that each case contains only send,receive, and assignment statements. Rewriting operates on these simpli�ed cases.Although these decomposition properties are speci�c to SCI, we automated thegeneration of their statements | as well as a variety of other properties speci�cto SCI | from the de�nitions of the actions. Their proofs were often largelyautomatic also. We also automated the application of many of these lemmas bywriting tactics which apply them and solve various subgoals automatically.Of the 14 lemmas expressing invariants, the �rst 8 (roughly 2.5 pages in [3])are fairly simple and express properties about the values that various variablescan take on during execution. For example, we prove:read cache freshR(p; r; cv; arg) 2 buf [p])[p = m ^ q 2 P(n) ^ (r = nil _ r 2 P(n)) ^ (arg = ok _ arg = gone)]:Here P(n) denotes the set of processors involved in the protocol, with processidenti�ers 1; : : : ; n.The 9th lemma contains �ve statements which together express the propertyof outstanding messages described in Sect. 3.2 as well as eight statements ex-pressing which kind of outstanding message a processor p has depending on thevalue of statusp. Lemmas 10 and 11 express a variety of properties of the form2(P W Q) (where W is the weak until operator). We proved a general decom-position theorem for formulas of this form which makes the structure of theseproofs similar to those for the other invariants. Lemma 12 expresses some basicproperties about rank including two which follow directly from the de�nition(which is slightly di�erent but equivalent to the one given in [3]) and two whichmust be proven as invariants. While the invariants up to this point are largeand detailed, they are fairly straightforward to prove. The main di�culty in the11

proof is found in the 13th and 14th lemmas. Lemma 13 has 17 clauses and oneassumption which later gets discharged and Lemma 14 has 7 clauses. They statethe complex invariants about rank that are required to prove correctness of theprotocol.The proofs up through and including Lemma 11 are completed, as well asthe two properties of Lemma 12 that follow from the de�nition of rank. We havealso proven 5 and nearly completed 2 more of the 17 clauses of Lemma 13. Forexample, we have proven the invariant:purgeQ(q) 2 buf [p]) (visiting(p) ^ rank(q) = rank(p) + 1)where visiting processors are a subset of the active ones. In doing so, we have de-veloped all of the rewrite lemmas about the rank function and all other auxilliarypredicates that we need to complete the remainder of Lemmas 12, 13, and 14.The reasoning needed to complete the proof by showing that the desired safetyproperties follow from these invariants will be detailed but straightforward.Because we started from a proof of correctness [3], we did not expect to �nderrors in the protocol. However, we have found two errors in the proof. Two ofthe conjuncts of the �rst clause of Lemma 13 could not be proved using theassertions we had formulated, although they are true. To prove these conjuncts,we had to add and prove some additional clauses. One is an invariant explicitlystating that two particular messages sent from one processor to another arereceived in the order sent.References1. C.-T. Chou and D. Peled. Verifying a model-checking algorithm. In Tools andAlgorithms for the Construction and Analysis of Systems, volume 1055 of LectureNotes in Computer Science, pages 241{257. Springer-Verlag, 1996.2. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.3. A. Felty and F. Stomp. A correctness proof of a cache coherence protocol. 1997.Available at www.cs.bell-labs.com/�felty/sci/. An earlier version appears in Pro-ceedings of the 11th Annual Conference on Computer Assurance, 1996.4. A. P. Felty and D. J. Howe. Hybrid interactive theorem proving using Nuprl andHOL. In Fourteenth International Conference on Automated Deduction, volume1249 of Lecture Notes in Computer Science, pages 351{365. Springer-Verlag, 1997.5. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem ProvingEnvironment for Higher Order Logic. Cambridge University Press, 1993.6. D. J. Howe. On computational open-endedness in Martin-L�of's type theory. InProceedings of the Sixth Annual Symposium on Logic in Computer Science, pages162{172. IEEE Computer Society, 1991.7. D. J. Howe. Importing mathematics from HOL into Nuprl. In Theorem Provingin Higher Order Logics, volume 1125 of Lecture Notes in Computer Science, pages267{281. Springer-Verlag, 1996.8. IEEE-P1596-05Nov90-doc197-iii. Part IIIA: SCI Coherence Overview, 1990. Un-approved Draft. Approved standard is described in IEEE Std. 1596-1992 \TheScalable Coherent Interface". 12

9. S. Owre and N. Shankar. The formal semantics of PVS. Technical report, SRI,August 1997.10. S. Park and D. L. Dill. Veri�cation of FLASH cache coherence protocol by aggre-gation of distributed transactions. In 8th ACM Symposium on Parallel Algorithmsand Architectures, 1996.11. U. Stern and D. L. Dill. Automatic veri�cation of the SCI cache coherence protocol.In Correct Hardware Design and Veri�cation Methods, 1995.12. B. Werner. Sets in types, types in sets. In International Symposium on TheoreticalAspects of Computer Software, volume 1281 of Lecture Notes in Computer Science.Springer-Verlag, 1997.

13

