
Specifying Theorem Provers in a Higher-Order Logic

Programming Language

Amy Felty and Dale Miller
D e p a r t m e n t of C o m p u t e r and In fo rma t ion Science

Universi ty of Pennsy lvan ia
Phi ladelphia , PA 19104-6389 USA

Abstract

Since logic programming systems directly implement search and unification and since
these operations are essentiM for the implementation of most theorem provers, logic pro-
gramming languages should make ideM implementation languages for theorem provers.
We shall argue that this is indeed the case if thelogic programming language is extended
in several ways. We present an extended logic programming language where first-order
terms are replaced with simply-typed A-terms, higher-order unification replaces first-
order unification, and implication and universal quantification are allowed in queries
and the bodies of clauses. This language naturally specifies inference rules for various
proof systems. The primitive search operations required to search for proofs generally
have very simple implementations using the logical connectives of this extended logic
programming language. Higher-order unification, which provides sophisticated pattern
matching on formulas and proofs, can be used to determine when and at what instance
an inference rule can be employed in the search for a proof. Tactics and tacticals,
which provide a framework for high-level control over search, can also be directly imple-
mented in this extended language. The theorem provers presented in this paper have
been implemented in the higher-order logic programming language AProlog.

1 I n t r o d u c t i o n

Logic programming languages have many characteristics that indicate that they should
serve as good implementation languages for theorem provers. First, at the foundation of
computation in logic programming is search, and search is also fundamental to theorem
proving. The process of discovering a proof involves traversing an often very large and
complex search space in some controlled manner. Second, unification, which is required in
most theorem provers, is immediately and elegantly accessible in most logic programming
systems. Third, if in fact theorem provers can be written directly in logic programming, the
simple and declarative reading of such logic programs should help in understanding formal
properties~ such as completeness and soundness, of the resulting implementation. This
potential advantage is very important for theorem prover implementations not only because
such formal properties are important considerations but also because such implementations
are often very complex and hard to understand.

Traditional logic programming languages such as Prolog [SS86] are not sufficient for
providing natural implementations of several aspects of theorem provers. One deficiency, as

62

argued in [MN87b], is that first-order terms are quite inadequate for a clean representation
of formulas. For instance, first-order terms provide no mechanism for representing variable
abstraction required for quantification in first-order formulas. Of course, quantification
could be specially encoded. For example, in Prolog, we can represent abstractions in for-
mulas by representing bound variables as either constants or logical variables. The formula
Vx3y P(x, y) could be written as the first-order term f o r a l l (x, e x i s t s (y ,p (x , y))). This
kind of encoding is very unnatural and spoils the elegance which logic programming often
offers. We shall mention other similar shortcomings of conventional Prolog systems.

In this paper, we use a higher-order logic programming language based on higher-order
hereditary Harrop formulas [MNS87]. This language replaces first-order terms with simply
typed A-terms. The abstractions built into A-terms can be used to naturally represent
quantification. Our extended language also permits queries and the bodies of clauses to
be both implications and universally quantified. We shall show how such queries are, in
fact, necessary for implementing various kinds of theorem provers. The programs that we
present in this paper have been tested using AProlog which is a partial implementation of
higher-order hereditary Harrop formulas [MN87a]. Various aspects of this language have
been discussed in [MN86a, MN86b, MN87b, Nad86].

Our main claim in this paper is that such a language is a very suitable environment for
implementing theorem provers. We will show that search and unification accommodate the
tasks involved in theorem proving very naturally. Most of our theorem provers will have a
clean declarative reading which provides them with implementation independent semantics
and makes establishing their formal properties more tractable.

In the next section, we will briefly present higher-order hereditary Harrop formulas.
In Section 3, we discuss how to directly specify various inference rules as such formulas.
In Sections 4 and 5 we discuss the implementation of tactic style theorem provers which
allow greater control in searching for proofs and provide means for user participation in the
theorem proving process. In Section 4 we show how to implement high-level tacticals, and
in Section 5 we illustrate the tactic specification of inference rules for a particular proof
system. Finally, in Section 6, we discuss related work.

2 E x t e n d e d L o g i c P r o g r a m s

Higher-order hereditary Harrop formulas extend positive Horn clause in essentiMly two ways.
The first extension permits richer logical expressions in both queries (goals) and the bodies
of program clauses. In particular, this extension provides for implications, disjunctions,
and universally and existentially quantified formulas, as well as conjunction. The addition
of disjunctions and existential quantifiers into the bodies of clauses does not depart much
from the usual presentation of Horn clauses since such extended clauses are classically
equivalent to Horn clauses. The addition of implications and universal quantifiers, however,
makes a significant departure. The second extension to Horn clauses makes this language
higher-order in the sense that it is possible to quantify over predicate and function symbols.
For a complete realization of this kind of extension, several other features must be added.
In order to instantiate predicate and function variables with terms, first-order terms are
replaced by more expressive simply typed A-terms. The application of A-terms is handled
by A-conversion, while the unification of A-terms is handled by higher-order unification.

63

There are four major components to our extended logic programming language: types,
A-terms, definite clauses, and goal formulas. Types and terms are essentially those of the
simple theory of types [Chu40]. We assume that a certain set of non-functional (primitive)
types is provided. This set must contain the type symbol o which will denote the type
of logic programming propositions: other primitive types are supplied by the programmer.
Function types of all orders are also permitted: if a and ~ are types then so is a --* 8.
The arrow type constructor associates to the right: read a --+ ~ --~ 7 as ~ ~ (8 --+ 7)-
A function symbol whose target type is o will also be considered a predicate symbol. No
abstractions or quantifications are permitted in types (hence the adjective "simple").

Simply typed A-terms are built in the usual fashion. Through the writing of programs,
the programmer specifies (explicitly or implicitly) typed constants and variables. A-terms
can then be built up using constants, variables, applications, and abstractions in the usual
way. Logical connectives and quantifiers are introduced into these A-terms by introducing
suitable constants; in particular, the constants A,V, D are all assumed to have type o --~
o ~ o, and the constants II and E are given type (a --, o) --~ o for each type replacing the
"type variable" a. (Negation is not used in this programming language.) The expressions
IIAx A and EAx A are abbreviated to be Vx A and 9x A, respectively. A A-term which is
of type o is called a proposition.

Equality between A-terms is taken to mean flr/-convertible. We shall assume tha t the
reader is f&mitiar with the basic facts about A-conversion. It suffices to say here that this
equality check is decidable, Mthough if the terms being compared are large, this check can
be very expensive: E-reduction can greatly increase the size of A-terms.

A proposition in),-normal form whose head is not a logical constant will be called an
atomic formula. In this section, A denotes a syntactic variable for atomic formulas.

We now define two new classes of propositions, called goal formulas and definite clauses.
Let G be a syntactic variable for goal formulas and let D be a syntactic variable for definite
clauses. These two classes are defined by the following mutual recursion.

G:= A I G 1 V G 2 IG1AG2 J D D G I 3v G JVcG

D:= A J G D A I V v D

Here, the universal quantifier Vc G in goal formulas must be over a constant e in G and
the existential quantification 3v G must be over a variable v in G. Similarly, to form the
formula Vv D, v is a variable in D. There is one final restriction: if an atomic formula is
a definite clause, it must have a constant as its head. The heads of atomic goal formulas
may be either variable or constant. A logic program or just simply a program is a finite set,
generally written as 7), of closed definite formulas.

Several abstract properties of this logic programming language are presented in [MNS87].
I t is stated there tha t although substitutions for predicates in the underlying impredicative
and unramified logic can be very complex, in this setting, substitutions for predicates can
be determined through unifications. Furthermore, substitution terms can be restricted to
be those A-terms whose embedded logical connectives (if any) satisfy the constraints placed
on goal formulas above.

Another property known for this logic programming language is that a sound and com-
plete (with respect to intuitionistic logic) non-deterministic interpreter can be implemented

64

by employing the following six search operations. Here, the interpreter is a t tempting to
determine if the goal formula G follows from the program P . The substitution instances
used by GENERIC and BACKCHAIN are those described above.

AND If G is G1 h G2 then try to show that both G1 and G2 follow from 50.

OR If G is G1 V G2 then try to show that either G1 or G2 follows from 5 o.

AUGMENT If G is D D G' then add D to the current program and t ry to show G'.

GENERIC If G is Vx G' then pick a new parameter c and t ry to show [x/e]G'.

INSTANCE If G is 3x G' then pick some dosed A-term t and try to show [x/t]G'.

BACKCHAIN If G is atomic, we must now consider the current program. If there is a
universal instance of a definite clause which is equal to G then we are done.
If there is a definite clause with a universal instance of the form G' D G
then try to show G' from 50. If neither case holds then G does not follow
from P.

In order to implement such an interpreter, it is important to make choices which are
left unspecified in the high-level description above. There are, of course, many ways to
make such choices. We will assume for the purposes of this paper that choices similar to •
those routinely used in Prolog are employed. In particular, we are following the conventions
established in the AProlog system which implements most of the language we are describing
(see [MN86a] and [MN87a]).

The order in which conjuncts and disjuncts are a t tempted and the order for backchaining
over definite clauses is determined exactly as in conventional Prolog systems: conjuncts and
disjuncts are a t tempted in the order they are presented. Definite clauses are backchained
over in the order they are listed in P using a depth-first search paradigm to handle failures.

The non-determinism in the INSTANCE operation is extreme. Generally when an
existential goal is a t tempted, there is very little information available as to what dosed A-
term should be inserted. Instead, the Prolog implementation technique of instantiating the
existential quantifier with a logical (free) variable which is later "filled in" using unification
is employed. A similar use of logical variables is made in implementing BACKCHAIN:
universal instances are made using new logical variables.

The addition of logical variables in our setting, however, forces the following extensions
to conventional Prolog implementations. First, higher-order unification becomes necessary
since these logical variables can occur inside A-terms. Also the equality of terms is not
a simple syntactic check but a more complex check of j3r/-conversion. Since higher-order
unification is not in general decidable and since most general unifiers do not necessarily
exist when unifiers do exist, unification can contribute to the search aspects of the full
interpreter. AProlog addresses this by implementing a depth-first version of the unification
search procedure described in [Hue75]. For more information on how logic programming
behaves with such a unification procedure, see [MN86a, Nad86]. The higher-order unifica-
tion problems we shall encounter in this paper are all rather simple: it is easy to see, for
example, that all such problems are decidable.

The presence of logical variables in an implementation also requires that GENERIC be
implemented slightly differently than is described above. In particular, if the goal Vx G'

65

contains logical variables, the new parameter c must not appear in the terms eventually
instantiated for the logical variables which appear in G' or in the current program. Without
this check, logical variables would not be a sound implementation technique.

Since much of this paper is concerned with how to implement theorem provers using the
class of hereditary Harrop formulas presented above, we shall need to present many such
formulas. We will make such presentations by using the syntax adopted by the AProlog
system, which itself borrows from conventional Prolog systems.

Variables are represented by tokens with an upper case initial letter and constants are
represented by tokens with a lower case initial letter. Function application is represented by
juxtaposing two terms of suitable types. Application associates to the left, except when a
constant is declared to be infix and then normal infix conventions are adopted. A-abstraction
is represented using backslash as an infix symbol: a term of the form Ax T is written as X\T.
Terms are most accurately thought of as being representatives of flr/-conversion equivalence
classes of terms. For example, the terms XX(f X), Y \ (f Y), (F\YX(F Y) f) , and f all
represent the same class of terms.

The symbols , and ; represent A and V respectively, and , binds tighter than ;. The
symbol : - denotes "implied-by" while => denotes the converse "implies." The first symbol
is used to write the top-level connective of definite clauses: the clause G D A is written
A : - G. Implications in goals and the bodies of clauses are written using =>. Free variables
in a definite clause are assumed to be universally quantified, while free variables in a goal
are assumed to be existentially quantified. Universal and existential quantification within
goals and definite clauses are written using the constants p i and sigma in conjunction with
a A-abstraction.

Below is an example of a (first-order) program using this syntax.

sterile Y :- pi X\ (bug X => (in X Y => dead X)).
dead X :- heated Y, in X Y, bug X.

heated j.

The goal (s t e r i l e j), for example, follows from these clauses.

In order to base a logic programming language on the simply typed A-calculus, all
constants and variables must be assigned a type. In AProlog, types are assigned either
explicitly by user declarations or by automatically inferring them from their use in programs.
Explicit typings are made by adding to program clauses declarations such as:

type sterile jar -> o.

type in insect -> jar -> o.

where j a r and i n s e c t are primitive types. Notice that from this declaration, the types of
the variables and other constants in the example clauses above can easily be inferred.

AProlog permits a degree of polymorphism by allowing type declarations to contain
type variables (written as capital letters). For example, p i is given the polymorphic typing
(A -> o) -> o. It is also convenient to be able to build new "primitive" types from other
types. This is done using type constructors. In this paper, we will need to have only one
such type constructor, l i s t . For example, (l i s t j a r) would be the type of lists all of

66

whose entries are of type j a r . Lists are represented by the following standard construction:
[] represents an empty list of polymorphic type (l i s t A) ~ and if X is of type A and L is of
type (l i s t A) then [XIL] represents a list of type (l i s t A) whose first element is X and
whose tail is L. Complex expressions such as IX t [YI []]] are abbreviated as simply [X,Y].

3 Specifying Inference Rules

In this section we briefly outline how to use definite clauses to specify inference rules in two
kinds of proof systems. Although we only consider theorem provers for first-order logic, the
techniques described in this section are much more general (see Section 6).

Since we wish to implement a logic within a logic, we will find it convenient to refer to
the logic programming language as the metalogic and the logic being specified as the object
logic. An object logic's syntax can be represented in much the same way as the metalogic's
syntax is represented. To represent a first-order logic, we introduce two primitive types:
b o o l for the object-level boolean and i for first-order individuals. Given these types, we
introduce the following typed constants.

type and

type or

type imp

type neg
type forall

type exists

bool -> bool -> bool.

bool -> bool -> bool.

bool -> bool -> bool.

bool -> bool.

(i -> bool) -> bool.

(i -> bool) -> bool.

It is easy to identify closed A-terms of type boo l as first-order formulas and of type i as
first-order terms. For example, the A-term

(forall X\ (exists Y\ ((p X Y) imp (q (f X Y)))))

represents the first-order formula Vx3y(P(x, y) D Q(f(x, y))).

We shall outline how to specify both sequential and natural deduction inference rules
for a first-order logic. To define the sequential proof system we introduce a new infix
constant - -> of type (l i s t boo l) -> boo l -> sequent ; that is, a sequent contains a list
of formulas as its antecedent and a single formula as its succedent (much as in the LJ
sequent system in [Gen35]). We also want to retain proofs as they are built, so we shall
introduce another primitive type p r o o f _ o b j e c t which will be the type of proofs.

The basic relation between a sequent and its proofs will be represented as a binary
relation on the metalevel by the constant p r o o f of type sequen t -> p r o o f _ o b j e c t -> o.
The inference rules of sequential calculus can be considered as simple declarative facts about
the p r o o f relation. As we shall see, all these declarative facts are expressible as definite
clauses.

Consider the A-l% inference rule which introduces a conjunction on the right side of the
sequent.

F---~ A F > B
F----~ A A B A-R

67

The declarative reading of this inference rule is captured by the following definite clause.

proof (Gamma --> (A and B)) (and_r PI P2) :- proof (Gamma --> A) PI,
proof (Gamma--> B) P2.

This clause may be read as: if Pl is a proof of (Gamma - -> A) and P2 is a proof of
(Gamma - -> B), then (and_r Pl P2) is a proof of (Gamma - -> (A and B)). The rule can
also be viewed as defining the constant and_r: it is a function from two proofs (the premises
of the A-R rule) to a new proof (its conclusion). Its logic program type is p r o o f _ o b j e c t
-> proof_obj ecl ; -> proof_obj ect.

Operationally, this rule could be employed to establish a proof-goal: using the BACK-

CHAIN search command, first unify the sequent and proof in the head of this clause with
the sequent and proof in the query. If there is a match, use the AND search operation to

verify the two new proof-goals in the body of this clause. The unification here is essentially
first-order.

Next we consider the two inference rules for proving disjunctions.

r ---+ A r ~B
V-R

I' ---+ A V B F---+ A V B
V-R

These rules have a very natural rendering as the following definite clause.

proof (Gamma --> (A or B)) (or_r P) :- proof (Gamma --> A) P;
proof (Gamma--> B) P.

Dectaratively, this clause specifies the meaning of a proof of a disjunction. For (o r _ r P)
to be a p r o o f o f (Gamma - -> (t o r B)) , P must be a proof of either (Gamma - -> t) or
(Gamma - -> B). Operationally, this clause would cause an OR search operation to be used
to determine which of the proof-goals in the body should succeed.

Introductions of logical constants into the antecedent of a sequent can be achieved
similarly. The main difference here is that the antecedent is a list instead of a single
formula. Consider the following implication introduction rule.

F ----+ A B , F ----+ C
A D B , P ~ C D -L

This could be specified as the following definite clause.

proof ([(A imp B) I Gamma] --> C) (imp_l P1 P2) :- proof (Gamma --> A) PI,
proof ([BIGamma] --> C) P2.

All propositional rules for Gentzen sequential systems can be very naturally understood
as combining a first-order unification step with possibly an AND or an 01% search opera-
tion. The structural rules of contraction, thinning, and interchange could be specified by
simply manipulating lists of formulas. For example, the following clauses specify these three
structural rules.

68

proof ([CIGamma] -> A) (contract P) : - proof ([C,ClGamma] -> A) P.
proof ([CIGamma] -> A) (thin P) :- proof (Gamma -> A) P.
proof (Gammal -> A) (interchange P) :- append S1 [B,CIS2] Gammal,

append SI [C,BIS2] Gamma2,
proof (Gamma2 -> A) P.

Here, append is the standard Prolog procedure for appending lists.

We now look at specifying quantifier introduction rules. Here, the operational reading of
definite clauses will use the INSTANCE and GENERIC search operations and higher-order
unification. Consider the following 3-R inference rule:

r , ,

r - - ~ 3x B 3-R

which can be written as the following definite clause.

proof (Gamma --> (exists A)) (exists_r P) :- sigma T\ (proof (Gamma --> (A T)) P).

The existential formula of the conclusion of this rule is written (e x i s t s A) where the
logical variable A has functional type i -> bool . Since A is an abstraction over individuals,
(A T) represents the formula that is obtained by substituting T for the bound variable in
A. Declaratively, this clause reads: if there exists a term T (of type i) such that P is a
proof of (Gamma --> (A T)), then (exists_r P) is a proof of (Gamma --> (exists A)).

Operationally, we rely on hlgher-order unification to instantiate the logical variable A. The

existential instance (A T) is obtained via the interpreter 's operations of A-application and
normalization. Of course, the implementation of INSTANCE will choose a logical variable
with which to instantiate T. By making T a logical variable, we do not need to commit to
a specific term for the substitution. It will later be assigned a value through unification if
there is a value which results in a proof.

The following consideration of the V-R inference figure raises a slight challenge to our
specification of inference rules.

r [z/y]B V-R
F ~ V x B

There is the additional proviso that y is not free in F or Vx B. Although our programming
language does not contain a check for "not free in" it is still possible to specify this inference
rule. This proviso is handled by using a universal quantifier at the metalevel.

proof (Gamma --> (forall A)) (forall_r P) :- pi Y\ (proof (Gamma --> (A Y)) (P Y)).

Again A has functional type. In this case, so does P, and the type of f o r a l l _ r is
(± -> p r o o f _ o b j e c t) -> p r o o f _ o b j e c t . Declaratively, this clause reads: if we have a
function P that maps arbi trary terms Y to proofs (P Y) of the sequent (Gamma - -> (A Y)),
then (f o r a l l _ r P) is a proof of (Gamma - -> (f o r a l l A)). In order to capture the proviso
on y it is necessary to introduce a A-abstraction over type i into proof objects.

69

Operationally, the GENERIC search operation is used to insert a new parameter of type
i into the sequent. Since that parameter will not be permitted to appear in Gamma, a, or P,
the proviso will be satisfied.

The following simple definite clause specifies initial sequents, that is, a sequent whose
antecedent contains one formula which is also its succedent.

proof ([A] --> A) (initial A).

Here the constant i n i t i a l is of type bool -> p r o o f _ o b j e c t . It represents one way in
which formulas get placed inside a proof.

We next briefly consider specifying inference rules in a natural deduction setting (see
[Gen35] or [Pra65]). Here, the basic proof relation is between proofs and formulas (instead
of sequents). Hence, for these examples, we assume that p roof is of the type boo l ->
p r o o f _ o b j e c t -> o. Several of the introduction rules for this system resemble rules that
apply to succedents in the sequential system just considered. Those that correspond to the
example inference rules given in the previous section are as follows:

A B A B
A A B A-I .4 V B V-I A V------B V-I

[x/t]B [X/Y]B V-I
3x B 3-I Vx B

The V-I rule also has the proviso that y cannot appear in Vx B or in any assumptions
on which that formula depends. These inference rules can be specified naturally as the
following definite clauses.

proof (A and B) (and_i PI P2) :- proof A PI, proof B P2.
proof (A or B) (or_i P) :- proof A P; proof B P.
proof (exists A) (exists_i P) :- sigma T\ (proof (A T) P).
proof (forall A) (forall_i P) :- pi Y\ (proof (A Y) (P Y)).

In natural deduction, unlike sequential systems, we have the additional task of specifying
the operation of discharging assumptions. Consider the following implication introduction
rule.

(A)
B

A D B D - I

This rule can very naturally be specified using the definite clause:

proof (A imp B) (imp_i P) :- pi PA\ ((proof A PA) => (proof B (P PA))).

70

This clause represents the fact that if P is a "proof function" which maps an arbitrary proof
of A, say PA, to a proof of B, namely (P PA), then (imp-i P) is a proof of (A imp B). Here,
the proof of an implication is represented by a function from proofs to proofs. The constant
imp-i has the type (proof_object -> proof_object) -> proof_object. Notice that
while sequential proofs only contain abstractions of type i, natural deduction proofs contain
abstractions of both types i and proof_obj ect.

Operationally, the AUGMENT search operation plays a role in representing the dis-
charge of assumptions. In this case, to solve the subgoal (pi PA\ ((proof A PA) =>
(proof B (P PA)))), the GENERIC operation is used to choose a new object, say pa,
to play the role of a proof of the formula A. The AUGMENT goal is used to add this as-
sumption about A and pa, that is (proof A pa), to the current set of program clauses.
This clause is then available to use in the search for a proof of B. The proof of B will most
likely contain instances of the proof of A (the term pa). The function P is then the result of
abstracting out of this proof of B this generic proof object.

There are several aspects of both sequential and natural deduction proof systems which
the above discussion does not cover. We elaborate a bit further on two such aspects: the
representation of proof objects and controlling search in the resulting specification.

The proof objects built in the previous examples serve only to show how proofs might
be built and to illustrate the differences between the two styles of proof systems. Proof
terms could contain more information. For example, it might be desirable to have two
or-introduction rules in both proof systems. The two proof building constants, say or_rl
and or_r2 for the sequential system, would indicate whether the left or right disjunct had
been proved. Similarly, in the introduction of existential quantifiers, it might be sensible to
store inside the proof the actual substitution term used. In that case, the exists_r would
be given the type i -> proof_object -> proof_object.

Depending on the later use made of proofs, it might be desirable for proof objects to
contain less information than we have specified. For example, it might be desirable for a
single sequential proof to be a proof of many different sequents, that is, the proof terms
should be polymorphic. In that case, it might be desirable for the initial proof term
to not store a formula within the proof. Instead, initial could have the simpler type
proof_obj ect. Of course, proof objects do not need to be built at all. The predicate proof
could be replaced with similar predicates, say provable or true, of type sequent -> o or
bool -> o.

Another aspect of these theorem provers not yet considered is control. Assume that we
have a complete set of definite clauses which specify the inference rules needed to implement
some sequent proof system. These definite clauses could be used, for example, to do both
proof checking and theorem proving. To do proof checking, assume that we are given a se-
quent (Gamma --> A) and a proof term P. If the goal (proo~ (Gamma --> A) P) succeeds,
then P is a valid proof of (Gamma --> A). In this example, the proof in the initial proof-goal
is dosed, and this causes all subsequent proofs in proof-goals to also be closed. Since the
top-level constant of a proof term completely determines the unique definite clause which
can be used in backchaining, there is little problem of controlling proof checking. Even the
simple minded depth-first discipline of AProtog will work.

Such definite clauses could also be used to do theorem proving. Here, we start with a

71

proof object which is just a logical variable which we wish to have instantiated. Since the
proof object is a variable, multiple definite clauses could be applied to any one sequent.
In particular, the structural rules could always be applied: as written above, they are
much too non-deterministic to be useful in this setting. The same control problem is
true for elimination rules in the natural deduction setting (see Section 5). It is possible
to not implement thinning directly if the definition of initial sequents is extended to be
sequents whose succedent is contained in its antecedent. Interchange does not need to
be implemented directly if all rules introducing logical constants into the antecedent can
operate on any formula in the antecedent instead of just the first formula. Contraction, of
course, cannot be so simply removed. Implementing contraction is the great challenge to
automating theorem provers. It is possible to build systems of definite clauses which can
provide complete theorem provers under depth-first processing of backtracking. Generally,
the proof system must be modified somewhat and careful controlling of contraction must
be observed. For example, we have implemented a variant of Gentzen's LK sequent system
[Gen35] so that it is a complete theorem prover for first-order classical logic [Fe187].

In the next two sections, we describe a different approach to specifying a set of inference
rules so that it is easier to be explicit about controlling search.

4 A L o g i c P r o g r a m m i n g I m p l e m e n t a t i o n o f T a c t i c a l s

Tactic style theorem provers were first built in the early LCF systems and have been
adopted as a central mechanism in such notable theorem proving systems as Edinburgh
LCF [GMW79], Nuprl [Con86], and Isabelle [Pau87]. Primitive tactics generally implement
inference rules while compound tactics are built from these using a compact but powerful
set of tacticals. Tacticats provide the basic control over search. Tactics and tacticals have
proved valuable for several reasons. They promote modular design and provide flexibility
in controlling the search for proofs. They also allow for blending automatic and interac-
tive theorem proving techniques in one environment. This environment can also be grown
incrementally.

W'e shall argue in this section and the next that logic programming provides a very
suitable environment for implementing both tactics and tacticals. Generally tactics and
tacticals have been implemented in the functional programming language ML. Here we shall
show how they can be implemented in AProlog. This implementation is very natural and
extends the usual meaning of tacticals by permitting them to have access to logical variables
and all six search operations. A comparison between the ML and AProlog implementations
is contained in Section 6.

In this section, we assume that tactics are primitive, and show how t o implement the
higher-level tacticals. In the next section, we show how to implement individual tactics for
the proof systems considered in the previous section. Our presentation in these two sections
is cursory: for more details, the reader is referred to [Fe187].

We introduce the primitive type goalexp to denote goal expressions. In the next section,
we will define primitive goals which encode such propositions as "this sequent has this proof"
or "this formula is provable." For this section, we wish to think more abstractly of goals:
they simply denote judgments which could succeed or fail. We define the following goal

72

constructors used to build compound forms of such judgments.

type truegoal
type andgoal
type orgoal
type allgoal
type existsgoal
type impgoal

goalexp.
goalexp -> goalexp -> goalexp.
goalexp -> goalexp -> goalexp.
(A -> goalexp) -> goalexp.
(A -> goalexp) -> goalexp.
A -> goalexp -> goalexp.

Here, t r u e g o a l represents the trivially satisfied goM, andgoal corresponds to the AND
search operation, o rgoa l to OR, a l l g o a l to GENERIC, e x i s t s g o a l to INSTANCE, and
impgoal to AUGMENT. Notice that a l l g o a l , e x i s t s g o a l , and impgoal are polymorphic.
We will use a l l g o a l and e x i s t s g o a l in the next section with A instantiated to types i and
proof_obj ect .

The meaning of a tactic will be a relation between two goals: that is, its type is goalexp
-> goalexp -> o. Abstractly, if a tactic denotes the relation R, then R(gl,g2) means
that to satisfy goal gl, it is sufficient to satisfy goal g2. Primitive tactics are implemented
directly in the underlying AProlog language in a fashion similar to that used in the preceding
section; they are also assumed to work only for primitive goals. Compound tactics and the
application of tactics to compound goals are implemented completely by the program clauses
below.

The first program we describe, called maptac, applies tactics to compound goals. It takes
a tactic as an argument and applies it to the input goal in a manner consistent with the
meaning of the goal structure. For example, on an andgoal structure, maptac wilt apply the
tactic to each subgoal separately, forming a new andgoal structure to combine the results.
The type of maptac is (goa lexp -> goalexp -> o) -> goalexp -> goalexp -> o, that
is, the metalevel predicate maptac takes as its first argument a metalevel predicate which
represents a tactic.

maptac Tac t ruegoal ~ruegoal.

maptac Tac (andgoal InGoall InGoa12) (andgoal OutGoall OutGoal2) :-
maptac Tac InGoall OutGoall, maptac Tac InGoal20utGoal2.

maptac Tac (orgoal InGoall InGoal2) OutGoal :-
maptac Tac InGoall OutGoal; maptac Tac InGoal20utGoal.

maptac Tac (allgoal InGoal) (allgoal OutGoal) :-
pi T\ (maptac Tac (InGoal T) (OutGoal T)).

maptac Tac (existsgoal InGoal) OutGoal :-
sigma T\ (maptac Tac (InGoal T) OutGoal).

maptac Tac (impgoal A InGoal) (impgoal A OutGoal) :-
(memo A) => (maptac Tac InGoal OutGoal).

maptac Tac InGoal OutGoal :- Tac InGoal OutGoal.

The last clause above is used once the goal is reduced to a primitive form. Note that
an auxiliary predicate memo (of polymorphic type A -> o) was introduced in the clause

73

implementing impgoal. This allows the introduction of new clauses into the program. The
type and content of these clauses will be specific to a particular theorem prover. In the next
section we will illustrate how it is used to add assumptions that are discharged during the
construction of natural deduction proofs.

The following definite clauses implement several of the familiar tacticals found in many
tactic style theorem provers.

then Tacl Tac2 InGoal OutGoal :- Tacl InGoal MidGoal, maptac Tac2 MidGoal OutGoal.

orelse Tacl Tac2 InGoal OutGoal :- Tacl InGoal OutGoal; Tac2 InGoal OutGoal.

±dtac Goal Goal.

repeat Tac InGoal OutGoal :- orelse (then Tac (repeat Tac)) idtac InGoal OutGoal.

try Tac InGoal OutGoal :- orelse Tac ±dtac InGoal OutGoal.

complete Tac InGoal truegoal :- Tac InGoal OutGoal, goalreduce OutGoal truegoal.

The then tactical performs the composition of tactics. Tacl is applied to the input goal,
and then Tac2 is applied to the resulting goal. maptac is used in the second case since the
application of Tacl may result in an output goal (MidGoal) with compound structure. This
tactical plays a fundamental role in combining the results of step-by-step proof construction.
The substitutions resulting from applying these separate tactics get combined correctly since
MidGoal provides the necessary sharing of logical variables between these two calls to tactics.
The o r e l s e tactical simply uses the OR search operation so that Tac l is at tempted, and if
it fails (in the sense that the logic programming interpreter cannot satisfy the corresponding
metalevel goal), then Tac2 is tried. The third tactical, i d t a c , returns the input goal
unchanged. This tactical is useful in constructing compound tactic expressions such as the
one found in the r e p e a t tactical, r e p e a t is recursively defined using the three tacticals,
then, o r e l s e , and i d t ac . It repeatedly applies a tactic until it is no longer applicable. The
t r y tactical prevents failure of the given tactic by using i d t a c when Tac fails. It might
be used, for example, in the second argument of an application of the t h e n tactical. It
prevents failure when the first argument tactic succeeds and the second does not. Finally
the complete tactical tries to completely solve the given goal. It will fail if there is a non-
trivial goal remaining after Tac is applied. It requires an auxiliary procedure g o a l r e d u c e of
type goa lexp -> goalexp -> o which simplifies compound goal expressions by removing
occurrences of t r u e g o a l from them. .The code for goa l r educe is as follows:

goalreduce (andgoal truegoal Goal) OutGoal :- goalreduce Goal OutGoal.

goalreduce (andgoal Goal truegoal) OutGoal :- goalreduce Goal OutGoal.
goalreduce (allgoal T\ truegoal) truegoal.
goalreduce (impgoal A truegoal) truegoal.
goalreduce Goal Goal.

Although the complete tactical is the only one that requires the use of the g o a l r e d u c e
procedure, it is also possible and probably desirable to modify the other tacticals so that
they use it to similarly reduce their output goal structures whenever possible.

74

Notice that the notion of success and failure of the interpreter in Section 2 carries over
to the success and failure of a tactic to solve a goal. The failure of the interpreter to succeed
on a goal of the form (Tac InGoal 0utGoal) indicates the failure of Tac to make progress
toward solving InGoal.

The definite clauses listed above provide a complete implementation of tacticals. We
now illustrate how tactics for a theorem prover can be implemented.

5 I n f e r e n c e R u l e s as Tac t i c s

In this section we illustrate how to specify the inference rules of Gentzen's NK natural
deduction system [Gen35]. Each inference rule will be specified as a primitive tactic. The
basic goal needed to be established in this system is that a certain formula has a certain
proof. This is encoded by the constant p r o o f g o a l which is of type h e e l -> p r o o f _ o b j e c t
-> goa lexp . Goals of the form (p r o o f g o a l A P) will be called atomic goals of the nat-
ura/ deduction theorem prover, in contrast to compound goals built from using the goal
constructors from the last section.

The implementation of inference rules is done in a fashion similar to the techniques in
Section 3, except the clauses are made into named facts. For example, A-I is specified as:

and_i_tac (proofgoal (A and B) (and_i P1P2))
(andgoal (proofgoal A PI) (proofgoal B P2)).

This tactic can be applied whenever the formula in the input goal is a conjunction. This
clause has essentially the same meaning as the definite clause for the A-I rule of Section 3,
except that this clause is not automatically BACKCHAINed on by the interpreter. Put
another way, the inference rule is represented here declaratively instead of procedurally. The
procedural representation is at the mercy of the depth-first logic programming interpreter.
In this other form, however, tacticals can specify their own forms of control.

In order to handle the hypotheses in this proof system, we introduce the new primitive
type assump and the additional meta/evel predicate hyp of type boo l -> p r o o f _ o b j e c t
-> assump. This new symbol will be used in conjunction with impgoal and AUGMENT
to represent assumptions. For example, D-I can be implemented using the clause:

imp_i_tac (proofgoal (A imp B) (imp_i P))
(allgoal PA\ (impgoal (hyp A PA) (proofgoal B (P PA)))).

The AUGMENT goal will then add a clause of the form (memo (hyp A p a)) .to the program
(where pa is a new constant generated by the GENERIC gem to replace PA).

Elimination rules are used to do forward reasoning from assumptions stored as memo
facts. For example, the following clause specifies the A-E inference rule.

and_e_tac (proofgoal C PC)
(impgoal (hyp A (and_el P))

(impgoal (hyp B (and_e2 P)) (proofgoal C PC))) :-
memo (hyp (A and B) P).

75

This clause works by moving the goal (proofgoal C PC) into the expanded context con-
taining the hypotheses (hyp A (and_el P)) and (hyp B (and_e2 P)) if the hypothesis
(hyp (A and B) P) already exists.

The remaining inference rules for NK are given below. We use the constant perp of
type bool to represent the formula _t.

or_i_tac (proofgoal (A or B) (or_i P))
(orgoal (proofgoal A P) (proofgoal B P)).

forall_i_tac (proofgoal (forall A) (forall_i P))
(allgoal T\ (proofgoal (A T) (P T))).

exists_i_tac (proofgoal (exists A) (exists_i P))
(existsgoal T\ (proofgoal (A T) P)).

neg_i_tac (proofgoal (neg A) (neg_i P))
(allgoal PA\ (impgoal (hyp A PA) (proofgoal perp (P PA)))).

or_e_tac (proofgoal C (or_e P PI P2))
(andgoal (allgoal PA\ (impgoal (hyp A PA) (proofgoal C (P1PA))))

(allgoal PB\ (impgoal (hyp B PB) (proofgoal C (P2 PB)))))
memo (hyp (A or B) P).

imp_e_tac (proofgoal B (imp_e P PA)) (proofgoal A PA) :-
memo (hyp (A imp B) P).

forall_e_tac (proofgoal B PB)
(existsgoal T\ (impgoal (hyp (A T) (forall e P))

memo (hyp (forall A) P).
(proofgoal B PB))) :-

exists_e_tac (proofgoal B (exists_e P PB))
(allgoal T\ (allgoal PA\ (impgoal (hyp (A T) PA)

(proofgoal B (PB T PA))))) :-
memo (hyp (exists A) P).

neg_e_tac (proofgoal perp (neg_e P PA)) (proofgoal A PA) :-
memo (hyp (neg A) P).

perp_tac (proofgoal A (contra PA))
(allgoal P\ (impgoal (hyp (neg A) P) (proofgoal perp (PAP)))).

close_tac (proo~goal A P) truegoal :- memo (hyp A P).

Given these primitive tactics, we can then write compound tactics using the tacticals of
the last section. For example, consider the following query (meta/evel goal):

repeat (orelse or_i_tac and_i_tac) (proofgoal ((r or (p imp q)) and s) P) OutGoal.

This goal would succeed by instantiating P to the open proof term (and_i (or_i PI) P2)
and instantiating OutGoal to the open goal expression:

(andgoal (orgoal (proofgoal r PI) (proofgoal (p imp q) PI)) (proofgoal s P2)).

y6

This latter goal could then get processed by other tactics. Such processing would then
instantiate the logical variables P1 and P2 which would then further fill in the original proof
variable P in the query above.

Providing a means for accommodating user interaction is one of the strengths of tactic
theorem provers. One way to provide an interface to the user in this paradigm is by writing
tactics that request input. The following is a very simple tactic which asks the user for
direction.

query (proofgoal A P) OutGoal :- write A, write "Enter tactic:", read Tac,
Tac (proofgoal A P) OutGoal.

Here we have a tactic that, for any atomic input goal, will present the formula to be
proved to the user, query the user for a tactic to apply to the input goal, then apply the
input tactic. As in Prolog, (w r i t e t) prints A to the screen and will always succeed while
(r ead t) prompts the user for input and will succeed if t unifies with the input. In this
case (road Tac) will accept any term of type goalexp -> goaloxp -> o.

Using this tactic, the following tactic, named i n t o r a c t i v e , represents a proof editor
for natural deduction for which the user must supply all steps of the proof.

interactive InGoal OutGoal :- repeat query InGoal OutGoal.

These additions to the tactic prover will still not be sufficient, in general, for interactive
theorem proving in a natural deduction setting. For example, if there is more than one
conjunction among the discharged assumptions, the A-I rule will be applicable in more than
one way. The user needs the capability to specify which formula to apply the tactic to. One
way to solve this problem is to extend the program with tactics that request input from the
user. Such tactics could be written as:

and_e_query (proofgoal C PC)
(impgoal (hyp A (and_el P))

(impgoal (hyp B (and_e2 P)) (proofgoal C PC))) :-
memo (hyp (A and B) P), write "Eliminate this conjunction?",
write (A and B), read "yes".

The tactic would enumerate conjunctive hypotheses until the user types in the word "yes."

6 R e l a t e d W o r k

The development of the theory of higher-order hereditary Harrop formulas was motivated
by a desire to develop a clean semantics for a programming language which embraced many
more aspects of logic than first-order Horn clauses embrace. Other applications of this
language that have been explored using the AProlog implementation lie in the areas of
program transformations [MN87b] and computational linguistics [MN86b]. In this paper
we have emphasized particular aspects that are useful for the specific task of implementing
theorem provers.

77

The UT prover is well-known for its implementation of a natural deduction style proof
system [Ble77, Bte83]. Since some aspects of its implementation have been designed to
handle quantifiers and substitutions in a principled fashion, it is interesting to compare it
to the systems described in this paper. In the UT prover, the IMPLY procedure is based
on a set of rules for a "Gentzen type" system for first-order logic. In this procedure, formu-
las keep their basic propositional structure although their quantifiers are removed. In the
AND-SPLIT rule of this prover (which corresponds to the A-R rule in a sequent system), the
first conjunctive subgoal returns a substitution which must then be applied to the second
subgoal before it is attempted. In logic programming, such composition of substitutions
obtained from separate subgoals is handled automatically via shared logical variables. An
issue that arises as a result of the AND-SPLIT rule is the occurrence of "conflicting bind-
ings" due to the need to instantiate a quantified formula more than once. The UT prover
uses generalized substitutions [TB79] to handle such multiple instances. A substitution is
the final result returned when a complete proof is found. In contrast, in our logic program-
ming language, quantification in formulas is represented by ,k-abstraction. As a result, we
do not need to remove quantifiers before attempting a proof. Instead we implement the
inference rules for quantified formulas as illustrated in Section 3. For example, in a sequent
system for classical logic, the inference rules for a universally quantified hypothesis or an
existentially quantified conclusion are two rules which must allow multiple instantiations.
This is easily accomplished by introducing a new logical variable for each instantiation.
As the result of a successful proof we obtain a proof term rather than a substitution. As
mentioned in Section 3, the construction of such proof terms may be defined to include the
substitution information if desired. In fact such proof terms could be simplified to only
return substitution information. Such simplified proof terms would be very similar to the
generalized substitutions of the UT prover.

Other theorem provers that are based on tactics and tacticals include LCF [GMW79],
Nuprl [Con86], and Isabelle [Pau86]. The programming language ML is the metalanguage
used in all of these systems. ML is a functional language with several features that are
useful for the design of theorem provers. It contains a secure typing scheme and is higher-
order, allowing complex programs to be composed easily. There are several differences in
the implementations of tactics in ML and in AProlog. First, tactics in ML are functions
that take a goal as input and return a pair consisting of a list of subgoals and a validation.
In contrast, tactics in AProlog are relational, which is very natural when the relation being
modeled is "is a proof of." The fact that input and output distinctions can be blurred makes
it possible, as described in Section 3, for tactics to be used in both a theorem proving and
proof checking context. The functional aspects of ML do not permit this dual use of tactics.
The ML notion of validations is replaced in our system by (potentially much larger and more
complex) proof objects.

Second, it is worth noting the differences between the ML and ,kProlog implementations
of the then tactical. The ,kProlog implementation of t h e n reveals its very simple nature:
t hen is very similar to the natural join of two relations. In ML, the t h e n tactical applies the
first tactic to the input goal and then maps the application of the second tactic over the list
of intermediate subgoals. The full list of subgoals must be built as well as the compound
validation function from the results. These tasks can be quite complicated, requiring some
auxiliary list processing functions. In AProlog, the analogue of a list of subgoals is a nested
andgoal structure. These are processed by the andgoal clause of maptac. The behavior of
t hen (in conjunction with maptac) in)~Prolog is also a bit richer in two ways. First of all,

78

maptac is richer than the usual notion of a mapping function in that , in addition to nested
andgoal structures, it handles all of the other goal structures corresponding to the AProlog
search operations. Secondly, in the ML version of then, if the second tactic fails after a
successful call to the first tactic, the full tactic still fails. In contrast~ in AProlog, if the first
tactic succeeds and the second fails, the logic programming interpreter will backtrack and
t ry to find a new way to successfully apply the first tactic, exhausting all possibilities before
completely failing. Alternatively, we could use the cut (!) as in Prolog which prevents
backtracking beyond a specified point and thus restrict the meaning of t h e n to match its
ML counterpart.

A third difference with ML is that for every constructor used to build a logic, explicit
discriminators and destructors must also be introduced. In logic programming, however,
the purpose served by these explicit functions is achieved within unification. The differ-
ence here is particularly striking if we look at the different representations of quantified
formulas. A universal formula is constructed in ML by calling a mk_fora l l function which
takes a variable and a formula and returns a universally quantified formula. ± s _ f o r a l l
and d e s t _ f o r a l l are the corresponding discriminator and destructor to test for universal
formulas and to obtain its components, respectively. Manipulating quantified formulas re-
quires that the binding be separated from its body. In logic programming, we identify a
term as a universal quantification if it can be unified with the term (f o r a l l A). However,
since terms in AProlog represent ~-equivalence classes of A-terms, the programmer does
not have access to bound variable names. Although such a restriction may appear to limit
access to the structure of A-terms, sophisticated analysis of A-terms is still possible to per-
form using higher-order unification. In addition, there are certain advantages to such a
restriction. For example, in the case of applying substitutions, all the renaming of bound
variables is handled by the metalanguage, freeing the programmer fl'om such concerns.

The Isabelle theorem prover [Pau87] uses a fragment of higher-order logic with implica-
tion and universal quantification which is used to specify inference rules. That fragment is
essentially a subset of the higher-order hereditary Harrop formulas. Hence, it seems very
likely that Isabelle could be rather directly implemented inside AProlog. Although such an
implementation might achieve the same functionality as is currently available in Isabelle,
it is not likely to be nearly as efficient. This is due partly to the fact that a AProlog
implementation implements a general purpose programming language.

Although our example theorem provers have been for first-order logic, we have also
considered the logic of higher-order hereditary Harrop formulas as a specification language
for a wide variety of logics. In this respect, we share a common goal with the Edinburgh
Logical Framework (LF) project [HHP87]. LF was developed for the purpose of capturing
the uniformities of a large class of logics so that it can be used as the basis for implementing
proof systems. The two approaches are actually similar in ways that go beyond simply
sharing common goals. First, the LF notions of hypothetical and schematic judgments
can be implemented with the GENERIC and AUGMENT search operations in the logic
programming setting. The LF hypothetical judgment takes the form J1 ~- J: and represents
the assertion that J : follows from J1- Objects of this type are functions mapping proofs of
J1 to proofs of J2. Such a judgment can be implemented by having the GENERIC search
operation introduce a new proof object, and then using AUGMENT to assume the fact that
this new object is a proof of J1. A proof of J2 would then be the intended function applied
to this new object. A schematic judgment in LF is of the form Ax:A J(x). It is a statement

79

about arbitrary objects x of type A and is proved (inhabited) by a function mapping such
objects to proofs of J(x). This is implemented by using the GENERIC and AUGMENT
search operations to first introduce an arbitrary constaz~t and then assume it to be of LF
type A.

Second, and more specifically, we have developed an algorithm that systematically trans-
lates all of the example LF signatures in [HHP87] and [AHM87] to logic programs [Fe187].
In the logic programming setting, in addition to being natural specifications, the resulting
definite clauses also represent non-deterministic theorem provers. LF signatures could also
be translated to sets of tactics to be used in a tactic theorem prover. The formal properties
of this translation have yet to be established.

Acknowledgements The authors would like to thank Robert Constable, Elsa Gunter,
Robert Harper, and Frank Pfenning for valuable comments and discussions. We are also
grateful to the reviewers of an earlier draft of this paper for their comments and corrections.
The first author is supported by US Army Research Office grant ARO-DAA29-84-9-0027,
and the second author by NSF grant CCR-87-05596 and DARPA N000-14-85-K-0018.

R e f e r e n c e s

[AHM87] Arnon Avron, Furio A. Honsell, and Inn A. Mason. Using Typed Lambda Calculus
to Implement Formal Systems on a Machine. Technical Report ECS-LFCS-87-
31, Laboratory for the Foundations of Computer Science, University of Edin-
burgh, June 1987.

[Ble77] W. W. Bledsoe. Non-resolution theorem proving. Artificial intelligence, 9:1-35,
1977.

[Ble83] W. W. Bledsoe. The UT Prover. Technical Report ATP-17B, University of
Texas at Austin, April 1983.

IConS6] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, 1986.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[Fe187] Amy Felty. Implementing theorem provers in logic programming. November
1987. Dissertation Proposal, University of Pennsylvania.

[Gen35] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68-131, North-Holland
Publishing Co., Amsterdam, 1969.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edin-
burgh LCF: A Mechanised Logic of Computation. Volume 78 of Lecture Notes in
Computer Science, Springer-Verlag, 1979.

80

[HHP87]

[Hue75]

[MNS6a]

[MN86bl

[MNS7a]

[MN87b]

[MNS87]

[Nad86]

[Pau86]

[eau87]

[Pra65]

[s886]

[TB79]

Robert Harper, ~ r i o Honsell, and Gordon Plotkin. A framework for defining
logics. In Symposium on Logic in Computer Science, pages 194-204, Ithaca, NY,
June 1987.

G. P. Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

Dale Miller and GopMan NMathur. Higher-order logic programming. In Pro-
ceedings of the Third International Logic Programming Conference, pages 448-
462, London, June 1986.

Dale Miller and Gopalaa Nadathur. Some uses of higher-order logic in computa-
tional linguistics. In Proceedings of the 24th Annual Meeting of the Association
for Computational Linguistics, pages 247-255, 1986.

DMe Miller and Gopalan Nadathur.)~Prolog Version 2.6. August 1987. Distri-
bution in C-Prolog code.

Dale Miller and Gopalan Nadathur. A logic programming approach to manipu-
lating formulas and programs. In IEEE Symposium on Logic Programming, San
Francisco, September 1987.

Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary harrop formu-
las and uniform proof systems. In Symposium on Logic in Computer Science,
pages 98-105, Ithaca, NY, June 1987.

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.
PhD thesis, University of Pennsylvania, December 1986.

Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of
Logic Programming, 3:237-258, 1986.

Lawrence C. Paulson. The Representation of Logics in Higher-Order Logic.
Draft, University of Cambridge, July 1987.

Dag Prawitz. Natural Deduction. Almqvist ~ Wiksell, Uppsala, 1965.

L. Sterling and E. Shapiro. The Art of Protog: Advanced Programming Tech-
niques. MIT Press, Cambridge MA, 1986.

Mabry Tyson and W. W. Bledsoe. Conflicting bindings and generalized substi-
tutions. In 4th International Conference on Automated Deduction, pages 14-18,
Springer-Verlag, February 1979.

