
Hybrid Interactive Theorem Provingusing Nuprl and HOL?Amy P. Felty and Douglas J. HoweBell Labs, Lucent Technologies700 Mountain Ave., Murray Hill, NJ 07974, USAffelty,howeg@research.bell-labs.comAbstract. In this paper we give the �rst example of a signi�cant pieceof formal mathematics conducted in a hybrid of two di�erent interactivesystems. We constructively prove a theorem in Nuprl, from which a pro-gram can be extracted, but we use classical mathematics imported fromHOL, and a connection to some of HOL's de�nitional packages, for partsof the proof that do not contribute to the program.1 IntroductionInteractive theorem provers typically require large libraries of formalized mathe-matics in order to be e�ective veri�cation tools. Building these libraries is a timeconsuming and tedious activity, and is in large part duplicated e�ort, since, forexample, many veri�cation problems require similar theories of basic data types(integers, lists, bit-vectors, : : :) no matter what system they are being formalizedin. An obvious approach to avoiding this duplication of e�ort is to share mathe-matics between di�erent systems. However, it is not obvious that this is practical.Existing systems such as Nuprl [3], HOL [7], PVS [13], Isabelle [14], Coq [4] andthe Boyer/Moore system [1], have di�erent logics and di�erent ways of automat-ing reasoning. Mathematics is represented di�erently, and the exact syntacticform of the mathematics, as well as the particular choices of de�nitions andlemmas, is often in
uenced by the kind of automated reasoning being used.In this paper we show that this approach is practical by developing a signi�-cant piece of formalmathematics in a hybrid of two di�erent interactive systems.Using a connection between HOL90 [8] and Nuprl, we have constructed proofswhich draw on mathematics developed in both systems. The proofs were donein Nuprl, using imported libraries of HOL mathematics, and using a connec-tion between Nuprl and some of HOL's packages for adding constants, axiomsand theorems that implement de�nitions of inductively de�ned predicates andML-style recursive datatypes.With this example we aim to show that despite the numerous signi�cantdi�erences between the logics of Nuprl and HOL, it is possible to e�ectively? In Proceedings of the 14th International Conference on Automated Deduction, July1997.

combine the two systems. One of the most serious di�erences is that Nuprl'slogic is constructive, while HOL's is a classical set theory. In our example, weconstructively prove a theorem in Nuprl, fromwhich a program can be extracted,but we use classical mathematics from HOL for parts of the proof that do notcontribute to the program.The basic connection between HOL and Nuprl is at the level of theories.An HOL theory consists of type constants, individual constants, axioms andtheorems. An HOL theory is imported into Nuprl via interpretation, wherebyparticular Nuprl objects are associated with the theory constants, the axiomsare proven true of these objects, and then the theorems from the theory aredeclared to be Nuprl theorems.In [10] we gave a new semantics for Nuprl that justi�es an extension in whichHOL's classical type theory (and other classical set/type theories) can be directlyembedded. The extended logic is classical, but proofs that use only constructivereasoning still yield executable programs. In [9] we described the basic mecha-nism for importing an HOL theory into Nuprl and imported a few theories \byhand" as illustration.The current work extends [9] as follows.{ We have added automated support for interpreting theories and updatingNuprl's automated reasoners to use the imported theories.{ The core of HOL90's standard library (i.e. the theory \HOL" and all ofits ancestors) was imported, as well as an extensive theory of lists (\List").This involved giving constructive implementations of the HOL theories thatsupport de�ning recursive data types.{ We added a facility for using, in Nuprl, HOL's packages for de�ning recursivetypes and for making inductive de�nitions. In particular, a theory fragmentgenerated in HOL by one of the packages can be imported and interpretedwith very little intervention required from the user.{ In [9], the theorems in an imported theory were not directly usable in Nuprlproofs. However, we argued in [9] that it should almost always be possibleto rewrite the theorems into a more usable form. We have implemented aprocedure that automatically does this rewriting.{ Most importantly, we show that all of this is practical by applying it to asubstantial example.The original motivation for this line of work was to make Nuprl a more prac-tical tool for software veri�cation. Nuprl has a number of advantageous features,including a highly expressive type theory, the ability to extract programs fromproofs, and a sophisticated user interface, but one thing that it lacks is the kindof large libraries of formal mathematics that are required for industrial-strengthveri�cation. The HOL user community has been steadily accumulating such li-braries for at least 10 years, and it is now possible for Nuprl to draw on them.We are currently using Nuprl/HOL to formalize a correctness proof of a complexcache-coherency protocol [5].Our example is a constructive proof of normalizability for a simply typedcombinatory calculus. The proof yields a program that computes normal forms.2

In addition, we prove that normal forms are unique. The formal mathematics inthis example can be classi�ed into three categories.Imported from HOL. In addition to the standard library, we have imported anHOL theory of combinatory logic and a theory of minimal intuitionistic logic [2].These theories de�ne recursive types of the terms and types of combinatorylogic, and give a number of inductively de�ned predicates, such as the reductionrelation for terms. The imported theorems include support for reasoning aboutthese types and predicates, and also the Church-Rosser theorem for reduction. Inaddition, we used HOL to de�ne two new inductive predicates for head reduction,and imported these.Classical mathematics in Nuprl. The bulk of the normalization argument wasconducted using classical principles, building on the imported HOL mathemat-ics. We �rst prove classically that every typed term has a normal form. The proofis based on a casting of Tait's computability argument in terms of semantics of atype system. This idea has been used to give an elegant proof of strong normal-ization of system F [11]. Nuprl can extract a \program" from our classical proof,but it will contain a term that represents an uncomputable \oracle" associatedwith the law of the excluded middle, and so the extracted object will not beexecutable. The uniqueness of normal forms is also proved classically.Constructive mathematics in Nuprl. In interpreting the HOL theories, wegave constructive implementations of all the types they contained. In particular,HOL recursive types were given computationally reasonable implementations,and all the operations over them were given computable implementations. Do-ing this for all the imported theories drew heavily on the constructive theories inNuprl's own standard library. Finally, we proved a theorem that constructivizesthe normalization result, and from this proof we can extract an executable pro-gram.As far as we know, there have been no other examples of theorem-provingwhere mathematics from two di�erent interactive theorem provers has been com-bined. There have been numerous links between interactive theorem provers andother systems, but these have all been procedural: when a subgoal has the rightform, it can be shipped o� to a decision procedure or another system. Typicalof links of this kind are the various connections between interactive provers andmodel-checking programs, for example [13] to cite one of many. Also, see [15] fora link between HOL and a resolution theorem prover.2 The Connection between Nuprl and HOLIn this section we give an overview of the connection between HOL and Nuprl.Before proceeding to the overview, we give a very brief description of Nuprl.Formal mathematics in Nuprl is organized in a single library, which is brokeninto �les simulatinga theory structure. Library objects can be de�nitions, displayforms, theorems, comments or objects containing ML code. De�nitions de�nenew operators, possibly with binding structure, in terms of existing Nuprl termsand previously de�ned operators. Display forms provide notations for de�ned3

and primitive operators. These notations need not be parsable since Nuprl usesstructure editors. Theorems have tree structured proofs, possibly incomplete.Each node has a sequent, and represents an inference step. The step is justi�edeither by a primitive rule, or by a tactic. Nuprl's notion of tactic is derived fromthat of LCF [6], as is HOL's.2.1 Importing a TheoryThe basis of the connection between Nuprl and HOL is theory importation.Mathematics in HOL is organized into a hierarchy of theories. We show how anHOL theory can be imported into Nuprl by giving a simple example.The following HOL theory introduces a new type one with a single elementalso named one. HOL uses the symbols ? and ! for existential and universalquanti�cation; ?! is \exists-unique", and n is �-abstraction. @ is the \select", or\choose", operator which chooses an arbitrary value satisfying a predicate (herethe universally true predicate).Parents: boolType constants: one 0Term constants: one: oneAxioms:Definitions: one_TY_DEF |- ?rep. TYPE_DEFINITION (\b. b) repone_DEF |- one = (@x. T)Theorems: one_axiom |- !f g. f = gone |- !v. v = oneone_Axiom |- !e. ?!fn. fn one = eThis presentation omits the types of variables. For example, the type of rep inone TY DEF is one -> bool. This theory can be thought of semantically: ignor-ing the parent theory bool, if we associate a set with the type constant, anda member of the set to the term constant, and if all the formulas in the \ax-ioms" and \de�nitions" sections of the theory hold for these objects, then allthe theorems are true. In general, the semantics of a theory is parameterized byinterpretations of all ancestor theories.The old semantics of Nuprl was a term model based on an extended untyped�-calculus, and the programs of this language are the basic objects one reasonsabout in Nuprl. Nevertheless, we have been able to construct a set-theoreticsemantics [10] in which the meaning of each type is an ordinary set, and anyprogram which is a member of a type can be given a meaning as a member ofthe set. In particular, the meaning of a function type A! B in Nuprl is the setof all set-theoretic functions from A to B. The collection of all sets that can bemeanings for types can also be used to give the usual semantics for HOL.As a result, we can directly apply the semantics of HOL theories to Nuprl. So,for the example theory above, if we associate any Nuprl type with the type con-stant one, and associate any member of that Nuprl type with the term constantone, and if the axioms/de�nitions are true for these objects, then the theoremsare also true. Thus to import a theory, one interprets the type constants withNuprl types and the term constants with members of the appropriate types,4

and then proves the formulas in the axioms/de�nitions sections. When this isdone, the theorems can then all be accepted immediately as Nuprl theorems.Type-checking is undecidable in Nuprl, so the well-typedness of terms must beproven explicitly. This means that in addition to the axioms/de�nitions, it isalso required to prove that each object associated with a type constant is a(non-empty) type, and that each object associated with a term constant has thetype speci�ed in HOL.We now describe the implementation of this idea for theory importation bydescribing the steps one takes to import a theory.The �rst step is to run HOL, load the desired theory into it, and then executea function that writes out a �le containing a Nuprl-readable version, called thereference copy, of the HOL theory, taking care of name con
icts that might arisebecause of Nuprl's single namespace.The next step is to invoke a function within Nuprl that reads the referencecopy of the HOL theory into Nuprl and then installs the theory into Nuprl'slibrary structure. For each theory constant, a de�nition with an empty right handside is created, and also a \well-formedness" theorem stating that the de�nedobject has the appropriate type. The HOL de�nitions, axioms and theorems allare translated to Nuprl theorems. All translations of theorems are marked asunproven. Let us call the well-formedness theorems, together with the importedcopies of the HOL axioms and de�nitions, the proof obligations of the theory.The next step is to interpret the theory. This means supplying right handsides for all the de�nitions, and then proving all the proof obligations. There isconsiderable automated support for constructing interpretations. For example,if an imported HOL constant is to be de�ned directly in terms of an existingNuprl operator, then a single function can be used to complete the de�nition,prove the well-formedness theorem (always automatic in all our examples), andcreate library annotations that have the e�ect of adding the de�nitional rewriteto Nuprl's simpli�er tactic. There is a variant of this function for the case whenthere is no existing operator, but the user wishes to create one, and for the casewhere the user wishes to de�ne the HOL constant to be a particular Nuprl termbut does not wish to make an additional Nuprl de�nition for the term. Whetheror not to make an additional de�nition depends on whether the object will beused in later Nuprl work. If so, it is usually important to make a de�nitionthat adheres to Nuprl conventions, which is something the direct de�nitions ofimported constants cannot do.The �nal step is to call a function which \proves," and then rewrites, theimported theorems. The \proofs" are done by a tactic that refers to the referencecopy of the theory in which the theorem to be proved resides, and also thereference copies of all ancestor theories. If for each such theory, all the de�nitionsare complete, and the proofs of all the proof obligations have been completed,then the tactic marks the theorem as proven (using an unsound system feature).We do not translate the HOL proofs to Nuprl proofs; the soundness of markingthe theorems as proven follows from the semantic argument sketched earlier.In the rewriting stage of the �nal step, equational rewriting is used to derivefrom each imported theorem a new theorem that is more appropriate for appli-5

cation in subsequent Nuprl work. The rewriting is all formally justi�ed withinNuprl, and applied through the tactic mechanism. We will not enumerate allthe kinds of rewrites done, but will just give an example from list theory. Thefollowing is an imported theorem stating that a non-empty list is a cons. Thenames of all imported constants have an \h" prepended to avoid con
icts withNuprl objects. The outermost quanti�er quanti�ers over the type S of all (small)non-empty types (this quanti�er is implicit in HOL).8'a:S "(hall (�l:hlist('a).himplies (hnot (hnull l))(hequal (hcons (hhd l) (htl l)) l)))Note that, apart from the outermost quanti�er, the logical connectives them-selves are imported constants (introduced in ancestor theories of the theorycontaining the theorem). The new theorem generated from this is8'a:S. 8l:'a List. :mt(l)) hd(l)::tl(l) = l.The logical connectives in HOL are all boolean-valued functions, possibly takingfunctional arguments, as in the case of the quanti�ers. The interpretations ofthese connectives use boolean logic de�ned within Nuprl. The boolean connec-tives are rewritten in the second theorem to Nuprl's normal logical connectives,which are de�ned using a propositions-as-types correspondence. The operator "in the imported theorem coerces a boolean into a Nuprl proposition. The im-ported list type is de�ned to be Nuprl's list type, and the imported tail functionis de�ned to be Nuprl's tail function. Note however that htl is applied, as afunction, to its argument, while the Nuprl tl is a de�ned operator with a singleoperand (Nuprl also has an operator for function application, of course). Wehave used a notational device to suppress type arguments in the (pre-rewrite)imported theorem. Each of the imported constants in the theorem actually hasat least one type argument. In the rewritten theory, there are no hidden typearguments (the Nuprl operations are \implicitly polymorphic").The most interesting point in this translation is the function for head of alist. In HOL, this is a total function on lists. When we import it into Nuprl,we must prove that the interpretation returns a value on every list, empty ornot. Since hhd is polymorphic, given an arbitrary type and the empty list as anargument, it must choose some arbitrary member of the type as output. Thuswe must give hhd a nonconstructive de�nition in Nuprl. However, we can provethat this function is the same as Nuprl's hd when the list is non-empty. Thisgives us a conditional rewrite which goes through for this example theorem.In general, the rewriting of imported theorems is completely automatic, ex-cept for cases like hhd, where we may occasionally be left with a subgoal toverify the condition of some conditional rewrite. Usually such conditions areproven automatically.The proofs of the new rewritten theorems are highly non-constructive, andthe \program" extracted will often contain uncomputable operators. In [9] weoutlined a simple scheme whereby the user could mark theorems as construc-tive, and the system would guarantee that the extracted program would not6

contain any uncomputable operators. Since most of the steps in constructiveproofs do not contribute to the extracted program, imported HOL facts withnon-constructive proofs could still be used. We have not yet implemented thisscheme, and it is currently left up to the user to ensure that classical mathematicsis not used inappropriately in constructive proofs.2.2 Importing the Standard TheoriesAs part of the core of HOL's standard library, we have imported theories ofbooleans, pairing, disjoint union, arithmetic, lists, trees and labeled trees. Almostall the work done by the user in importing a theory is in proving the proofobligations. The vast majority of theories have no \axioms" section, and well-formedness theorems are almost always done automatically. There are two kindsof proof obligations arising from the \de�nitions" section of an HOL theory.The �rst kind are the axioms about the term constants. These axioms all looklike recursive equational de�nitions and are almost always trivial to prove usingrewriting.The only possibly non-trivial work is in proving the de�nitional axioms aboutthe type constants. In order to guarantee that every theory is consistent, i.e. hasa model, the only axioms one is allowed to assume in HOL about a new typeconstant is that it is isomorphic to some non-empty subset of an existing type.For example, in the theory one above, there is the de�nitional axiom one TY DEFwhich says that there is a one-to-one function rep, from one to the type boolof booleans, whose range is the subset of the booleans satisfying nb. b, i.e. thesingleton consisting of T.One is also allowed in HOL to introduce term constants standing for a pairof functions giving the isomorphism. This mechanism essentially forces the HOLuser (usually via automated packages) to specify an implementation in HOL ofeach new type introduced. The isomorphismpair can be used to de�ne operationsover the type.Proving the de�nitional axioms for types involves showing that the de�ni-tion given in Nuprl for the type is isomorphic to the HOL implementation. SinceHOL uses set-theoretic style encodings (using, e.g., equivalence classes) for basictype constructors such as product and disjoint union, and since there was nointerest in giving computational appropriate implementations, the Nuprl imple-mentations are often quite di�erent and the proofs of equivalence can be quitenon-trivial.However, the hardest work in proving equivalence is in the early HOL the-ories. In later theories, the HOL implementations of data types are typically interms of data types de�ned earlier, and are more likely to be directly usableas Nuprl implementations. In particular, equivalence is proved automatically inNuprl for any new type introduced using HOL's recursive type package (seebelow).The two most di�cult theories to prove equivalence for were tree and ltree,which form the basis for HOL's recursive type package. These theories intro-duce the types of �nitely-branching trees and �nitely-branching labeled trees,7

respectively. In Nuprl, we can give a natural de�nition of labeled trees as a �xedpoint ltree(A) = A� (ltree(A) list)where A is the type of labels. Nuprl does not have a recursive type constructor,but the new semantics justi�es a form of indexed union of types, and the �xed-point can be constructed as [n2!F (n)(;), where ; is Nuprl's empty type, F (n)is the n-fold composition of F with itself, and F is the type functional mappingT to A� (T list).To implement the HOL type of unlabeled trees, we use ltree(unit) where unitis a one-element type. We prove that this is isomorphic to the HOL implemen-tation, which encodes trees as natural numbers using exponentiation and otherarithmetic operators. The HOL implementation of a labeled tree is a pair con-sisting of an unlabeled tree and a list of labels whose length is the number ofnodes in the tree.2.3 Support for HOL De�nitional PackagesHOL has a package for making a limited form of ML-style recursive type de�ni-tions. The package takes as input a speci�cation of the type that has a syntacticform close to ML's. The result of running the package in HOL is an extensionto the current theory, including theorems and tactics for reasoning about thetype. There is also a package for making inductive de�nitions of predicates andrelations. We describe how we have automated the importation of the results ofthese packages via examples.Recursive Types An ML-style de�nition of the type of terms of combinatorylogic iscl = s j k j # of cl � clwhere # is the constructor for application terms. The HOL recursive type pack-age implements this as a \subset" of the type of labeled trees, for a particularchoice of label type. The label type is built from the unit type one and disjointunion, and has as many elements as there are constructors in the type de�nition.For this example, the package introduces one new type constant, cl, and �venew term constants:REP_cl: cl -> (one + one + one) ltreeABS_cl: (one + one + one) ltree -> cls : cl k : cl # : cl -> cl -> clwhere the �rst two are used to axiomatize the isomorphism between cl andthe elements of the representation type that satisfy a predicate specifying acorrespondence between the label of a node and the number of children it has.The package also introduces �ve axioms. The �rst two specify the isomorphism.The other three de�ne the constructors. For example, we have|- s = ABS_cl (Node (INL one) [])|- !c1 c2. c1 # c2 = ABS_cl (Node (INR (INR one)) [REP_cl c1; REP_cl c2])8

where Node builds a tree node from a label and a list of trees.When the theory containing these objects is imported into Nuprl, we exe-cute the function rec type, giving it as arguments the name of the importedrecursive type and the names of the constructors. It then does the following. It�rst determines the label type and de�nes a Nuprl type analogous to the HOLimplementation, using the Nuprl ltree discussed above and Nuprl's subtype con-structor. All the components for this de�nition are found in the imported objects.Next, it completes the de�nitions of the ABS and REP functions. The latter is theidentity function, but the former is the identity only on a subset of its domain,and is extended to a total function using an uncomputable test. It then givesconstructive de�nitions of the constructors. These are obtained essentially bytaking the corresponding HOL de�nitional axioms and erasing the ABS and REPfunctions. Finally, it proves all the proof obligations.This is all completely automatic, with one exception. For technical reasons, arecursive type must be shown non-empty. These proofs are easy, but we have notautomated them yet. Note that HOL does all the syntactic work of translatingthe ML-style speci�cation into the appropriate label type, constructor de�nitionsand set of tailored theorems for induction, case analysis etc.An HOL theory with a recursive type de�nition contains a number of usefultheorems for reasoning about the type. The imported versions of these theoremscan be used for reasoning about the Nuprl implementations of the type. Wehave also written a number of tactics for e�ectively applying these theorems.Examples are given in the next section.We have also proven a constructive induction principle for recursive types,although we did not use it in our example. Because Nuprl has subtypes, wecan directly express the induction principle for all recursive types (subtypes ofltree(A) for some A) in a single lemma. An HOL approximation to this wouldneed to refer to isomorphism pairs.Inductively De�ned Predicates The HOL package for inductive predicatede�nitions de�ned in [12] automates the derivation of certain inductive de�ni-tions, and generates and proves theorems needed to reason about them. Thepackage takes a set of rules as input, generates an HOL term de�ning the in-ductive predicate, and proves a theorem stating that this predicate is the leastsuch relation closed under the rules. An induction theorem as well as theoremsstating that the rules hold (i:e:, that the premises imply the conclusion) followdirectly from this theorem. A strong induction theorem and an exhaustive caseanalysis theorem are also generated and proved. A good part of the work of thepackage is the syntactic translation from rules to de�nition and theorems. Atypical example taken from [12] and also used later in our proofs is the followingset of rules denoting the re
exive transitive closure of a relation R.R(x; y)R�(x; y) R�(x; x) R�(x; z) R�(z; y)R�(x; y)9

The package generates the following de�nitional axiom.(8R x y: R x y � Rtc R x y)^(8R x:Rtc R x x)^(8R x y: (9z: Rtc R x z ^ Rtc R z y) � Rtc R x y)^(8R P: (8x y: R x y � P x y) ^ (8x: P x x) ^(8x y: (9z: P x z ^ P z y) � P x y)) � 8x y: Rtc R x y � P x y)We have written a procedure new ind def that is used after a theory containinginductively de�ned predicates is imported into Nuprl. This procedure �rst derivesfrom the imported version of the above axiom a Nuprl de�nition of the inductivepredicate, and then completes well-formedness proofs and automates the proof ofthe axiom. This tactic usually completes the proof; when it doesn't, the proof iseasily completed by user-guided instantiation of existential quanti�ers. Examplesare given in the next section of theorems generated for reasoning about thesetypes as well as tactics we have written to automate their application.3 Normalization in the Simply-Typed SK CalculusOur proof has two main components. First, we de�ne the values of the SKcombinator calculus, show that reduction of a term can result in at most onevalue, and then de�ne a notion of complete head reduction and show it results invalues. Second, we show that all typed terms of the SK calculus are normalizablewith respect to head reduction. The �rst component uses classical reasoning. Thesecond is constructive, and results in a normalization program, though classicalreasoning is used for parts of the proof that do not contribute to the program.Before describing the normalization proof, we describe some of the mathematicsthat we import from HOL.The HOL theories of combinatory logic \CL" and minimal intuitionistic logic\MIL" that we import from HOL use the recursive types package to de�ne thesyntax of both the terms of combinatory logic (illustrated in the previous section)and of simple types. The syntax of types, in ML notation, isty(�) = g of � j mil fun of ty(�)� ty(�)where � is a type variable that can be thought of as a set of base or groundtypes. We introduce special notation, using Nuprl's display features, for some ofthe Nuprl versions of the constructors of the types cl and ty(�). In particular,s becomes S in Nuprl (not to be confused with the type of all non-empty typesintroduced in the previous section), k becomes K, e1 # e2 becomes simply e1e2, and mil fun (t1,t2) becomes t1 ! t2.Theorems generated by the recursive types package include existence anduniqueness of a primitive recursion operator, induction, case analysis, and in-jectivity and distinctness of the constants. As discussed in the previous section,when these theorems are imported they are rewritten to a more \Nuprl-friendly"form. These rewritten theorems are used extensively in our normalization proof.We list them for cl below except the one for primitive recursion. Instead, we givethe primitive recursion theorem for ty since we use it below (though for concise-ness, we elide the clause expressing uniqueness of the recursion operator.)10

cl_induct 8P:cl ! B. "(P S) ^ "(P K) ^(8c1,c2:cl. "(P c1) ^ "(P c2)) "(P (c1 c2)))) (8c:cl. "(P c))cl_cases 8c:cl. c = S _ c = K _ (9c1,c2:cl. c = c1 c2)ap11 8c1,c2,c1',c2':cl. c1 c2 = c1' c2' () c1 = c1' ^ c2 = c2'cl_distinct :(S = K) ^ (8c2,c1:cl. :(S = c1 c2)) ^(8c2,c1:cl. :(K = c1 c2)) ^ :(K = S) ^(8c2,c1:cl. :(c1 c2 = S)) ^ (8c2,c1:cl. :(c1 c2 = K))mil_fun_rec8'a1,'a:S. 8f0:'a ! 'a1. 8f1:'a1 ! 'a1 ! ty('a) ! ty('a) ! 'a1.(9fn:ty('a) ! 'a1. (8x:'a. fn g(x) = f0 x)^ (8t1,t2:ty('a). fn (t1 ! t2) = f1 (fn t1) (fn t2) t1 t2))Note that in the �rst theorem, we quantify over boolean valued functions insteadof Nuprl predicates, which have values in type P1. Applications of the function inthe theorem are coerced to Nuprl propositions using ". We could have strength-ened our rewriting to translate boolean-valued functions to proposition-valuedfunctions, but the gain would be not be drastic since our tactics automaticallyhandle these coercions when using lemmas like this one. Note that there is du-plication in the cl distinct theorem because equality is symmetric; this formof the theorem is convenient for tactics. Recall that the constant S is overloaded.In mil fun rec, it denotes HOL types (all non-empty types), while all otheroccurrences in the above theorems denote the s combinator.The HOL inductive predicate package was used to de�ne the contractionrelation (denoted �!) in the HOL theory CL. This relation has four rules asgiven in the �rst four imported theorems below. We also give the importedtheorems for strong induction and case analysis for illustration.c_k 8x,y:cl. K x y �! xc_s 8x,y,z:cl. S x y z �! x z (y z)c_app1 8x,y:cl. x �! y) (8z:cl. x z �! y z)c_app2 8x,y:cl. x �! y) (8z:cl. z x �! z y)csind 8P:cl ! cl ! B. (8x,y:cl. "(P (K x y) x))^ (8x,y,z:cl. "(P (S x y z) (x z (y z))))^ (8x,y:cl. x �! y ^ "(P x y)) (8z:cl. "(P (x z) (y z))))^ (8x,y:cl. x �! y ^ "(P x y)) (8z:cl. "(P (z x) (z y))))) (8U,V:cl. U �! V) "(P U V))ccases 8U,V:cl. U �! V () (9y:cl. U = K V y)_ (9x,y,z:cl. U = S x y z ^ V = x z (y z))_ (9x,y,z:cl. U = x z ^ V = y z ^ x �! y)_ (9x,y,z:cl. U = z x ^ V = z y ^ x �! y)The reduction relation (denoted *�!) is de�ned as the re
exive transitive clo-sure of this relation, using the de�nition of Rtc in the previous section.The CL theory also de�nes the Church Rosser property, and proves that thereduction relation has this property. Many auxiliary de�nitions and lemmas areneeded in the HOL proof, including a notion of parallel reduction.Type assignment is de�ned as an inductive predicate in the MIL theory. Inparticular, e : t means that combinatory logic term e has simple type t. Weomit the details. 11

We now describe some of the classical mathematics that we build in Nuprlon top of the imported HOL math.We de�ne a head reduction relation (denoted##) using the HOL inductive predicate de�nition package. The following nineimported theorems illustrate its de�nition.K ## K S ## S8x,x':cl. x ## x') K x ## K x'8x,x':cl. x ## x') S x ## S x'8x,x':cl. x ## x') (8y:cl. K x y ## x')8x,x',y,y':cl. x ## x' ^ y ## y') S x y ## S x' y'8x,z,v:cl. (9x':cl. x ## x' ^ x' z ## v)) (8y:cl. K x y z ## v)8x,y,z,v:cl. (9x',y':cl. x ## x' ^ y ## y' ^ x' z (y' z) ## v)) S x y z ## v8x1,x2,x3,x4,x5,v:cl. (9y:cl. x1 x2 x3 x4 ## y ^ y x5 ## v)) x1 x2 x3 x4 x5 ## vNote that this relation is de�ned using a natural semantics style in which if (e## v) holds then v is a value. (We prove this fact below.) Also note that theserules are deterministic and syntax directed: if (e ## v) holds, then it can onlybe derived by one rule, determined by the form of e. The normalization programdiscussed below implements the procedure implicit in these rules.We de�ne head reduction using HOL in order to take advantage of the au-tomation provided by the inductive de�nition package. Although we used HOLdirectly, then imported the resulting theory, and interpreted it using new ind def,it would not be di�cult to automate the entire process.We also de�ne a head reduction relation that takes an additional naturalnumber argument which records the size of the proof, i:e:, (e ##fng v) if andonly if (e ## v) follows by a derivation of n steps. This relation is importedsimilarly to ## and is needed to constructivize our normalization result.Before describing the Nuprl normalization proof, we �rst discuss the tacticsthat we have implemented to help automate these proofs using theorems gener-ated by either the recursive types or the inductive de�nition packages of HOL.For instance, we have written general tactics for applying theorems for induc-tion (e.g. csind) and case analysis (e.g. ccases). The induction tactic, givena term inhabiting a recursively de�ned type, or an instance of an inductivelyde�ned predicate, �nds and applies the appropriate induction theorem. We havealso written a tactic to help with reasoning about equality of terms inhabitingrecursively de�ned types. Given a goal with a hypothesis of the form e = e' 2T, if the outermost constructors of the two terms are di�erent, the tactic usesthe imported distinctness theorem (e.g. cl distinct) to complete a proof bycontradiction. If they are the same, it uses the imported injectivity lemmas (e.g.ap11) to conclude equality of subterms, and then proceeds recursively.This tactic was used, for example, to prove inversion lemmas. Given thatan inductively de�ned relation holds of some particular terms, inversion lemmascan be used to conclude which rule was last applied based on the form of theterms and conclude that the relation holds for the rule premises. For example,an inversion lemma for the h k1 rule is:h_k1_inv 8u,v:cl. K u ## v) (9v':cl. v = K v' ^ u ## v')12

Such lemmas are proved by case analysis, and most cases can be completedautomatically, the remaining cases required only slight user assistance.In Nuprl, we de�ne a normal form as a term on the right of the ## relation,that is, norm(e) == 9v:cl. e ## v. We de�ne a value to be a term which doesnot contract and then show that normal forms are values. The proof is by in-duction on the ## relation, using the imported strong induction principle, whereeach subcase is then proved by case analysis on the �! relation. We furthershow that if e ## v, then e reduces to v, and (using the imported Church-Rossertheorem) any value it reduces to is equal to v.We now describe the proof of the following theorem that states that everywell-typed term is normalizable.type_norm 8'a:S. 8e:cl. 8t:ty('a). e : t) norm(e)The proof adapts Tait's notion of computability to combinatory logic. The proofis classical and builds on imported de�nitions and theorems. Computability isde�ned using primitive recursion over simple types. A term e is computable attype t, written (e 2 t), if e is normalizable, and if whenever t is an arrow typet1 ! t2 and e' is a computable term at type t1, then (e e') is a computableterm at type t2. The Nuprl de�nition of computability uses mil rec fun givenabove. Normalizability is then proved via the following two lemmas.type_comp 8'a:S. 8e:cl. 8t:ty('a). e : t) e 2 tcomp_norm 8'a:S. 8t:ty('a). 8e:cl. e 2 t) norm(e)The latter follows from the de�nition of computability, and uses case analysis ontypes. The former is proved by induction on types, where the induction step usescase analysis on terms. The application case follows directly from the inductionhypothesis, while the S and K cases use a variety of lemmas stating properties ofhead reduction and computability. We omit these lemmas and simply note thattheir proofs require various inductions and case analyses on both recursive typesand inductive predicates, and also draw heavily on inversion lemmas, as well asimported distinctness and injectivity lemmas.We can now prove the main constructive result:norm_thm 8'a:S. 8e:{x:cl| 9T:ty('a). x : T} . 9v:cl. #(e ## v)We have used Nuprl's subtype constructor twice in the statement of this theoremto guarantee that the extracted program does not manipulate witnessing datafor the typing relation. The type of e above is the set of all terms in cl thathave a type. The members of this subtype are just terms, not, e.g. pairs of termstogether with evidence that they have a type. Similarly, in the conclusion of thelemma, we have used the \squash operator" #, which is de�ned using subtypesand produces a type that has a single �xed member if its argument is true andis empty otherwise. Thus any extracted program will essentially map terms toterms.Given type norm, we can reduce the proof of the main theorem (norm thm)to the following goal.hnf_exists 8e:{x:cl| 9x':cl. x ## x'} . 9v:cl. #(e ## v)13

In proving this theorem, we must take care not to use any facts imported fromHOL, or any facts proven using the non-constructive extensions of Nuprl's logic,in the part of the proof that contributes to the program. Our proof is straight-forward. We explicitly write a program that computes the head normal form anduse this program to provide a witness for the existential quanti�er. The programis written in a natural ML-style, using general recursion and pattern-matching.All the work is showing termination of the program. We do this by using thecharacterizationhnred_iff_hred 8e,v:cl. (9n:N. e ##{n} v) () e ## vthen proving by induction on n that the program terminates on argument ewhenever there exists a v such that e ## v.4 ConclusionHOL and Nuprl have a similar approach to automated reasoning. Most of thework in proving a theorem is applying collections of facts using general machin-ery, such as resolution and rewriting tactics, that both systems possess. Thusthe vast majority of imported facts can be e�ectively applied using the normalNuprl tactics. However, some facts, such as the \distinctness" theorems associ-ated with recursive types, are applied in HOL using special purpose tactics. Wehad to duplicate some of these tactics in Nuprl in order to e�ectively apply thesefacts.The use of program extraction was somewhat minimal in our example. Mostof the argument was classical, and at the end we explicitly wrote the programthat gave the constructive content of the main normalization result. A moreinteresting use of extraction would have been possible if we had reproved someof the imported facts using constructive induction principles. This situation,where imported facts have some interesting computational content, is atypicalfor software/hardware veri�cation, where most of the work goes into verifyingproperties, such as equalities and inequalities, that have no non-trivial construc-tive content.Our use of a version of head-reduction incorporating derivation size was fortechnical reasons. One de�ciency with Nuprl's type theory is that termination ofrecursive programs can only be proved via built-in induction principles. In par-ticular, we could not do induction over the imported head-reduction predicate.Because of Nuprl's richer logic, it would di�cult to import mathematics fromNuprl into HOL. Of course, we could restrict importation to a HOL-like subsetof Nuprl. Another possibility is a \HOL-mode" for Nuprl, where HOL tacticscan be called on goals in the HOL-like subset. Practically, Nuprl might havemore to gain from making this kind of connection with PVS, which would bringmore new procedural machinery to Nuprl, and which would apply to a muchlarger subset of Nuprl.Since we developed supporting machinery at the same time as the normaliza-tion proof, it is di�cult to say how long the latter took. Doing another similarproof using our infrastructure would probably take about a day.14

References1. R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press,New York, 1988.2. J. Camilleri and T. Melham. Reasoning with inductively de�ned relations in theHOL theorem prover. Technical Report 265, University of Cambridge ComputerLaboratory, August 1992.3. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.4. C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-Mohring,C. Mu~noz, C. Murthy, C. Parent, A. Sa��bi, and B. Werner. The Coq Proof Assis-tant reference manual. Technical report, INRIA, 1995.5. A. Felty and F. Stomp. A correctness proof of a cache coherence protocol. InProceedings of the 11th Annual Conference on Computer Assurance, June 1996.6. M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A MechanisedLogic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.7. M. J. C. Gordon and T. F. Melham. Introduction to HOL|A Theorem ProvingEnvironment for Higher Order Logic. Cambridge University Press, 1993.8. HOL90. The HOL90 distribution. (available from ftp://ftp.research.bell-labs.com/dist/hol90).9. D. J. Howe. Importing mathematics from HOL into Nuprl. In J. von Wright,J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics, vol-ume 1125 of Lecture Notes in Computer Science, pages 267{282, Berlin, 1996.Springer-Verlag.10. D. J. Howe. Semantics foundations for embedding HOL in Nuprl. In M. Wirsingand M. Nivat, editors, Algebraic Methodology and Software Technology, volume1101 of Lecture Notes in Computer Science, pages 85{101, Berlin, 1996. Springer-Verlag.11. D. McAllester, J. Ku�can, and D. Otth. A proof of strong normalization for F2, F!and beyond. Information and Computation, 121(2):193{200, September 1995.12. T. Melham. A package for inductive relation de�nitions in HOL. In M. Archer,J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings of the 1991 In-ternational Workshop on the HOL Theorem Proving System and its Applications,pages 350{357. IEEE Computer Society Press, 1992.13. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining spec-i�cation, proof checking, and model checking. In Proceedings of CAV'96, LectureNotes in Computer Science. Springer Verlag, 1996.14. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notesin Computer Science. Springer-Verlag, 1994.15. K. Schneider, R. Kuma, and T. Kropf. Integrating a �rst-order automatic proverin the HOL environment. In Proceedings of the 1991 International Tutorial andWorkshop on the HOL Theorem Proving System and its Applications. IEEE Com-puter Society Press, 1992. 15

