Proof Search with Set Variable Instantiation
in the Calculus of Constructions*

Amy Felty

Bell Laboratories
Lucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974, USA
Amy.Felty@bell-labs.com

Abstract. We show how a procedure developed by Bledsoe for automati-
cally finding substitution instances for set variables in higher-order logic can
be adapted to provide increased automation in proof search in the Calcu-
lus of Constructions (CC). Bledsoe’s procedure operates on an extension of
first-order logic that allows existential quantification over set variables. The
method finds mazimal solutions for this special class of higher-order vari-
ables. This class of variables can also be identified in CC. The existence of
a correspondence between higher-order logic and higher-order type theories
such as CC is well-known. CC can be viewed as an extension of higher-order
logic where the basic terms of the language, the simply-typed A-terms, are
replaced with terms containing dependent types. We adapt Bledsoe’s proce-
dure to the corresponding class of variables in CC and extend it to handle
terms with dependent types.

1 Introduction

Both higher-order logic and higher-order type theories serve as the logical foun-
dation of a variety of interactive tactic-style theorem provers. For example, both
HOL [10] and Tsabelle [16] implement higher-order logic, while Coq [6] implements
the Calculus of Constructions (CC) type theory [5] and Nuprl [4] implements Martin-
Lof type theory [14]. Much work has been carried out in both kinds of systems on
building tactics and automating proof search. However, little work has been done
on providing the means for exploiting proof search methods designed for one kind
of system within the other. In this paper, we show how a particular proof search
procedure designed for higher-order logic can be used to help automate the search
for proofs in CC.

In some cases, such as the second-order polymorphic A-calculus and second-
order propositional logic, the correspondence between higher-order logic and higher-
order type theories is exact and known as the Curry-Howard isomorphism [12].
Although it is less direct for CC, one way to view the correspondence was shown in
Felty [9]. Intuitively, a functional type P —) corresponds to an implication, while
a dependent type Va : P.Q) corresponds to universal quantification. An important

* To appear in Proceedings of the 13th International Conference on Automated Deduction,
July 1996.

difference is that while in CC the type P can be an arbitrary CC type, in higher-
order logic (e.g., Church’s simple theory of types [3]) P must be a simple type.
Although CC types include the types of the simply-typed A-calculus, they also
include much more.

Formally establishing such correspondences provides a framework in which to
study how theorem proving techniques designed for one kind of system can be
applied to proof search in the other. In this paper we show how the techniques
described in Bledsoe [2] for the automatic discovery of substitutions for set variables
can be incorporated directly into the search procedure for CC given by Dowek [7, 8].
In doing so, we both adapt these techniques to the type theoretic setting as well as
extend them to handle the extra expressivity of dependent types. To incorporate
dependent types, we consider not only single element membership such as t € A,
but also sets of tuples (t1,...,t,) € A where for 1 <i < j < n, the type of ¢; may
depend on the type of t;.

In Bledsoe [2], the procedure for finding substitution instances is implemented
within an automatic theorem prover for natural deduction in first-order logic, thus
extending it to handle existential quantification over a restricted set of second-order
variables. The procedure has been successfully applied to obtain results in interme-
diate analysis, topology, logic, and program verification. To prove a theorem with
set variables, the theorem prover makes two passes. The first finds maximal solu-
tions for these variables. Once instantiated with the solutions, the formula becomes
first-order, and the built-in strategy for proving first-order formulas is used. If the
formulais provable, maximal solutions for set variables will lead to a proof. However,
maximal solutions may be given during the first pass even though the formula is not
provable. Thus the second pass is required. We take an example from Bledsoe [2] to
illustrate maximal solutions. Consider the theorem

P(a) D JA(Vz(x € A D P(z)) A Jy(y € A)).

A maximal solution for A is a term B that when substituted for A results in a
provable formula, and such that for any other solution C, whenever B C (' it
must be the case that C' is the same as B. In this example, if we consider the two
conjuncts separately, the set {x | P(z)} is a maximal solution for A in the first,
and the universal set is a solution for the second. Their intersection, {z | P(z)},
i1s a maximal solution for A in the formula as a whole. Note that there are often
non-maximal solutions that result in provable formulas. In this case, for example, (§
1s a solution to the first conjunct. However, it is not a solution to the whole formula.
Maximal solutions are more generally useful because solutions to subformulas are
easily combined to obtain solutions to the whole formula.

Dowek’s procedure for automatic proof search in CC is a complete procedure.
It begins with the type representing the formula to be proved and attempts to
find a term of that type representing a proof. However, although the procedure is
complete, it is not efficient in practice because of the complexity of CC. In particular,
the number of search paths quickly becomes prohibitive for most theorems. In the
presence of assumptions with polymorphic types, for example, there may be infinite
branching at many points during search. There are many ways to direct the search
by tuning it to a particular class of theorems. Dowek proposes one that is incomplete
but makes several restrictions including the elimination of infinite branching. This

procedure is still complete for many interesting sublanguages of CC such as the
Logical Framework [11] or higher-order hereditary Harrop (hohh) formulas, which
serve as the logical foundation for the AProlog logic programming language [15].
Completeness for full CC can be regained by applying the restricted procedure
successively, proving a new lemma at each step and adding it to the assumptions
before the next pass.

Our work can be viewed as the tuning of Dowek’s procedure to find proofs
more efficiently for theorems in the class considered by Bledsoe, ¢.e., theorems in an
extension of first-order logic with existential quantification over a certain class of
higher-order variables. The procedure presented here does not eliminate any search
paths, but instead adds some new ones that expand certain branches more quickly,
in particular those that use maximal solutions for set variables. We can restrict this
procedure to obtain a more practical procedure by eliminating some search paths of
the original procedure as Dowek does, as well as by adding more fine-tuned control
for better handling of our class of theorems. For example, we are implementing a
version of Dowek’s procedure that corresponds fairly directly to a one-pass version
of Bledsoe’s procedure. We use a goal-directed tactic style framework where each
of the search primitives of the procedure is implemented as a tactic. These tactics
can be combined to obtain a procedure that can prove most of the examples in
Bledsoe [2] fully automatically. This specialized version could also be incorporated
into Coq as a tactic, and used to automatically generate substitution instances when
applied to goals of the appropriate form.

In the next section, we present CC and an extension of it, called Meta, developed
by Dowek [7] and used as the foundation for his search procedure. In Sect. 3, we show
how to map set theory into CC. We use the usual notion that a set is a predicate over
elements of a particular type, or over other sets. We also define maximal solutions
in our setting, which directly extend those in Bledsoe [2]. In Sect. 4, we present the
search procedure, concentrating on our extensions to it. The complete procedure
appears in Appendix A. Section 5 presents the theorems that justify the maximal
solutions used in the search procedure. These theorems are direct extensions of the
theorems in Bledsoe [2]. Finally, we conclude in Sect. 6.

2 The Calculus of Constructions

The syntax of terms of the Calculus of Constructions (CC) is given by the following
grammar.
Type | Prop | | PQ | Az: P.Q |Vz: P.Q

Here Type and Prop are constants, x 1s a syntactic variable ranging over variables,
and P and @ are syntactic variables ranging over terms. We assume a denumerable
set of CC variables. The variable x is bound in the expressions Az : P.Q) and Vz: P.Q).
The former binding operator corresponds to the usual notion of A-abstraction, while
the latter corresponds to abstraction in dependent types. We write P — @ for
Va: P.¢) when z does not occur in @. In both kinds of bindings, we often leave off
the type P when it can be easily inferred. A context 1s a set of pairs of the form
z: P where z is a variable and P a term.

Terms that differ only in the names of bound variables are identified. If x is
a variable and P is a term then [P/z] denotes the operation of substituting P
for all free occurrences of x, systematically changing bound variables in order to
avoid variable capture. The expression [Py /1, ..., P,/2,] denotes the simultaneous
substitution of the terms Py, ..., P, for distinct variables xq,..., x,, respectively.
The relation of convertibility up to «, 3, and 7 is written as =g,.

The rules of CC are given in Fig. 1. In these rules, s, s1, and s», are either Type
or Prop. In (INTRO), (PROD), and (ABS), we assume that the variable x does not
already occur as the left hand side of a context item in I'. We say that I is a valid
context if there is a tree built using the rules of Fig. 1 such that i I' context occurs
at the root. We say that I' = P : Q) is derwwvable in CC if I is a valid context and this
judgment occurs at the root of a tree built using the rules of Fig. 1. In this case, we
also say that P has type QQ or is of type @ in I', and that @Q is the type of P in I
In addition, sometimes we simply write I" F P :) to indicate that this judgment is
derivable. It will be clear from context when this is the case.

F I' context I'EP:s
F I,z : P context

z:Pel
I'tz: P

k() context (EMPTY-CTX) (INTRO)

I'+ Prop: Type (PROP-TYPE) (INIT)

I'EP:s; Iz:PFHQ: s2
I'EVe:P.Q: s

I'EVz:R.Q:s Iz:REP:Q
I'FAx:R.P:Vx:R.Q

F|_P1ZV$ZQ1.Q2 F'_P2:Q1
F " P1P2 : [PQ/%]QQ

'r@Q:s I't@':s I'FP:Q Qzﬁan(CONV)
I'-prP:qQ

(PROD)

(ABS)

(APP)

Fig.1. CC Typing Rules

The search procedure in Sect. 4 operates on valid contexts in the slightly ex-
tended language called Meta [7]. The terms of Meta include all the terms of CC plus
the additional constant Eztern. Contexts in Meta also include existential quantifi-
cation of the form Jz: P and equations between terms, written P =). The Meta
typing rules include all those for CC plus the additional rules in Fig. 2. In addition,
in the rules of Fig. 1, s5 in (PROD) can be Fztern, and s in (INTRO), (Q-INTRO),
and (ABS) can also be Eztern. Finally =3, in (CONV) is replaced by =g,r which
denotes equality modulo fBr-conversion plus the equations in I'. In the rest of this
paper, by context we mean Meta context unless otherwise stated.

Given a context [I', a variable z 1s wuniversal in I' if there is a @ such that

F I' context I'EP:s I'EP:Q r+r.qQ

F I',3x: P context (Q-INTRO) F T, P =P context (EQ-INTRO)
I'+ Type: Extern (TYPE-EXTERN) 3;;1’ € Jf (QINIT)
T

Fig. 2. Additional Typing Rules for Meta

x:Q) € I'. The variable x is existential in I if 3x: Q) € I'. A term P is closed in I’
if every variable z occurring free in P is universal in I"; and the type of « is closed
in I

We say that a term P is atomic in context I' if there is a) such that I'- P : @
is derivable and there are terms M, ..., M,, n > 0 such that P =g, zM; ... M,.
If # is universal in ', we say that P is rigid. Otherwise, = is existential in I" and we
say that P is flexzible. We say that K is a base type in I'if I' = K : Type is derivable
and K is atomic in I".2

We equate terms on the right of a colon up to fn-convertibility. For example,
we will often say “if term P has the form @” to mean that P is Sn-convertible to
a term of the form @. This convention is justified by rule (CONV).

3 Set Theory in the Calculus of Constructions

Tt is shown in Huet [13] that higher-order logic is contained within CC (and thus also
in Meta). Terms are introduced that encode the connectives and it is shown that the
corresponding natural deduction inference rules are provable in CC. Here, we use
the abbreviations for the connectives, which are given in Fig. 3. For example, when
we write the term (3 T Az :T.A4), it represents the Meta term YC': Prop.((Ve:T.A —
') — C), and encodes the formula 3px. A where 3 is the existential quantifier at
type 7' in higher-order logic. For readability, we will use infix notation for the binary
connectives. As mentioned, implication and universal quantification are built into
CC directly. Note that equality is Leibniz equality.

In set theory, from the fact that a € {x : P(«)}, it is possible to immediately
deduce P(a). In our encoding in Meta, we build in this correspondence directly and
define sets to be predicates of a certain class of types.

Definition1. Term K is a sei type in context I' if I' = K : Type is derivable and
K has the form Vz,: A ... Vo, : A, .Prop, where n >0 and for¢:=1,...,n, A; is a
base type or set type in [, x1:Aq,...,x;_1:A;_1. Term A is a set in context I' if
I'HA: K and K is a set type in [

2 Tt is possible to include K such that I' = K : Prop is derivable in the set of base types
without any complication to the results in this paper. For ease of exposition, we choose
not to.

:= AA, B: Prop¥C': Prop.((A— B — C) — C)

:= XA, B: Prop¥C': Prop.(A— C) — (B—C) = ()

:= AT": Type AP : T — PropNC': Prop.((V&:T.Px — C) — C)
:=VYC': Prop.C

:=VYC: Prop.C — C

= AA: Prop. A — L

=z :=AXT": PropAM,N:TNVP:T — Prop.PM — PN

I A w< >

Fig.3. CC Encoding of the Connectives of Higher-Order Logic

To illustrate, let I" be the context Nat: Type, 0 : Nat, s : Nat — Nat. Note that
Nat — Prop, (Nat — Prop) — Prop, ((Nat — Prop) — Prop) — Prop, etc. are all
set types. Thus predicates over type Nat, predicates over sets of type Nat, predicates
over sets of sets of type Nat, etc. are all sets. Figure 4 contains the abbreviations
that we adopt for sets and set operations. The first abbreviation will always be used
in a context where the types of zy,...,z, are known to be Ay, ..., A, respectively.
We write =g for set equality.

{{z1,...,zn) | A} == A1 A1 ... Axp i An A
(My,...,My) € B:=(BM:...M,)
0 :=Xz1:A1.. Azp:An. L
BCC:=Az1:A1... Azp:An.Bxy... 2y — Cx1 ... 2p
BUC :=Ar1: A1 .. Axp: Ap (B .. on VO ... 2y)
BnNnC:=Ar1: A1 .. Axn: Ap (B .. on AC31 ... 2y)
B=sC:=(BCC)A(CCB)

Provisos: Az1:A; ... Axn: A, A, B, and C are sets in some context [’
Ix1:Ar, ... 20 An B A Prop
't B:Vxy:A1.. . Vepn: An. Prop
I'EC:Ve1: A1 .. Ve Ay Prop
't M :[Mi/z1,..., Mi—1/zi21]A; fori=1,...,n

Fig.4. CC Encoding of Sets

Returning to the example given in Sect. 1, we illustrate its proof within the
framework of CC. Let I' be the CC context Nat: Type, P : Nat — Prop,a : Nat.
Proving the theorem from Sect. 1 in higher-order logic corresponds to finding a CC
term M such that the following judgment is derivable.

I'+M: Pa— (3 (Nat — Prop) AA.((Vz: Nat.(z) € A — Px) A (3 Nat Ay.(y) € A)))

Expanding the first 3 and applying (ABS) three times in the backward direction, we
get the following judgment as the rightmost premise. (We ignore the left premise of

each application. These are easily proved.)

I hi:Pa,C: Prop,
h2:VA:Nat — Prop.((Vo: Nat.(z) € A — Pz)A (3 Nat Ay.(y) € A)) — C
FM . C

Here, M’ is a new term such that M is equal to Ah1.AC . Aho.M’. Let I be the con-
text in the above judgment containing 1", h1, (', and hy. The proof can be completed
using two applications of (APP) from hs, setting M’ to ho AM", where A and M"
are terms that must be filled in by proving the following two judgments.

I"+ A: Nat — Prop
I''t M": (Vo:Nat{z) € A — Pz) A (3 Nat dy.(y) € A)

As in Sect. 1, we take A to be {« | Pa}, which by definition is just Az : Nal.Px
which is n-equivalent to P. The first judgment is directly provable; and the second
becomes

I'=M":(¥z:Nat.{z) € P — Px) A (3 Nat Ay.(y) € P)

which, after expanding definitions, is also directly provable.

A term A is said to occur positively in a term x, PQ), or Az : P.QQ if A occurs
in any of these terms. Term A occurs positively (negatively) in Vo : P.QQ or P — @)
if A occurs positively (negatively) in @ or negatively (positively) in P. Figure 5
shows maximal solutions for variable A or B in various subformulas. All of these
subformulas are assumed to occur positively in the theorem to be proved. A is
assumed to occur only in the form (My,..., M,) € A, and similarly for B. These
are the solutions considered by Bledsoe that are handled by our version of Dowek’s
procedure. As stated, our solutions are generalizations of Bledsoe’s solutions in that
they allow tuples instead of singleton members of sets and dependencies may occur
in the types of the tuples.

We will use these rules directly in the procedure in the next section. They are
justified to some degree by the theorems in Sect. 5. The first rule is the one that was
used to determine the solution of the first conjunct of the example above. Although
the second rule looks complicated, it is just the dependent-type version of solving
for fx € B — P’(x) obtaining maximal solution {z | V&(z = fo — P’(x))}. In the
CC version, the types of the last m arguments of the tuple can depend on the types
of the first j arguments but not on the types of each other. The remaining rules are
fairly straightforward.

4 Proof Search with Set Variable Instantiation

Dowek’s search procedure can be described as a set of search operations that trans-
form one Meta context to another, ending when one with no existential variables
or unsolved equations 1s reached. Our extension adds one new operation, called
SETVAR, which instantiates set variables with maximal solutions. A search path is
elaborated by starting with a context, non-deterministically choosing one operation
that applies, and repeating until no more operations apply. For a complete proce-
dure, control must be added in such a way that all branches get explored. Simple

Subformula Solution for A or B

1.{z1,...,8n) €A — Pzy...xp — {{x1,...,%n) | Pz1...25}
2.{z1,..., 35, iT1. Ty, fmT1 ... Tn) € B— Py 2y

— {{z1,.. ., 25,21, -, Zm) |
V$]+1ZBJ+1...V$nZBn.Z1 =7 f1$1...$n
— = Zi =L fT1... 0, — Pz iz}
(My,...,My) € A= Q — {{z1,..,zpn) |t1=L M1 — -+ — 2, =1 M,, — Q}
((My,...,Mp) € A) — {{z1,...,zn) | (21 = M1 A+ ANzp =1 My)}

.Q ({(My,...,M,) € A occurs positively or not at all) — {{z1,...,z,)| T}
CIf1-4 yield {{y1,...,9q) | @' v1...y4}, and s is a free variable of type T in Q'
— {1,y | BT X8.Q'y1 ... yg)}

Provisos: A and B are sets in some context I
A, B,x1,...,2n,51,...,%m do not occur free in P, P, Q, f1,..., fm, M1,..., M.
Z1,...,%n,s do not occur elsewhere in the surrounding formula or context.
Z1,...,%Tn are either bound by universal quantification or are universal in the
surrounding context.
' A:Vri1: A .. Vo, A, . Prop
't B:Vei:A.. Vo A;.A;41 — -+ — Ajpm — Prop
't P:Ve1: A .. Ve, A, Prop
' P VoA .. Nej Ay Ve By .. Van By Prop
I'EQ: Prop
I'F fi Vet Aro V2t Aj Ve 0100 By . Vep Br Ajyy fore=1,...,m
't M :[Mi/z1,..., Mi—1/zi21]A; fori=1,...,n

Fig. 5. Maximal Solutions for Various Subformulas

breadth-first search is not enough since some nodes have infinitely many branches.
Although such control can be added, we do not discuss the details here. For our
extension to be effective, SETVAR must be given priority in the presence of contexts
containing set variables.

In this section, we present only the SETVAR operation and the BACKCHAIN
operation, which corresponds to the usual notion of backchaining in theorem proving
or logic programming. The remaining operations of the complete procedure are given
in Appendix A.

Search begins with a valid Meta context, usually of the form ', 3h: Q) where I’
contains only universally quantified variables, () is the theorem to be proved, and A
is the variable to be instantiated with a proof, if there is one. Set variables usually
arise from existential quantification over variables in) having set types. Via the
step by step application of operations, existential quantifiers result in the addition
of new existential variables to the context, which may eventually get instantiated
with closed terms representing sets.

Several concepts from Dowek [7] are needed for the presentation of the opera-
tions, including the notion of context substitution. Let ¢ be a set of tuples of the

form (x, A, M) where z is a variable, A is a context containing only existential
variables and equations, and M is a term. The set o is a substitution if for any
variable x, there is at most one tuple in ¢ with x as its first component. Let I" be
a context. Then ¢ is a valid substitution in I' if for every tuple {x, A, M) in o, the
context I'J A 1s valid and M and z have the same type in I'. Such substitutions
will be applied to both contexts and terms. To apply a substitution ¢ to a term
M | denoted oM, we consider the set of pairs obtained from ¢ by ignoring the mid-
dle argument. Substitution is then the usual notion of replacing variables with the
corresponding terms renaming bound variables when necessary to avoid variable
capture. The application of substitution ¢ to a context I, denoted oI, is defined
recursively as follows.

—IfIris (), ol is ().

— It ris I x:T, then ol'is ol x:0T.
If I"is IV, Jx: T, then if there is a tuple (¢, A, M) in o, " is oI, A. Otherwise,
olis ol Ax:0T.
IfI'is ", M = N, then oI"iscl",cM = oN.

A valid context I is a success context if it contains no existential variables and
all its equations relate Gn-convertible terms. A valid context I is a failure context
if it contains an equation that relates two terms that have no free occurrences of
existential variables and that are not Gn-convertible. Let I" be a valid Meta context.
A candidate variable is an existential variable 3z:7 such that 7" has the form Va :
Ay Ve, ApaMy ... My, where n,m > 0 and z s rigid in I, @1: Ay, ..., 2, An.
Tt is shown in Dowek [7] that during search at least one such existential variable
always exists, and that if no rule applies to any such existential variable in I", then
I" is a success or failure context.

Definition 2 SETVAR operation. Let I' be a valid Meta context and 3z : T a
candidate variable in I'. In order for this operation to apply, T’ must have the form
Vay:Ar.. Yo, Ay Prop, where for some r such that 0 < r < n Vz,:A,...Va,:
Ay . Prop is a set type. Also, z must occur no more than once in the type of any
universal or existential variable in I', must only occur in closed types with outermost
universal quantifiers Va1 : Ay ... Vo,_1: A._1, and must always occur in the form
(Nr,...,Np) € zz1...2p_1. Let P1,..., P, be the terms in I" in which z appears.
Fork=1,...,q,oneof 1,2, 3, or 4 below must hold:

1. All of the following hold:
(a) P; has the form Vy; : Q1 ... Vy: Qx. P! where k > n and P/ is atomic.
(b) For i =r,...,n, there is a j such that 1 < j <k and y; is z; and Q; is A4;.
(c) For j =1,...,k, if there is no ¢, such that » < ¢ < n and y; is «;, then y;
does not appear free in P/.
and one of the following holds:
(a) P/ has the form of subformula 1 in Fig. 5 such that the appropriate provisos

hold. Then P/ is {#,..., @) € 221 ... %p_1 — Prp...2p.

(b) P/ has the form of subformula 2 in Fig. 5 such that the appropriate provisos
hold. Then P! is {(zr,...,2;, fizr ... Zp, ..., fin&r ... 2p) € 221 ... 2p_1 —
Pz, .. .zp.

2. P! has the form of subformula 3 in Fig. 5 such that the appropriate provisos
hold. Then P/ is (N,,...,Np) € z&1 ... 2p—1 — Q.

3. P/ has the form of subformula 4 in Fig. 5 such that the appropriate provisos
hold. Then P! is =({Ny,..., Np) € z21 ... 2p_1).

4. Variable z occurs positively in P;.

Then for ¢z = 1,...,q, view z&1 ...x,_1 as a single set variable and let ¢); be the
solution for z#y ...z,_1 in P/ according to rules 1-5 of Fig. 5. If appropriate, apply
rule 6 of the figure as many times as possible to @; to obtain Q}. Let () be the term
@1N---NQy. Let o be the singleton set containing the tuple (z, (), Az1: A1 ... Az,_1:
Ar_1.Q). SETVAR is the operation that replaces I' with oI

Definition 3 BACKCHAIN operation. Let I" be a valid Meta context and 3z : T
a candidate variable in I'. T has the form Va,: Ay .. Vo, : A,.2M, ... M,, where
n,m > 0 and z is nigid in I',z1 : A1,..., 2, 0 Ay. If there is a universal variable
w: @ to the left of z in I' or in =1 : Ay,...,x, : Ay, such that Q' has the form
Yy Q.. Yy, :Qf].le ...Np and y is x or any existential variable in I, then we
can “backchain on” @’ as follows. Define

Q1:=Q1, Q2:=2y1:Q1.Q%, ..., Q¢:=Ay1:Q1... Ayg—1:Q_,1.Qj
Q:=Ay1:Q1... Ayq: Qy.yN1 ... Ny

Iz Ay, zntAp b w i VY 1 Q1.Vy2 1 (Qayn) .. Vyg 1 (Qquy1 - Yg—1).Qu1 .. . Yq
1s thus derivable. Let I} be the context

Ahy Va1 Ay Ve An.Qr, TR Vet Ay L Ve Ap Qa (i oz, .
Ahg:Va1: A1 Ve An.Qqlhizr...zn) ... (hgo121 ... T5)

and [the context containing the equation

Ver1: Ay Vet An.Q(higr .. an) .. (hgz1 .. an) = Va1t Ay oo Vet Apa My Lo My,
Let o be {{z,(I'1,I2),Az1 : A1... Azp : Ag.w(hizy .. 2n) ... (hgx1...2,))}. The
BACKCHAIN operation replaces I" with o1.

The ¢ existential variables in I'” are the subgoals obtained by backchaining. Note
that here, backchain takes place “under” a binder of universal quantifiers.

The SETVAR and BACKCHAIN are sufficient for proving the example given in
Sect. 1 as well as most of the examples in Bledsoe [2]. To illustrate, we return again
to our example. Again, let I" be the context Nat: Type, P: Nat — Prop,a: Nat. We
begin with the following Meta context.

IAM : Pa — (3 (Nat — Prop) MA.((Vz: Nat.(z) € A — Pz) A (3 Nat Ay.(y) € A)))
Expanding the first 3, we get

I3AM: Pa — YC': Prop.
(VA: Nat — Prop.((Vz: Nat.{z) € A — Pz) A (3 Nat dy.{y) € A)) — C) — C.

The only candidate variable is M. BACKCHAIN is applied with Q' as

VA:Nat— Prop.((Vz: Nat{z) € A — Pz) A (3 Nat Ay.(y) € A)) — C

10

and I’ as

JA': Pa — ¥C: Prop.QQ) — Nat — Prop,
AM':¥hy: Pa.NC: Prop.¥Nhy:Q'.
((Vz:Nat.{(z) € A’hiChy — Pz) A (3 Nat Ay.{y) € A'h1Cha))

resulting in the substitution with the single tuple
(M, I’ \hy : PaAC': PropAha : Q' ha(A'hy Cho)(M'hy Chy)).

(We leave out the equations in I'' since they equate closed equivalent terms.) Ap-
plying this substitution, we obtain I',I”. We cannot yet apply SETVAR because
the type of M’ has two occurrences of A’h;Chs. Although we do not give the de-
tails, after expanding A, BACKCHAIN with z as M’ can be applied to obtain the
following context where Q" is (V& : Nat.(z) € A’hyChs — Px) — (3 Nat My.{y) €
A’thhz) — C/.

I,3A: Pa — YC: Prop.Q" — Nat — Prop,
IMy :Vhy: PaNC: PropNhy: Q' NC': Prop.Q" — (Vz:Nat.{(z) € A'hiChy — Pz),
IM :Vhy: PaNC: PropNhy: Q' NC': Prop.Q"” — (3 Nat dy.(y) € A'h1Chy)

It is now possible to apply SETVAR with the type of M7 above as Py in the definition
of SETVAR, and the type of My as P». Clause 1 of SETVAR holds for P; while clause
4 holds for Ps. Applying the rules of Fig. 5, we get @} := Ahy: Pa.AC: Prop.Ahs:
Q' {{z) | Pz} and @4 := Ahy : Pa.AC : Prop.Ahs : Q' {{x) | T}. We obtain the
substitution (A’, ()}, Ahy: Pa.AC: Prop.Ah2: Q'.Q) N@Q%). The resulting context after
substitution 1is

I'3AMy: Pa — VC: Prop.Q' — YC': Prop.Q" — (Vz: Nat.(z) € Q1 N Q3 — Pxz),
IMz:Pa — YC': Prop.Q" — VC': Prop.Q" — (3 Nat dy.(y) € Q1 N Q%)

which is easily transformed to a success context via several applications of BACK-
CHAIN.

Several similarities and differences between Bledsoe’s procedure and ours are
worth noting. First, the restriction in SETVAR requiring z to occur no more than
once in any context item 1s also required by Bledsoe. In both cases, a series of appli-
cations of other operations will often reduce the formula (Meta context in our case)
to this form. Second, Bledsoe’s procedure uses Skolemization to eliminate universal
quantifiers. Here, we retain the universal quantifiers as Dowek does and add the
appropriate provisos on variable occurrences (see Fig. 5). Third, note that in the
example above, as operations are applied, the binder of universal quantifications of
newly added existential variables is always the same or an extension of previous
ones. One consequence of keeping these binders from step to step during search is
that the notion of set variable must actually be extended to allow applications of
an existential variable to zero or more universally quantified variables. This more
general notion of set variable was easily incorporated into the SETVAR operation.
Fourth, Bledsoe’s procedure solves for maximal solutions across subformulas joined
by conjunction in much the same way we do, by taking the intersection of the maxi-
mal solutions for each individual conjunct. (Here, conjuncts must first be reduced as
in the example above so that each occurrence of a set variable occurs in a different
context item.) However, disjunction in the two procedures is handled differently.
Bledsoe’s procedure keeps track of a set of possible maximal solutions, one for each
disjunct. Here, the different solutions are spread across different search paths. A

11

context of the form I'y3h Ve, : Ay .. YV, Ap.(AV B), I can be reduced in least
two ways using BACKCHAIN to a context of either of the following two forms:

Iy3hy Vo Ay ...Vxn:An.A,F/ or I)3h2:V&i1:A; ...Vxn:An.B,F/.

This approach fits more naturally within the context of Dowek’s procedure. In addi-
tion, it simplifies bookkeeping tasks involved in keeping track of multiple solutions.
We say that valid Meta context I' has a derwation if applying the search oper-
ations leads to a success context. We extend the following result from Dowek [7] to
express soundness and completeness of the search procedure with SETVAR.

Theorem4. Let I be a CC context and P a term such that I') 3z : P is a valid Meta
context. If I')x: P has a derivation, then there exists a term h such that I' - h : P
1s derwvable in CC. Conversely, if there exists a term h such that ' = h : P is
derivable in CC, then I')3x: P has a derivation,

The converse follows directly since SETVAR only adds an operation. Soundness is
extended to our procedure by showing that SETVAR preserves derivability in CC.
We do not present the details of this proof. It involves a simple extension of several
lemmas in Dowek [7], mainly showing that the substitutions arising from SETVAR
are valid. The proof of the above theorem then follows directly.

5 Maximal Solutions for Set Variables

Definition 5. Let I" be a valid context and K, B terms such that K is a set type,
B is a set, and I' - B : K is derivable. Let I'" be a valid context of the form
I''3A:K,T'". Let ¢ be the substitution containing the single tuple (A, (), B). B is
a mazrimal solution for A in I'" if oI has a derivation and for any C such that the

following hold:

1. ' C: K is derivable.
2. ¢'I" has a derivation, where ¢’ is the substitution {{A, (}, C}}.
3. There is a term M such that I'+ M : B C (' 1s derivable.

then there is a term N such that I'F N : B =g (' is derivable.

Theorems 6-9 justify the maximal solutions given in Fig. 5, while Theorem 10
justifies taking the intersection of maximal solutions of different occurrences of a
set variable as done in SETVAR in Sect. 4. We do not give the details of the proofs
here. They are straightforward extensions of the proofs in Bledsoe [2].

Theorem 6. Let I' be a valid Meta contert such that I' has a dertvation. Let K be a
set type in I' such that K has the formVey: Ay .. Vo, : A, Prop for somen > 0. Let
P be a term such that P is closed in I', Pxy...xp, ts atomicin I, x1: Ay, ..., 20 Ay,
and I'F P : K is derivable. Then {{x1,...,2,) | Px1...20} is @ mazimal solution

for Ain I''AA K, 3h:Va Ay Ve, Ap (e .. ep) €A — Py iy,

12

Note that it is easy to extend this theorem so that the outermost universal quanti-
fiers in the type of h and A may contain additional quantified variables y1, ..., ym,
as long as the variables don’t occur free in P, and Ay ...y is viewed as a single
set variable. This more general form is the one actually used in SETVAR. Similar
generalizations can be made for all of the theorems below.

Theorem 7. Let I' be a valid Meta contert such that I' has a dertvation. Let K be a
set type in I' such that K has the form Ve : A, . Va; A; A4 — - — Ajpm —
Prop for some j > 0 and m > 0. For n > j, let P', f1,..., fm,Bj11,..., By be
closed terms such that the following are derivable

FI—P':Vxlel...Vx]:AJ.Vx]H:BH.l...Vxn:Bn.Prop
' fioVotAr oo Vet Ay Ve By oo Ve Br Ay fore=1,...,m

and P'zy...xy is atomic in Iyzq: Ar, ... 25t Aj 2j41 : Bjp1,..., &0 By, Then

Her, .oz, 21, 2m) | Ve 0 Bijpr .. Vo, @ Bposn =1 ficr...2p — -+ —
b , ;) :)

Zm =L fm®1 ... 2n — P2y .. .2y} is @ mazimal solution for B in

I3AB: K, 3h:{x1,..., 25, fig1...Tn, ..., mxl...xn>€B—>P/x1...xn.

Theorem 8. Let I be a valid Meta context such that I' has a derivation. Let K be
a set type in I' such that K has the form Yao1: A1 .. Va,: A, . Prop for some n > 0.
Let Q, My, ..., My, be terms such that the following are derivable.

I'E@Q: Prop
't M;:[Mi/z1,... Mi—1/zi—1]A; fori=1,...,n

Then {{x1,...,20) |21 = M1 — -+ — 2z, =1 My — Q} is a mazimal solution for
Adin I'IA K, Jh:(My,...,Mp) € A — Q@ and {{x1,...,25) | ~(x1 = M1 A A
tn =1 My)} is a mazimal solution for A in I')FA: K, Jh:—=((My,..., M,) € A).

Theorem 9. Let I' be a valid Meta context such that I' has a derwation. Let K
be a set type in I' such that K has the form VYxq,: Ay .. Va, : A,.Prop for some
n > 0. Let be a term and A a variable such that A only occurs positively in @,
I''AA:K F @ : Prop is derivable, and there is an h such that I'JA: K+ h : Q 1s
derivable. Then {{x1,...,2,) | T} is a mazimal solution for A in I''JA:K,3h:Q.

Theorem 10. Let I' be a valid Meta context such that I' has a derivation, and let
K be a set type in I'. Let P’ and Q' be terms such that I',3A: K+ P’ : Prop and
I''JA: K+ Q' : Prop are derivable, P’ has the form Yy, : By .. Yy, : By.P, and @'
has the form Yy, : By .. . Vy, : B,.Q, where ¢ > 0 and P and Q are atomic. If Ay s
a mazimal solution for A i I'’3A: K, 3h: P' and As is a mavimal solution for A
in I,AA:K,3h:Q’, then Ay N As is @ mazimal solution for A in

I3A K, 3h:Vy, : B1 .. Vyq: Be.(P A Q).

13

6 Conclusion

We have shown how to adapt Bledsoe’s method for generating maximal solutions
for set variables to the Calculus of Constructions. The procedure presented here can
be used to help direct an automated search procedure for CC to work efficiently on
the class of theorems involving existential quantification over sets. It can also be
used as a tactic within an interactive theorem prover to provide some automation
for this class of theorems.

We have adapted and generalized results from Bledsoe [2]. The basic rules and
combining rules for conjunction were adapted fairly directly, while the combining
rules for disjunction were handled in a distributed manner. The remaining rules
in Bledsoe [2] are quite specialized and involve substitution instances expressing a
function applied n times to # as f”(z). These rules should also be straightforward
to add to the procedure here, though their addition would require adding some
axioms to the context to express f” since it cannot be expressed directly in CC.
The procedure is structured in such a way that adding more rules for maximal
solutions is achieved by simply adding new search operations.

Future work will first include completing the implementation and installing it as
a tactic in a larger system such as Coq. We also plan to adapt other procedures for
automating the instantiation of set variables including the Z-match inference rule
in [1]. Tt would also be interesting to extend Bledsoe’s procedure directly by trans-
ferring our generalization carried out within the type theoretic setting back into the
higher-order logic setting. In addition, many other theorem proving techniques have
been developed for both higher-order logic and higher-order type theory that would
be interesting to investigate and adapt to aid proof search in the other domains.

Acknowledgements The author would like to thank the anonymous referees for valu-
able comments.

References

1. S. C. Bailin and D. Barker-Plummer. Z-match: An inference rule for incrementally
elaborating set instantiation. Journal of Automated Reasoning, 11(3):391-428, Dec.
1993.

2. W. W. Bledsoe. A maximal method for set variables in automatic theorem proving.
Machine Intelligence, 9:53-100, 1979.

3. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

4. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

5. T. Coquand and G. Huet. The calculus of constructions. Information and Computa-
tion, 76(2/3):95-120, February /March 1988.

6. C. Cornes, J. Courant, J.-C. Fillidtre, G. Huet, P. Manoury, C. Paulin-Mohring,
C. Munoz, C. Murthy, C. Parent, A. Saibi, and B. Werner. The Coq Proof Assistant
reference manual. Technical report, INRIA, 1995.

7. G. Dowek. Démonstration Automatique dans le Calcul des Constructions. PhD thesis,
L’Université Paris VII, Dec. 1991.

14

8. G. Dowek. A complete proof synthesis method for the cube of type systems. Journal
of Logic and Computation, 3(3):287-315, 1993.

9. A. Felty. Encoding the calculus of constructions in a higher-order logic. In Fighth
Annual Symposium on Logic in Computer Science, pages 233-244 June 1993.

10. M. J. C. Gordon and T. F. Melham. Introduction to HOL—A Theorem Proving En-
vironment for Higher Order Logic. Cambridge University Press, 1993.

11. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the ACM, 40(1):143-184, Jan. 1993.

12. W. A. Howard. The formulae-as-type notion of construction, 1969. In 7o H. B.
Curry: Fssays in Combinatory Logic, Lambda Calculus, and Formalism, pages 479—
490. Academic Press, 1980.

13. G. Huet. A uniform approach to type theory. In G. Huet, editor, Logical Foundations
of Functional Programming. Addison Wesley, 1990.

14. P. Martin-Lof. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes.
BIBLIOPOLIS, Napoli, 1984.

15. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

16. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Note in
Computer Science. Springer-Verlag, 1994.

A The Complete Search Procedure

In addition to SETVAR and BACKCHAIN in Sect. 4, the following are the remaining
search operations of the complete procedure discussed in Sect. 4. In describing these
operations, we write V&, : A,.K to denote the term Vz1: A4 ...Va, : A,. K. Similarly,
we write AT, : A,.K to denote the term Azq: A1 ... Az, A, K, and M, to denote

the term M ... M, . In all of these abbreviations, n > 0.

Definition11 SPLIT operation. Let I' be a valid Meta context and 3z : T a
candidate variable in I". T" has the form Vz, cAp.xM,,. Let s be Prop, Type, or
Extern. If I' = M, : s and there is a universal variable w: Q" as in BACKCHAIN,
then let Qq,...,Q,, @ and I} be as in BACKCHAIN. Choose a j such that j > 0. For
t=1,...,7, let s; be either Prop or Type. For : = 1,...,j, let A; be the following
context
dH;:Vz, :Zn.si, K, VT, ApVu: H.xn.s,
VT Ap. L = V0 Ap Yu: BT K Tpu, Jhgpi :VTn: Ap HiTr

where if ¢ = 1, then L is the term Q(h1T,)...(heT,), and if ¢ > 1, then L is the
term K;_1%n(hg1i—1%y). Let I be the context

VZ,: Ap K;Tn(hgsjTn) = VT, Ap.a My,
Apply the substitution (z, (I't, A1, ..., Aj, %), ATy : Ap w(hiTy) . . . (hgt;Tn)) to I

Definition12 PROD operation. Let I' be a valid Meta context and 3z : T a

candidate variablein I'. If T" has the form Vz,, : A,,.s where s is Type or Eztern, then
let s’ be Prop or Type, respectively. Apply the substitution (z, {}, AT, : A,.s") to I'.

15

Definition13 POLY operation. Let I" be a valid Meta context and 32:7" a candi-
date variable in [". If 7" has the form V&, : A,.s where s is Prop, Type, or Extern, then

let s’ be Prop or Type. Let A be the context 3h:VE, : A,.s', Ak VT, : A, Yu:hE,.s.
Apply the substitution (z, A, A%, : A, Vu:hZ, kT,u) to I

Note that SPLIT may apply infinitely many ways to the same context, while POLY
may create infinite paths.

16

