
Proof Search with Set Variable Instantiationin the Calculus of Constructions?Amy FeltyBell LaboratoriesLucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974, USAAmy.Felty@bell-labs.comAbstract. We show how a procedure developed by Bledsoe for automati-cally �nding substitution instances for set variables in higher-order logic canbe adapted to provide increased automation in proof search in the Calcu-lus of Constructions (CC). Bledsoe's procedure operates on an extension of�rst-order logic that allows existential quanti�cation over set variables. Themethod �nds maximal solutions for this special class of higher-order vari-ables. This class of variables can also be identi�ed in CC. The existence ofa correspondence between higher-order logic and higher-order type theoriessuch as CC is well-known. CC can be viewed as an extension of higher-orderlogic where the basic terms of the language, the simply-typed �-terms, arereplaced with terms containing dependent types. We adapt Bledsoe's proce-dure to the corresponding class of variables in CC and extend it to handleterms with dependent types.1 IntroductionBoth higher-order logic and higher-order type theories serve as the logical foun-dation of a variety of interactive tactic-style theorem provers. For example, bothHOL [10] and Isabelle [16] implement higher-order logic, while Coq [6] implementsthe Calculus of Constructions (CC) type theory [5] and Nuprl [4] implementsMartin-L�of type theory [14]. Much work has been carried out in both kinds of systems onbuilding tactics and automating proof search. However, little work has been doneon providing the means for exploiting proof search methods designed for one kindof system within the other. In this paper, we show how a particular proof searchprocedure designed for higher-order logic can be used to help automate the searchfor proofs in CC.In some cases, such as the second-order polymorphic �-calculus and second-order propositional logic, the correspondence between higher-order logic and higher-order type theories is exact and known as the Curry-Howard isomorphism [12].Although it is less direct for CC, one way to view the correspondence was shown inFelty [9]. Intuitively, a functional type P ! Q corresponds to an implication, whilea dependent type 8x : P:Q corresponds to universal quanti�cation. An important? To appear in Proceedings of the 13th International Conference on Automated Deduction,July 1996.



di�erence is that while in CC the type P can be an arbitrary CC type, in higher-order logic (e:g:, Church's simple theory of types [3]) P must be a simple type.Although CC types include the types of the simply-typed �-calculus, they alsoinclude much more.Formally establishing such correspondences provides a framework in which tostudy how theorem proving techniques designed for one kind of system can beapplied to proof search in the other. In this paper we show how the techniquesdescribed in Bledsoe [2] for the automatic discovery of substitutions for set variablescan be incorporated directly into the search procedure for CC given by Dowek [7, 8].In doing so, we both adapt these techniques to the type theoretic setting as well asextend them to handle the extra expressivity of dependent types. To incorporatedependent types, we consider not only single element membership such as t 2 A,but also sets of tuples ht1; : : : ; tni 2 A where for 1 � i < j � n, the type of tj maydepend on the type of ti.In Bledsoe [2], the procedure for �nding substitution instances is implementedwithin an automatic theorem prover for natural deduction in �rst-order logic, thusextending it to handle existential quanti�cation over a restricted set of second-ordervariables. The procedure has been successfully applied to obtain results in interme-diate analysis, topology, logic, and program veri�cation. To prove a theorem withset variables, the theorem prover makes two passes. The �rst �nds maximal solu-tions for these variables. Once instantiated with the solutions, the formula becomes�rst-order, and the built-in strategy for proving �rst-order formulas is used. If theformula is provable, maximal solutions for set variables will lead to a proof. However,maximal solutions may be given during the �rst pass even though the formula is notprovable. Thus the second pass is required. We take an example from Bledsoe [2] toillustrate maximal solutions. Consider the theoremP (a) � 9A(8x(x 2 A � P (x)) ^ 9y(y 2 A)):A maximal solution for A is a term B that when substituted for A results in aprovable formula, and such that for any other solution C, whenever B � C itmust be the case that C is the same as B. In this example, if we consider the twoconjuncts separately, the set fx j P (x)g is a maximal solution for A in the �rst,and the universal set is a solution for the second. Their intersection, fx j P (x)g,is a maximal solution for A in the formula as a whole. Note that there are oftennon-maximal solutions that result in provable formulas. In this case, for example, ;is a solution to the �rst conjunct. However, it is not a solution to the whole formula.Maximal solutions are more generally useful because solutions to subformulas areeasily combined to obtain solutions to the whole formula.Dowek's procedure for automatic proof search in CC is a complete procedure.It begins with the type representing the formula to be proved and attempts to�nd a term of that type representing a proof. However, although the procedure iscomplete, it is not e�cient in practice because of the complexity of CC. In particular,the number of search paths quickly becomes prohibitive for most theorems. In thepresence of assumptions with polymorphic types, for example, there may be in�nitebranching at many points during search. There are many ways to direct the searchby tuning it to a particular class of theorems. Dowek proposes one that is incompletebut makes several restrictions including the elimination of in�nite branching. This2



procedure is still complete for many interesting sublanguages of CC such as theLogical Framework [11] or higher-order hereditary Harrop (hohh) formulas, whichserve as the logical foundation for the �Prolog logic programming language [15].Completeness for full CC can be regained by applying the restricted proceduresuccessively, proving a new lemma at each step and adding it to the assumptionsbefore the next pass.Our work can be viewed as the tuning of Dowek's procedure to �nd proofsmore e�ciently for theorems in the class considered by Bledsoe, i:e:, theorems in anextension of �rst-order logic with existential quanti�cation over a certain class ofhigher-order variables. The procedure presented here does not eliminate any searchpaths, but instead adds some new ones that expand certain branches more quickly,in particular those that use maximal solutions for set variables. We can restrict thisprocedure to obtain a more practical procedure by eliminating some search paths ofthe original procedure as Dowek does, as well as by adding more �ne-tuned controlfor better handling of our class of theorems. For example, we are implementing aversion of Dowek's procedure that corresponds fairly directly to a one-pass versionof Bledsoe's procedure. We use a goal-directed tactic style framework where eachof the search primitives of the procedure is implemented as a tactic. These tacticscan be combined to obtain a procedure that can prove most of the examples inBledsoe [2] fully automatically. This specialized version could also be incorporatedinto Coq as a tactic, and used to automatically generate substitution instances whenapplied to goals of the appropriate form.In the next section, we present CC and an extension of it, called Meta, developedby Dowek [7] and used as the foundation for his search procedure. In Sect. 3, we showhow to map set theory into CC. We use the usual notion that a set is a predicate overelements of a particular type, or over other sets. We also de�ne maximal solutionsin our setting, which directly extend those in Bledsoe [2]. In Sect. 4, we present thesearch procedure, concentrating on our extensions to it. The complete procedureappears in Appendix A. Section 5 presents the theorems that justify the maximalsolutions used in the search procedure. These theorems are direct extensions of thetheorems in Bledsoe [2]. Finally, we conclude in Sect. 6.2 The Calculus of ConstructionsThe syntax of terms of the Calculus of Constructions (CC) is given by the followinggrammar. Type j Prop j x j PQ j �x :P:Q j 8x :P:QHere Type and Prop are constants, x is a syntactic variable ranging over variables,and P and Q are syntactic variables ranging over terms. We assume a denumerableset of CC variables. The variable x is bound in the expressions �x :P:Q and 8x :P:Q.The former binding operator corresponds to the usual notion of �-abstraction, whilethe latter corresponds to abstraction in dependent types. We write P ! Q for8x :P:Q when x does not occur in Q. In both kinds of bindings, we often leave o�the type P when it can be easily inferred. A context is a set of pairs of the formx :P where x is a variable and P a term.3



Terms that di�er only in the names of bound variables are identi�ed. If x isa variable and P is a term then [P=x] denotes the operation of substituting Pfor all free occurrences of x, systematically changing bound variables in order toavoid variable capture. The expression [P1=x1; : : : ; Pn=xn] denotes the simultaneoussubstitution of the terms P1; : : : ; Pn for distinct variables x1; : : : ; xn, respectively.The relation of convertibility up to �; �; and � is written as =�� .The rules of CC are given in Fig. 1. In these rules, s, s1, and s2, are either Typeor Prop. In (INTRO), (PROD), and (ABS), we assume that the variable x does notalready occur as the left hand side of a context item in � . We say that � is a validcontext if there is a tree built using the rules of Fig. 1 such that ` � context occursat the root. We say that � ` P : Q is derivable in CC if � is a valid context and thisjudgment occurs at the root of a tree built using the rules of Fig. 1. In this case, wealso say that P has type Q or is of type Q in � , and that Q is the type of P in � .In addition, sometimes we simply write � ` P : Q to indicate that this judgment isderivable. It will be clear from context when this is the case.` hi context (EMPTY-CTX) ` � context � ` P : s (INTRO)` �; x :P context� ` Prop : Type (PROP-TYPE) x :P 2 � (INIT)� ` x : P� ` P : s1 �; x :P ` Q : s2 (PROD)� ` 8x :P:Q : s2� ` 8x :R:Q : s �; x :R ` P : Q (ABS)� ` �x :R:P : 8x :R:Q� ` P1 : 8x :Q1:Q2 � ` P2 : Q1 (APP)� ` P1P2 : [P2=x]Q2� ` Q : s � ` Q0 : s � ` P : Q Q =�� Q0 (CONV)� ` P : Q0Fig. 1. CC Typing RulesThe search procedure in Sect. 4 operates on valid contexts in the slightly ex-tended language called Meta [7]. The terms of Meta include all the terms of CC plusthe additional constant Extern. Contexts in Meta also include existential quanti�-cation of the form 9x :P and equations between terms, written P = Q. The Metatyping rules include all those for CC plus the additional rules in Fig. 2. In addition,in the rules of Fig. 1, s2 in (PROD) can be Extern, and s in (INTRO), (Q-INTRO),and (ABS) can also be Extern. Finally =�� in (CONV) is replaced by =��� whichdenotes equality modulo ��-conversion plus the equations in � . In the rest of thispaper, by context we mean Meta context unless otherwise stated.Given a context � , a variable x is universal in � if there is a Q such that4



` � context � ` P : s (Q-INTRO)` �; 9x :P context � ` P : Q � ` P 0 : Q (EQ-INTRO)` �;P = P 0 context� ` Type : Extern (TYPE-EXTERN) 9x :P 2 � (Q-INIT)� ` x : PFig. 2. Additional Typing Rules for Metax :Q 2 � . The variable x is existential in � if 9x :Q 2 � . A term P is closed in �if every variable x occurring free in P is universal in � , and the type of x is closedin � .We say that a term P is atomic in context � if there is a Q such that � ` P : Qis derivable and there are terms M1; : : : ;Mn, n � 0 such that P =�� xM1 : : :Mn.If x is universal in � , we say that P is rigid. Otherwise, x is existential in � and wesay that P is 
exible. We say that K is a base type in � if � ` K : Type is derivableand K is atomic in � .2We equate terms on the right of a colon up to ��-convertibility. For example,we will often say \if term P has the form Q" to mean that P is ��-convertible toa term of the form Q. This convention is justi�ed by rule (CONV).3 Set Theory in the Calculus of ConstructionsIt is shown in Huet [13] that higher-order logic is contained within CC (and thus alsoin Meta). Terms are introduced that encode the connectives and it is shown that thecorresponding natural deduction inference rules are provable in CC. Here, we usethe abbreviations for the connectives, which are given in Fig. 3. For example, whenwe write the term (9 T �x :T:A), it represents the Meta term 8C :Prop:((8x :T:A!C) ! C), and encodes the formula 9Tx:A where 9T is the existential quanti�er attype T in higher-order logic. For readability, we will use in�x notation for the binaryconnectives. As mentioned, implication and universal quanti�cation are built intoCC directly. Note that equality is Leibniz equality.In set theory, from the fact that a 2 fx : P (x)g, it is possible to immediatelydeduce P (a). In our encoding in Meta, we build in this correspondence directly andde�ne sets to be predicates of a certain class of types.De�nition1. Term K is a set type in context � if � ` K : Type is derivable andK has the form 8x1 :A1 : : :8xn :An:Prop, where n > 0 and for i = 1; : : : ; n, Ai is abase type or set type in �; x1 :A1; : : : ; xi�1 :Ai�1. Term A is a set in context � if� ` A : K and K is a set type in � .2 It is possible to include K such that � ` K : Prop is derivable in the set of base typeswithout any complication to the results in this paper. For ease of exposition, we choosenot to. 5



^ := �A;B :Prop:8C :Prop:((A! B ! C)! C)_ := �A;B :Prop:8C :Prop:((A! C)! (B ! C)! C)9 := �T :Type:�P :T ! Prop:8C :Prop:((8x :T:Px! C)! C)? := 8C :Prop:C> := 8C :Prop:C ! C: := �A :Prop:A! ?=L := �T :Prop:�M;N :T:8P :T ! Prop:PM ! PNFig. 3. CC Encoding of the Connectives of Higher-Order LogicTo illustrate, let � be the context Nat : Type; 0 : Nat; s : Nat ! Nat. Note thatNat! Prop, (Nat! Prop) ! Prop, ((Nat ! Prop) ! Prop) ! Prop, etc: are allset types. Thus predicates over type Nat, predicates over sets of type Nat, predicatesover sets of sets of type Nat, etc: are all sets. Figure 4 contains the abbreviationsthat we adopt for sets and set operations. The �rst abbreviation will always be usedin a context where the types of x1; : : : ; xn are known to be A1; : : : ; An, respectively.We write =S for set equality.fhx1; : : : ; xni j Ag := �x1 :A1 : : : �xn :An:AhM1; : : : ;Mni 2 B := (BM1 : : :Mn); := �x1 :A1 : : : �xn :An:?B � C := �x1 :A1 : : : �xn :An:Bx1 : : : xn ! Cx1 : : : xnB [C := �x1 :A1 : : : �xn :An:(Bx1 : : : xn _Cx1 : : : xn)B \C := �x1 :A1 : : : �xn :An:(Bx1 : : : xn ^Cx1 : : : xn)B =S C := (B � C) ^ (C � B)Provisos: �x1 :A1 : : : �xn :An:A, B, and C are sets in some context ��; x1 :A1; : : : ; xn :An ` A : Prop� ` B : 8x1 :A1 : : :8xn :An:Prop� ` C : 8x1 :A1 : : :8xn :An:Prop� `Mi : [M1=x1; : : : ;Mi�1=xi�1]Ai for i = 1; : : : ; nFig. 4. CC Encoding of SetsReturning to the example given in Sect. 1, we illustrate its proof within theframework of CC. Let � be the CC context Nat : Type; P : Nat ! Prop; a : Nat.Proving the theorem from Sect. 1 in higher-order logic corresponds to �nding a CCterm M such that the following judgment is derivable.� `M : Pa! (9 (Nat! Prop) �A:((8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A)))Expanding the �rst 9 and applying (ABS) three times in the backward direction, weget the following judgment as the rightmost premise. (We ignore the left premise of6



each application. These are easily proved.)�; h1 :Pa; C :Prop;h2 :8A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A))! C`M 0 : CHere, M 0 is a new term such that M is equal to �h1:�C:�h2:M 0. Let � 0 be the con-text in the above judgment containing �; h1; C; and h2. The proof can be completedusing two applications of (APP) from h2, setting M 0 to h2AM 00, where A and M 00are terms that must be �lled in by proving the following two judgments.� 0 ` A : Nat! Prop� 0 `M 00 : (8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A)As in Sect. 1, we take A to be fx j Pxg, which by de�nition is just �x : Nat:Pxwhich is �-equivalent to P . The �rst judgment is directly provable, and the secondbecomes � 0 `M 00 : (8x :Nat:hxi 2 P ! Px) ^ (9 Nat �y:hyi 2 P )which, after expanding de�nitions, is also directly provable.A term A is said to occur positively in a term x, PQ, or �x : P:Q if A occursin any of these terms. Term A occurs positively (negatively) in 8x :P:Q or P ! Qif A occurs positively (negatively) in Q or negatively (positively) in P . Figure 5shows maximal solutions for variable A or B in various subformulas. All of thesesubformulas are assumed to occur positively in the theorem to be proved. A isassumed to occur only in the form hM1; : : : ;Mni 2 A, and similarly for B. Theseare the solutions considered by Bledsoe that are handled by our version of Dowek'sprocedure. As stated, our solutions are generalizations of Bledsoe's solutions in thatthey allow tuples instead of singleton members of sets and dependencies may occurin the types of the tuples.We will use these rules directly in the procedure in the next section. They arejusti�ed to some degree by the theorems in Sect. 5. The �rst rule is the one that wasused to determine the solution of the �rst conjunct of the example above. Althoughthe second rule looks complicated, it is just the dependent-type version of solvingfor fx 2 B ! P 0(x) obtaining maximal solution fz j 8x(z = fx ! P 0(x))g: In theCC version, the types of the last m arguments of the tuple can depend on the typesof the �rst j arguments but not on the types of each other. The remaining rules arefairly straightforward.4 Proof Search with Set Variable InstantiationDowek's search procedure can be described as a set of search operations that trans-form one Meta context to another, ending when one with no existential variablesor unsolved equations is reached. Our extension adds one new operation, calledSETVAR, which instantiates set variables with maximal solutions. A search path iselaborated by starting with a context, non-deterministically choosing one operationthat applies, and repeating until no more operations apply. For a complete proce-dure, control must be added in such a way that all branches get explored. Simple7



Subformula Solution for A or B1: hx1; : : : ; xni 2 A! Px1 : : : xn �! fhx1; : : : ; xni j Px1 : : : xng2: hx1; : : : ; xj; f1x1 : : : xn; : : : ; fmx1 : : : xni 2 B ! P 0x1 : : : xn�! fhx1; : : : ; xj; z1; : : : ; zmi j8xj+1 :Bj+1 : : :8xn :Bn:z1 =L f1x1 : : : xn! � � � ! zm =L fmx1 : : : xn ! P 0x1 : : : xng3: hM1; : : : ;Mni 2 A! Q �! fhx1; : : : ; xni j x1 =L M1 ! � � � ! xn =L Mn ! Qg4: :(hM1; : : : ;Mni 2 A) �! fhx1; : : : ; xni j :(x1 =L M1 ^ � � � ^ xn =L Mn)g5: Q (hM1; : : : ;Mni 2 A occurs positively or not at all) �! fhx1; : : : ; xni j >g6: If 1-4 yield fhy1; : : : ; yqi j Q0y1 : : : yqg, and s is a free variable of type T in Q0�! fhy1; : : : ; yqi j (9 T �s:Q0y1 : : : yq)gProvisos: A and B are sets in some context � .A;B; x1; : : : ; xn; z1; : : : ; zm do not occur free in P;P 0;Q; f1; : : : ; fm;M1; : : : ;Mn.x1; : : : ; xn; s do not occur elsewhere in the surrounding formula or context.x1; : : : ; xn are either bound by universal quanti�cation or are universal in thesurrounding context.� ` A : 8x1 :A1 : : :8xn :An:Prop� ` B : 8x1 :A1 : : :8xj :Aj:Aj+1 ! � � � ! Aj+m ! Prop� ` P : 8x1 :A1 : : :8xn :An:Prop� ` P 0 : 8x1 :A1 : : :8xj :Aj:8xj+1 :Bj+1 : : :8xn :Bn:Prop� ` Q : Prop� ` fi : 8x1 :A1 : : :8xj :Aj:8xj+1 :Bj+1 : : :8xn :Bn:Aj+i for i = 1; : : : ;m� `Mi : [M1=x1; : : : ;Mi�1=xi�1]Ai for i = 1; : : : ; nFig. 5. Maximal Solutions for Various Subformulasbreadth-�rst search is not enough since some nodes have in�nitely many branches.Although such control can be added, we do not discuss the details here. For ourextension to be e�ective, SETVAR must be given priority in the presence of contextscontaining set variables.In this section, we present only the SETVAR operation and the BACKCHAINoperation, which corresponds to the usual notion of backchaining in theorem provingor logic programming.The remaining operations of the complete procedure are givenin Appendix A.Search begins with a valid Meta context, usually of the form �; 9h :Q where �contains only universally quanti�ed variables, Q is the theorem to be proved, and his the variable to be instantiated with a proof, if there is one. Set variables usuallyarise from existential quanti�cation over variables in Q having set types. Via thestep by step application of operations, existential quanti�ers result in the additionof new existential variables to the context, which may eventually get instantiatedwith closed terms representing sets.Several concepts from Dowek [7] are needed for the presentation of the opera-tions, including the notion of context substitution. Let � be a set of tuples of the8



form hx;�;M i where x is a variable, � is a context containing only existentialvariables and equations, and M is a term. The set � is a substitution if for anyvariable x, there is at most one tuple in � with x as its �rst component. Let � bea context. Then � is a valid substitution in � if for every tuple hx;�;M i in �, thecontext �;� is valid and M and x have the same type in � . Such substitutionswill be applied to both contexts and terms. To apply a substitution � to a termM , denoted �M , we consider the set of pairs obtained from � by ignoring the mid-dle argument. Substitution is then the usual notion of replacing variables with thecorresponding terms renaming bound variables when necessary to avoid variablecapture. The application of substitution � to a context � , denoted �� , is de�nedrecursively as follows.{ If � is hi, �� is hi.{ If � is � 0; x :T , then �� is �� 0; x :�T .{ If � is � 0; 9x :T , then if there is a tuple hx;�;M i in �, �� is �� 0;�. Otherwise,�� is �� 0; 9x :�T .{ If � is � 0;M = N , then �� is �� 0; �M = �N .A valid context � is a success context if it contains no existential variables andall its equations relate ��-convertible terms. A valid context � is a failure contextif it contains an equation that relates two terms that have no free occurrences ofexistential variables and that are not ��-convertible. Let � be a valid Meta context.A candidate variable is an existential variable 9z :T such that T has the form 8x1 :A1 : : :8xn :An:xM1 : : :Mm where n;m � 0 and x is rigid in �; x1 :A1; : : : ; xn :An:It is shown in Dowek [7] that during search at least one such existential variablealways exists, and that if no rule applies to any such existential variable in � , then� is a success or failure context.De�nition2 SETVAR operation. Let � be a valid Meta context and 9z : T acandidate variable in � . In order for this operation to apply, T must have the form8x1 :A1 : : :8xn :An:Prop, where for some r such that 0 < r � n 8xr :Ar : : :8xn :An:Prop is a set type. Also, z must occur no more than once in the type of anyuniversal or existential variable in � , must only occur in closed types with outermostuniversal quanti�ers 8x1 :A1 : : :8xr�1 :Ar�1, and must always occur in the formhNr ; : : : ; Nni 2 zx1 : : :xr�1. Let P1; : : : ; Pq be the terms in � in which z appears.For k = 1; : : : ; q, one of 1, 2, 3, or 4 below must hold:1. All of the following hold:(a) Pi has the form 8y1 :Q1 : : :8yk :Qk:P 0i where k � n and P 0i is atomic.(b) For i = r; : : : ; n, there is a j such that 1 � j � k and yj is xi and Qj is Ai.(c) For j = 1; : : : ; k, if there is no i, such that r � i � n and yj is xi, then yjdoes not appear free in P 0i .and one of the following holds:(a) P 0i has the form of subformula 1 in Fig. 5 such that the appropriate provisoshold. Then P 0i is hxr; : : : ; xni 2 zx1 : : :xr�1 ! Pxr : : :xn.(b) P 0i has the form of subformula 2 in Fig. 5 such that the appropriate provisoshold. Then P 0i is hxr; : : : ; xj; f1xr : : :xp; : : : ; fmxr : : : xpi 2 zx1 : : :xr�1 !P 0xr : : : xp. 9



2. P 0i has the form of subformula 3 in Fig. 5 such that the appropriate provisoshold. Then P 0i is hNr ; : : : ; Nni 2 zx1 : : :xr�1 ! Q.3. P 0i has the form of subformula 4 in Fig. 5 such that the appropriate provisoshold. Then P 0i is :(hNr ; : : : ; Nni 2 zx1 : : :xr�1).4. Variable z occurs positively in Pi.Then for i = 1; : : : ; q, view zx1 : : : xr�1 as a single set variable and let Qi be thesolution for zx1 : : : xr�1 in P 0i according to rules 1-5 of Fig. 5. If appropriate, applyrule 6 of the �gure as many times as possible to Qi to obtain Q0i. Let Q be the termQ01\� � �\Q0q. Let � be the singleton set containing the tuple hz; hi; �x1 :A1 : : :�xr�1 :Ar�1:Qi. SETVAR is the operation that replaces � with �� .De�nition3 BACKCHAIN operation. Let � be a valid Meta context and 9z :Ta candidate variable in � . T has the form 8x1 :A1 : : :8xn :An:xM1 : : :Mm wheren;m � 0 and x is rigid in �; x1 : A1; : : : ; xn : An: If there is a universal variablew : Q0 to the left of z in � or in x1 : A1; : : : ; xn : An, such that Q0 has the form8y1 :Q01 : : :8yq :Q0q:yN1 : : :Np and y is x or any existential variable in � , then wecan \backchain on" Q0 as follows. De�neQ1 := Q01; Q2 := �y1 :Q01:Q02; : : : ; Qq := �y1 :Q01 : : : �yq�1 :Q0q�1:Q0qQ := �y1 :Q01 : : : �yq :Q0q:yN1 : : :Np:�; x1 :A1; : : : ; xn :An ` w : 8y1 :Q1:8y2 : (Q2y1) : : :8yq : (Qqy1 : : : yq�1):Qy1 : : : yqis thus derivable. Let �1 be the context9h1 :8x1 :A1 : : :8xn :An:Q1;9h2 :8x1 :A1 : : :8xn :An:Q2(h1x1 : : : xn); : : : ;9hq :8x1 :A1 : : :8xn :An:Qq(h1x1 : : : xn) : : : (hq�1x1 : : : xn)and �2 the context containing the equation8x1 :A1 : : :8xn :An:Q(h1x1 : : : xn) : : : (hqx1 : : : xn) = 8x1 :A1 : : :8xn :An:xM1 : : :Mm:Let � be fhz; (�1; �2); �x1 : A1 : : :�xn : An:w(h1x1 : : :xn) : : : (hqx1 : : :xn)ig: TheBACKCHAIN operation replaces � with �� .The q existential variables in � 0 are the subgoals obtained by backchaining. Notethat here, backchain takes place \under" a binder of universal quanti�ers.The SETVAR and BACKCHAIN are su�cient for proving the example given inSect. 1 as well as most of the examples in Bledsoe [2]. To illustrate, we return againto our example. Again, let � be the context Nat :Type; P :Nat ! Prop; a :Nat. Webegin with the following Meta context.�; 9M :Pa! (9 (Nat! Prop) �A:((8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A)))Expanding the �rst 9, we get�; 9M :Pa! 8C :Prop:(8A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A))! C)! C:The only candidate variable is M . BACKCHAIN is applied with Q0 as8A :Nat! Prop:((8x :Nat:hxi 2 A! Px) ^ (9 Nat �y:hyi 2 A))! C10



and � 0 as 9A0 :Pa! 8C :Prop:Q0 ! Nat! Prop;9M 0 :8h1 :Pa:8C :Prop:8h2 :Q0:((8x :Nat:hxi 2 A0h1Ch2 ! Px) ^ (9 Nat �y:hyi 2 A0h1Ch2))resulting in the substitution with the single tuplehM;� 0; �h1 :Pa:�C :Prop:�h2 :Q0:h2(A0h1Ch2)(M 0h1Ch2)i:(We leave out the equations in � 0 since they equate closed equivalent terms.) Ap-plying this substitution, we obtain �; � 0. We cannot yet apply SETVAR becausethe type of M 0 has two occurrences of A0h1Ch2. Although we do not give the de-tails, after expanding ^ , BACKCHAIN with z as M 0 can be applied to obtain thefollowing context where Q00 is (8x :Nat:hxi 2 A0h1Ch2 ! Px) ! (9 Nat �y:hyi 2A0h1Ch2) ! C 0.�;9A0 :Pa! 8C :Prop:Q0 ! Nat! Prop;9M1 :8h1 :Pa:8C :Prop:8h2 :Q0:8C 0 :Prop:Q00 ! (8x :Nat:hxi 2 A0h1Ch2 ! Px);9M2 :8h1 :Pa:8C :Prop:8h2 :Q0:8C 0 :Prop:Q00 ! (9 Nat �y:hyi 2 A0h1Ch2)It is now possible to apply SETVAR with the type ofM1 above as P1 in the de�nitionof SETVAR, and the type ofM2 as P2. Clause 1 of SETVAR holds for P1 while clause4 holds for P2. Applying the rules of Fig. 5, we get Q01 := �h1 :Pa:�C :Prop:�h2 :Q0:fhxi j Pxg and Q02 := �h1 : Pa:�C : Prop:�h2 : Q0:fhxi j >g. We obtain thesubstitution hA0; hi; �h1 :Pa:�C :Prop:�h2 :Q0:Q01\Q02i. The resulting context aftersubstitution is�; 9M1 :Pa! 8C :Prop:Q0 ! 8C 0 :Prop:Q00 ! (8x :Nat:hxi 2 Q01 \Q02 ! Px);9M2 :Pa! 8C :Prop:Q0 ! 8C 0 :Prop:Q00 ! (9 Nat �y:hyi 2 Q01 \Q02)which is easily transformed to a success context via several applications of BACK-CHAIN.Several similarities and di�erences between Bledsoe's procedure and ours areworth noting. First, the restriction in SETVAR requiring z to occur no more thanonce in any context item is also required by Bledsoe. In both cases, a series of appli-cations of other operations will often reduce the formula (Meta context in our case)to this form. Second, Bledsoe's procedure uses Skolemization to eliminate universalquanti�ers. Here, we retain the universal quanti�ers as Dowek does and add theappropriate provisos on variable occurrences (see Fig. 5). Third, note that in theexample above, as operations are applied, the binder of universal quanti�cations ofnewly added existential variables is always the same or an extension of previousones. One consequence of keeping these binders from step to step during search isthat the notion of set variable must actually be extended to allow applications ofan existential variable to zero or more universally quanti�ed variables. This moregeneral notion of set variable was easily incorporated into the SETVAR operation.Fourth, Bledsoe's procedure solves for maximal solutions across subformulas joinedby conjunction in much the same way we do, by taking the intersection of the maxi-mal solutions for each individual conjunct. (Here, conjuncts must �rst be reduced asin the example above so that each occurrence of a set variable occurs in a di�erentcontext item.) However, disjunction in the two procedures is handled di�erently.Bledsoe's procedure keeps track of a set of possible maximal solutions, one for eachdisjunct. Here, the di�erent solutions are spread across di�erent search paths. A11



context of the form �; 9h : 8x1 :A1 : : :8xn :An:(A _ B); � 0 can be reduced in leasttwo ways using BACKCHAIN to a context of either of the following two forms:�; 9h1 :8x1 :A1 : : :8xn :An:A;� 0 or �; 9h2 :8x1 :A1 : : :8xn :An:B;� 0:This approach �ts more naturally within the context of Dowek's procedure. In addi-tion, it simpli�es bookkeeping tasks involved in keeping track of multiple solutions.We say that valid Meta context � has a derivation if applying the search oper-ations leads to a success context. We extend the following result from Dowek [7] toexpress soundness and completeness of the search procedure with SETVAR.Theorem4. Let � be a CC context and P a term such that �; 9x :P is a valid Metacontext. If �; 9x :P has a derivation, then there exists a term h such that � ` h : Pis derivable in CC. Conversely, if there exists a term h such that � ` h : P isderivable in CC, then �; 9x :P has a derivation,The converse follows directly since SETVAR only adds an operation. Soundness isextended to our procedure by showing that SETVAR preserves derivability in CC.We do not present the details of this proof. It involves a simple extension of severallemmas in Dowek [7], mainly showing that the substitutions arising from SETVARare valid. The proof of the above theorem then follows directly.5 Maximal Solutions for Set VariablesDe�nition5. Let � be a valid context and K;B terms such that K is a set type,B is a set, and � ` B : K is derivable. Let � 0 be a valid context of the form�; 9A :K;� 00. Let � be the substitution containing the single tuple hA; hi; Bi. B isa maximal solution for A in � 0 if �� 0 has a derivation and for any C such that thefollowing hold:1. � ` C : K is derivable.2. �0� 0 has a derivation, where �0 is the substitution fhA; hi; Cig.3. There is a term M such that � ` M : B � C is derivable.then there is a term N such that � ` N : B =S C is derivable.Theorems 6-9 justify the maximal solutions given in Fig. 5, while Theorem 10justi�es taking the intersection of maximal solutions of di�erent occurrences of aset variable as done in SETVAR in Sect. 4. We do not give the details of the proofshere. They are straightforward extensions of the proofs in Bledsoe [2].Theorem6. Let � be a valid Meta context such that � has a derivation. Let K be aset type in � such that K has the form 8x1 :A1 : : :8xn :An:Prop for some n > 0. LetP be a term such that P is closed in � , Px1 : : :xn is atomic in �; x1 :A1; : : : ; xn :An,and � ` P : K is derivable. Then fhx1; : : : ; xni j Px1 : : :xng is a maximal solutionfor A in �; 9A :K; 9h :8x1:A1 : : :8xn :An:hx1 : : : xni 2 A! Px1 : : : xn:12



Note that it is easy to extend this theorem so that the outermost universal quanti-�ers in the type of h and A may contain additional quanti�ed variables y1; : : : ; ym,as long as the variables don't occur free in P , and Ay1 : : : ym is viewed as a singleset variable. This more general form is the one actually used in SETVAR. Similargeneralizations can be made for all of the theorems below.Theorem7. Let � be a valid Meta context such that � has a derivation. Let K be aset type in � such that K has the form 8x1 :A1 : : :8xj :Aj:Aj+1 ! � � � ! Aj+m !Prop for some j � 0 and m > 0. For n � j, let P 0; f1; : : : ; fm; Bj+1; : : : ; Bn beclosed terms such that the following are derivable� ` P 0 : 8x1 :A1 : : :8xj :Aj:8xj+1 :Bj+1 : : :8xn :Bn:Prop� ` fi : 8x1 :A1 : : :8xj :Aj:8xj+1 :Bj+1 : : :8xn :Bn:Aj+i for i = 1; : : : ;mand P 0x1 : : : xn is atomic in �; x1 : A1; : : : ; xj : Aj ; xj+1 : Bj+1; : : : ; xn : Bn. Thenfhx1; : : : ; xj; z1; : : : ; zmi j 8xj+1 : Bj+1 : : :8xn : Bn:z1 =L f1x1 : : :xn ! � � � !zm =L fmx1 : : : xn ! P 0x1 : : :xng is a maximal solution for B in�;9B :K;9h :hx1; : : : ; xj; f1x1 : : : xn; : : : ; fmx1 : : : xni 2 B ! P 0x1 : : : xn:Theorem8. Let � be a valid Meta context such that � has a derivation. Let K bea set type in � such that K has the form 8x1 :A1 : : :8xn :An:Prop for some n > 0.Let Q;M1; : : : ;Mn be terms such that the following are derivable.� ` Q : Prop� ` Mi : [M1=x1; : : :Mi�1=xi�1]Ai for i = 1; : : : ; nThen fhx1; : : : ; xni j x1 =L M1 ! � � � ! xn =L Mn ! Qg is a maximal solution forA in �; 9A :K; 9h : hM1; : : : ;Mni 2 A! Q and fhx1; : : : ; xni j :(x1 =L M1 ^ � � � ^xn =L Mn)g is a maximal solution for A in �; 9A :K; 9h ::(hM1; : : : ;Mni 2 A):Theorem9. Let � be a valid Meta context such that � has a derivation. Let Kbe a set type in � such that K has the form 8x1 : A1 : : :8xn : An:Prop for somen > 0. Let Q be a term and A a variable such that A only occurs positively in Q,�; 9A :K ` Q : Prop is derivable, and there is an h such that �; 9A :K ` h : Q isderivable. Then fhx1; : : : ; xni j >g is a maximal solution for A in �; 9A :K; 9h :Q.Theorem10. Let � be a valid Meta context such that � has a derivation, and letK be a set type in � . Let P 0 and Q0 be terms such that �; 9A :K ` P 0 : Prop and�; 9A :K ` Q0 : Prop are derivable, P 0 has the form 8y1 :B1 : : :8yq :Bq:P , and Q0has the form 8y1 :B1 : : :8yq :Bq:Q, where q � 0 and P and Q are atomic. If A1 isa maximal solution for A in �; 9A :K; 9h :P 0 and A2 is a maximal solution for Ain �; 9A :K; 9h :Q0, then A1 \A2 is a maximal solution for A in�; 9A :K;9h :8y1 :B1 : : :8yq :Bq :(P ^Q):13



6 ConclusionWe have shown how to adapt Bledsoe's method for generating maximal solutionsfor set variables to the Calculus of Constructions. The procedure presented here canbe used to help direct an automated search procedure for CC to work e�ciently onthe class of theorems involving existential quanti�cation over sets. It can also beused as a tactic within an interactive theorem prover to provide some automationfor this class of theorems.We have adapted and generalized results from Bledsoe [2]. The basic rules andcombining rules for conjunction were adapted fairly directly, while the combiningrules for disjunction were handled in a distributed manner. The remaining rulesin Bledsoe [2] are quite specialized and involve substitution instances expressing afunction applied n times to x as fn(x). These rules should also be straightforwardto add to the procedure here, though their addition would require adding someaxioms to the context to express fn since it cannot be expressed directly in CC.The procedure is structured in such a way that adding more rules for maximalsolutions is achieved by simply adding new search operations.Future work will �rst include completing the implementation and installing it asa tactic in a larger system such as Coq. We also plan to adapt other procedures forautomating the instantiation of set variables including the Z-match inference rulein [1]. It would also be interesting to extend Bledsoe's procedure directly by trans-ferring our generalization carried out within the type theoretic setting back into thehigher-order logic setting. In addition, many other theorem proving techniques havebeen developed for both higher-order logic and higher-order type theory that wouldbe interesting to investigate and adapt to aid proof search in the other domains.Acknowledgements The author would like to thank the anonymous referees for valu-able comments.References1. S. C. Bailin and D. Barker-Plummer. Z-match: An inference rule for incrementallyelaborating set instantiation. Journal of Automated Reasoning, 11(3):391{428, Dec.1993.2. W. W. Bledsoe. A maximal method for set variables in automatic theorem proving.Machine Intelligence, 9:53{100, 1979.3. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,5:56{68, 1940.4. R. L. Constable et al. Implementing Mathematics with the Nuprl Proof DevelopmentSystem. Prentice-Hall, 1986.5. T. Coquand and G. Huet. The calculus of constructions. Information and Computa-tion, 76(2/3):95{120, February/March 1988.6. C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-Mohring,C. Mu~noz, C. Murthy, C. Parent, A. Sa��bi, and B. Werner. The Coq Proof Assistantreference manual. Technical report, INRIA, 1995.7. G. Dowek. D�emonstration Automatique dans le Calcul des Constructions. PhD thesis,L'Universit�e Paris VII, Dec. 1991. 14



8. G. Dowek. A complete proof synthesis method for the cube of type systems. Journalof Logic and Computation, 3(3):287{315, 1993.9. A. Felty. Encoding the calculus of constructions in a higher-order logic. In EighthAnnual Symposium on Logic in Computer Science, pages 233{244, June 1993.10. M. J. C. Gordon and T. F. Melham. Introduction to HOL|A Theorem Proving En-vironment for Higher Order Logic. Cambridge University Press, 1993.11. R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal ofthe ACM, 40(1):143{184, Jan. 1993.12. W. A. Howard. The formulae-as-type notion of construction, 1969. In To H. B.Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 479{490. Academic Press, 1980.13. G. Huet. A uniform approach to type theory. In G. Huet, editor, Logical Foundationsof Functional Programming. Addison Wesley, 1990.14. P. Martin-L�of. Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes.BIBLIOPOLIS, Napoli, 1984.15. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundationfor logic programming. Annals of Pure and Applied Logic, 51:125{157, 1991.16. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Note inComputer Science. Springer-Verlag, 1994.A The Complete Search ProcedureIn addition to SETVAR and BACKCHAIN in Sect. 4, the following are the remainingsearch operations of the complete procedure discussed in Sect. 4. In describing theseoperations, we write 8xn :An:K to denote the term 8x1 :A1 : : :8xn :An:K. Similarly,we write �xn :An:K to denote the term �x1 :A1 : : :�xn :An:K, and xMn to denotethe term xM1 : : :Mn. In all of these abbreviations, n � 0.De�nition11 SPLIT operation. Let � be a valid Meta context and 9z : T acandidate variable in � . T has the form 8xn : An:xMm. Let s be Prop, Type, orExtern. If � ` xMm : s and there is a universal variable w :Q0 as in BACKCHAIN,then let Q1; : : : ; Qq; Q and �1 be as in BACKCHAIN. Choose a j such that j > 0. Fori = 1; : : : ; j, let si be either Prop or Type. For i = 1; : : : ; j, let �i be the followingcontext 9Hi :8xn :An:si; 9Ki :8xn :An:8u :Hixn:s;8xn :An:L = 8xn :An:8u :Hixn:Kixnu; 9hq+i :8xn :An:Hixnwhere if i = 1, then L is the term Q(h1xn) : : : (hqxn), and if i > 1, then L is theterm Ki�1xn(hq+i�1xn). Let �2 be the context8xn :An:Kjxn(hq+jxn) = 8xn :An:xMm:Apply the substitution hz; (�1;�1; : : : ;�j; �2); �xn :An:w(h1xn) : : : (hq+jxn)i to � .De�nition12 PROD operation. Let � be a valid Meta context and 9z : T acandidate variable in � . If T has the form 8xn :An:s where s is Type or Extern, thenlet s0 be Prop or Type, respectively. Apply the substitution hz; hi; �xn :An:s0i to � .15



De�nition13 POLY operation. Let � be a valid Meta context and 9z :T a candi-date variable in � . If T has the form 8xn :An:s where s is Prop,Type, or Extern, thenlet s0 be Prop or Type. Let � be the context 9h :8xn :An:s0; 9k :8xn :An:8u :hxn:s.Apply the substitution hz;�; �xn :An:8u :hxn:kxnui to � .Note that SPLIT may apply in�nitely many ways to the same context, while POLYmay create in�nite paths.

16


