
Encoding a D e p e n d e n t - T y p e A-Calculus in a Logic

Programming Language

A m y Fe l ty

I N R I A Sophia -Ant ipo l i s

2004, R o u t e des Lucioles

06565 Va lbonne Cedex, F rance

Dale Miller

C o m p u t e r and I n f o r m a t i o n Science

Univers i ty of P e n n s y l v a n i a

Ph i l ade lph ia , PA 19104-6389 USA

A b s t r a c t

Various forms of typed A-calculi have been proposed as specification languages for repre-
senting wide varieties of object logics. The logical f ramework , LF, is an example of such a
dependent-type A-calculus. A small subset of intuitionistic logic with quantification over
simply typed A-calculus has also been proposed as a framework for specifying general
logics. The logic of heredilary Harrop formulas with quantification at all non-predicate
types, denoted here as hh ~, is such a meta-logic that has been implemented in both the
Isabelle theorem prover and the AProlog logic programming language. Both frameworks
provide for specifications of logics in which details involved with free and bound variable
occurrences, substitutions, eigenvariables, and the scope of assumptions within object
logics are handled correctly and elegantly at the "meta" level. In this paper, we show
how LF can be encoded into hh ~ in a direct and natural way by mapping the typing
judgments in LF into propositions in the logic of hh ~. This translation establishes a
very strong connection between these two languages: the order of quantification in an
LF signature is exactly the order of a set of hh ~ clauses, and the proofs in one system
correspond directly to proofs in the other system. Relating these two languages makes
it possible to provide implementations of proof checkers and theorem provers for logics
specified in LF by using standard logic programming techniques which can be used to
implement hh ~° .

1 I n t r o d u c t i o n

The design and construction of computer systems that can be used to specify and imple-
ment large collections of logics has been the goal of several different research projects. In
this paper we shall focus on two approaches to designing such systems. One approach is
based on the use of dependent-type A-calculi as a meta-language while another approach
is based on the use of a very simple intuitionistic logic as a meta-language. The Logical
Framework (LF) [HHP87] and the Calculus of Constructions (CC) [CH88] are two ex-
amples of dependent-type calculi that have been proposed as recta-logics. The Isabelle

222

theorem prover [Pau89] and the AProlog logic programming language [NM88] provide
implementations of a common subset of intuitionistic logic, called hh W here, tha t can be
used to specify a wide range of logics. Both Isabelle and AProlog can turn specifications
of logics into proof checkers and theorem provers by making use of the unification of
simply typed A-terms and goal-directed, tactic-style search.

In this paper, we shall show that these two meta-languages are essentially of the
same expressive power. This is done by showing how to translate LF specifications and
judgments into a collection of hh ~ formulas such that correct typing in LF corresponds
to intuitionistic provability in hh ~. Besides answering the theoretical question about the
precise relationship between these meta-languages, this translation also describes how LF
specifications of an object logic can be implemented using unification and goal-directed
search since these techniques provide implementations of hh °~ .

In Section 2 we present the meta-logic hh ~ and in Section 3 we present LF. Section
4 presents a translation of LF into hh ~ and Section 5 contains a proof of its correctness.
Section 6 provides examples of this translation and Section 7 concludes.

2 T h e M e t a - L o g i c

Let S be a fixed, finite set of pr imi t i ve types (also called sorts) . We assume that the
symbol o is always a member of S. Following Church [Chu40], o is the type for propo-
sitions. The set of types is the smallest set of expressions that contains the primitive
types and is closed under the construction of function types, denoted by the binary, infix
symbol --+. The Greek letters r and ~r are used as syntactic variables ranging over types.
The type constructor --* associates to the right. If 7"0 is a primitive type then the type
rl --* . . . --* ~-,, ~ 7"o has ri,...,7",~ as argument types and ro as target type. The order
of a primitive type is 0 while the order or a non-primitive type is one greater than the
maximum order of its argument types.

For each type r , we assume that there are denumerably many constants and variables
of tha t type. Constants and variables do not overlap and if two constants (or variables)
have different types, they are different constants (or variables). A signature is a finite
set ~ of constants and variables whose types are such that their argument types do not
contain o. A constant with target type o is a predicate constan$. We often enumerate
signatures by listing their members as pairs, written a: 7-, where a is a constant of type 7".
Although attaching a type in this way is redundant, it makes reading signatures easier.

Simply typed A-terms are built in the usual way. The logical constants are given the
following types: A (conjunction) and D (implication) are both of type o --* o --* o; T
(true) is of type o; and Vr (universal quantification) is of type (r -* o) --~ o, for all types
r not containing o. A formula is a term of type o. The logical constants A and D are
writ ten in the familiar infix form. The expression Vr(Az t) is written simply as Vrz t.

If x and t are terms of the same type then It~x] denotes the operation of substitut-
ing t for all free occurrences of x, systematically changing bound variables in order to
avoid variable capture. The expression [t l / x l , . . . , t n / x , ~] will denote the simultaneous
substitution of the terms t l , .. • , tn for the variables x l , . . . , xn, respectively.

223

We shall assume tha t the reader is familiar with the usual notions and properties of
~, /3, and 7/conversion for the simply typed A-calculus. The relation of convertibility up
to ~ and t3 is wri t ten as =~, and if y is added, is writ ten as = ~ . We say tha t a A-term is
in/3-normal form if it contains no be ta redexes, tha t is, subformulas of the form (Ax t)s.
A A-term is in/3y-long form if it is of the form

Axl... Ax,(htl...tm) (n, m > 0)

where h, called the head of the term, is either a constant or a variable, where the
expression htl . . . t m is of primitive type, and where each te rm t l , . . . , t m a r e also in/37-
long form. All A-terms/3r/-convert to a term in 13y-long form, unique up to s-conversion.
See [HS86] for a fuller discussion of these basic propert ies of the simply typed A-calculus.

Let 5] be a signature. A t e rm is a 5j-term if all of its free variables and nonlogical
constants are members of E. Similarly, a formula is a 5j-formula if all of its free variables
and nonlogical constants are members of E. A formula is either atomic or non-atomic.
An atomic 5j-formula is of the form (Ptl . . . tn) , where n > 0, P is given type 7"1 ~ . . . --+
7". --* o by 53, and t l , . . . , t , are terms of the types 7"1, .. -, 7"n, respectively. The predicate
constant P is the head of this atomic formula. Non-atomic formulas are of the form T,
B 1 A B2, B1 D B2, or Vrz B, where B, B1, and B2 are formulas and 7" is a type not
containing o.

The logic we have just presented is very closely related to two logic programming
extensions tha t have been studied elsewhere [MNPS]. First-order hereditary Harrop
formulas (fohh) have been studied as an extension to first-order Horn clauses as a basis
for logic programming. Similarly higher-order hereditary Harrop formulas (hohh) are a
generalization of fohh tha t permits some forms of predicate quantification. Because our
meta- language is neither higher-order, since it lacks predicate quantification, nor first-
order, since it contains quantification at all function types, we shall simply call it hh ~.
The set of hh ~ formulas in which quantification only up to order n is used will be labeled
as hh" .

Provabil i ty for hh ~ can be given in terms of sequent calculus proofs. A sequent is a
triple 5] ; 79 ~ B, where 5] is a signature, B is a 5j-formula, and 7 9 is a finite (possibly
empty) sets of 53-formulas. The set 79 is this sequent 's antecedent and B is its succedent.
The expression B,79 denotes the set 79 U {B}; this notat ion is used even if B E 79. The
inference rules for sequents are presented in Figure 1. The following provisos are also
a t tached to the two inference rules for quantifier introduction: in V-R the constant c is
not in E, and in V-L t is a 53-term of type 7".

A proof of the sequent 53 ; 79 * B is a finite tree constructed using these inference
rules such tha t the root is labeled with E ; 79 ~ B and the leaves are labeled with
initial sequents, tha t is, sequents EE ~ ; 79t ~ B ~ such that either B ~ is T or B ~ E 79q
The non-terminals in such a tree are instances of the inference figures in Figure 1. Since
we do not have an inference figure for /3r/-conversion, we shall assume that in building
a proof, two formulas are equal if they are/3y-convertible. If the sequent 5] ; 79 ~ B
has a sequent proof then we write 5]; 79 Ft B and say that B is provable from 53 and 79.
We shall need only one proof-theoretic result concerning the meta-logic hh ~. To s ta te it,
we require the following definition.

224

E ; B , C , P ---~ C E ; P -~ B E ; ' P ---~ C
A-L A-R

E ; B A C , ' P - - ~ C E ; T ~ ----+ B A C

E ; T ~ "* B E ; C , P ----* A E ; B , T ~ ~ C
D-L D-R

E ; B D C , 7 ~ ~ A E ; P ~ B D C

E ; [t/xlB, ' , C [c/x]B
V-L V-R

E ; V T x B , P , C E ; P V, x B

Figure 1: Left and right introduction rules for hh ~

D e f i n i t i o n 2.1 Let E be a signature and let P be a finite set of E-formulas. The
expression 17~lr~ denotes the smallest set of pairs (G, D) of finite sets of E-formulas G and
E-formula D, such that

• If D (E P then (0, D) E 17~lr~.

• If (G,D, AD2) E IPI~ then (G,D,) E I~'l~ and (G,D2) E I~'l~.

• If <g,V, xD) E [P[~ then (G,[t /x]D) E IPln for all E-terms t of type r.

• If (6, G D D) E I r i s then (G U {G}, D) E lPl~-

T h e o r e m 2.2 A non-deterministic search procedure for hh ~° can be organized using the
following four search primitives.

A N D : B1 A B~ is provable from E and P if and only if both B1 and B2 are provable
from E and 7 ~.

G E N E R I C : V r x B is provable from E and P if and only if [c / z]B is provable from
E U {c : r} and 7 ~ for any constant c : v not in E.

A U G M E N T : B1 D B2 is provable from E and 7 ~ if and only if B2 is provable from E
and P U {B1 }.

B A C K C H A I N : The atomic formula A is provable from E and P if and only if there
is a pair (~, A) E [P[~ so that for every G E ~, G is provable from E and ~ .

These formal results are closely related to the notion of expanded normal forvn for
natural deduction proofs [Pra71] which was used by Paulson in [Pau89] to establish the
correctness of a specification of first-order logic in hh ~° . This theorem will similarly play
a central role in proving the correctness of our representation of LF in hh ~.

225

3 The Logical Framework

There are three levels of terms in the LF type theory: objects (often called just terms),
types and families of types, and kinds. We assume two given denumerable sets of vari-
ables, one for object-level variables and the other for type family-level variables. The
syntax of LF is given by the following classes of objects.

K := Type [I Ix:A.K

A :---- x I I I x : A . B I) ~ x : A . B I A M

M := x [A x : A . M I M N

r := 0 1 r , x : K I r , x : A

Here M and N range over expressions for objects, A and B over types and families of
types, K over kinds, x over variables, and F over contexts. The empty context is denoted
by 0 . We will use P and Q to range over arbi t rary objects, types, type families, or kinds.
We write A ---, P for I Ix:A.P when x does not occur in type or kind P. We will say that
a type or type family of the form xN1 . .. Nn where n > 0 and z is a type family-level
variable is a fiat type.

Terms tha t differ only in the names of variables bound by A or II are identified. I f x is
an object-level variable and N is an object then [N/x] denotes the operation of substi tut-
ing N for all free occurrences of x, systematical ly changing bound variables in order to
avoid variable capture. The expression [N 1 / x l , . . . , N,,/x,] will denote the simultaneous
subst i tut ion of the terms N1, . . . , N , for distinct variables x l , . . . , am, respectively.

The notion of/?-conversion at the level of objects, types, type families, and kinds
can be defined in the obvious way using the usual rule for/?-reduction at the level of
both objects and type families: (,~z: A.P)N ---~ [N/x]P where P is either an object or
t y p e / t y p e family. The relation of convertibility up to /3 is writ ten as =8, just as it is at
the meta-level. All well-typed LF terms are strongly normalizing [HHP87]. We write P#
to denote the normal form of t e rm P. We present a version of the LF proof sys tem tha t
constructs only terms in canonical form, a notion which corresponds to/?0-long forms in
the simply typed)~-calculus. Several definitions from [HHP89] are required to establish
this notion. We define the arity of a type or kind to be the number of Hs in the prefix of
its normal form. The ari ty of a variable with respect to a context is the ari ty of its type
in tha t context. The arity of a bound variable occurrence in a te rm is the ari ty of the
type label a t tached to its binding occurrence. An occurrence of a variable z in a t e rm is
fully applied with respect to a context if it occurs in a subterm of the form zM1. . . Mn,
where n is the arity of z. A te rm P is canonical with respect to a context F if P is in
/?-normal form and every variable occurrence in P is fully applied with respect to F. We
say tha t a context F is in canonical form if for every i tem x : P in F, P is in canonical
form with respect to F. Flat types of the form xN1 ... Nn such that x is fully applied
will be called base types.

The following three kinds of assertions are derivable in the LF type theory.

P t - K kind (K is a kind in F)
F l- A : K (A has kind K in P)
F t- M : A (M has type A in F)

2 2 6

We write F {- ~ for an a rb i t ra ry assertion, where c~ is called an LF judgment. For the
special form F l- A : Type of the second type of assertion, we also say A is a type in
F. A context x l : P 1 . . . , x n :Pn is said to be valid if x l , . . . , x , are dist inct variables
and for i -- 1 , . . . , n, Pi is either a type or kind in context xl : P 1 , - . . , x i -1 : P i - i . In
deriving one of the above assertions, we always assume tha t we s ta r t with a valid context
F. We sometimes refer to the context in such an assertion as a signature. 1 Generally, a
s ignature is a set of variables paired with types or kinds tha t specify an object logic and
its inference rules.

The inference rules of LF are given in Figure 2. In (APP-OBJ) B mus t be a base type,

F I- Type kind (TYPE-KIND)

F F A : Type F , x : A ~- K kind
F }- IIx : A . K kind (PI-KIND)

F t- A : Type F, x : A F B : Type (PI-FAM)
F ~- IIx :A .B : Type

F F A : T y p e F , x : A I- B : K
F F X x : A . B : I I x : A . K (ABS-FAM)

F t - A :Type F , x : A ~- M : B
F F Ax : A . M : IIx :A .B (ABS-OBJ)

X : [I x 1

FF- N1
F F N2

F~-N.

:A1 . . . I I x n :An.Type E F
: A1
: ([N1/xl]A2) ~

: ([N l l X I , . . . , Nn_ l t x ,~_ l]A ,) ~
F I- xN1 . . . N,-, : T y p e

(APP-FAM)

x : I I x l : A 1 . . . I I x , : A , . B E F
F F N 1 :A1
F F N2: ([N1/xl]A2) ~

F F N,~ : ([g i / x l , . . . , N,~-I/Xn-1]A,)/3
F F x g l . . . Nn : ([g l / x l , . . . , N n / x n] B) ~ (APP-OBJ)

Figure 2: T h e Logical Framework

and in (APP-OBJ) and (APP-FAM) n is the ar i ty of z. In (PI-KIND), (PI-FAM), (ABS-FAM),
and (ABS-OBJ), we assume t h a t the variable x does not occur i,~ F, and in (APP-FAM)

1Ot~er presentations of LF such as [HHP87] separate the notions of context and signature. We unify
them here for simplicity of presentation.

227

and (APP-OBJ) we assume tha t the variables z i , . . . , zn do not occur free in N i , . . . , Nn.
Note tha t bound variables can always be renamed to meet these restrictions.

The main difference between this presentat ion and the usual presentation of the LF
proof sys tem are the (APP-FAM) and (APP-OBJ) rules. The rules in the form presented
here are those needed to preserve the invariant that all objects, types, type families,
kinds, and contexts in derivable judgments are in canonical form. To see why, first note
tha t no new fl-redexes are introduced in the conclusion of these rules. The application
introduced in the left t e rm of the judgment in the conclusion is always a variable applied
to zero or more terms, while the right t e rm is always ~-normal. Second, note tha t the
signature i tem z of ari ty n is applied in the conclusion to n terms and thus this occurrence
of z is fully applied. IIence, as long as N i , . . . , N,~ are canonical, so is z N i . . . N,~. In
the (APP-OB3) rule, the fact tha t the type ([N 1 / z i , . . . , Nn /Z ,~]B) ~ is canonical follows
f rom the fact tha t for any object, type, type family, or kind P and any object M, if
P and M are canonical, then so is ([M / z] P) ~. Based on these observations, derivable
assertions can be characterized more formally as follows: if F is a valid context, then F
is canonical, and if r ~- a is derivable with respect to valid context r , then the terms in
a are canonical with respect to r , and a has one of the following forms.

1. I Ix i : Ai . . . I Izn :An.Type kind where n ~ 0.

2. ()~:ci : A i . . .)~Cn : A n . I I z i : B1 . . . I Izm : B In .C) : (I Iz i : A i . . . IIZn :An.Type) where
n, m _> 0 and C is a base type.

3. ()~zi : A i . . . A z n : An.N) : (I Iz i : A i . . . I I z n : A n . B) where n > 0, N is not an
abstraction, and B is a base type.

Note tha t proving an assertion of the form given by (2) or (3), respectively, in valid
context r , is equivalent to proving F, z i :A1, . . . , zn : An F I Iz i : B i • .. I Izm : B m . C : Type
or r , z i : Ai, . . . , z,, :An ~- N : B, respectively, in valid context r , z i : A1, . . . , Zn : An. In
the first version of the translation given in the next section, we will assume tha t assertions
have the lat ter form, i .e. , t ha t there are no leading abstractions in the t e rm on the left
in a judgment .

4 T r a n s l a t i n g L F A s s e r t i o n s t o h h ~ F o r m u l a s

In this section we present the translation of LF assertions to formulas in hh '~. This
t ranslat ion will require an encoding of LF terms as simply typed A-terms. We begin by
presenting this encoding. We then present the translation, which given an LF assertion,
r ~- a where r is a valid context, translates 1 ~ to a set of hh '~ formulas and a to a formula
to be proved f rom this set of formulas. We then illustrate how to extend the translation
to obtain a formula whose proof (from no assumptions) verifies tha t r is a valid context
before proving tha t c~ holds within the context F.

Since both LF and the meta-language have types and terms, to avoid confusion we
will refer to types and te rms of the meta- language as recta- types and m e t a - t e r m s . We
only define the encoding of LF terms as simply typed A-terms for LF objects and flat

228

types / type families since this is all that is required by the translation. We introduce
two base types, t m and ty, at the meta-level for these two classes of LF terms. First, to
encode object-level variables, we define the function (I) that maps LF types and kinds to
meta-types containing only occurrences of t m and ty .

O(IIx :A.P) := (P(A) --~ O(P)
¢(Type) :=

¢ (A) := t m when A is a flat type

Using this function, an LF variable of kind or type P is mapped to a meta-variable of
type (I)(P). These recta-types encode the "syntactic structure" of the corresponding LF
dependent type or kind. Information about dependencies is lost in this mapping, but as
we will see later, this information is retained in a different form in performing the general
translation. We will assume a fixed mapping from LF variables to meta-variables of the
corresponding type. For readability in our presentation, this mapping will be implicit.
A variable x will represent both an LF variable with kind or type P and a meta~variable
of the corresponding syntactic type O(P) . It will always be clear from context which is
meant. Note that for type or kind P and object N, ~ (P) = ~ (([N / x] P) ~) .

We denote the encoding of term or flat type P as ((P)). The full encoding is defined
below.

((Ax:A.M)) := ~x:C2(A).((M))
((MN)) := ((M)) ((N))
((AM)) := ((A)) ((M))

Note that the encoding maps abstraction in LF objects directly to abstraction at the
meta-level, and that both application of objects to objects and application of type families
to objects are mapped directly to application at the recta-level. The difference at the
meta-level is that the former application will be a recta-term with target type t m while
the latter application will be a meta~term with target type ty .

It is easy to see that for object or type family P having, respectively, type or kind Q,
((P)) is a meta- term of recta-type (I)(Q). The following two properties also hold for this
encoding.

L e m m a 4.1 Let P be an LF object or flat type, and N an LF object. Then

[((N))/x]((P)) -- (([Nix]P)).

L e m m a 4.2 Let P and Q be two LF objects or fiat types. If P --8 Q, then ((P)) --8 ((Q))"

We are now ready to define the translation. Two predicates will appear in the atomic
hh ~ formulas resulting from the translation: hastype of type t m ---, t y -~ o and istype
of type ty --~ o. We will name the signature containing these two predicates ~LF. We
denote the translation of the context item or judgment ~ as ~] . The full translation is
defined in Figure 3. It is a partial function since it is defined by cases and undefined when
no case applies. It will in fact always be defined on contexts and judgments in provable
LF assertions. In proving properties of the translation, we will only consider canonical
judgments and context items. Note that in a canonical context item x : P , the variable

229

~M : IIx :A.B]

~M : All

[B : IIx : A .K]

[A: Type]]

[IIx:A.B : Type]

~FI-y p e kind]]

[[IIx :A .K kind]]

:: vo(A: (l Ix:4 D IIMx: " l)
:= hastype ((M)) ((A} where A is a base type.

:= vo(A: (rrx:A]] D Bx:
:---- istype ((A)) where A is a base type.

:= ~A: Type] AVa(A)X ([[x:A]] D [B: Type]])

:= Z

:= [A: Type]] AV.(A)X (~x:A] D [K kind])

Figure 3: Translation of LF Judgments to hh ~ Formulas

x is not necessarily canonical since it may not be fully applied. Such judgments with
non-canonical terms on the left are handled by the first and third rules in Figure 3. This
translation maps occurrences of If-abstraction in LF types and kinds directly to instances
of universal quantification and implication in hh ~ formulas. In all of the clauses in the
definition that contain a pat tern with a If-type or kind, the variable bound by II is
mapped to a variable at the metaAevet bound by universal quantification. Then, in the
resulting implication, the left hand side asserts the fact that the bound variable has a
certain type, while the right hand side contains the translation of the body of the type or
kind which may contain occurrences of this bound variable. The base cases occur when
there is no leading H in the type or kind, resulting in atomic formulas for the hastype
and istype predicates, or simply T in the case when the judgment is Type kind.

To illustrate this translation, we consider an example from an LF signature specifying
natural deduction for first-order logic. The following declaration introduces the constant
for universal quantification and gives it a type: V* : (i ~ form) ~ form. (We write V*
for universal quantification at the object level to distinguish it from universal quantifi-
cation in hh~.) To make all bound variables explicit, we expand the above type to its
unabbreviated form: IIA:(IIy:i . form).form. Note that by applying • to the above type,
we get (tin --~ tin) --+ tm as the type of V* at the meta-level. The translation of this
signature i tem is as follows.

Iv* : IIA: (I Iy: i . form).form] --

Vtrn__trnA (VtrnY ((hastype y i) D (hastype (Ay) form)) D (hastype (V'A) form))

This formula provides the following description of the information contained in the above
dependent type: for any A, if for arbi trary y of type i, Ay is a formula, then V*A is a
formula.

We will show in the next section that if F is a valid canonical context and ~ a canonical
judgment where the term on the left in a is not an abstraction, then F F ~ is provable in

230

LF iff I4~ is provable from the set of formulas IF]. (Here IF] denotes the set of formulas
obtained by translating separately each item in F.) We now illustrate how to extend
the translation to obtain a formula whose proof verifies that r is a valid context before
proving that 4 holds within the context F.

Proving that a context xl : P1 , - - - ,x~ : P,, is valid in LF corresponds in hh '~ to
proving, for i = 1 , . . . , n, either ~Pi : Type]] or [Pi kind~ from Ix1 : P 1 , . . . , xi-1 : Pi - t~ .
The translation in Figure 4, for an arbitrary assertion F t- 4, maps the pair (F; a) to a
single formula containing subformulas whose proofs will in fact insure that each context
i tem is valid with respect to the context items before it. We also remove the restriction
that the term on the left in 4 cannot be an abstraction. Variables bound by abstraction
at the top level are treated as additional context items. The translation of such a pair
is denoted IF; 4]]*. The first two clauses of this translation map each context i tem to a

I x : A , F;4]*

~x:K, r; a~*

[[O;,kx:A.M : II=:A.B~*

~0; Ax : A . B : Hx : / .K~*

[[O;Q*

: = [A: Vype] ̂ Vo(A)* D Ir;4 *)

:= II£ kind] AV¢(g)X (~x:K]] D I r ;4~*)

:= [A: Type] AV¢(A)X (~x:A~ D I 0 ; M : B] ')

:= IA: Type] AV¢(A)x (~x:A]] D ~0;B : K]]*)
:= I4] where the left term in 4 is not an abstraction.

Figure 4: Translation of LF Assertions

conjunctive formula where the first conjunct verifies that the type or kind is valid (using
the previous translation), and the second conjunct is a universally quantified implication
where the left hand side asserts the fact that the context i tem has the corresponding
type (again using the previous translation), and the right side contains the translation of
the pair consisting of the remaining context items and judgment. The third and fourth
clauses handle the cases when the term on the left in a judgment is an abstraction. The
last clause in the translation is for the base case: when the context is empty and no
further abstractions remain at the head of the judgment. Then the previously defined
translation is used. Thus , a proof of a formula obtained from translating an arbitrary
assertion F b 4 with respect to an initially empty set of assumptions verifies that each
context item in F, and each variable bound by A-abstraction in 4 is valid with respect to
those items that appear before it, and then proves that the judgment holds within the
entire context. The correctness of this translation will follow easily from the correctness
of the previous translation.

5 C o r r e c t n e s s o f T r a n s l a t i o n

We consider the correctness of the translation with respect to a slightly modified LF.
Our modified system replaces the (ABS-FAM) and (ABS-OBJ) rules with the following two

231

rules.

F , x : A 1 - B : K
F 1- A x : A . B : I I x : A . K

(ABS-FAM')
F , x : A 1- M : B

r 1- , ~x :A .M : I I x : A . B (ABS-OBJ')

These rules are the same as presented earlier except tha t the left premise is omitted. We
call this sys tem LFq It can be shown that for valid context F, an LF assertion F 1- c~ is
provable in LF ~ if and only if it is provable in LF, provided tha t there is no leading abstrac-
tion in the t e rm on the left in c~. This result relies on the fact tha t in a proof in the mod-
ified system, if an application of (ABS-FAM t) whose conclusion is F F .~x : A . B : IIx : A . K
or an application of (ABS-OBJ ~) whose conclusion is F 1-)~x:A .M : I I x : A . B occurs above
an application of (APP-FAM) or (APP-OBJ), it is always the case that F 1- A : Type is prov-
able, and thus the left premise is redundant . The proof of this fact relies on a t ransi t ivi ty
result for LF t similar to the one s ta ted in [HHP87].

To prove the correctness of the translation, we prove a stronger s ta tement from which
the correctness of ~]] and [~* will follow as corollaries. This stronger s ta tement will talk
about the provabil i ty of LF assertions of the form F 1- a in LF ~ even in the case when
F is not a valid context. We also relax the requirement on a. The left t e rm in a can
be any object, type, type family, or kind, including one with a leading abstraction. To
handle these cases in proving the correctness of []], we must add the following two rules
to the translation.

[$ x : A . M : I I x : A . B ~

~)~x : A . B : Hx : A .K~

We must then also add the restriction that the first and third rules in Figure 3 are only
applicable when M and B, respectively, are not abstractions.

One final l emma is needed to prove the correctness of the translation. This l emma
applies to the t ranslat ion extended with the above two rules. In Section 4, we s ta ted that
subst i tut ion commutes with the encoding operation (Lemma 4.1). We extend this result
to the translation operat ion on judgments which translate to provable hh ~ formulas. In
part icular, the l emma below states that substi tution and fl-normalization commute with
the translat ion operat ion on provable hh" sequents. We will write <b(F) to denote the set
of metn-variables paired with their types obtained by mapping, for each signature i tem
x : P in F, the variable x to the corresponding meta-variable and P to ~ (P) .

L e m m a 5.1 Let F, xl : A 1 , . . . , x ~ : An ,x : A (n > 0) be a canonical context (whose
variables are distinct). Let N 1 , . . . , N,~,N be canonical objects with respect to F, and
let E be the signature Y]LF U (I)(r). Then E; IF] 1-I ~ g : ([N 1 / x l , . . . , Nn/xn]A)#~ if and
only if

Z; IF] t-i [((Yl)) / x l , . . . , ((Yn)) /x,~, ((g)) / x][x : All.

T h e o r e m 5.2 (Correctness of ~lYanslation) Let F be an arbi trary context (such tha t the
variables in F are distinct), and let c~ be an arbi t rary canonical judgment with respect
to F. Let E be ELF t3 ~(F) . Then F 1- a is provable in LF' if and only if E; IF] 1-1 ~(~
holds.

232

P r o o f Ske t ch : The proof of this theorem is constructive, i .e . , it provides a method for
constructing an h h '° proof from an LF f proof, and vice versa. The forward direction is
proved by induction on the height of an LF ~ proof of the assertion F ~- a. For the PI
and ABS rules, we can apply the induction hypothesis directly to the premises to obtain
provable sequents to which we apply D-R, V-R, and A-R for the PI rules, and just D-R
and V-R for the ABS rules to obtain the desired result.

For the APP rules, we know the context i tem in the application of these rules corre-
sponds to a formula in IF]. To this formula, we can apply V-L followed by D-L n times
in a backward direction. Each of the left premises of D-L can be shown to be provable
since they are the result of applying the induction hypothesis followed by Lemma 5.1 to
each of the lat ter n premises of the APP rule. Using Lemmas 4.1 and 4.2, the formula in-
t roduced on the left in the right premise of the topmost application of D-L can be shown
to be ~-convertible to the formula in the succedent (the translation of the judgment in
the conclusion of the APP rule). Thus this premise is an axiom.

The proof of the backward direction is by induction on the structure of the t e rm on
the left in a , and is similar to the proof of the forward direction. The regularity of the
proofs in h h '° described in Theorem 2.2 is required here. For example, the proof of the
case when the t e rm on the left is an application uses the backchain search operation. •

C o r o l l a r y 5.3 (Correctness of ~ ~) Let r be a valid context and a a canonical judgment
such that the t e rm on the left is not an abstraction. Let E be ~LF U (I)(r). Then F ~- a
is provable in LF' if and only if E; [r~ ~-I [c~] holds.

C o r o l l a r y 5.4 (Correctness of []]*) Let F be a canonical context (such that the variables
in F are distinct), and a a canonical judgment . Then F is a valid context and F k- a is
provable in LF' if and only if ELF; 0 [-x [IF; a~* holds.

6 E x a m p l e s

In this section, we provide some further examples to illustrate the correspondence between
LF signature i tems and judgments and the h h ~° formulas that they map to. Note tha t
in general, formulas obtained by translating signature items have the form on the left
below, but can be rewrit ten to have the form on the right:

VTIXI . . .VT, X , (G1 ^ . . - ^ G , D D)

where n > 0, r l , . . . , v n are types, X 1 , . . . , X , ~ are variables, G 1 , . . . , G n , D are h h ~°

formulas. (Here we assume that for i = 1 , . . . , n , X i + l , . . . , X n do not appear free in
Gi). For readability, we will write h h ~° formulas in the examples in this section simply as
G1 A . . . A G , D D (or just D when n = 0), and assume implicit universal quantification
over all free variables written as capital letters. Type subscripts for these universal
quantifiers can always be inferred from context.

We begin by demonstrat ing the translation of signature items specifying natural de-
duction inference rules for tile A*, V*, and D* object-level connectives. The f ragment of an
LF signature specifying natural deduction for the first-order logic tha t we are concerned

233

with is the following.

i :Type
b r m : Type
true : form ~ Type

A* : form -+ form ---* form
D* : form --+ form ---* form
V* : (i ~ form) --~ form

A*-I: IIA : form.IIB :form.true(A) ---* true(B) ~ true(A A ' B)
D*-I : IIA : form.IIB : form.(true(A) --+ true(B)) -+ true(A D ' B)
V*-I : IIA:i--~ form.(IIy:i.true(Ay))---* true(V'A)

The signature item true is a function that maps formulas to types. LF objects of type
true(A) represent proofs of formula A. First, consider the/ ' ,*-introduction rule specified
by A*-I and its type. Its translation is the following formula.

(hastype A form) A (haslype B form) A (hastype P (true A)) A
(hastype Q (true B)) (hastype (^*-I A B P Q) (true A n'B))

This formula simply reads that if A and B have type form, P is a proof of A, and Q is
a proof of B, then the term (A*-I A B P Q) is a proof of the conjunction A A*B. The
correspondence between this formula and the LF signature item is straightforward. We
next consider a slightly more complex example; the translation of the V*-I rule results in
the following formula.

vy((hastype y i) (h stype Ay fo m)) ^
Vy((hastype y i) D (hastype P y (true Ay))) D (hastype (V*-I A P) (true V'A))

This clause provides the following description of the information contained in the depen-
dent type: if for arbi trary y of type i, Ay is a formula and P y is a proof of Ay, then
the term (V*-I A P) is a proof of V*A. Note that A and P at the metaAevel are both
functions having syntactic type t m --~ tin. Here, A maps first-order terms to formulas
just as it does at the object level, while P maps first-order terms to proofs. As a final in-
ference rule example, consider the declaration for D*-I, which translates to the following
formula.

(hastype A form) A (hastype B form) A
Vq((hastype q (true A)) D (hastype Pq (true B))) D

(hastype (D*-I A B P) (true A D'B))

This formula reads: if A and B are formulas and P is a function which maps an arbitrary
proof q of A to the proof Pq of B, then the term (D*-I A B P) is a proof of A D*B.
Note that P in this formula is a function which maps proofs to proofs.

An example of a canonical judgment that is provable in the LF signature for naturM
deduction is

,kA : forrn. D*-I(A)(A)(,~x : true(A).x) : HA : form.true(A D'A).

Using the extended translation of Figure 4, we obtain the following formula:

(istype form) A VA((hastype A form) D (hastype (D*-I A A ~x.x) (true A D'A)))

234

which is provable from the set of formulas obtained by translating the LF signature
specifying natural deduction for first-order logic.

An LF signature specifying the reductions needed for proof normalization in natural
deduction is given in [Pfe89]. As a final example, we illustrate the translation of the
reduction rule for the case when an application of the introduction rule for D* is followed
by the elimination rule for the same connective. The following signature items define the
D*-E rule, the reduce constant used to relate two proofs of the same formula, and the
reduction rule for D*.

D*-E: HA:form.HB :form.true(A) --* true(A D ' B) ---* true(B)
reduce: HA :form.true(A) --* true(A) ~ Type
D* -red : HA : form.II B : form.IIP : (true(A) --* true(B)) .n O : true(A).

reduce(B)(D*-E m B (D*-I d B P) Q)(PQ)

The signature i tem for D*-red translates to the following formula.

(hastype A form) A (hastype B form) A
Vq ((hastype q (true A)) D (hastype (Pq) (true B))) A (hastype Q (true A)) D

(hastype (D*-red A B P Q) (reduce B (D*-E A B (D*-I A B P) Q) (PQ)))

This formula reads: if A and B are formulas and P is a function which maps an arbitrary
proof q of A to the proof Pq of B, and Q is a proof of A, then (D*-red A B P Q) is a
meta~proof of the fact that the natural deduction proof (D*-E A B (D*-I A B P) Q) of
B reduces to the proof PQ.

7 C o n c l u s i o n

We have not yet considered the possibility of translating hh '° formulas into LF. This
translation is particularly simple. Let ~ be a signature for hh '~ and let 7 ~ be a set of
E-formulas. For each primitive type r other than o in S, the corresponding LF judgment
is r : Type. For each non-predicate constant c : r E E, the corresponding LF judgment
is c : v. For each predicate constant p : rl ~ --- ---* rn --+ o E E, the corresponding LF
judgment is p : 1"1 --* . . . ~ rn ~ Type. Finally, let D E ~ and let k be a new constant
not used in the translation to this point. Then the corresponding LF judgment is k : D ~
where D ~ is essentially D where B1 D B2 is written as IIx :B1.B~ and VTx B is written
as IIx : r .B.

In the first author's dissertation [Fe189] an encoding of LF into just hh 2 was presented.
Order 2 is all that is necessary if object-level applications are represented by metaAevel
constants. The proofs of the correctness of that encoding are very similar to those
presented here.

Notice that the translation presented here works via recursion over the s tructure of
types. Thus, this kind of translation will not work for the polymorphic A-calculus or
the Calculus of Constructions since they both contain quantification over types. Other
techniques can be used, however, to encode provability of such h-calculi into hh ~. These
involve coding the provability relation of those calculi directly into the metaAanguage
[FM89].

235

A c k n o w l e d g e m e n t s The authors would like to thank Robert Harper and Frank Pfen-
ning for valuable discussions on the subject of this paper. We are also grateful to the
reviewers of an earlier draft of this paper for their comments and corrections. Both
authors have been supported in part by grants ONR N00014-88-K-0633, NSF CCR-87-
05596, and DARPA N00014-85-K-0018. The first author is currently supported in part
by ESPRIT Basic Research Action 3245.

R e f e r e n c e s

[CH88]

[Chu40]

[Fe189]

[FM89]

[HHP87]

[HHP89]

[HS86]

[MNPS]

[NM88]

[Pau89]

[Pfe89]

[Pra71]

Thierry Coquand and G~rard Huet. The calculus of constructions. Information
and Computation, 76(2/3):95-120, February/March 1988.

Alonzo Church. A formulation of the simple theory of types. Journal of Sym-
bolic Logic, 5:56-68, 1940.

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order
Logic Programming Language. PhD thesis, University of Pennsylvania, August
1989.

Amy Felty and Dale Miller. A meta language for type checking and inference:
an extended abstract. 1989. Presented at the 1989 Workshop on Programming
Logic, BMstad, Sweden.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Second Annual Symposium on Logic in Computer Science, pages 194-
204, Ithaca, NY, June 1987.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. 1989. Technical Report CMU-CS-89-173, to appear.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinatory Logic
and Lambda Calculus. Cambridge University Press, 1986.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. To appear in the Annals of Pure
and Applied Logic.

Gopalan Nadathur and Dale Miller. An overview of AProlog. In K. Bowen and
R. Kowalski, editors, Fifth International Conference and Symposium on Logic
Programming, MIT Press, 1988.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363-397, September 1989.

Frank Pfenning. Elf: a language for logic definition and verified metaprogram-
ming. In Fourth Annual Symposium on Logic in Computer Science, pages 313-
321, Monterey, CA, June 1989.

Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium, pages 235-307, North-
Holland, Amsterdam, 1971.

