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A b s t r a c t  

Various forms of typed A-calculi have been proposed as specification languages for repre- 
senting wide varieties of object logics. The logical f ramework ,  LF, is an example of such a 
dependent-type A-calculus. A small subset of intuitionistic logic with quantification over 
simply typed A-calculus has also been proposed as a framework for specifying general 
logics. The logic of heredilary Harrop formulas with quantification at all non-predicate 
types, denoted here as hh ~, is such a meta-logic that has been implemented in both the 
Isabelle theorem prover and the AProlog logic programming language. Both frameworks 
provide for specifications of logics in which details involved with free and bound variable 
occurrences, substitutions, eigenvariables, and the scope of assumptions within object 
logics are handled correctly and elegantly at the "meta" level. In this paper, we show 
how LF can be encoded into hh ~ in a direct and natural way by mapping the typing 
judgments in LF into propositions in the logic of hh ~. This translation establishes a 
very strong connection between these two languages: the order of quantification in an 
LF signature is exactly the order of a set of hh ~ clauses, and the proofs in one system 
correspond directly to proofs in the other system. Relating these two languages makes 
it possible to provide implementations of proof checkers and theorem provers for logics 
specified in LF by using standard logic programming techniques which can be used to 
implement hh ~° . 

1 I n t r o d u c t i o n  

The design and construction of computer systems that can be used to specify and imple- 
ment large collections of logics has been the goal of several different research projects. In 
this paper we shall focus on two approaches to designing such systems. One approach is 
based on the use of dependent-type A-calculi as a meta-language while another approach 
is based on the use of a very simple intuitionistic logic as a meta-language. The Logical 
Framework (LF) [HHP87] and the Calculus of Constructions (CC) [CH88] are two ex- 
amples of dependent-type calculi that have been proposed as recta-logics. The Isabelle 
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theorem prover [Pau89] and the AProlog logic programming language [NM88] provide 
implementations of a common subset of intuitionistic logic, called hh W here, tha t  can be 
used to specify a wide range of logics. Both Isabelle and AProlog can turn specifications 
of logics into proof checkers and theorem provers by making use of the unification of 
simply typed A-terms and goal-directed, tactic-style search. 

In this paper, we shall show that  these two meta-languages are essentially of  the 
same expressive power. This is done by showing how to translate LF specifications and 
judgments into a collection of hh ~ formulas such that  correct typing in LF corresponds 
to intuitionistic provability in hh ~. Besides answering the theoretical question about the 
precise relationship between these meta-languages, this translation also describes how LF 
specifications of an object logic can be implemented using unification and goal-directed 
search since these techniques provide implementations of hh °~ . 

In Section 2 we present the meta-logic hh ~ and in Section 3 we present LF. Section 
4 presents a translation of LF into hh  ~ and Section 5 contains a proof of its correctness. 
Section 6 provides examples of this translation and Section 7 concludes. 

2 T h e  M e t a - L o g i c  

Let S be a fixed, finite set of pr imi t i ve  types (also called sorts) .  We assume that  the 
symbol o is always a member of S. Following Church [Chu40], o is the type for propo- 
sitions. The set of types is the smallest set of expressions that  contains the primitive 
types and is closed under the construction of function types, denoted by the binary, infix 
symbol --+. The Greek letters r and ~r are used as syntactic variables ranging over types. 
The type constructor --* associates to the right. If 7"0 is a primitive type then the type 
rl --* . . .  --* ~-,, ~ 7"o has ri,...,7",~ as argument  types and ro as target type. The order 
of a primitive type is 0 while the order or a non-primitive type is one greater than the 
maximum order of its argument types. 

For each type r ,  we assume that  there are denumerably many constants and variables 
of tha t  type. Constants and variables do not overlap and if two constants (or variables) 
have different types, they are different constants (or variables). A signature is a finite 
set ~ of constants and variables whose types are such that  their argument types do not 
contain o. A constant with target type o is a predicate constan$. We often enumerate 
signatures by listing their members as pairs, written a: 7-, where a is a constant of type 7". 
Although attaching a type in this way is redundant,  it makes reading signatures easier. 

Simply typed A-terms are built in the usual way. The logical constants are given the 
following types: A (conjunction) and D (implication) are both of type o --* o --* o; T 
(true) is of type o; and Vr (universal quantification) is of type ( r  -* o) --~ o, for all types 
r not containing o. A formula is a term of type o. The logical constants A and D are 
writ ten in the familiar infix form. The  expression Vr(Az t) is written simply as Vrz t. 

If x and t are terms of the same type then It~x] denotes the operation of substitut- 
ing t for all free occurrences of x, systematically changing bound variables in order to 
avoid variable capture. The expression [ t l / x l , . . . , t n / x , ~ ]  will denote the simultaneous 
substitution of the terms t l ,  .. • , tn for the variables x l , . . . ,  xn, respectively. 
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We shall assume tha t  the reader is familiar with the usual notions and properties of 
~, /3,  and 7/conversion for the simply typed A-calculus. The relation of convertibility up 
to ~ and t3 is wri t ten as =~,  and if y is added, is writ ten as = ~ .  We say tha t  a A-term is 
in/3-normal  form if it contains no be ta  redexes, tha t  is, subformulas of  the form (Ax t)s. 
A A-term is in/3y-long form if it is of the form 

Axl... Ax,(htl...tm) (n, m > 0) 

where h, called the head of the term, is either a constant  or a variable, where the 
expression htl . . .  t m  is of primitive type, and where each te rm t l , . . . ,  t m  a r e  also in/37- 
long form. All A-terms/3r/-convert to a term in 13y-long form, unique up to s-conversion.  
See [HS86] for a fuller discussion of these basic propert ies of the simply typed A-calculus. 

Let 5] be a signature. A t e rm is a 5j-term if all of its free variables and nonlogical 
constants  are members  of E. Similarly, a formula is a 5j-formula if all of its free variables 
and nonlogical constants  are members  of E. A formula is either atomic or non-atomic. 
An atomic 5j-formula is of the form (Ptl  . . . tn) ,  where n > 0, P is given type 7"1 ~ . . .  --+ 
7". --* o by 53, and t l ,  . . . ,  t ,  are terms of the types 7"1, .. -, 7"n, respectively. The predicate 
constant  P is the head of this atomic formula. Non-atomic formulas are of the form T,  
B 1 A  B2, B1 D B2, or Vrz B, where B, B1, and B2 are formulas and 7" is a type not 
containing o. 

The  logic we have just  presented is very closely related to two logic programming 
extensions tha t  have been studied elsewhere [MNPS]. First-order hereditary Harrop 
formulas (fohh) have been studied as an extension to first-order Horn clauses as a basis 
for logic programming.  Similarly higher-order hereditary Harrop formulas (hohh) are a 
generalization of fohh tha t  permits  some forms of predicate quantification. Because our 
meta- language is neither higher-order, since it lacks predicate quantification, nor first- 
order, since it contains quantification at all function types, we shall simply call it hh ~. 
The set of hh ~ formulas in which quantification only up to order n is used will be labeled 
as hh" .  

Provabil i ty for hh ~ can be given in terms of sequent calculus proofs. A sequent is a 
triple 5] ; 79 ~ B, where 5] is a signature, B is a 5j-formula, and 7 9 is a finite (possibly 
empty)  sets of 53-formulas. The  set 79 is this sequent 's  antecedent and B is its succedent. 
The expression B,79 denotes the set 79 U {B}; this notat ion is used even if B E 79. The  
inference rules for sequents are presented in Figure 1. The  following provisos are also 
a t tached to the two inference rules for quantifier introduction: in V-R the constant  c is 
not in E, and in V-L t is a 53-term of type 7". 

A proof of the sequent 53 ; 79 ........... * B is a finite tree constructed using these inference 
rules such tha t  the root is labeled with E ; 79 ~ B and the leaves are labeled with 
initial sequents, tha t  is, sequents EE ~ ; 79t ~ B ~ such that  either B ~ is T or B ~ E 79q 
The  non-terminals  in such a tree are instances of the inference figures in Figure 1. Since 
we do not have an inference figure for /3r/-conversion, we shall assume that  in building 
a proof, two formulas are equal if they are/3y-convertible.  If  the sequent 5] ; 79 ~ B 
has a sequent proof  then we write 5]; 79 Ft  B and say that  B is provable from 53 and 79. 
We shall need only one proof-theoretic result concerning the meta-logic hh ~. To s ta te  it, 
we require the following definition. 
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E ;  B , C , P  ---~ C E ; P  -~ B E ; ' P  ---~ C 
A-L A-R 

E ;  B A C , ' P  - - ~  C E ;  T ~ ----+ B A C  

E ;  T ~ "* B E ;  C , P  ----* A E ;  B , T  ~ ....... ~ C 
D-L D-R 

E ;  B D C ,  7 ~ ~ A E ; P  ~ B D C  

E ;  [t/xlB, ' , C [c/x]B 
V-L V-R 

E ; V T x B , P  , C E ;  P .......... V, x B  

Figure 1: Left and right introduction rules for hh ~ 

D e f i n i t i o n  2.1 Let E be a signature and let P be a finite set of E-formulas. The 
expression 17~lr~ denotes the smallest set of pairs (G, D) of finite sets of E-formulas G and 
E-formula D, such that  

• If D (E P then (0, D) E 17~lr~. 

• If (G,D,  AD2) E IPI~ then (G,D,)  E I~'l~ and (G,D2) E I~'l~. 

• If <g,V, xD)  E [P[~ then (G,[ t /x]D)  E IPln for all E-terms t of type r.  

• If (6, G D D) E I r i s  then (G U {G}, D) E lPl~- 

T h e o r e m  2.2 A non-deterministic search procedure for hh ~° can be organized using the 
following four search primitives. 

A N D :  B1 A B~ is provable from E and P if and only if both B1 and B2 are provable 
from E and 7 ~. 

G E N E R I C :  V r x B  is provable from E and P if and only if [c / z]B is provable from 
E U {c : r}  and 7 ~ for any constant c : v not in E. 

A U G M E N T :  B1 D B2 is provable from E and 7 ~ if and only if B2 is provable from E 
and P U {B1 }. 

B A C K C H A I N :  The atomic formula A is provable from E and P if and only if there 
is a pair (~, A) E [P[~ so that  for every G E ~, G is provable from E and ~ .  

These formal results are closely related to the notion of expanded normal  forvn for 
natural  deduction proofs [Pra71] which was used by Paulson in [Pau89] to establish the 
correctness of a specification of first-order logic in hh ~° . This theorem will similarly play 
a central role in proving the correctness of our representation of LF in hh ~. 
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3 The Logical Framework 

There  are three levels of terms in the LF type theory: objects (often called just  terms), 
types and families of  types, and kinds. We assume two given denumerable sets of vari- 
ables, one for object-level variables and the other for type family-level variables. The 
syntax  of LF is given by the following classes of objects. 

K := Type [ I Ix:A.K 

A :---- x I I I x : A . B I ) ~ x : A . B I A M  

M := x [ A x : A . M I M N  

r := 0 1 r , x : K I r ,  x : A  

Here M and N range over expressions for objects, A and B over types and families of 
types,  K over kinds, x over variables, and F over contexts. The empty  context is denoted 
by 0 .  We will use P and Q to range over arbi t rary  objects,  types,  type families, or kinds. 
We write A ---, P for I Ix:A.P when x does not occur in type or kind P.  We will say that  
a type or type family of the form xN1 . .. Nn where n > 0 and z is a type family-level 
variable is a fiat type. 

Terms tha t  differ only in the names of variables bound by A or II are identified. I f  x is 
an object-level variable and N is an object  then [N/x] denotes the operation of substi tut-  
ing N for all free occurrences of x, systematical ly changing bound variables in order to 
avoid variable capture.  The  expression [ N 1 / x l , . . . ,  N,,/x,] will denote the simultaneous 
subst i tut ion of the terms N1, . . . ,  N ,  for distinct variables x l , . . . ,  am, respectively. 

The  notion of/?-conversion at the level of objects, types, type families, and kinds 
can be defined in the obvious way using the usual rule for/?-reduction at the level of 
both  objects  and type families: (,~z: A.P)N ---~ [N/x]P where P is either an object  or 
t y p e / t y p e  family. The relation of convertibility up to /3  is writ ten as =8,  just as it is at 
the meta-level.  All well-typed LF terms are strongly normalizing [HHP87]. We write P#  
to denote the normal  form of t e rm P. We present a version of the LF proof  sys tem tha t  
constructs only terms in canonical form, a notion which corresponds to/?0-long forms in 
the simply typed )~-calculus. Several definitions from [HHP89] are required to establish 
this notion. We define the arity of a type or kind to be the number of Hs in the prefix of 
its normal  form. The ari ty of a variable with respect to a context is the ari ty of its type 
in tha t  context.  The  arity of  a bound variable occurrence in a te rm is the ari ty of the 
type label a t tached to its binding occurrence. An occurrence of a variable z in a t e rm is 
fully applied with respect to a context if it occurs in a subterm of the form zM1. . .  Mn, 
where n is the arity of z. A te rm P is canonical with respect to a context F if P is in 
/?-normal form and every variable occurrence in P is fully applied with respect to F. We 
say tha t  a context  F is in canonical form if for every i tem x : P in F, P is in canonical 
form with respect to F. Flat types of the form xN1 ... Nn such that  x is fully applied 
will be called base types. 

The following three kinds of assertions are derivable in the LF type theory. 

P t - K  kind (K  is a kind in F) 
F l- A : K (A has kind K in P) 
F t- M : A (M has type A in F) 
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We write F {- ~ for an a rb i t ra ry  assertion, where c~ is called an LF judgment.  For the 
special form F l- A : Type of  the second type  of assertion, we also say A is a type  in 
F. A context  x l : P 1 . . . , x n  :Pn is said to be valid if x l , . . . , x ,  are dist inct  variables 
and  for i -- 1 , . . . ,  n, Pi is either a type  or kind in context  xl  : P 1 , - . . ,  x i -1 : P i - i .  In 
deriving one of  the above assertions, we always assume tha t  we s ta r t  with a valid context  
F. We sometimes refer to the context  in such an assertion as a signature. 1 Generally,  a 
s ignature is a set of  variables paired with types  or kinds tha t  specify an object  logic and 
its inference rules. 

The  inference rules of LF are given in Figure 2. In (APP-OBJ) B mus t  be a base type,  

F I- Type kind (TYPE-KIND) 

F F A : Type F , x : A  ~- K kind 
F }- IIx : A . K  kind (PI-KIND) 

F t- A : Type F, x : A  F B : Type (PI-FAM) 
F ~- IIx :A .B : Type 

F F A : T y p e  F , x : A  I- B : K 
F F X x : A . B  : I I x : A . K  (ABS-FAM) 

F t - A  :Type  F , x : A  ~- M : B  
F F Ax : A . M  : IIx :A .B (ABS-OBJ) 

X : [ I x  1 

FF- N1 
F F  N2 

F~-N. 

:A1 . . . I I x n  :An.Type E F 
: A1 
: ([N1/xl]A2) ~ 

: ( [ N l l X I , . . . ,  Nn_ l t x ,~_ l ]A , )  ~ 
F I- xN1 . . .  N,-, : T y p e  

(APP-FAM) 

x : I I x l : A 1 . . . I I x , : A , . B  E F 
F F N 1  :A1 
F F N2: ([N1/xl]A2) ~ 

F F N,~ : ( [ g i / x l , . . . ,  N,~-I/Xn-1]A,)/3 
F F x g l . . .  Nn : ( [ g l / x l , . . .  , N n / x n ] B )  ~ (APP-OBJ) 

Figure 2: T h e  Logical Framework 

and in (APP-OBJ) and (APP-FAM) n is the ar i ty of  z. In (PI-KIND), (PI-FAM), (ABS-FAM), 
and (ABS-OBJ), we assume t h a t  the variable x does not  occur i,~ F, and in (APP-FAM) 

1Ot~er presentations of LF such as [HHP87] separate the notions of context and signature. We unify 
them here for simplicity of presentation. 
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and (APP-OBJ) we assume tha t  the variables z i , . . . ,  zn do not occur free in N i , . . . ,  Nn. 
Note tha t  bound variables can always be renamed to meet these restrictions. 

The  main difference between this presentat ion and the usual presentation of the LF 
proof  sys tem are the (APP-FAM) and (APP-OBJ) rules. The rules in the form presented 
here are those needed to preserve the invariant that  all objects, types, type families, 
kinds, and contexts in derivable judgments  are in canonical form. To see why, first note 
tha t  no new fl-redexes are introduced in the conclusion of these rules. The  application 
introduced in the left t e rm  of the judgment  in the conclusion is always a variable applied 
to zero or more terms, while the right t e rm is always ~-normal.  Second, note tha t  the 
signature i tem z of ari ty n is applied in the conclusion to n terms and thus this occurrence 
of z is fully applied. IIence, as long as N i , . . . ,  N,~ are canonical, so is z N i  . . .  N,~. In 
the (APP-OB3) rule, the fact tha t  the type ( [ N 1 / z i , . . . ,  Nn /Z ,~]B)  ~ is canonical follows 
f rom the fact tha t  for any object,  type, type family, or kind P and any object M,  if 
P and M are canonical, then so is ( [ M / z ] P )  ~. Based on these observations, derivable 
assertions can be characterized more formally as follows: if F is a valid context,  then F 
is canonical, and if r ~- a is derivable with respect to valid context r ,  then the terms in 
a are canonical with respect to r ,  and a has one of the following forms. 

1. I Ix i  : Ai . . .  I Izn :An.Type kind where n ~ 0. 

2. ()~:ci : A i  . . .  )~Cn : A n . I I z i  : B1 . . .  I Izm : B In .C)  : ( I Iz i  : A i . . .  IIZn :An.Type) where 
n, m _> 0 and C is a base type. 

3. ()~zi : A i . . . A z n  : An.N)  : ( I Iz i  : A i . . . I I z n  : A n . B )  where n > 0, N is not an 
abstraction,  and B is a base type. 

Note tha t  proving an assertion of the form given by (2) or (3), respectively, in valid 
context r ,  is equivalent to proving F, z i  :A1, . . . ,  zn : An F I Iz i  : B i  • .. I Izm : B m . C  : Type 
or r ,  z i  : Ai,  . . . ,  z,, :An ~- N : B, respectively, in valid context r ,  z i  : A1, . . . ,  Zn : An.  In 
the first version of the translation given in the next section, we will assume tha t  assertions 
have the lat ter  form, i .e. ,  t ha t  there are no leading abstractions in the t e rm on the left 
in a judgment .  

4 T r a n s l a t i n g  L F  A s s e r t i o n s  t o  h h  ~ F o r m u l a s  

In this section we present the translation of LF assertions to formulas in hh  '~. This 
t ranslat ion will require an encoding of LF terms as simply typed A-terms. We begin by 
presenting this encoding. We then present the translation, which given an LF assertion, 
r ~- a where r is a valid context,  translates 1 ~ to a set of hh '~ formulas and a to a formula 
to be proved f rom this set of  formulas. We then illustrate how to extend the translation 
to obtain a formula whose proof  (from no assumptions) verifies tha t  r is a valid context 
before proving tha t  c~ holds within the context F. 

Since both  LF and the meta-language have types and terms, to avoid confusion we 
will refer to types and te rms  of the meta- language as recta- types  and m e t a - t e r m s .  We 
only define the encoding of LF terms as simply typed A-terms for LF objects and flat 
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types / type  families since this is all that  is required by the translation. We introduce 
two base types, t m  and ty,  at the meta-level for these two classes of LF terms. First, to 
encode object-level variables, we define the function (I) that  maps LF types and kinds to 
meta-types containing only occurrences of t m  and ty .  

O(IIx :A.P)  := (P(A) --~ O(P)  
¢(Type) := 

¢ ( A )  := t m  when A is a flat type 

Using this function, an LF variable of kind or type P is mapped to a meta-variable of 
type (I)(P). These recta-types encode the "syntactic structure" of the corresponding LF 
dependent type or kind. Information about dependencies is lost in this mapping, but as 
we will see later, this information is retained in a different form in performing the general 
translation. We will assume a fixed mapping from LF variables to meta-variables of the 
corresponding type. For readability in our presentation, this mapping will be implicit. 
A variable x will represent both an LF variable with kind or type P and a meta~variable 
of the corresponding syntactic type O(P) .  It will always be clear from context which is 
meant.  Note that  for type or kind P and object N, ~ ( P )  = ~ ( ( [ N / x ] P ) ~ ) .  

We denote the encoding of term or flat type P as ((P)). The full encoding is defined 
below. 

( (Ax:A.M))  := ~x:C2(A).((M)) 
((MN)) := ((M)) ((N)) 
((AM)) := ((A)) ((M)) 

Note that the encoding maps abstraction in LF objects directly to abstraction at the 
meta-level, and that  both application of objects to objects and application of type families 
to objects are mapped directly to application at the recta-level. The  difference at the 
meta-level is that  the former application will be a recta-term with target type t m  while 
the latter application will be a meta~term with target type ty .  

It is easy to see that  for object or type family P having, respectively, type or kind Q, 
((P)) is a meta- term of recta-type (I)(Q). The following two properties also hold for this 
encoding. 

L e m m a  4.1 Let P be an LF object or flat type, and N an LF object. Then 

[((N))/x]((P)) -- (([Nix]P)). 

L e m m a  4.2 Let P and Q be two LF objects or fiat types. If P --8 Q, then ((P)) --8 ((Q))" 

We are now ready to define the translation. Two predicates will appear in the atomic 
hh ~ formulas resulting from the translation: hastype of type t m  ---, t y  -~ o and istype 
of type ty  --~ o. We will name the signature containing these two predicates ~LF. We 
denote the translation of the context item or judgment ~ as ~ ] .  The full translation is 
defined in Figure 3. It  is a partial function since it is defined by cases and undefined when 
no case applies. It will in fact always be defined on contexts and judgments in provable 
LF assertions. In proving properties of the translation, we will only consider canonical 
judgments and context items. Note that  in a canonical context item x : P ,  the variable 
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~M : IIx :A.B] 

~M : All 

[B : IIx : A .K]  

[A:  Type]] 

[IIx:A.B : Type] 

~FI-y p e kind]] 

[[IIx :A .K kind]] 

::  vo(A: ( l Ix:4 D IIMx: " l )  
:= hastype ((M)) ((A} where A is a base type. 

:= vo(A: (rrx:A]] D  Bx: 
:---- istype ((A)) where A is a base type. 

:= ~A: Type] AVa(A)X ([[x:A]] D [B:  Type]]) 

:= Z 

:= [A:  Type]] AV.(A)X (~x:A] D [K kind])  

Figure 3: Translation of LF Judgments  to hh ~ Formulas 

x is not necessarily canonical since it may not be fully applied. Such judgments with 
non-canonical terms on the left are handled by the first and third rules in Figure 3. This 
translation maps occurrences of If-abstraction in LF types and kinds directly to instances 
of universal quantification and implication in hh ~ formulas. In all of the clauses in the 
definition that  contain a pat tern  with a If-type or kind, the variable bound by II is 
mapped to a variable at the metaAevet bound by universal quantification. Then,  in the 
resulting implication, the left hand side asserts the fact that the bound variable has a 
certain type, while the right hand side contains the translation of the body of the type or 
kind which may contain occurrences of this bound variable. The base cases occur when 
there is no leading H in the type or kind, resulting in atomic formulas for the hastype 
and istype predicates, or simply T in the case when the judgment is Type kind. 

To illustrate this translation, we consider an example from an LF signature specifying 
natural  deduction for first-order logic. The following declaration introduces the constant 
for universal quantification and gives it a type: V* : (i ~ form) ~ form. (We write V* 
for universal quantification at the object level to distinguish it from universal quantifi- 
cation in hh~.) To make all bound variables explicit, we expand the above type to its 
unabbreviated form: IIA:(IIy:i . form).form. Note that  by applying • to the above type, 
we get (tin --~ tin) --+ tm  as the type of V* at the meta-level. The translation of this 
signature i tem is as follows. 

Iv* : IIA: ( I Iy: i . form).form] -- 

Vtrn__trnA (VtrnY ((hastype y i) D (hastype (Ay) form)) D (hastype (V'A) form)) 

This formula provides the following description of the information contained in the above 
dependent  type: for any A, if for arbi trary y of type i, Ay is a formula, then V*A is a 
formula. 

We will show in the next section that  if F is a valid canonical context and ~ a canonical 
judgment where the term on the left in a is not an abstraction, then F F ~ is provable in 
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LF iff I4~ is provable from the set of formulas IF]. (Here IF] denotes the set of formulas 
obtained by translating separately each item in F.) We now illustrate how to extend 
the translation to obtain a formula whose proof verifies that r is a valid context before 
proving that  4 holds within the context F. 

Proving that  a context xl  : P1 , - - - ,x~  : P,, is valid in LF corresponds in hh '~ to 
proving, for i = 1 , . . . ,  n, either ~Pi : Type]] or [Pi kind~ from Ix1 : P 1 , . . . ,  xi-1 : Pi - t~ .  
The translation in Figure 4, for an arbitrary assertion F t- 4, maps the pair (F; a )  to a 
single formula containing subformulas whose proofs will in fact insure that  each context  
i tem is valid with respect to the context items before it. We also remove the restriction 
that  the term on the left in 4 cannot be an abstraction. Variables bound by abstraction 
at the top level are treated as additional context items. The translation of such a pair 
is denoted IF; 4]]*. The first two clauses of this translation map each context i tem to a 

I x : A ,  F;4]* 

~x:K, r; a~* 

[[O;,kx:A.M : II=:A.B~* 

~0; Ax : A . B  : Hx : / .K~*  

[[O;Q* 

: =  [A: Vype] ̂  Vo(A)* D Ir;4 *) 

:= II£ kind] AV¢(g)X (~x:K]] D I r ;4~*)  

:= [A:  Type] AV¢(A)X (~x:A~ D I 0 ; M :  B ] ' )  

:= IA: Type] AV¢(A)x (~x:A]] D ~0;B : K]]*) 
:= I4] where the left term in 4 is not an abstraction. 

Figure 4: Translation of LF Assertions 

conjunctive formula where the first conjunct verifies that  the type or kind is valid (using 
the previous translation), and the second conjunct is a universally quantified implication 
where the left hand side asserts the fact that  the context i tem has the corresponding 
type (again using the previous translation), and the right side contains the translation of 
the pair consisting of the remaining context items and judgment. The third and fourth 
clauses handle the cases when the term on the left in a judgment is an abstraction. The 
last clause in the translation is for the base case: when the context is empty and no 
further abstractions remain at the head of the judgment.  Then the previously defined 
translation is used. Thus ,  a proof of a formula obtained from translating an arbitrary 
assertion F b 4 with respect to an initially empty set of assumptions verifies that  each 
context item in F, and each variable bound by A-abstraction in 4 is valid with respect to 
those items that  appear before it, and then proves that  the judgment holds within the 
entire context. The  correctness of this translation will follow easily from the correctness 
of the previous translation. 

5 C o r r e c t n e s s  o f  T r a n s l a t i o n  

We consider the correctness of the translation with respect to a slightly modified LF. 
Our modified system replaces the (ABS-FAM) and (ABS-OBJ) rules with the following two 
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rules. 

F , x : A 1 -  B : K 
F 1- A x : A . B  : I I x : A . K  

(ABS-FAM') 
F , x : A  1- M : B 

r 1- , ~x :A .M : I I x : A . B  (ABS-OBJ') 

These rules are the same as presented earlier except tha t  the left premise is omitted.  We 
call this sys tem LFq It  can be shown that  for valid context F, an LF assertion F 1- c~ is 
provable in LF ~ if and only if it is provable in LF, provided tha t  there is no leading abstrac-  
tion in the t e rm  on the left in c~. This  result relies on the fact tha t  in a proof  in the mod-  
ified system, if an application of (ABS-FAM t) whose conclusion is F F .~x : A . B  : IIx : A . K  
or an application of (ABS-OBJ ~) whose conclusion is F 1- )~x:A .M : I I x : A . B  occurs above 
an application of (APP-FAM) or (APP-OBJ), it is always the case that  F 1- A : Type is prov- 
able, and thus the left premise is redundant .  The  proof  of this fact relies on a t ransi t ivi ty 
result for LF t similar to the one s ta ted in [HHP87]. 

To prove the correctness of the translation, we prove a stronger s ta tement  from which 
the correctness of ~ ]] and [ ~* will follow as corollaries. This stronger s ta tement  will talk 
about  the provabil i ty of LF assertions of the form F 1- a in LF ~ even in the case when 
F is not a valid context.  We also relax the requirement on a.  The  left t e rm in a can 
be any object,  type,  type family, or kind, including one with a leading abstraction.  To 
handle these cases in proving the correctness of [ ]], we must add the following two rules 
to the translation.  

[ $ x : A . M  : I I x : A . B ~  

~)~x : A . B  : Hx : A .K~  

We must  then also add the restriction that  the first and third rules in Figure 3 are only 
applicable when M and B, respectively, are not abstractions. 

One final l emma is needed to prove the correctness of the translation. This l emma 
applies to the t ranslat ion extended with the above two rules. In Section 4, we s ta ted that  
subst i tut ion commutes  with the encoding operation (Lemma 4.1). We extend this result 
to the translation operat ion on judgments  which translate to provable hh ~ formulas. In 
part icular,  the l emma below states that  substi tution and fl-normalization commute  with 
the translat ion operat ion on provable hh"  sequents. We will write <b(F) to denote the set 
of metn-variables paired with their types obtained by mapping,  for each signature i tem 
x : P  in F, the variable x to the corresponding meta-variable and P to ~ (P ) .  

L e m m a  5.1 Let F, xl : A 1 , . . . , x ~  : An ,x  : A (n > 0) be a canonical context (whose 
variables are distinct).  Let N 1 , . . . ,  N,~,N be canonical objects with respect to F, and 
let E be the signature Y]LF U (I)(r). Then E; IF]  1-I ~ g :  ( [ N 1 / x l , . . . ,  Nn/xn]A)#~  if and 
only if 

Z; IF] t-i [((Yl)) / x l , . . . ,  ((Yn)) /x,~, ((g)) / x][x  : All. 

T h e o r e m  5.2 (Correctness of ~lYanslation) Let F be an arbi trary context (such tha t  the 
variables in F are distinct), and let c~ be an arbi t rary  canonical judgment  with respect 
to F. Let E be ELF t3 ~(F) .  Then F 1- a is provable in LF'  if and only if E; IF] 1-1 ~(~ 
holds. 
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P r o o f  Ske t ch :  The proof of this theorem is constructive, i .e . ,  it provides a method for 
constructing an h h  '° proof from an LF f proof, and vice versa. The forward direction is 
proved by induction on the height of an LF ~ proof of the assertion F ~- a.  For the PI 
and ABS rules, we can apply the induction hypothesis directly to the premises to obtain 
provable sequents to which we apply D-R, V-R, and A-R for the PI  rules, and just  D-R 
and V-R for the ABS rules to obtain the desired result. 

For the APP rules, we know the context i tem in the application of these rules corre- 
sponds to a formula in IF].  To this formula, we can apply V-L followed by D-L n times 
in a backward direction. Each of the left premises of D-L can be shown to be provable 
since they are the result of applying the induction hypothesis followed by Lemma  5.1 to 
each of the lat ter  n premises of the APP rule. Using Lemmas  4.1 and 4.2, the formula in- 
t roduced on the left in the right premise of the topmost  application of D-L can be shown 
to be ~-convertible to the formula in the succedent (the translation of the judgment  in 
the conclusion of the APP rule). Thus this premise is an axiom. 

The proof of the backward direction is by induction on the structure of the t e rm on 
the left in a ,  and is similar to the proof of the forward direction. The regularity of the 
proofs in h h  '° described in Theorem 2.2 is required here. For example, the proof  of the 
case when the t e rm on the left is an application uses the backchain search operation. • 

C o r o l l a r y  5.3 (Correctness of ~ ~) Let r be a valid context and a a canonical judgment  
such that  the t e rm on the left is not an abstraction. Let E be ~LF U (I)(r). Then F ~- a 
is provable in LF'  if and only if E; [r~ ~-I [c~] holds. 

C o r o l l a r y  5.4 (Correctness of [ ]]*) Let F be a canonical context (such that  the variables 
in F are distinct), and a a canonical judgment .  Then F is a valid context and F k- a is 
provable in LF'  if and only if ELF; 0 [-x [IF; a~* holds. 

6 E x a m p l e s  

In this section, we provide some further examples to illustrate the correspondence between 
LF signature i tems and judgments  and the h h  ~° formulas that  they map to. Note tha t  
in general, formulas obtained by translating signature items have the form on the left 
below, but can be rewrit ten to have the form on the right: 

VTIXI . . .VT,  X ,  (G1 ^ . . - ^  G ,  D D) 

where n > 0, r l , . . . , v n  are types, X 1 , . . . , X , ~  are variables, G 1 , . . . , G n ,  D are h h  ~° 

formulas. (Here we assume that  for i = 1 , . . . , n ,  X i + l , . . . , X n  do not appear  free in 
Gi). For readability, we will write h h  ~° formulas in the examples in this section simply as 
G1 A . . .  A G ,  D D (or just D when n = 0), and assume implicit universal quantification 
over all free variables written as capital  letters. Type  subscripts for these universal 
quantifiers can always be inferred from context. 

We begin by demonstrat ing the translation of signature items specifying natural  de- 
duction inference rules for tile A*, V*, and D* object-level connectives. The f ragment  of an 
LF signature specifying natural  deduction for the first-order logic tha t  we are concerned 
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with is the following. 

i :Type  
b r m :  Type 
true : form ~ Type 

A* : form -+ form ---* form 
D* : form --+ form ---* form 
V* : (i ~ form) --~ form 

A*-I: IIA : form.IIB :form.true(A) ---* true(B) ~ true( A A ' B )  
D*-I : IIA : form.IIB : form.( true(A) --+ true(B)) -+ true(A D ' B )  
V*-I : IIA:i--~ form.(IIy:i.true(Ay))---* true(V'A) 

The signature item true is a function that  maps formulas to types. LF objects of type 
true(A) represent proofs of formula A. First, consider the/ ' ,*-introduction rule specified 
by A*-I and its type. Its translation is the following formula. 

(hastype A form) A (haslype B form) A (hastype P (true A))  A 
(hastype Q (true B)) (hastype (^*-I A B P Q) (true A n'B)) 

This formula simply reads that  if A and B have type form, P is a proof of A, and Q is 
a proof of B, then the term (A*-I A B P Q) is a proof of the conjunction A A*B. The 
correspondence between this formula and the LF signature item is straightforward. We 
next consider a slightly more complex example; the translation of the V*-I rule results in 
the following formula. 

vy((hastype y i) (h stype Ay fo m)) ^ 
Vy((hastype y i) D (hastype P y  (true Ay)) )  D (hastype (V*-I A P )  (true V'A)) 

This clause provides the following description of the information contained in the depen- 
dent type: if for arbi trary y of type i, Ay  is a formula and P y  is a proof of Ay, then 
the term (V*-I A P)  is a proof of V*A. Note that  A and P at the metaAevel are both 
functions having syntactic type t m  --~ tin. Here, A maps first-order terms to formulas 
just  as it does at the object  level, while P maps first-order terms to proofs. As a final in- 
ference rule example, consider the declaration for D*-I, which translates to the following 
formula. 

(hastype A form) A (hastype B form) A 
Vq((hastype q (true A))  D (hastype Pq (true B)) )  D 

(hastype (D*-I A B P) (true A D'B) )  

This formula reads: if A and B are formulas and P is a function which maps an arbitrary 
proof q of A to the proof Pq of B, then the term (D*-I A B P)  is a proof of A D*B. 
Note that  P in this formula is a function which maps proofs to proofs. 

An example of a canonical judgment that  is provable in the LF signature for naturM 
deduction is 

,kA : forrn. D*-I( A )( A )( ,~x : true( A ).x ) : HA : form.true( A D'A).  

Using the extended translation of Figure 4, we obtain the following formula: 

(istype form) A VA((hastype A form) D (hastype (D*-I A A ~x.x) (true A D'A)))  
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which is provable from the set of formulas obtained by translating the LF signature 
specifying natural  deduction for first-order logic. 

An LF signature specifying the reductions needed for proof  normalization in natural  
deduction is given in [Pfe89]. As a final example, we illustrate the translation of the 
reduction rule for the case when an application of the introduction rule for D* is followed 
by the elimination rule for the same connective. The following signature items define the 
D*-E rule, the reduce constant used to relate two proofs of the same formula, and the 
reduction rule for D*. 

D*-E:  HA:form.HB :form.true(A) --* true(A D ' B )  ---* true(B) 
reduce: HA :form.true(A) --* true(A) ~ Type 
D* -red : HA : form.II B : form.IIP : (true(A) --* true( B ) ) .n  O : true(A). 

reduce(B)(D*-E m B (D*-I d B P) Q)(PQ) 

The signature i tem for D*-red translates to the following formula. 

(hastype A form) A (hastype B form) A 
Vq ((hastype q (true A)) D (hastype (Pq) (true B))) A (hastype Q (true A)) D 

(hastype (D*-red A B P Q) (reduce B (D*-E A B (D*-I A B P) Q) (PQ)))  

This formula reads: if A and B are formulas and P is a function which maps an arbitrary 
proof q of A to the proof Pq of B, and Q is a proof of A, then (D*-red A B P Q) is a 
meta~proof of the fact that  the natural deduction proof (D*-E A B (D*-I A B P )  Q) of 
B reduces to the proof PQ. 

7 C o n c l u s i o n  

We have not yet considered the possibility of translating hh '° formulas into LF. This 
translation is particularly simple. Let ~ be a signature for hh '~ and let 7 ~ be a set of 
E-formulas. For each primitive type r other than o in S, the corresponding LF judgment 
is r : Type. For each non-predicate constant c : r E E, the corresponding LF judgment  
is c : v. For each predicate constant p : rl  ~ --- ---* rn --+ o E E, the corresponding LF 
judgment is p : 1"1 --* . . .  ~ rn ~ Type. Finally, let D E ~ and let k be a new constant 
not used in the translation to this point. Then the corresponding LF judgment is k : D ~ 
where D ~ is essentially D where B1 D B2 is written as IIx :B1.B~ and VTx B is written 
as IIx : r .B.  

In the first author's dissertation [Fe189] an encoding of LF into just  hh 2 was presented. 
Order 2 is all that  is necessary if object-level applications are represented by metaAevel 
constants. The proofs of the correctness of that  encoding are very similar to those 
presented here. 

Notice that  the translation presented here works via recursion over the s tructure of 
types. Thus,  this kind of translation will not work for the polymorphic A-calculus or 
the Calculus of Constructions since they both contain quantification over types. Other 
techniques can be used, however, to encode provability of such h-calculi into hh ~. These 
involve coding the provability relation of those calculi directly into the metaAanguage 
[FM89]. 
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