
The Logic of Hereditary Harrop Formulas
as a Specification Logic for Hybrid

Chelsea Battell
Department of Mathematics and Statistics

University of Ottawa, Canada
cbattell@uottawa.ca

Amy Felty
School of Electrical Engineering and Computer Science

and Department of Mathematics and Statistics
University of Ottawa, Canada

afelty@uottawa.ca

Abstract
Hybrid is a logical framework that supports the use of higher-order
abstract syntax (HOAS) in representing formal systems or “object
logics” (OLs). It is implemented in Coq and follows a two-level
approach, where a specification logic (SL) is implemented as an
inductive type and used to concisely and elegantly encode the in-
ference rules of the formal systems of interest. In this paper, we
develop a new higher-order specification logic for Hybrid. By in-
creasing the expressive power of the SL beyond what was consid-
ered previously, we increase the flexibility of encoding OLs and
thus extend the class of formal systems for which we can reason
about efficiently. We focus on formalizing the meta-theory of the
SL. We develop an abstract way in which to present an impor-
tant class of meta-theorems. This class includes properties such as
weakening, contraction, exchange, and the admissibility of the cut
rule. The cut admissibility theorem establishes consistency and also
provides justification for substituting a formula for an assumption
in a context of assumptions. It can greatly simplify reasoning about
OLs in systems that provide HOAS. We present the abstraction and
show how it is used to prove all of these theorems.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic

Keywords logical frameworks, higher-order abstract syntax, cut
admissibility, structural rules, interactive theorem proving, Coq

1. Introduction
Logical frameworks provide general languages in which it is possi-
ble to represent a wide variety of logics, programming languages,
and other formal systems. They are designed to capture uniformi-
ties of the syntax and inference systems of these object logics (OLs)
and to provide support for implementing and reasoning about them.
Hybrid (Felty and Momigliano 2012) is a logical framework that
provides support for encoding OLs via higher-order abstract syn-
tax (HOAS), also referred to as lambda-tree syntax. Using HOAS,
binding constructs in the OL are encoded using the binding con-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

LFMTP ’16 June 23, 2016, Porto, Portugal
Copyright c© 2016 ACM 978-1-4503-4777-8/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2966268.2966271

structs provided by an underlying λ-calculus or function space of
the logical framework (the meta-language). Using such a represen-
tation allows us to delegate to the meta-language α-conversion and
capture-avoiding substitution. Further, object logic substitution can
be rendered as meta-level β-conversion. HOAS encodings aim to
relieve users from having to build up common (and often large) in-
frastructure implementing operations dealing with variables, such
as capture-avoiding substitution, renaming, and fresh name gener-
ation. In addition, in such logical frameworks, embedded implica-
tion and universal quantification are often used to represent hypo-
thetical and parametric judgments, also called generic judgments,
which allow elegant and succinct specifications of OL inference
rules.

An important goal of Hybrid is to exploit the advantages of
HOAS within the well-understood setting of higher-order logic as
implemented by systems such as Isabelle and Coq.1 Building on
such a system allows us to easily experiment with new specifi-
cation logics. It also provides a high degree of trust; for instance
proof terms in Coq serve as proof certificates, which can be inde-
pendently checked. In addition, Hybrid in Coq inherits Coq’s full
recursive function space as well as its extensive set of libraries.

Hybrid is implemented as a two-level system, an approach first
introduced in the FOλ∆IN logic (McDowell and Miller 2002),
and now applied within a variety of logics and systems, such as
the Abella interactive theorem prover (Gacek 2008). In a two-level
system, the specification and (inductive) meta-reasoning are done
within a single system but at different levels. An intermediate level
is introduced by inductively defining a specification logic (SL) in
Coq, and OL judgments (including hypothetical and parametric
judgments) are encoded in the SL. Several meta-theoretic proper-
ties about the SL provide powerful tools for reasoning about OLs.
For example, the cut admissibility theorem provides a direct and
convenient way to substitute a formula for an assumption in a con-
text of assumptions. Structural properties of the SL, such as weak-
ening, contraction, and exchange, also provide tools that can be
directly applied to reasoning in any OL.

In this paper, we introduce an intuitionistic higher-order SL,
namely the logic of hereditary Harrop formulas (HH). HH is a
sublogic of the logic of higher-order hereditary Harrop formulas
as presented in (Miller and Nadathur 2012). Two kinds of “order”
can be seen in this logic, the domain of quantification and the im-
plicational complexity. In terms of the former, HH allows quan-
tification over second-order types, and in terms of the latter, HH
is higher-order, allowing any level of nested implications. Previ-
ous SLs considered for Hybrid include the fragment of HH with

1 Although Hybrid has been implemented in both Coq and Isabelle/HOL,
we use the Coq version in this paper.

second-order implicational complexity and an ordered linear logic
(Felty and Momigliano 2012).

We adopt a minor variation of the inference rules for HH used
as an SL in recent versions of the Abella interactive theorem prover
(Wang et al. 2013). We present our encoding in Coq, and discuss
the proofs of meta-theoretic properties in some detail. In particu-
lar, we develop an abstraction to capture uniformities across proofs
of different meta-theoretic properties. Cut admissibility in particu-
lar relies on a fairly complex inductive argument, involving mutual
inductions and sub-inductions. Our proof follows the tradition of
many other syntactic proofs of cut admissibility for various logics
that first induct on the formula depth and then on the proof struc-
ture, e.g. (Girard et al. 1989). Furthermore, our proof is structural
in the sense of (Pfenning 2000), in our case using structural induc-
tion principles generated by Coq. We present the proofs via our ab-
straction, with the goal of providing a deeper insight into the proofs
and the formalization process. Variants of the properties we prove
have also been proved in Abella. They are mentioned in (Wang
et al. 2013), but proofs are not presented there. We briefly discuss
some differences.

Our overall goal is to extend the reasoning power of Hybrid.
Implementing HH as a new SL in Hybrid now allows us to di-
rectly encode, for example, the two OLs in the case studies con-
sidered in (Wang et al. 2013). The first involves reasoning about
the correspondence between an HOAS encoding and a de Bruijn
representation of the terms of the untyped λ-calculus, while the
second involves reasoning about a structural characterization of re-
ductions on untyped λ-terms, and is originally posed in (Miller
and Nadathur 2012). Other examples we intend to study include
the elegant algorithmic specification of bounded subtype poly-
morphism in System F in (Pientka 2007), which comes from the
PoplMark challenge (Aydemir et al. 2005), as well as specifica-
tions of continuation-passing transformations in functional pro-
grams. The specification of the main judgments of all of these OLs
will benefit from the availability of embedded implication in HH
(in particular, using two or three levels).

We also note that in addition to the advantages mentioned above
with regard to implementing Hybrid inside a well-established the-
orem prover, Hybrid also provides an ideal setting in which to
quickly prototype and experiment with new SLs. Each one is de-
veloped as a library and a user can choose and import one that is
best-suited to the task at hand and/or move between them easily.
For example, case studies that don’t require the expressiveness of
HH can use the second-order fragment, likely leading to simpler
proofs. Case studies that are better suited to a linear logic can di-
rectly import and use a linear SL, etc. In contrast, in Abella, a slight
extension of HH replaced the SL used in earlier versions of the
system. Fixing the SL allows developers to focus more on adding
powerful automation for a particular SL, and thus proofs in Hybrid
currently require more interaction.

In Section 2, we give a brief introduction of Hybrid. In Sec-
tion 3, we introduce HH as an example specification layer and
describe its implementation in Coq. Highlights of the the mutual
structural induction used in later proofs is found in Section 4 fol-
lowed by the presentation of a generalized SL in Section 5 and a
proof technique using this generalized SL in Section 6. Section 7
outlines proofs of the structural rules of HH, while Section 8 details
the proof of cut admissibility. Finally, Section 9 concludes and dis-
cusses related and future work. The files of the Coq formalization
are available at www.eecs.uottawa.ca/~afelty/lfmtp16/.

2. Hybrid
The Calculus of Inductive Constructions (CIC) (Paulin-Mohring
1993; Bertot and Castéran 2004) as implemented by Coq is the rea-
soning logic (RL) of Hybrid. Both SLs and OLs are implemented

Inductive expr : Set :=
| CON : con -> expr
| VAR : var -> expr
| BND : bnd -> expr
| APP : expr -> expr -> expr
| ABS : expr -> expr.

Figure 1. Terms in Hybrid

Inductive con : Set :=
| hAPP : con | hABS : con
| dAPP : con | dABS : con | dVAR : nat -> con.

Definition hApp : expr -> expr -> expr :=
fun (t1 : expr) => fun (t2 : expr) =>
APP (APP (CON hAPP) t1) t2.

Definition hAbs : (expr -> expr) -> expr :=
fun (f : expr -> expr) =>
APP (CON hABS) (LAM f).

Definition dApp : expr -> expr -> expr :=
fun (t1 : expr) => fun (t2 : expr) =>
APP (APP (CON dAPP) t1) t2.

Definition dAbs : expr -> expr :=
fun (d : expr) => APP (CON cdABS) d.

Definition dVar : nat -> expr :=
fun (n : nat) => (CON (dVAR n)).

Figure 2. Encoding OL Syntax in Hybrid

as inductive types in Coq, and Coq is used to carry out all formal
reasoning. Hybrid is implemented as a Coq library. This library
first introduces a special type expr that encodes a de Bruijn rep-
resentation of λ-terms. It is defined inductively and its definition
appears in Figure 1. Here, VAR and BND represent bound and free
variables, respectively, and var and bnd are defined to be the nat-
ural numbers. The type con is a parameter to be filled in when
defining the constants used to represent an OL. The library then in-
cludes a series of definitions used to define the operator LAM of type
(expr → expr) → expr, which provides the capability to ex-
press OL syntax using HOAS. Expanding its definition fully down
to primitives gives the low-level de Bruijn representation, which is
hidden from the user when reasoning about meta-theory. In fact,
the user only needs CON, VAR, APP, and LAM to define operators for
OL syntax. One other predicate from the Hybrid library will appear
in the proof development: proper : expr→ Prop. This predicate
rules out terms that have occurrences of bound variables that do not
have a corresponding binder (dangling indices).

To illustrate the encoding of OL syntax, we consider the ex-
ample mentioned earlier of reasoning about the correspondence
between a HOAS encoding and a de Bruijn representation of
the terms of the untyped λ-calculus.2 We fill in the definition of
con, and define operators hApp and hAbs for the HOAS encod-
ing and operators of the untyped λ-calculus, and dApp, dAbs,
and dVar for object-level de Bruijn terms. Figure 2 defines this
encoding. As mentioned, the type con is actually a parameter
in the Hybrid library. This will be explicit when discussing Coq
proofs, where we write (expr con) as the type used to express
OL terms. Also, the keyword fun is Coq’s abstraction operator.
In this paper, we will sometimes use the standard notation from
the λ-calculus for function abstraction. For example, the defi-

2 In (Wang et al. 2013), inference rules and proofs of properties of this OL
are also discussed.

Inductive oo : Type :=
| atom : atm -> oo
| T : oo
| Conj : oo -> oo -> oo
| Imp : oo -> oo -> oo
| All : (expr con -> oo) -> oo
| Allx : (X -> oo) -> oo
| Some : (expr con -> oo) -> oo.

Figure 3. Type of SL Formulas

nition of hApp can also be written as λ(t1 : expr con)(t2 :
expr con) . APP (APP (CON hAPP) t1) t2.

3. The Specification Logic
At the specification level, the terms of HH are the terms of the
simply-typed λ-calculus. We assume a set of primitive types that
includes expr as well as the special symbol oo to denote formulas.
Types are built from the primitive types and the function arrow
→ as usual. Logical connectives and quantifiers are introduced as
constants with their corresponding types as in (Church 1940). For
example, conjunction has type oo → oo → oo and the quantifiers
have type (τ → oo) → oo, with some restrictions on τ described
below. Predicates are function symbols whose target type is oo.
Following (Miller and Nadathur 2012), the grammars below for G
(goals) and D (clauses) define the formulas of the logic, while Γ
describes contexts of hypotheses.

G ::= > | A | G & G | G ∨G | D −→ G | ∀τx.G | ∃τx.G
D ::= A | G −→ D | D & D | ∀τx.D
Γ ::= ∅ | Γ, D

In goal formulas, we restrict τ to be a primitive type not containing
oo. In clauses, τ also cannot contain oo, and is either primitive
or has the form τ1 → τ2 where both τ1 and τ2 are primitive
types. We note that there is no restriction on the implicational
complexity.3 We follow the presentation in (Wang et al. 2013) to
define the inference rules of HH, using two sequent judgments that
distinguish between goal-reduction rules and backchaining rules.
These sequents have the forms ΓBG and Γ, [D]BA, respectively,
where the latter is a left focusing judgment with D the formula
under (left) focus. In these sequents, there is also an implicit fixed
context ∆, called the static program clauses, containing closed
clauses of the form ∀τ1 . . .∀τn .G −→ A with n ≥ 0. These
clauses represent the inference rules of an OL.

Our encoding of the formulas of the SL in Coq is shown in Fig-
ure 3. In this implementation, the type atm is a parameter to the def-
inition of oo and is used to define the predicates needed for reason-
ing about a particular OL. For instance, our above example might
include a predicate hodb : (expr con) → nat → (expr con)
relating the higher-order and de Bruijn encodings at a given depth.
The constant atom coerces an atomic formula (a predicate applied
to its arguments) to an SL formula. Also, note that in this imple-
mentation, we restrict the type of universal quantification to two
types, (expr con) and X, where X is a parameter that can be instan-
tiated with any primitive type; in our running example, X would
become nat for the depth of binding in a de Bruijn term. We also
leave out disjunction. It is not difficult to extend our implementa-
tion to include disjunction and quantification (universal or existen-
tial) over other primitive types, but these have not been needed in
reasoning about OLs.

We write 〈 α 〉, (β1 & β2), and (β1 −→ β2) as notation for
(atom α), (Conj β1 β2), and (Imp β1 β2), respectively. Note that

3 In the second-order SL in (Felty and Momigliano 2012), implication in
goals is restricted to the form A −→ G.

A :− G Γ BG

Γ B 〈 A 〉
g prog

D ∈ Γ Γ, [D] BA

Γ B 〈 A 〉
g dyn

Γ BG1 Γ BG2

Γ BG1 &G2
g and

Γ , D BG

Γ BD −→ G
g imp

Γ B T
g tt

∀(E : expr con), (proper E → Γ BGE)

Γ B All G
g all

∀(E : X), (Γ BGE)

Γ B Allx G
g allx

proper E Γ BGE

Γ B Some G
g some

Figure 4. Goal-Reduction Rules, grseq

Γ, [〈 A 〉] BA
b match

Γ, [D1] BA

Γ, [D1 &D2] BA
b and1

Γ, [D2] BA

Γ, [D1 &D2] BA
b and2

Γ BG Γ, [D] BA

Γ, [G −→ D] BA
b imp

proper E Γ, [DE] BA

Γ, [All D] BA
b all

Γ, [DE] BA

Γ, [Allx D] BA
b allx

∀(E : expr con), (proper E → Γ, [DE] BA)

Γ, [Some D] BA
b some

Figure 5. Backchaining Rules, bcseq

we write β or δ for formulas (type oo), and α for elements of
type atm, possibly with subscripts. When discussing proofs, we
also write o for formulas and a for atoms. When we want to make
explicit when a formula is a goal or clause, we write G or D,
respectively. Formulas quantified by All are written (All β) or
(All λ(x : expr con) . βx). The latter is the η-long form with
types included explicitly. The other quantifiers are treated similarly.

Figures 4 and 5 define the inference rules of the SL. They
are encoded in Coq as two mutually inductive types, one each
for goal-reduction and backchaining sequents. The syntax used
in the figures is a pretty-printed version of the Coq definition.
Coq’s dependent products are written ∀(x1 : t1) · · · (xn : tn),M ,
where n ≥ 0 and for i = 1, . . . , n, xi may appear free in
xi+1, . . . , xn,M . If it doesn’t, implication can be used as an ab-
breviation, e.g., the premise of the g all rule is an abbreviation for
∀(E : expr con)(H : proper E), (Γ BGE).

Goal-reduction sequents have type grseq : context→ oo→
Prop, and we write ΓBβ as notation for grseq Γ β. Backchaining
sequents have type bcseq : context → oo → atm → Prop and
we write Γ, [β] B α as notation for bcseq Γ β α, understanding β
to be the focused formula from Γ. The rule names in the figures are
the constructor names in the inductive definitions. The premises
and conclusion of a rule are the argument types and the target
type, respectively, of one clause in the definition. Quantification at
the outer level is implicit. Inner quantification is written explicitly
in the premises. For example, the linear format of the g dyn rule
from Figure 4 with all quantifiers explicit is ∀(Γ : context)(D :
oo)(A : atm), D ∈ Γ→ Γ, [D]BA→ ΓB 〈 A 〉. This is the type
of the g dyn constructor in the inductive definition of grseq. (See
the definition of grseq in the Coq files.)

The type context is used to represent contexts of assump-
tions in sequents and is defined as a Coq ensemble oo since we
want contexts to behave as sets. We write (Γ, β) as notation for
(context cons Γ β). We write write c or Γ to denote contexts
when discussing formalized proofs. The following context lemmas
will be mentioned in the proofs in this paper:

Lemma 1 (elem inv).
elem β1 (Γ, β2)

(elem β1 Γ) ∨ (β1 = β2)

Lemma 2 (context sub sup).
Γ1 ⊆ Γ2

(Γ1, β) ⊆ (Γ2, β)

We use the ensemble axiom Extensionality Ensembles :
∀(E1 E2 : ensemble), (Same set E1 E2) → E1 = E2, where
Same set is defined in the Ensemble library, and elem is context
membership.

The goal-reduction rules are the right-introduction rules of this
sequent calculus. If we consider building a proof bottom-up from
the root, these rules “reduce” the formula on the right to atomic
formulas. The rules g prog and g dyn are the only goal-reduction
rules with an atomic principal formula.

The rule g prog is used to backchain over the static program
clauses ∆, which are defined for each new OL as an inductive
type called prog of type atm → oo → Prop, and represent the
inference rules of the OL. This rule is the interface between the
SL and OL layers and we say that the SL is parametric in OL
provability. We writeA :− G for (prog A G) to suggest backward
implication. Recall that clauses in ∆ may have outermost universal
quantification. The premiseA :− G actually represents an instance
of a clause in ∆.

The rule g dyn allows backchaining over dynamic assumptions
(i.e. a formula from Γ). To use this rule to prove Γ B 〈 A 〉, we
need to showD ∈ Γ and Γ, [D]BA. FormulaD is chosen from, or
shown to be in, the dynamic context Γ and we use the backchaining
rules to show Γ, [D] BA (where D is the focused formula).

The backchaining rules are the standard focused left rules for
conjunction, implication, and universal and existential quantifica-
tion. Considered bottom up, they provide backchaining over the
focused formula. In using the backchaining rules, each branch is ei-
ther completed by b match where the focused formula is an atomic
formula identical to the goal of the sequent, or b imp is used result-
ing in one branch switching back to using goal-reduction rules.

We mention several Coq tactics when presenting proofs. The
main one is the constructor tactic, which applies a clause of an
inductive definition in a backward direction (a step of meta-level
backchaining), determining automatically which clause to apply.

4. Mutual Structural Induction
Our theorem statements will often have the form

(∀ (c : context) (o : oo), (cB o)→ (P1 c o)) ∧
(∀ (c : context) (o : oo) (a : atm), (c, [o] B a)→ (P2 c o a))

where we extract predicates P1 : context→ oo→ Prop and P2 :
context→ oo→ atm→ Prop from the statement to be proven.
We can generate an induction principle over the mutually inductive
sequent types to allow proof by mutual structural induction. This is
done using the Coq Scheme command.

To prove a statement of the above form by mutual structural
induction over c B o and c, [o] B a, 15 subcases must be proven,
one corresponding to each inference rule of the SL. The proof
state of each subcase of this induction is constructed from an
inference rule of the system. We can see a snippet of the sequent
mutual induction principle in Figure 6, where each antecedent
(clause of the induction principle defining the cases) corresponds
to a rule of the SL and a subcase for an induction using this

seq mutind : ∀(P1 : context→ oo→ Prop)

(P2 : context→ oo→ atm→ Prop),

(∗g dyn∗) (∀(c : context)(o : oo)(a : atm),

o ∈ c→ c, [o] B a→ P2 c o a→ P1 c 〈 a 〉)→
(∗g all∗) (∀(c : context)(o : expr con→ oo),

(∀(e : expr con), proper e→ cB o e→
(∀(e : expr con), proper e→ P1 c (o e)→
P1 c (All o))→

(∗b imp∗) (∀(c : context)(o1 o2 : oo)(a : atm),

cB o1 → P1 c o1 → c, [o2] B a→ P2 c o2 a→
P2 c (o1 −→ o2) a)→

· · ·
(∀(c : context)(o : oo), cB o→ P1 c o) ∧
(∀(c : context)(o : oo)(a : atm), c, [o] B a→ P2 c o a)

Figure 6. Sequent Mutual Induction Principle Snippet

technique. After applying the induction principle, the subcases are
generated and externally quantified variables in each antecedent are
introduced to the context of assumptions of the proof state and are
then considered signature variables.

This induction principle is automatically generated following
the description shown below, with examples from the figure given
in each point.

• Non-sequent premises are assumptions of the induction subcase
(e.g. o ∈ c from the g dyn rule).
• For every rule premise that is a goal-reduction sequent (with

possible local quantifiers) of the form ∀(x1 : T1) · · · (xn :
Tn),ΓBβ where n ≥ 0, the induction subcase has assumptions
(∀(x1 : T1) · · · (xn : Tn),Γ B β) and (∀(x1 : T1) · · · (xn :
Tn), P1 Γ β) (e.g. ∀(e : expr con), proper e→ cB o e and
∀(e : expr con), proper e → P1 c (o e) from the g all rule
with n = 2 and unabbreviated prefix ∀(e : expr con)(H :
proper e)).
• For every rule premise that is a backchaining sequent (with

possible local quantifiers) of the form ∀(x1 : T1) · · · (xn :
Tn),Γ, [β] B α where n ≥ 0, the induction subcase has as-
sumptions (∀(x1 : T1) · · · (xn : Tn),Γ, [β] B α) and (∀(x1 :
T1) · · · (xn : Tn), P2 Γ β α) (e.g. c, [o2] B a and (P2 c o2 a)
from the b imp rule).
• If the rule conclusion is a goal-reduction sequent of the form

Γ B β, then the subcase goal is P1 Γ β (e.g. (P1 c 〈 a 〉) from
the g dyn rule).
• If the rule conclusion is a backchaining sequent of the form

Γ, [β]Bα, then the subcase goal isP2 Γ β α (e.g. (P2 c (o1 −→
o2) a) from the b imp rule).

Implicit in these last two points is the possible introduction of more
assumptions, in the case when P1 and P2 are dependent products
themselves (i.e. contain quantification and/or implication). We will
refer to assumptions introduced this way as induction assumptions
in future proofs, since they are from a predicate that is used to
construct induction hypotheses. That is, assumptions of the form
(P1 Γ β) or (P2 Γ β α) are induction hypotheses for any proof
subcase for a rule with premises Γ B β or Γ, [β] B α. In this SL,
exactly two cases of this induction principle have more than one
induction hypothesis (b imp and g and).

In describing proofs, we will follow the Coq style and write
the proof state in a vertical format with the assumptions above
a horizontal line and the goal below it. For example, the g dyn
subcase will have the following form:

H1 : o ∈ c
H2 : c, [o] B a

IH : P2 c o a

P1 c 〈 a 〉
As in Coq, we provide hypothesis names (so that we can refer
to them as needed). Also, we often omit the type declarations of
signature variables, in this case c : context, o : oo, and a : atm,
when they can be easily inferred from context. Unlike in Coq,
when we have multiple subcases to prove with the same context
of assumptions we will write them all under the horizontal line in
the same proof state, separated by commas.

5. Generalized SL Part I: Abstract Rules
Here we present generalized specification logic rules to reduce the
number of induction cases and allow us to partition cases of the
original SL based on rule structure. Our goal is to gain insight
into the high-level structure of such inductive proofs, providing the
proof writer and reader with the ability to understand where the
difficult cases are and how similar cases can be handled in a general
way.

All rules of the SL have some number of premises that are either
non-sequent predicates, goal-reduction sequents, or backchaining
sequents. Also, all rule conclusions are sequents; this is necessary
to encode these rules in inductive types grseq and bcseq. With
this observation, we can generalize the rules of the SL inference
system and say that all rules have one of the following forms:

Qm(〈c, o〉)

∀(xn,sn : Rn,sn),(c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))

∀(yp,tp : Sp,tp),(c ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] B ap)
gr rule

cB o

Qm(〈c, o〉)

∀(xn,sn : Rn,sn),(c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))

∀(yp,tp : Sp,tp),(c ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] B ap)
bc rule

c, [o] B a

where m,n, p represent the (possibly zero) number of non-sequent
premises, goal-reduction sequent premises, and backchaining se-
quent premises, respectively. Note that for all rules in our imple-
mented SL, 0 ≤ m ≤ 1, 0 ≤ n ≤ 2, and 0 ≤ p ≤ 1.

We call this collection of inference rules consisting of gr rule
and bc rule the generalized specification logic (GSL). This is not
implemented in Coq as the previously described SL is; but rather
all rules of the SL can be instantiated from the two rules of the
GSL (see Subsection 5.1). The GSL allows us to investigate the
SL without needing to consider each of the 15 rules of the SL
separately. This makes it possible to more efficiently study and
explain the metatheory of the SL.

Much of the notation used in these rules requires further ex-
planation. A horizontal bar above an element with some subscript
index, say z, means we have a collection of such items indexed
from 1 to z. For example, the “premise”Qm(〈c, o〉) represents them
premises Q1(〈c, o〉), . . . , Qm(〈c, o〉). The premises with sequents can
possibly have local quantification. For i = 1, . . . , n, (xi,si : Ri,si)
represents the prefix (xi,1 : Ri,1) · · · (xi,si : Ri,si).

The notation (〈·〉) is used to list arguments from the conclusion
that may be used by a function or predicate. We wish to show how
elements of the rule conclusion propagate through a proof.

Given types T0, T1, . . . , Tz , when we write F (〈a1 : T1, . . . , az :
Tz〉) : T0, we mean a term of type T0 that may contain any
(sub)terms appearing in conclusion terms a1, . . . , az . For example,
given γ1(〈D −→ G : oo〉) : context, we may “instantiate”
this expression to {D}. We often omit types and use definitional
notation, e.g., in this case we may write γ1(〈D −→ G〉) := {D}.

We infer the following typing judgments from the GSL rules:

• For i = 1, . . . ,m, the definition of Qi may use the context
and formula of the conclusion, so with full typing information,
Qi(〈c : context, o : oo〉) : Prop

• For j = 1, . . . , n, SL context γj may use the formula of the
conclusion and SL formula Fj may use the formula of the
conclusion and locally quantified variables. So with full typing
information, γj(〈o : oo〉) : context and Fj(〈o : oo, xj,1 :
Rj,1, . . . , xj,sj : Rj,sj 〉) : oo

• For k = 1, . . . , p, SL context γ′
k may use the formula of the

conclusion and SL formula F ′
k may use the formula of the

conclusion and locally quantified variables. So with full typing
information γ′

k(〈o : oo〉) : context and F ′
k(〈o : oo, yk,1 :

Sk,1, . . . , yk,tk : Sk,tk 〉) : oo

5.1 SL Rules from GSL Rules
The rules of the GSL can be instantiated to obtain the SL by
specifying the values of the variables in the GSL rules. We first
fill in m, n, and p. Then for i = 1, . . . ,m, we specify Qi.
For j = 1, . . . , n, we specify sj , γj , Fj , xj,sj , and Rj,sj . For
k = 1, . . . , p, we specify γ′

k, F ′
k, yk,tk , and Sk,tk . Below are

examples for SL rules g dyn, g allx and b imp.

Rule m n p c o

D ∈ Γ Γ, [D] BA

Γ B 〈 A 〉
g dyn 1 0 1 Γ 〈 A 〉

t1 := 0
Q1(〈Γ, 〈 A 〉〉) := D ∈ Γ γ′

1(〈〈 A 〉〉) := ∅ F ′
1(〈〈 A 〉〉) := D

∀(E : X), (Γ BGE)

Γ B Allx G
g allx 0 1 0 Γ Allx G

s1 := 1 x1,1 := E R1,1 := X
γ1(〈Allx G〉) := ∅ F1(〈Allx G,E〉) := G E

Γ BG Γ, [D] BA

Γ, [G −→ D] BA
b imp 0 1 1 Γ G −→ D

s1 := 0 t1 := 0
γ1(〈G −→ D〉) := ∅ F1(〈G −→ D〉) := G
γ′

1(〈G −→ D〉) := ∅ F ′
1(〈G −→ D〉) := D

Notice that for the g dyn rule, D appears in Q1, even though it
is not in the argument list of Q1. The notation (〈·〉) only specifies
arguments from the rule conclusion. Any variables that only appear
in the premises of a rule of the SL are also permitted to appear
in the propositions, formulas, and contexts when specializing the
premises of a GSL rule to obtain the premises of a specific SL rule.

6. Proof by Induction over the Generalized Rules
The induction subcase corresponding to gr rule (resp. bc rule)
requires a proof of:

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn), P1 (c ∪ γn(〈o〉)) (Fn(〈o, xn,sn〉))
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] B ap)

IHbp : ∀(yp,tp : Sp,tp), P2 (c ∪ γ′
p(〈o〉)) (F ′

p(〈o, yp,tp〉)) ap

P1 c o (resp. P2 c o a)

Given specific P1 and P2, we could unfold uses of these predi-
cates and continue the proof. Suppose

P1 := λc o.∀(Γ′ : context),

IA1(〈c, o,Γ′〉)→ · · · → IAw(〈c, o,Γ′〉)→ Γ′ B o and

P2 := λc o a.∀(Γ′ : context),

IA1(〈c, o,Γ′〉)→ · · · → IAw(〈c, o,Γ′〉)→ Γ′, [o] B a

The underlining of sequents in the definitions of P1 and P2 is to
highlight that these are the sequents we apply the generalized rules
to (following introductions). In particular, we unfold uses of P1

and P2 in the proof state and introduce the variables and induction
assumptions. Then the goal is either Γ′ B o or Γ′, [o] B a. Apply
gr rule or bc rule as appropriate, and either will give (m+ n+ p)
new subgoals which come from the three premise forms in these
rules, with appropriate instantiations for the externally quantified
variables. Now the proof state is

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(Γ′ : context),

IA1(〈c ∪ γn(〈o〉), Fn(〈o, xn,sn〉),Γ
′〉)→ · · · →

IAw(〈c ∪ γn(〈o〉), Fn(〈o, xn,sn〉),Γ
′〉)→ Γ′ B Fn(〈o, xn,sn〉)

Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] B ap)

IHbp : ∀(yp,tp : Sp,tp)(Γ′ : context),

IA1(〈c ∪ γ′
p(〈o〉), F ′

p(〈o, yp,tp〉),Γ
′〉)→ · · · →

IAw(〈c ∪ γ′
p(〈o〉), F ′

p(〈o, yp,tp〉),Γ
′〉)→ Γ′, [F ′

p(〈o, yp,tp〉)] B ap

IPw : IAw(〈c, o,Γ′〉)

Qm(〈Γ′, o〉),
∀(xn,sn : Rn,sn), (Γ′ ∪ γn(〈o〉) B Fn(〈o, xn,sn〉)),
∀(yp,tp : Sp,tp), (Γ′ ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] B ap)

where Γ′ is a new signature variable.

6.1 Subproofs for Sequent Premises
To prove the last (n + p) subgoals (the “second” and “third” sub-
goals above) we first introduce any locally quantified variables
as signature variables. For the goal-reduction (resp. backchaining)
subgoals, for j = 1, . . . , n (resp. k = 1, . . . , p), we apply induc-
tion hypothesis IHgj (resp. IHbk), instantiating Γ′ in the induction
hypothesis with Γ′∪γj(〈o〉) (resp. Γ′∪γ′

k(〈o〉)). This yields the proof
state in Figure 7 for goal-reduction premises (resp. backchaining
premises).

6.2 Subproofs for Non-Sequent Premises
The proof of the first m subgoals depends on the definition of Qi
for i = 1 . . .m. If the first argument (a context) is not used in
its definition, then Qi(〈Γ′, o〉) is provable by assumption Hi, since
we will have Qi(〈Γ′, o〉) = Qi(〈c, o〉). Any other dependencies on
signature variables can be ignored since we can assign the variables

Hm : Qm(〈c, o〉)

Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))

IHgn : ∀(xn,sn : Rn,sn)(Γ′ : context),

IA1(〈c ∪ γn(〈o〉), Fn(〈o, xn,sn〉),Γ
′〉)→ · · · →

IAw(〈c ∪ γn(〈o〉), Fn(〈o, xn,sn〉),Γ
′〉)→ Γ′ B Fn(〈o, xn,sn〉)

Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′
p(〈o〉), [F ′

p(〈o, yp,tp〉)] B ap)

IHbp : ∀(yp,tp : Sp,tp)(Γ′ : context),

IA1(〈c ∪ γ′
p(〈o〉), F ′

p(〈o, yp,tp〉),Γ
′〉)→ · · · →

IAw(〈c ∪ γ′
p(〈o〉), F ′

p(〈o, yp,tp〉),Γ
′〉)→ Γ′, [F ′

p(〈o, yp,tp〉)] B ap

IPw : IAw(〈c, o,Γ′〉)

IAw(〈c ∪ γn(〈o〉), Fn(〈o, xn,sn〉),Γ
′ ∪ γn(〈o〉)〉)

(resp. IAw(〈c ∪ γ′
p(〈o〉), F ′

p(〈o, yp,tp〉),Γ
′ ∪ γ′

p(〈o〉)〉))

Figure 7. Incomplete proof branches for sequent premises

H1 : D ∈ Γ

Hb1 : Γ, [D] B a1

IHb1 : ∀(Γ′ : context), IA1(〈Γ, D,Γ′〉)→ · · · →
IAw(〈Γ, D,Γ′〉)→ Γ′, [D] B a1

IPw : IAw(〈Γ, 〈 A 〉,Γ′〉)

D ∈ Γ′

Figure 8. Incomplete proof branch (g dyn case)

as we choose when applying the generalized rule. We will illustrate
this by considering each rule with non-sequent premises, starting
from the second proof state in Section 6 and, for (i = 1, . . . ,m),
(j = 1, . . . , n), (k = 1, . . . , p), show how to define Qi, γj , Fj ,
γ′
k, and F ′

k and finish the subproofs where possible.

Case g prog : This rule has one non-sequent premise and one
goal-reduction sequent premise with no local quantification, so
m = n = 1, p = 0, o = 〈 A 〉, and c = Γ. DefineQ1(〈Γ, 〈 A 〉〉) :=
A :− G, γ1(〈〈 A 〉〉) := ∅, and F1(〈〈 A 〉〉) := G, where G : oo is a
signature variable. Then we are proving the following:

H1 : A :− G
Hg1 : Γ BG

IHg1 : ∀(Γ′ : context), IA1(〈Γ, G,Γ′〉)→ · · · →
IAw(〈Γ, G,Γ′〉)→ Γ′ BG

IPw : IAw(〈Γ, 〈 A 〉,Γ′〉)

A :− G

which is completed by assumption H1.

Case g dyn : This rule has one non-sequent premise and one
backchaining sequent premise with no local quantification, som =
p = 1, n = 0, c = Γ, and o = 〈 A 〉. Define Q1(〈Γ, 〈 A 〉〉) :=
D ∈ Γ, γ′

1(〈〈 A 〉〉) := ∅, and F ′
1(〈〈 A 〉〉) := D, where D : oo

is a signature variable. Then we need to prove what is displayed
in Figure 8. Here we do not have enough information to finish this

branch of the proof. An induction assumption may be of use, but
we will need specific P1 and P2.

Case g some : This rule has one non-sequent premise and one
goal-reduction sequent premise with no local quantification, so
m = n = 1, p = 0, c = Γ, and o = Some G. De-
fine Q1(〈Γ, Some G〉) := proper E, γ1(〈Some G〉) := ∅, and
F1(〈Some G〉) := G E where E : expr con is a signature variable.
Then we are proving the following:

H1 : proper E

Hg1 : Γ BG E

IHg1 : ∀(Γ′ : context), IA1(〈Γ, G E,Γ′〉)→ · · · →
IAw(〈Γ, G E,Γ′〉)→ Γ′ BG E

IPw : IAw(〈Γ, Some G,Γ′〉)

proper E

which is completed by assumption H1.

Case b all : This case is proven as above but with m = p = 1,
n = 0, c = Γ, and o = All D. Define Q1(〈Γ, All D〉) :=
proper E, γ′

1(〈All D〉) := ∅, and F ′
1(〈All D〉) := D E where

E : expr con is a signature variable. The goal proper E is
provable by the assumption of the same form as in the previous
case.

In the next two sections we will return to this idea of proofs
about a specification logic from a generalized form of SL rule to
prove properties of the SL once we have fully defined P1 and P2.
The proof states in Figures 7 and 8 (the incomplete branches) will
be roots of these explanations.

7. Structural Rules
For our intuitionistic SL we prove the standard structural rules of
weakening, contraction, and exchange:

Theorem (weakening).
Γ B β2

Γ , β1 B β2
∧

Γ, [β2] B α

Γ , β1, [β2] B α

Theorem (contraction).
Γ , β1 , β1 B β2

Γ , β1 B β2
∧

Γ , β1 , β1, [β2] B α

Γ , β1, [β2] B α

Theorem (exchange).
Γ , β2 , β1 B β3

Γ , β1 , β2 B β3
∧

Γ , β2 , β1, [β3] B α

Γ , β1 , β2, [β3] B α

These are all corollaries of a general theorem:

Theorem 1 (monotone).
Γ ⊆ Γ′ Γ B β

Γ′ B β
∧

Γ ⊆ Γ′ Γ, [β] B α

Γ′, [β] B α

The proofs of all of these theorems are automated in the Coq
implementation. Here, we continue our explanation using our gen-
eralized proof states.

Proof. Theorem 1 is proven by mutual structural induction over the
premises Γ B β and Γ, [β] B α. Defining P1 and P2 as

P1 :=λ (c : context)(o : oo) .

∀ (Γ′ : context), c ⊆ Γ′ → Γ′ B o

P2 :=λ (c : context)(o : oo)(a : atm) .

∀ (Γ′ : context), c ⊆ Γ′ → Γ′, [o] B a

we are proving

(∀ (c : context) (o : oo), (cB o)→ (P1 c o)) ∧
(∀ (c : context) (o : oo) (a : atm), (c, [o] B a)→ (P2 c o a))

which has the form discussed in Section 4, so the mutual structural
induction principle may be used.

7.1 Generalized SL Part II: The Structural Rules Hold
We build on the inductive proof in Section 6 over the GSL. Re-
call that when we took the proof as far as we could; we had three
remaining groups of branches to finish (m + n + p subgoals),
one group for rules with non-sequent premises depending on the
context of the rule conclusion, and one for each kind of sequent
premise (see Figures 7 and 8). We will continue this effort be-
low, using the P1 and P2 defined for this theorem. This means
we will have one induction assumption (i.e., w = 1) which is
IA1(〈c, o,Γ′〉) := c ⊆ Γ′.

7.1.1 Subproofs for Sequent Premises
First we will prove the subgoals coming from the sequent premises,
building on Figure 7 and using IA1 as defined above. The proof
state for goal-reduction (resp. backchaining) premises is

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(Γ′ : context),

(c ∪ γn(〈o〉)) ⊆ Γ′ → Γ′ B Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] B ap)

IHbp : ∀(yp,tp : Sp,tp)(Γ′ : context),

(c ∪ γ′
p(〈o〉)) ⊆ Γ′ → Γ′, [F ′

p(〈o, yp,tp〉)] B ap

IP1 : c ⊆ Γ′

(c ∪ γn(〈o〉)) ⊆ (Γ′ ∪ γn(〈o〉)) (resp. (c ∪ γ′
p(〈o〉)) ⊆ (Γ′ ∪ γ′

p(〈o〉)))

The goal is provable by context lemma context sub sup and
assumption IP1.

7.1.2 Subproofs for Non-Sequent Premises
Still to be proven are the subgoals for non-sequent premises. As
seen in Subsection 6.2, the only rule of the SL whose corresponding
subcase still needs to be proven is g dyn. From Figure 8 and using
P1 and P2 as defined here, we are proving

H1 : D ∈ Γ

Hb1 : Γ, [D] B a1

IHb1 : ∀(Γ′ : context),Γ ⊆ Γ′ → Γ′, [D] B a1

IP1 : Γ ⊆ Γ′

D ∈ Γ′

Unfolding the definition of context subset in IP1 it becomes ∀(o :
oo), o ∈ Γ→ o ∈ Γ′. Backchaining on this form of the goal gives
D ∈ Γ, provable by assumption H1.

In Section 6, we explored how to prove statements about the
GSL for a restricted form of theorem statement. There were three
classes of incomplete proof branches that had a final form shown
in Figures 7 and 8. In Section 5.1 we saw how to derive the SL
from the GSL. So here we have proven a structural theorem for the
rules of the GSL in a general way that can be followed for any SL
rule.

8. Cut Admissibility
The cut rule is shown to be admissible in this specification logic by
proving the following:

Theorem 2 (cut admissible).
Γ, δ B β Γ B δ

Γ B β
∧

Γ, δ, [β] B α Γ B δ

Γ, [β] B α

Since our specification logic makes use of two kinds of sequents,
we prove two cut rules. These correspond to the two conjuncts
above, where the first is for goal-reduction sequents and the second
is for backchaining sequents.

Outline. This proof will be a nested induction, first over the cut
formula δ, then over the sequent premises with δ in their contexts.
Since there are seven rules for constructing formulas and 15 SL
rules, this will result in 105 subcases. These can be partitioned into
five classes with the same proof structure, four of which we briefly
illustrate presently.

Technical details based on the particular statement to be proven
will be seen in the main proof where we again consider the gener-
alized form of SL rule and also see what the proof state will look
like for specific subcases.

The cases for the axioms g tt and b match are proven by one
use of constructor (7 formulas * 2 rules = 14 subcases).

goal sequent
constructor

Cases for rules with only sequent premises, including those with
inner quantification, with the same context as the conclusion have
the same proof structure. Note that by same context, we include
rules modifying the focused formula. The rules in this class are
g and, g all, g allx, b and1, b and2, b imp, b allx, and b some
(7 formulas * 8 rules = 56 subcases). We apply constructor to
the goal sequent which, after any introductions, will give a sequent
subgoal for each sequent premise of the rule. To each of the new
subgoals we apply the appropriate induction hypothesis, giving new
subgoals for each antecedent of each induction hypothesis used.
Now all goals can be proven by assumption (hypotheses from the
induction principle and induction assumptions).

{
IH antecedents

} assumption

{
rule sequent premise(s)

} apply IH

goal sequent
constructor

Only one rule modifies the context of the sequent, g imp (7 for-
mulas * 1 rule = 7 subcases). The proof of the subcase for this rule
is similar to above, but requires the use of another structural rule,
weakening, before the sequent subgoal will match the sequent as-
sumption introduced from the goal.

The remaining four rules have both a non-sequent premise and
a sequent premise. Of these, the subcases for g prog, g some, and
b all have a similar proof structure; apply constructor to the goal
so that the non-sequent premise is provable by assumption, then
prove the branch for the sequent premise as above (7 formulas * 3
rules = 21 subcases).

non-sequent premise
assumption

IH antecedents
assumption

sequent premise
apply IH

goal sequent
constructor

The proof of the subcase for g dyn is more complicated due to
the form of the non-sequent premise, D ∈ Γ, which depends on
the context in the goal sequent, ΓB 〈 A 〉. We need more details to
analyse the subcases for this rule further.

For seven formula constructions and 14 SL rule subcases, we
are able to automate 98 of 105 subcases of this proof in the Coq
implementation, as seen below (where o1 is the cut formula in the
implementation, in place of δ).

Hint Resolve gr_weakening context_swap.
induction o1; eapply seq_mutind; intros;
subst; try (econstructor; eauto; eassumption).

(end outline)

The cut admissibility theorem stated above is a simple corollary
of the following theorem (with explicit quantification):

∀(δ : oo),

(∀(c : context)(o : oo), cB o→
∀(Γ′ : context), c = Γ′, δ → Γ′ B δ → Γ′ B o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] B a→
∀(Γ′ : context), c = Γ′, δ → Γ′ B δ → Γ′, [o] B a)

Proof. We begin with an induction over δ, so we are proving ∀(δ :
oo), P δ with P defined as

P : oo→ Prop := λ(δ : oo) .

(∀(c : context)(o : oo), cB o→ P1 c o) ∧
(∀(c : context)(o : oo)(a : atm), c, [o] B a→ P2 c o a),

where

P1 : context→ oo→ Prop := λ(c : context)(o : oo) .

∀(Γ′ : context), c = (Γ′, δ)→ Γ′ B δ → Γ′ B o

P2 : context→ oo→ atm→ Prop :=

λ(c : context)(o : oo)(a : atm) .

∀(Γ′ : context), c = (Γ′, δ)→ Γ′ B δ → Γ′, [o] B a

P , P1, and P2 will provide the induction hypotheses used in this
proof. Next is a nested induction, which is a mutual structural
induction over cB o and c, [o] B a using P1 and P2 as above.

8.1 Generalized SL Part III: Cut Rule Proven Admissible
As in the proof of Theorem 1, we build on the inductive proof
in Section 6, unfolding P1 and P2 as defined here. Recall that
we have now introduced assumptions and applied the appropri-
ate generalized SL rule to the underlined sequents in the defini-
tion of P1 and P2. For the proof of cut admissibility, there are
two induction assumptions from P1 and P2 (so w = 2). Define
IA1(〈c, o,Γ′〉) := (c = (Γ′, δ)) and IA2(〈c, o,Γ′〉) := Γ′ B δ, where
δ is the cut formula in the cut rule and is in the signature of variables
of the proof state.

8.1.1 Subproofs for Sequent Premises
First we will prove the subgoals coming from the sequent premises,
building on Figure 7 and using IA1 and IA2 as defined above. For
a moment we will ignore the outer induction over the cut formula
δ. By ignore we mean let δ := η where η : oo, and we will not
display the induction hypothesis for this induction. The proof state

for goal-reduction premises (resp. backchaining premises) is

Hm : Qm(〈c, o〉)
Hgn : ∀(xn,sn : Rn,sn), (c ∪ γn(〈o〉) B Fn(〈o, xn,sn〉))
IHgn : ∀(xn,sn : Rn,sn)(Γ′ : context),

(c ∪ γn(〈o〉)) = (Γ′, η)→ Γ′ B η → Γ′ B Fn(〈o, xn,sn〉)
Hbp : ∀(yp,tp : Sp,tp), (c ∪ γ′

p(〈o〉), [F ′
p(〈o, yp,tp〉)] B ap)

IHbp : ∀(yp,tp : Sp,tp)(Γ′ : context),

(c ∪ γ′
p(〈o〉)) = (Γ′, η)→ Γ′ B η → Γ′, [F ′

p(〈o, yp,tp〉)] B ap

IP1 : c = (Γ′, η)

IP2 : Γ′ B η

(c ∪ γn(〈o〉) = ((Γ′ ∪ γn(〈o〉)), η)), (Γ′ ∪ γn(〈o〉) B η)

(resp. (c ∪ γ′
p(〈o〉) = ((Γ′ ∪ γ′

p(〈o〉)), η)), (Γ′ ∪ γ′
p(〈o〉) B η))

The subgoals concerning context equality are proven by context
lemmas and assumption IP1. To prove the sequent subgoals, apply
weakening then assumption IP2.

8.1.2 Subproofs for Non-Sequent Premises
Recall that before the induction over sequent premises, we had
induction over the cut formula δ. To finish this proof we need to
consider the subcases corresponding to the g dyn rule for each
form of δ. Below is a proof of the g dyn subcase where δ =
o1 −→ o2. The g dyn subcases for other formula constructions
follow similarly.

Case δ = o1 −→ o2 : The antecedent of the oo induction
principle for this case is ∀(o1 o2 : oo), P o1 → P o2 →
P (o1 −→ o2), where P o1 and P o2 are induction hypotheses
and P is as defined at the start of this proof. Expanding the goal
(we will wait to expand the premises), the proof state is

IH 1 : P o1

IH 2 : P o2

(∀(c : context)(o : oo), cB o→ ∀(Γ′ : context),

c = (Γ′, (o1 −→ o2))→ Γ′ B (o1 −→ o2)→ Γ′ B o) ∧
(∀(c : context)(o : oo)(a : atm), c, [o] B a→ ∀(Γ′ : context),

c = (Γ′, (o1 −→ o2))→ Γ′ B (o1 −→ o2)→ Γ′, [o] B a)

Next we have the mutual induction over sequents.

Subcase g dyn : Expanding and making introductions building
on Figure 8, we want:

IH 1 : P o1

IH 2 : P o2

H1 : D ∈ (Γ′, o1 −→ o2)

H2 : Γ′, o1 −→ o2, [D] B a

IH 3 : ∀(Γ0 : context), (Γ′, o1 −→ o2) = (Γ0, o1 −→ o2)→
Γ0 B (o1 −→ o2)→ Γ0, [D] B a

IP1 : Γ = Γ′, o1 −→ o2

IP2 : Γ′ B o1 −→ o2

Γ′ B 〈 a 〉

with (Γ′, o1 −→ o2) substituted for Γ using IP1 and renaming in
IH 3 to avoid variable capture. We can specialize IH 3 with Γ′, a
reflexivity lemma and IP2 to get the new premise P3 : Γ′, [D] B a

and apply elem inv to H1 to get (D ∈ Γ′) ∨ (D = o1 −→
o2). Inverting H1, we get two new subgoals with different sets of
assumptions. In the second we substitute o1 −→ o2 for D using
H1 in that proof state.

IH 1 : P o1 IH1 : P o1

IH 2 : P o2 IH2 : P o2

H1 : D ∈ Γ′ H1 : D = o1 −→ o2

P3 : Γ′, [D] B a P3 : Γ′, [o1 −→ o2] B a

IP2 : Γ′ B o1 −→ o2 IP2 : Γ′ B o1 −→ o2

Γ′ B 〈 a 〉 Γ′ B 〈 a 〉

To prove the first, we apply g dyn to the goal, then need to prove
D ∈ Γ′ and Γ′, [D] B a which are both provable by assumption.

For the second (right) subgoal, it will be necessary to apply
inversion to some assumptions to get structurally simpler as-
sumptions, before being able to apply the induction hypotheses
IH 1 and IH 2. Inverting P3 and IP2, and unfolding P , we have:

IH 1 : (∀(c : context)(o : oo), cB o→
∀(Γ′ : context), c = (Γ′, o1)→ Γ′ B o1 → Γ′ B o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] B a→
∀(Γ′ : context), c = (Γ′, o1)→ Γ′ B o1 → Γ′, [o] B a)

IH 2 : (∀(c : context)(o : oo), cB o→
∀(Γ′ : context), c = (Γ′, o2)→ Γ′ B o2 → Γ′ B o) ∧

(∀(c : context)(o : oo)(a : atm), c, [o] B a→
∀(Γ′ : context), c = (Γ′, o2)→ Γ′ B o2 → Γ′, [o] B a)

P31 : Γ′ B o1

P32 : Γ′, [o2] B a

IP2 : Γ′, o1 B o2

Γ′ B 〈 a 〉

Applying the first conjunct of IH 2 to the goal gives three new
subgoals Γ′, o2 B 〈 a 〉, (Γ′, o2) = (Γ′, o2) and Γ′ B o2. For
the first, apply g dyn, then we need to prove o2 ∈ (Γ′, o2) (proven
by a context lemma) and Γ′, o2, [o2] B a (proven by weakening
and assumption P32). The second is proven by reflexivity.
For the third, we apply IH 1 and get new subgoals (Γ′, o1 B o2),
(Γ′, o1) = (Γ′, o1), and (Γ′Bo1). The sequent subgoals are proven
by assumption and the other by reflexivity.

The other six g dyn cases follow a similar argument requiring
inversion on hypotheses and induction hypothesis specialization.

In summary, the outer induction over δ gave seven cases for
seven oo constructors. For each of these, an inner induction over
sequents gave 15 new subgoals for 15 rules. We saw that for 14
of 15 rules, each rule has the same proof structure for every form
of δ. The remaining subgoals were all for the rule g dyn and were
more challenging due to the presence of a non-sequent premise that
depends on the context of the conclusion.

9. Conclusion
We have described the extension of Hybrid to a new more expres-
sive SL, and focused on presenting the proofs of important metathe-
oretic properties in a general manner. With the metatheory of this
SL completed, the next step is to illustrate the benefits of the extra
expressive power via case studies.

In the GSL we have made the rules general enough to capture
the rules of the SL, but it could be generalized further to explore

other specification logics that do not fit the restrictions here. This is
a subject of future work, as we explore even more expressive SLs.

There are a variety of other systems supporting HOAS, such
as Beluga (Pientka and Dunfield 2010) and Twelf (Schürmann
2009), to name just two. These two systems, along with Abella and
Hybrid were compared on several benchmark problems in (Felty
et al. 2015). Hybrid and Abella are similar in the sense that they
are based on a proof-theoretic foundation and follow the two-level
approach, implementing an SL inside a logic or type theory, while
Twelf and Beluga are built on type-theoretic foundations.

Our formulation of sequent rules uses the style developed in
(Pfenning 2000), where the cut rule incorporates aspects of weak-
ening and contraction, facilitating the kind of structural induction
argument used both there and here. One main difference in the ap-
proaches is the representation of inference rules. In that paper, the
proofs are formalized in Elf (an early version of Twelf) where rules
are generally expressed in a natural deduction style with implicit
contexts. In contrast, we represent and reason about contexts di-
rectly, and consequently illustrate that doing so is not as difficult as
is argued in (Pfenning 2000).4

The proof of cut admissibility in Abella uses the same overall
structure with induction on the cut formula, with a sub-induction on
the structure of the proof of the left premise of the cut rule. A de-
tailed analysis of the differences in the proofs is left as future work.
We do note, however, that the statement of the two theorems differs.
The Abella version requires the following additional conjunct:

∀(c : context)(o : oo)(a : atm), cB o→ c, [o] B a→ cB 〈 a 〉.

There are also some differences in the rules. Our logic includes
existential quantification, while the Abella version does not. Also,
without loss of generality, our g prog rule restricts static program
clauses to have the form ∀τ1 . . .∀τn .G −→ A. Finally, we restrict
universal quantification to second-order, while the Abella version
does not. This does not affect the proofs of metatheorems, and
we don’t expect it to significantly limit the kinds of OLs we can
consider. For example, the two case studies in (Wang et al. 2013)
do not require more than second-order quantification in the SL.

As mentioned, implementing Hybrid in Coq gives us access
to Coq’s extensive standard library and other facilities. Having
such access allows us, for example, to simplify the encoding of
the example discussed in Section 2 in two ways. First, in general,
when an OL’s syntax can be directly encoded using a first-order
representation, we can define it directly as a Coq inductive type
instead of as a set of terms of type expr. For example, we could
remove the three definitions for dApp, dAbs, and dVar and the
constants they depend on, and instead define an type dtm with three
constructors. Second, we can use Coq’s library for natural numbers,
which allows for a simpler definition of the hodb inference rules
(mentioned but not shown earlier).

The development of the metatheory of the SL in this paper dif-
fers from other Hybrid SLs, in particular, those that appear in (Felty
and Momigliano 2012). In the definition of those SLs, sequents had
an additional natural number argument, and metatheoretic proper-
ties were proved by induction over the height of a proof, rather than
by a direct structural induction on the definition of (the two kinds
of) sequents, as is done here. Future work includes exploring the
connections between these two kinds of induction in the context
of the SL in this paper, as well as comparing their use in proving
properties of OLs.

4 See (Felty et al. 2015) for a fuller comparison of these two approaches to
reasoning.

Acknowledgments
The authors acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada. In addition, special
thanks go to Alberto Momigliano for his involvement in the ini-
tial coding of the data structures of the specification logic and for
his insights and discussions over the course of this work.

References
B. E. Aydemir et al. Mechanized metatheory for the masses: The

POPLMARK challenge. In 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs), volume 3603 of LNCS,
pages 50–65. Springer, 2005.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach
to reasoning with higher-order abstract syntax. Journal of Automated
Reasoning, 48(1):43–105, 2012.

A. P. Felty, A. Momigliano, and B. Pientka. The next 700 challenge prob-
lems for reasoning with higher-order abstract syntax representations:
Part 2—a survey. Journal of Automated Reasoning, 55(4):307–372,
2015.

A. Gacek. The Abella interactive theorem prover (system description). In
4th International Joint Conference on Automated Reasoning (IJCAR),
volume 5195 of LNCS, pages 154–161. Springer, 2008.

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press, 1989.

R. McDowell and D. Miller. Reasoning with higher-order abstract syntax
in a logical framework. ACM Transactions on Computational Logic, 3
(1):80–136, January 2002.

D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, June 2012.

C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and
properties. In International Conference on Typed Lambda Calculi and
Applications, volume 664 of LNCS, pages 328–345. Springer, 1993.

F. Pfenning. Structural cut elimination I: Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, 2000.

B. Pientka. Proof pearl: The power of higher-order encodings in the logical
framework lf. In 20th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs), volume 4732 of LNCS, pages 246–261.
Springer, 2007.

B. Pientka and J. Dunfield. Beluga: A framework for programming and
reasoning with deductive systems (system description). In 5th Interna-
tional Joint Conference on Automated Reasoning (IJCAR), volume 6173
of LNCS, pages 15–21. Springer, 2010.

C. Schürmann. The Twelf proof assistant. In 22nd International Conference
on Theorem Proving in Higher Order Logics, volume 5674 of LNCS,
pages 79–83. Springer, 2009.

Y. Wang, K. Chaudhuri, A. Gacek, and G. Nadathur. Reasoning about
higher-order relational specifications. In 15th International ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Program-
ming (PPDP), pages 157–168. ACM Press, 2013.

