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Abstract. Access control is an information security process which
guards protected resources against unauthorized access, as specified by
restrictions in security policies. A variety of policy languages have been
designed to specify security policies of systems. In this paper, we intro-
duce a certified policy language, called TEpla, with formal semantics
and simple language constructs, which we have leveraged to express and
formally verify properties about complex security goals. In developing
TEpla, we focus on security in operating systems and exploit security
contexts used in the Type Enforcement mechanism of the SELinux secu-
rity module. TEpla is certified in the sense that we have encoded the
formal semantics and machine-checked the proofs of its properties using
the Coq Proof Assistant. In order to express the desired properties, we
first analyze the behavior of the language by defining different order-
ing relations on policies, queries, and decisions. These ordering relations
enable us to evaluate how algorithms for deciding whether or not requests
are granted by policies will react to changes in policies and queries. The
machine-checked mathematical proofs guarantee that TEpla behaves as
prescribed by the semantics. TEpla is a crucial step toward developing
certifiably correct policy-related tools for Type Enforcement policies.

Keywords: Access control · Policy languages · Formal methods

1 Introduction

Access control as a security mechanism is concerned with the management of
access requests to resources. To determine if a request is allowed, it is checked
against a set of authorization rules which are written in a particular policy lan-
guage dependent on the type of access control available in the underlying com-
puter system. Access control policy languages have an essential role in express-
ing the intended access authorization to regulate requests to resources. Security
policy languages used to develop security policies significantly affect this pro-
cess, mainly because the policy developers’ understanding of the semantics of
the languages has a direct effect on the way they write policies. Formal seman-
tics can tremendously improve the use of a language by constructing a precise
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reference for the underlying language. Semantic-related tools which analyze or
reason about specifications written in the language require formal semantics to
process the language correctly. Moreover, the implementation of such tools can
be verified, which is another important consequence of formal semantics.

We propose a small and certifiably correct policy language, TEpla. TEpla can
provide ease of use, analysis, and verification of its properties. By certified policy
language, we mean a policy language with formal semantics and formally verified
mathematical proofs of important properties, which reflects the concept of certi-
fication in formal methods communities and programming languages [6]. One of
our goals is to avoid language-introduced errors (i.e., errors that are introduced
to IT systems due to multiple contradictory interpretations of policies). Ease of
reasoning and analysis of policies is facilitated by a clear specification of TEpla’s
behavior and semantics as it satisfies important formal properties designed for
this purpose [22]. In addition to these properties, TEpla is flexible enough for
defining complex security constraints through introducing user-defined predi-
cates. This enables security administrators to define various security goals in
security policies. We analyze the language’s behavior by defining different order-
ing relations on policies, queries, and decisions. These ordering relations enable
us to evaluate how language decisions react to changes in policies and queries.
See, for example, the non-decreasing property of TEpla policies discussed in
Sect. 4.

In order to keep the core of the language simple, in this study, we focus on
developing a new certified policy language for the Type Enforcement mechanism,
which is a subset of the SELinux security module [16] implemented in Linux
distributions. Type Enforcement exploits the security context of resources to
regulate accesses. The security context is a set of allowable values for particular
attributes assigned to system resources.

SELinux is a Linux Security Module (LSM) that enables security developers
to define security policies. It implements the Mandatory Access Control (MAC)
[20] strategy, which allows policy writers to express whether a subject can per-
form an operation on an object, e.g.., whether an SELinux process can perform
a read or write on a file or socket.

We carried out a study [8] on policy languages, which proposes solutions for
dealing with the many gaps for using policy languages with informal semantics,
mainly focusing on the SELinux policy language in particular, and gaps in devel-
oping verified security policies in general. TEpla is an important step in closing
these gaps. We believe that the same development paradigm used for TEpla can
be adopted to develop other verified policy languages, such as one for AppAr-
mor [13] or one for full SELinux, thus providing higher-trust policy languages
for Linux.

As mentioned earlier, TEpla also provides additional language constructs
that allow security administrators to encode different security goals in policies
as user-defined predicates. Using this mechanism, administrators can express a
variety of conditions, thus significantly increasing the flexibility over the lan-
guage’s built-in conditions. However, there are some conditions that policy writ-
ers need to verify about their predicate definitions in order to ensure that their
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defined predicates are compatible with TEpla properties. Note that our proof
development uses no axioms; we require all conditions to be proved.

We use the Coq proof assistant [3,21] (version 8.12) to write machine-checked
mathematical proofs for TEpla’s properties. The Coq development of TEpla
contains approximately 4700 lines of script and is available at http://www.
site.uottawa.ca/∼afelty/vecos20/. This online appendix also contains a mapping
from names used in this paper to names used in the Coq code.

In Sect. 2, we present most of the infrastructure of TEpla, including rules,
decisions, queries, and policies, and present the part of the semantics that
involves evaluating queries against the rules. This section also defines order-
ing relations on TEpla decisions, policies, and queries. In Sect. 3, we present the
syntax and semantics of constraints. A constraint can be considered as an addi-
tional form of a policy rule, which takes a user-defined predicate as an argument.
We present the syntax and semantics of constraints, and discuss the conditions
that must hold for predicates. In Sect. 4, we discuss the main properties that we
have proved about TEpla, and Sect. 5 concludes the paper.

The work presented here appears in the Ph.D. thesis of the first author [7],
and the reader is referred there for details, including a BNF grammar of TEpla’s
syntax. Here, in Sects. 2 and 3, we informally describe the TEpla language struc-
tures and their meaning, and present parts of the Coq encoding to illustrate.

2 Rules, Decisions, Queries, and Policies

The main element in a system is a resource, which can be either a subject or
an object, as described in the previous section. In fact, a resource can act as
a subject in some contexts and an object in others. In many policy languages,
including TEpla, resources have attributes. As mentioned, the values of these
attributes form the security context of the resources. In TEpla, the security
context is the values of an attribute called basic type. Each resource is assigned
one basic type, providing it with an identity in the same way as done in SELinux.
For example, consider two resources of a system called file web and port protocol.
We can assign, for instance, the values of the basic type attribute to be mail t
and http t, respectively.

TEpla allows policy developers to group basic types of resources together
to form a group type, providing a single identifier for a group of resources. We
group together basic types when there exists a conceptual relationship among
them. Basic and group types together form the notion of a type, which is the
main building block of TEpla.

SELinux uses the terminology source and destination to mean subjects and
objects, and domain and type to classify their types, respectively. Here, we con-
tinue to use subject and object and we use type to classify both.

Two other central data types in TEpla include object class and permitted
action. Object classes specify possible instances of all resources of a certain
kind, such as files, sockets, and directories. Permitted actions specify the actions
that subjects are authorized to perform on objects. Permitted actions can range
from being as simple as reading data, sharing data, or executing a file [15].

http://www.site.uottawa.ca/~afelty/vecos20/
http://www.site.uottawa.ca/~afelty/vecos20/
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2.1 Syntax in Coq

We start by defining the basic data types. Here, C, P, basicT, which represent
object classes, permitted actions, and basic types, respectively, are all defined as
nat (N), which is the datatype of natural numbers in Coq [21]. These definitions
plus some examples are below.

Definition C := N. Definition P := N. Definition basicT := N.
Definition File : C := 600.
Definition mail_t : basicT := 300. Definition http_t : basicT := 301.
Definition networkManager_ssh_t : basicT := 302.
Definition Read : P := 702. Definition Write : P := 703.

We encode a group type as a list of basic types, i.e., we represent them
using Coq’s built-in datatype for lists. For example, the code below intro-
duces G to define group types and program G, which represents the example
set {mail t, http t}. A group type should contain at least 2 elements.

Definition G : Set := list basicT.
Definition program_G : G := [mail_t ;http_t ].

We can now encode our principle entity, the type structure; we define the
inductive datatype T with two constructors singleT and groupT. These con-
structors take arguments of type basicT and G respectively to produce a term
belonging to T.

Inductive T : Type:=
| singleT : basicT → T

| groupT : G → T.

As an example, consider two subjects whose security contexts are represented
by the values http t and mail t, and a third subject that is allowed to
access objects of both types. These are represented by (singleT http t),
(singleT mail t), and (groupT program G) respectively.

The access control rules that are used to form policies are defined inductively
as type R. These rules consist of Allow and Type Transition rules. The definition
of R below is followed by an example Allow rule.

Inductive R : Set :=
| Allow : T ∗ T ∗ C ∗ P ∗ B → R

| Type_Transition : T ∗ T ∗ C → R.
Definition R_A : R :=

Allow (groupT program_G, singleT mail_t , File , Read , true ).

Rules are implemented using tuples. Allow rules enable policy writers to express
eligible access from subjects (whose type is expressed by the first component)
to objects (whose type is expressed by the second component). The third com-
ponent specifies the object class of the object. The fourth component expresses
possible actions that the object can perform on the subject. The last component
is a Boolean condition, which we do not use here; it is discussed in future work.

The second kind of rule provides support for transition of types in security
contexts from one value to another. Type Transition rules in policies express
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which types can switch to other types, which is an important feature that we
adapt from SELinux but do not discuss further in this paper.

TEpla has a three-valued decision set for access requests including NotPer-
mitted, Permitted and UnKnown. In TEpla, queries are denied by default, i.e.,
every access request that should be granted must be expressed explicitly by rules
in a policy. Decisions are defined by the inductive type DCS:

Inductive DCS: Set := Permitted | NotPermitted | UnKnown .

The UnKnown decision arises from conflicts in policies. Conflicts are caused
by rendering a decision for access requests in a part of security policies that is
different from an already taken decision according to other policy statements.
For example, a specific Allow rule may permit a particular query, but there is a
constraint in the policy that is not satisfied by the query. Such conflicts signify
errors that must be corrected by a policy administrator.

Access requests or queries are inquiries into the policy to check the possibility
that the subject is allowed to perform the specified action on the object. In
TEpla, they consist of four components: the types of the subject and object, the
object class of the object, and an action. The definition of queries (Q) is shown
below, along with an example.

Definition Q : Set := T ∗ T ∗ C ∗ P .
Definition sampleQ : Q := (singleT mail_t , singleT http_t , File , Write ).

Processing of a query with respect to a policy involves an attempt to check the
authorization of a subject with the given type to carry out a specific action on
an object having the given type and class. In the example, a subject of type
mail t is requesting to write to an object whose class is File and whose type is
http t.

Policies, defined below as the type TEPLCY, consist of a sequence of rules
and a sequence of constraints. Constraints, denoted as CSTE, will be defined in
the next section.

Inductive TEPLCY: Set := TEPolicy : list R ∗ list CSTE → TEPLCY.

2.2 Evaluating Queries Against Policy Rules

We define the semantics of TEpla as a mapping from policies and access requests
to decisions, in the form of five translation functions implemented in Coq, which
together act as the decision-making chain that evaluates a query against a policy,
taking into account all the various parts of the policy.

The first function, shown in Listing 1, evaluates a query against a single rule
leading to a decision of either Permitted or NotPermitted.

Definition R_EvalTE (R_policy:R) (q :Q) : DCS:=
match R_policy with

|Allow (alw_srcT,alw_dstT,alw_C,alw_P ,alw_B) ⇒
match q with

|( qsrcT, qdsT, qC, qP) ⇒
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if ((TSubset qsrcT alw_srcT) && (TSubset qdsT alw_dstT) &&
(Nat .eqb qC alw_C) && (Nat.eqb qP alw_P) && (alw_B)

then Permitted else NotPermitted

end

|Type_Transition (trn_srcT, trn_dstT, trn_C) ⇒ ...
end .

Listing 1. Evaluation of a rule and a query

For Allow rules, the first four conditions of the if statement check to see if the
rule applies to the query. The first two check that the types of the subject and
object in the query are a subset of the corresponding types in the rule. (TSubset
performs this check.) The next two conditions check that the object class and
permitted action are the same, using the built-in function Nat.eqb. The last
condition checks that the last component of rule, which is a Boolean condition,
evaluates to true. If all conditions are satisfied, the result is Permitted. A Type
Transition rule is similar (details omitted), but only the types of the subject and
object need to be checked in order to determine that the rule applies.

The second function for evaluating queries against constraints is presented
in Sect. 3; we also discuss the other three functions there.

2.3 Ordering Relation on Decisions, Queries and Policies

We define a Partially Ordered Set (poset) [9] called (DCS,<::) on TEpla’s three-
valued set of decisions as NotPermitted <:: Permitted <:: UnKnown. The
lowest decision in this ordering is NotPermitted, which means that all accesses
are first denied by default. To permit an access query, a relevant rule in the first
component of policies must authorize the access. If the query is not granted at
this stage, TEpla denies the access, which means that the ultimate access decision
is NotPermitted. In the case that the query is granted (with decision Permitted),
TEpla proceeds to check whether or not the query satisfies the constraint com-
ponent of policies. The decision for the query continues to be Permitted as long
as it satisfies the constraints; if not, that is the query fails to satisfy some con-
straints, the decision changes to UnKnown. We allow composition of policies in
which decisions never go from UnKnown or Permitted to NotPermitted when
TEpla checks the sub-policies of the composed policy (see Sect. 4 for more details
about this property).

Additionally, we define a relation on queries (Q, <<=). Two queries Q1 =
(SourceT Q1, DestT Q1, C1, P1) and Q2 = (SourceT Q2, DestT Q2, C2, P2) are
in relation Q1 <<= Q2 if and only if (TSubset SourceT Q2 SourceT Q1) and
(TSubset DestT Q2 DestT Q1) hold.

Finally, we define the binary relation (TEPLCY,�) on policies, where p1 � p2
whenever p2 has more information that p1. More formally:

∀(p1, p2 ∈ TEPLCY), p1 � p2 iff length(p1) � length(p2) ∧ p1 ⊆ p2.

In this definition, length means the sum of the lengths of the rule component and
the constraint component of a policy. We call the combined list authorization
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rules. Here p1 ⊆ p2 means that p2 has more authorization rules and it contains
all the authorization rules in p1.1

3 Constraints and Predicates

As discussed earlier, rules alone cannot always accommodate the security require-
ments of systems precisely enough. TEpla’s constraints and predicates, described
in this section, represent one of the powerful features of TEpla, which distinguish
it from other languages that lack this feature. TEpla constraints allow policy
writers not only to rely on conditions or constraints defined in the language but
also to define their complementary security logic.

3.1 Syntax in Coq

Constraints are defined below as the type CSTE.

Inductive CSTE: Set :=
| Constraint : C ∗ P ∗ T ∗ T ∗ list T ∗

(list R → list T → C → P → T → T → T → T → B) → CSTE.

Constraints have six arguments. When a constraint is checked against a query or
access request, the values of the first two arguments are compared to the values
of the C and P components of a query, and the constraint is only applicable when
the values of these components match. A constraint takes a function as its last
argument, which returns a Boolean; these functions act as predicates that express
when the constraint is satisfied. To express specific security goals, administra-
tors can define different predicates by using various arguments provided for the
function. These arguments supply a comprehensive set of values by which policy
developers can define the required security criteria. To illustrate constraints and
predicates, we use a “separation of duty” running example, which includes the
constraint CSTE SoD, defined below, and the predicate Prd SoD, defined later.

Definition CSTE_SoD : CSTE:= Constraint(File, Read, groupT program_G,
singleT networkManager_ssh_t , [], Prd_SoD ).

This constraint only allows subjects whose types are elements of program G to
perform the action Read on objects whose basic type is networkManager ssh t
and whose object class is File as long as the additional requirement is met that
objects of types program G and networkManager ssh t are never permitted to
be acted upon by subjects of the same type. Prd SoD will formally express what is
meant by this additional requirement, and it will be defined after presenting the
implementation of the function for evaluating constraints against queries. Infor-
mally, whenever two Allow rules permit subjects of the same type to perform
actions, if the object in one of the rules has a type in program G, then the object in
the other rule cannot have type networkManager ssh t. Similarly, if the object in

1 In the Coq implementation, we do not have a separate definition for �. Instead, we
express it directly when needed using list operators.
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one rule has type networkManager ssh t, then the object in the other rule cannot
have a type that is a subset of program G. The constraint CSTE SoD is applicable
to all queries whose C and P are File and Read, respectively.

Using the above example constraint, and the example rule in Sect. 2.1, we
can define the example policy below, where both the rule component and the
constraint component are lists of length 1.

Definition TEPLCY_example : TEPLCY:= TEPolicy ([R_A], [CSTE_SoD]).

3.2 Evaluating Queries Against Constraints

The function CSTE EvalTE implemented in Listing 2 evaluates a query against
a constraint. It takes a single constraint, a query, and a list of rules (all the rules
in the rule component of a policy) as arguments. The rules argument can be used
to extract access information required for expressing security goals encoded in
predicates.

Definition CSTE_EvalTE

(constraint_rule :CSTE) (Q_to_constr:Q) (listR:list R) : DCS:=
match constraint_rule with

| Constraint (cstrn_C, cstrn_P ,cstrn_T_arg1,cstrn_T_arg2,
cstrn_listT,cstrn_PRDT) ⇒

match Q_to_constr with

|(Q_srcT, Q_dstT, Q_C, Q_P) ⇒
if (Nat .eqb Q_C cstrn_C && Nat.eqb Q_P cstrn_P) then

match (cstrn_PRDT listR cstrn_listT cstrn_C cstrn_P

Q_srcT Q_dstT cstrn_T_arg1 cstrn_T_arg2) with

|true ⇒ Permitted

|false ⇒ UnKnown

end

else NotPermitted

end

end .

Listing 2. Evaluation of a constraint

In order to check whether or not the constraint is applicable to the query, the
object class and permitted action components are compared and must be the
same. If applicable, the constraint predicate is checked. Note that the arguments
passed to cstrn PRDT include the list of rules as well as all the other compo-
nents of the constraint and query, except the two that are used to check the
applicability of the constraint. If the evaluation of the predicate returns true,
then the decision is Permitted. Otherwise, the decision is UnKnown. Note that if
the constraint is not applicable, the default value NotPermitted is returned.

A query must be evaluated against all the rules and constraints in a policy.
We omit the other three functions that are defined to complete this task, and just
remark that the main function that calls the others is called TEPLCY EvalTE.
We note that they are implemented so that CSTE EvalTE is always passed the
complete list of rules in a policy as its third argument, and thus the complete
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list of rules is always passed as input (as the first argument) when the constraint
predicate is called inside CSTE EvalTE.

It is often useful to view various kinds of information in the list of rules as sets
of values, and so we provide several general operators that support this view, such
as intersection, union, as well as set comparison operators such as subset and
set equality. Here, we follow the general approach in [11], where it is shown that
such operators form a suitable formalism for expressing security conditions and
goals formulated as constraints. Those that are useful for our separation of duty
example include selector functions, which retrieve various kinds of information
from a list of rules, and operator functions, which apply certain operations on
the results of selector functions along with other arguments of the predicate. We
include a selector function called listRSearch subjectTs, which receives a list
of rules and an object type as inputs and returns a list of types, which we view
here as a set. This function searches all the Allow rules of input rules to find all
types of subjects that are allowed to access (i.e., perform any kind of action on)
objects of the type specified by the object type argument. The result is a list
(set) containing these subject types. The definition of Prd SoD uses this function
along with operator functions called IntersectionList, which returns the set
of common elements of two lists, and is emptylistT, which checks whether or
not a list of types is empty. The Prd SoD predicate is defined in Listing 3.

Fixpoint Prd_SoD (listR:list R) (ListT:list T) (sClass :C) (perm :P)
(QSrcT:T) (QDesT:T) (PRDTsrcT:T) (PRDTDesT:T) : B:=

if (TSubset QSrcT PRDTsrcT && TSubset QDesT PRDTDesT)
then is_emptylistT (IntersectionList

(listRSearch_subjectTs listR PRDTsrcT)
(listRSearch_subjectTs listR PRDTDesT))

else true .

Listing 3. The predicate Prd SoD

Returning to our example constraint CSTE SoD in Sect. 3.1, we have now com-
pleted the definition of its last component, and thus we can now see how a
query is evaluated against this constraint by CSTE EvalTE in Listing 2. When
Prd SoD is called inside CSTE EvalTE, it first checks whether or not the pred-
icate is applicable to the query, by checking that the subject and object types
of the query (arguments QSrcT and QDesT) are subsets of the input arguments
PRDTsrcT and PRDTDesT, respectively. The predicate returns true if this con-
dition is false. When the condition is true, it gathers all the types of subjects
in rules that act on objects of types mail t and/or http t, and gathers all the
types of subjects in rules that act on objects of type networkManager ssh t,
and ensures that there is no overlap. It checks all rules in a policy, which can be
seen by the fact that the first argument to Prd SoD is passed on directly to both
calls to listRSearch subjectTs.

Recall that in the definition of CSTE, a predicate takes eight arguments, but
there is of course no requirement that the predicate uses them all. In Prd SoD,
note that the second, third, and fourth arguments are not relevant for expressing
separation of duty. The fact that the second argument is not used is why an
empty list [] appears as the fifth component of CSTE SoD.
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We have used Prd SoD and some other predicates to develop a security policy
called TEpla policy as a case study, which can be found in the Coq code. This
example policy has twenty rules and five constraints. All the predicates used there
satisfy the conditions on predicates that we now present in the next section.

3.3 Conditions on Predicates

Policy writers have to verify three conditions on predicates using a library of lem-
mas we provide for this purpose. The conditions express that given two queries
related by <<= or two policies related by �, the evaluation of a query against
a policy preserves the defined order on decisions <::. We describe them briefly
here.2 The first one is about queries (involving the <<= relation) and the other
two are about policies (involving the � relation).

Two of the conditions involve a relation on Boolean values called transit-
ion Verify Decision that relates the Boolean results of applying a predicate
twice with some argument or collection of arguments differing between the two
calls.

The first condition is one of the two that uses this relation on Booleans. It
is called predicate query condition and the specific arguments that differ in
the two calls are the query subject and object types. This condition is used in
a lemma called predicate query condition implication, which simply states
that whenever a predicate P satisfies predicate query condition, then given
any two queries Q1 and Q2 such that Q1 <<= Q2, a constraint C whose last
argument is P, and any list of rules listR, if d1 and d2 are the decisions resulting
from evaluating Q1 and Q2, respectively, against C and listR (i.e., applying
function CSTE EvalTE in Listing 2), then d1 <:: d2.

The second and third conditions involve evaluating a predicate in a constraint
on a single query but with two sets of rules (the first argument of the predicate).
The second condition simply states that the same result is obtained from apply-
ing the predicate on the two lists of rules, whenever the two lists differ only in
the order of the rules. This condition is called Predicate plc cdn.

The third condition, called Predicate plc cdn Transition, is the other
condition that uses the relation transition Verify Decision on Booleans. The
condition states that given two lists of rules, listR and listR′, the transi-
tion Verify Decision relation holds between the results of applying the pred-
icate to listR and listR ++ listR′. This condition and the second condition
are used in a lemma called constraintEvalPropSnd. This lemma states that
whenever all the constraints in a given listC of constraints satisfy both con-
ditions, then given a query Q and two lists of rules listR and listR′, if d1
and d2 are the decisions resulting from evaluating Q against listC and the
two rule lists listR, and listR ++ listR′, respectively, (i.e., applying function
listCSTE EvalTE), then d1 <:: d2.

2 The lemmas stating that these three conditions hold for our running example Prd SoD

are called qry condition SoDpredicate, plc conditionS SoDpredicate, and plc -

conditionF SoDpredicate in the Coq code.
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The expressive power of predicates is limited by the conditions that they
have to satisfy, as presented in this section. Alternatively, however, we propose
two methods to extend the expressive power of predicates. The first is simply
to relax the restriction and not require these conditions to be verified, which
would allow constraints to violate the ordering on decisions by changing an
UnKnown to a Permitted. Allowing this freedom provides policy developers with
the same expressive power as the studies that use sets to express security goals,
such as [11], which empirically illustrates that practical binary constraints can
be expressed by comparisons of two sets. The second method is to replace the
above constraints with a structural restriction on policies that requires that the
rule component never changes. Such a situation can occur, for example, when
different departments in an organization have different security goals, but they
all have the same set of rules defined by a central security administrator. With
this change, some formal properties we present in Sect. 4 will still hold. This
solution eliminates the need for an expert in Coq to verify conditions.

4 Properties of TEpla and Their Formalization

Determinism is one of the important properties of policy languages discussed
in [22]. A deterministic language always produces the same decision for the same
policies and queries. Recall that the function TEPLCY EvalTE evaluates a query
against a policy. The behavior of this function specifies the overall semantics of
TEpla. Thus TEpla satisfies determinism simply because evaluation is defined
as a function.

4.1 Order Preservation of TEpla Queries

TEpla has in fact been designed so TEPLCY EvalTE is order-preserving for
the relation � on policies, <<= on queries, and <:: on decisions. This means
that TEPLCY EvalTE acts as a homomorphism [9] on the posets we defined on
TEPLCY, Q, and DCS.

Of particular importance is the preservation of order on decisions with respect
to queries: if q1 <<= q2, then the decisions d1 and d2 that result applying
function TEPLCY EvalTE on q1 and q2, respectively, are in the relation d1 <::
d2. The <<= relation is defined (see Sect. 2.3) to be as general as possible; it
involves only subject and object types, which are elements that queries in any
language must have. When policies are large, verifying policies often involves
testing a number of queries against the policy. Having an unambiguous ordering
facilitates sorting, filtering, and optimizing query evaluation by administrators.
This property can be compared to the safety property defined in [22].

Theorem Order Preservation TEpla (in Listing 4) expresses this order
preservation on queries.

Theorem Order_Preservation_TEpla :
∀ (listR:list R) (listCSTE:list CSTE) (q q’ : Q),

(q <<= q’) ∧ const_imp_prd_List listCSTE →
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((TEPLCY_EvalTE (TEPLCY (listR, listCSTE)) q) <::
(TEPLCY_EvalTE (TEPLCY (listR, listCSTE)) q’)) = true.

Listing 4. Order preservation of decisions with respect to queries

The const imp prd List predicate in this theorem expresses that all the pred-
icates of the input list of constraints listCSTE satisfy the first condition from
Sect. 3.3 (predicate query condition).

4.2 Non-decreasing Property of TEpla Policies

It is common to add new policy statements as new regulations arise. The next
property states that when adding new rules, policies do not change their deci-
sions in the reverse direction of the order on decisions (i.e., <::). When adding
new rules, changing decisions, for example, from Permitted to NotPermitted, is
impossible. Thus granted requests will never be revoked. Revoking access from
already granted requests is problematic because once the information has been
revealed, there is no way to reverse the effect of revealing this information. This
property is aligned with monotonicity defined in [22]. We state and prove the
property in Listing 5, which expresses that TEpla is non-decreasing.

Theorem Non_Decreasing_TEpla :
∀ (Pol_list: list TEPLCY) (Single_pol:TEPLCY) (q:Q) (d d’: DCS),
validCnstrtListPolicy Pol_list ∧ validConstrt Single_pol →
(TEPLCY_EvalTE (⊕ (Pol_list)) q) = d →
(TEPLCY_EvalTE (⊕ (Single_pol::Pol_list)) q) = d’ →
(d <:: d’) = true.

Listing 5. Theorem Non Decreasing TEpla

This theorem states that adding a policy Single pol, to any list of
policies Pol list can change the decisions only according to the order
relation <:: on decisions. The predicate validCnstrt expresses that the
constraints in Single pol satisfy the second and third conditions from
Sect. 3.3 (Predicate pl cdn and Predicate plc cdn Transition). The pred-
icate validCnstrtListPolicy applies this check to every policy in Pol list.
The ⊕ operator extracts the rule lists of all the policies in its argument list of
policies and combines them into one list, and similarly for constraints, form-
ing a single policy from these rules and constraints. Note that in this theorem,
(⊕ Pol list) � (⊕ (Single pol :: Pol list)).

4.3 Independent Composition of TEpla Policies

It is important to be able to analyze the behavior of access control policies based
on their components or sub-policies, as the decisions for the combined policies
can be determined from the decisions of included policies. Similar to independent
composition in [22], we codify the following property of TEpla.
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Theorem Independent_Composition :
∀ (PLCY_DCS_pair : list (TEPLCY ∗ DCS)) (q : Q) (dstar : DCS),
Foreach q (map fst PLCY_DCS_pair) (map snd PLCY_DCS_pair) ∧
(TEPLCY_EvalTE (⊕ (map fst PLCY_DCS_pair)) q) = dstar →
(maximum (map snd PLCY_DCS_pair) <:: dstar) = true.

Listing 6. Theorem Independent Composition

In this statement, PLCY DCS pair is a list of policies and a list of decisions of
the same length such that for each index i into these lists, if pi and di are the
policy and decision at this index, respectively, then (pi, di) is an evaluation pair
on q, which means that (TEPLCY EvalTE pi q) = di, i.e., that di is the decision
returned from evaluating policy pi on query q. Although we do not show its defini-
tion, the Foreach predicate is defined to express this property. It also expresses
that all the constraints in each policy satisfy the second and third conditions
from Sect. 3.3 (Predicate pl cdn and Predicate plc cdn Transition). The
independent composition theorem states that whenever a pair of lists satisfies
this property, then the decision obtained by evaluating the combined policy on q
is the maximum of the decisions resulting from evaluating each policy indepen-
dently. The function maximum takes a list of decisions and returns the maximum
according to the binary relation <::.

5 Conclusion

We have presented the infrastructure of the TEpla Type Enforcement policy lan-
guage, and formally verified some of its important properties in Coq. TEpla, with
formal semantics and verified properties, is an essential step toward developing
certifiably correct policy-related tools for Type Enforcement policies.

The properties that we have considered here, namely determinism, order
preservation, independent composition, and non-decreasing, analyze the behavior
of the language by defining different ordering relations on policies, queries, and
decisions. These ordering relations enabled us to evaluate how language decisions
react to changes in policies and queries.

Moreover, we provide the language constructs (in particular, the integration
of user-defined predicates) for allowing security administrators to encode different
security goals in policies. This makes the language flexible because policy devel-
opers are not limited to built-in conditions to express their intended predicates.

In related work, ACCPL (A Certified Core Policy Language) [19] represents
some preliminary work using our approach, i.e., building in formal semantics
from the start, but in the domain of web services and digital resources, with
some very basic properties proved, which include determinism, but not the other
properties considered here. In other work, a variety of other studies have included
the formalization of various aspects of access control policies using different and
sometimes quite complex logics and algorithms, e.g.., [1,2,4,23]. In our approach,
we start with a simple language, and some simple notions of orderings and
relations on sets, and show that it is possible to express fairly complex access
control requirements. We were inspired, for example, by the work in [11], which
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shows that complex access control constraints such as separation of duty [12,
20] can be expressed using set operators. Additionally, although we began with
the particular domain of policies for operating systems, one of our goals is to
develop general ideas that can be adapted to other domains such as the web
and distributed platforms. Future work will include exploring such extensions.
Eventually, we plan to use the program extraction feature of Coq to generate a
certified program from the algorithms used to express TEpla semantics, similar
to what was done in [5] for firewall policy evaluation.

With regard to work on SELinux in particular, different studies have been
carried out that put forward some possible tools for helping policy writers write
policies that are more easily understood and reasoned about. Languages such
as Lobster [10], Seng [14], Please [17], and CDSFramework [18] are intended
to enhance the SELinux policy language by providing easier syntax and more
language features, such as defining object-oriented policy syntax, for example.
Despite their attempt to help users to specify SELinux security policies, as ana-
lyzed in [8], these languages give rise to limited results that cannot be verified
due to a lack of formalized definition of semantics and language behavior, which
results in potentially contradictory interpretations and precludes correct reason-
ing. These issues contribute to the ongoing development of numerous policy-
related tools that try to model SELinux policies without proving the correctness
of the results and analyses, as each tool attempts to cover more features rather
than verifying their properties and results.

Our future work will also include addressing some of the current limita-
tions of the language, including extending the kinds of constraints provided, as
well as designing and developing certified tools for policy-related tasks such as
automating various kind of policy analyses. We expect to be able to reuse many
definitions and lemmas of the current Coq development.
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