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Abstra
t. The logi
al and operational aspe
ts of rewriting logi
 as a logi
al framework are illustrated in detail by

representing pure type systems as obje
t logi
s. More pre
isely, we apply membership equational logi
, the equational

sublogi
 of rewriting logi
, to spe
ify pure type systems as they 
an be found in the literature and also a new variant of

pure type systems with expli
it names that solves the problems with 
losure under �-
onversion in a very satisfa
tory

way. Furthermore, we use rewriting logi
 itself to give a formal operational des
ription of type 
he
king, that dire
tly

serves as an eÆ
ient type 
he
king algorithm. The work reported here is part of a more ambitious proje
t 
on
erned with

the development in Maude [7℄ of a proof assistant for OCC, the open 
al
ulus of 
onstru
tions, an equational extension

of the 
al
ulus of 
onstru
tions.

1 Introdu
tion

This paper is a detailed 
ase study on the ease and naturalness with whi
h a family of higher-order formal

systems, namely pure type systems (PTS) [4, 32℄, 
an be represented in the �rst-order logi
al framework of

rewriting logi
 [25℄. PTS systems generalize the �-
ube [1℄, whi
h already 
ontains important 
al
uli like �!

[6℄, F [12, 29℄, F! [12℄, a system �P 
lose to the logi
al framework LF [13℄, and their 
ombination, the 
al
ulus of


onstru
tions CC [8℄. PTS systems are 
onsidered to be of key importan
e, sin
e their generality and simpli
ity

makes them an ideal basis for representing higher-order logi
s either via the propositions-as-types interpretation

[11℄ or via their use as a higher-order logi
al framework in the spirit of LF [13, 10℄ or Isabelle [26℄.

Exploiting the fa
t that rewriting logi
 and its membership equational sublogi
 [5℄ have initial and free models,

we 
an de�ne the representation of PTS systems as a parameterized theory in the framework logi
; that is, we

de�ne in a single parametri
 way all the representations for the in�nite family of PTS logi
s. Furthermore,

the representational versatility of rewriting logi
, and of membership equational logi
, are also exer
ised by


onsidering four di�erent representations of PTS systems at di�erent levels of abstra
tion, from a more abstra
t

textbook version in whi
h terms are identi�ed up to �-
onversion, to a more 
on
rete version with a 
al
ulus

of names and expli
it substitutions, and with a type 
he
king inferen
e system that 
an in fa
t be used as a

reasonably eÆ
ient implementation of PTS systems by exe
uting the representation in the Maude language [7℄.

This more 
on
rete version is the basis of a proof assistant for OCC, the open 
al
ulus of 
onstru
tions, an

equational extension of the 
al
ulus of 
onstru
tions, that is under development.

This 
ase study 
omplements earlier work [20, 21, 22℄, showing that rewriting logi
 has good properties as a

logi
al framework to represent a wide range of logi
s, in
luding linear logi
, Horn logi
 with equality, �rst-order

logi
, modal logi
s, sequent-based presentations of logi
s, and so on. In parti
ular, representations for the �-


al
ulus, and for binders and quanti�ers have already been studied in [20℄, but this is the �rst systemati
 study

on the representation of typed higher-order systems. One property shared by all the above representations,

in
luding all those dis
ussed in this paper, is that what might be 
alled the representational distan
e between

the logi
 being formalized and its rewriting logi
 representation is virtually zero. That is, both the syntax

and the inferen
e system of the obje
t logi
 are dire
tly and faithfully mirrored by the representation. This is

an important advantage both in terms of understandability of the representations, and in making the use of

en
oding and de
oding fun
tions unne
essary in a so-
alled adequa
y proof.

Besides the dire
tness and naturalness with whi
h logi
s 
an be represented in a framework logi
, another

important quality of a logi
al framework is the s
ope of its appli
ability; that is, the 
lass of logi
s for whi
h

faithful representations preserving relevant stru
ture 
an be de�ned. Typi
ally, we want representations that

both preserve and re
e
t theoremhood; that is, something is a theorem in the original logi
 if and only if its

translation 
an be proved in the framework's representation of the logi
. Su
h mappings go under di�erent

names and di�er in their generality; in higher-order logi
al frameworks representations are typi
ally required to

be adequate mappings [10℄, and in the theory of general logi
s more liberal, namely 
onservative mappings of

entailment systems [24℄, are studied. In this paper we further generalize 
onservative mappings to the notion of
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a sound and 
omplete total 
orresponden
e of senten
es between two entailment systems. In parti
ular, all the

representations of PTS systems that we 
onsider are 
orresponden
es of this kind. In fa
t, sound and 
omplete

total 
orresponden
es are systemati
ally used not only to state the 
orre
tness of the representations of PTS

systems at di�erent levels of abstra
tion, but also to relate those di�erent levels of abstra
tion, showing that

the more 
on
rete representations 
orre
tly implement their more abstra
t 
ounterparts.

A systemati
 way of 
omparing the s
opes of two logi
al frameworks F and G is to exhibit a sound and 
omplete

total 
orresponden
e F  G, representing F in G. Sin
e su
h 
orresponden
es form a 
ategory, and therefore


ompose, this then shows that the s
ope of G is at least as general as that of F . Sin
e pure type systems in
lude

the system �P, 
lose to the logi
al framework LF, and the 
al
ulus of 
onstru
tions CC, the results in this paper

indi
ate that the s
ope of rewriting logi
 is at least as general as that of those logi
s. Furthermore, sin
e there

are no adequate mappings from linear logi
 to LF in the sense of [10℄, but there is a 
onservative mapping of

logi
s from linear logi
 to rewriting logi
 [20℄, this seems to indi
ate that the LF methodology together with its

rather restri
tive notion of adequate mapping is more spe
ialized than the rewriting logi
 approa
h.

2 Preliminaries

2.1 Entailment Systems

In the following se
tions we are 
on
erned with a variety of di�erent interrelated formal systems whi
h 
an all

be viewed as entailment systems, a notion de�ned in [24℄ as a main 
omponent of general logi
s. Sin
e the

notion of entailment system is more general than what is needed for the purposes of the present paper, we work

with unary entailment systems. A unary entailment system (Sen;`) is a set of senten
es Sen, together with a

unary entailment predi
ate `� Sen.

In [24℄ maps between senten
es are used to relate di�erent logi
s. Here we introdu
e a more general notion of

morphism, namely a 
orresponden
e between senten
es of di�erent entailment systems. Let (Sen;`), (Sen

0

;`

0

)

be unary entailment systems. A 
orresponden
e between (Sen;`) and (Sen

0

;`

0

) is a relation  � Sen � Sen

0

.

Given su
h a 
orresponden
e  , we say that  is sound i� for all � �

0

, ` � implies `

0

�

0

. Similarly, we say

that  is 
omplete i� for all � �

0

, `

0

�

0

implies ` �. Moreover, is 
alled total i� for ea
h � 2 Sen there is

a �

0

su
h that � �

0

. Corresponden
es 
ompose in the obvious relational way, giving rise to a 
ategory CEnt.

Often a 
orresponden
e of senten
es � Sen�Sen

0

takes the form of a fun
tion � : Sen �! Sen

0

, in whi
h 
ase

we speak of a map of senten
es. A map of entailment systems in the sense of [24℄ is a sound map of senten
es,

and a 
onservative map is pre
isely a sound and 
omplete map.

2.2 Rewriting Logi
 and Membership Equational Logi


A rewrite theory is a triple T = (�; E;R), with � a signature of fun
tion symbols, E a set of equations, and R a

set of (possibly 
onditional) rewrite rules of the form t �! t

0

(with t and t

0

�-terms) whi
h are applied modulo

the equations E. Rewriting logi
 (RWL) then has rules of dedu
tion to infer all possible rewrites provable in a

given rewrite theory [25℄. Sin
e an equational theory (�; E) 
an be regarded as a rewrite theory (�; E; ;) with

no rules, equational logi
 is a sublogi
 of rewriting logi
. In fa
t, rewriting logi
 is parameterized by the 
hoi
e

of its underlying equational logi
, whi
h 
an be unsorted, many-sorted, and so on.

In this paper, and in the design of the Maude language, we have 
hosen membership equational logi
 (MEL)

[5℄ as the underlying equational logi
. Membership equational logi
 is quite expressive. It has sorts, subsorts,

overloading of fun
tion symbols, and 
an express partiality very dire
tly by de�ning membership in a sort by

means of equational 
onditions. The atomi
 senten
es are equalities t = t

0

and memberships t : s, with s a

sort, and general senten
es are Horn 
lauses on the atoms. Both membership equational logi
 and rewriting

logi
 have initial and free models [25, 5℄. We denote by MEL � RWL the sublogi
 in
lusion from membership

equational logi
 into rewriting logi
.

Logi
s 
an be naturally represented as rewrite theories by de�ning the formulas, or other proof-theoreti
 stru
-

tures su
h as sequents, as elements of appropriate sorts in an abstra
t data type spe
i�ed by an equational

theory (�; E). Then, ea
h inferen
e rule in the logi
 
an be axiomatized as a, possibly 
onditional, rewrite

rule, giving rise to a representation as a rewrite theory (�; E;R). Alternatively, we 
an exploit the ri
h sort

stru
ture of membership equational logi
 to represent the inferen
e rules of a logi
 not as rewrite rules, but as
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Horn 
lauses H expressing membership in an adequate sort of derivable senten
es, leading to a membership

equational logi
 representation of the form (�; E [H). In this paper we will use both forms of representations

for di�erent versions of PTS systems.

Membership equational logi
 together with its 
ategori
al initial model semanti
s provides a very general s
heme

for indu
tive de�nitions of equational theories whi
h is mu
h more powerful than the free algebrai
 data types

well-known from many fun
tional programming languages. Beyond that, rewriting logi
 generalizes equational

logi
 and gives us via its initial semanti
s a very general s
heme for indu
tive de�nitions of rewrite systems.

3 Overview and Main Results

In Se
tion 4 we show how the de�nition of PTS systems 
an easily be formalized in membership equational

logi
. The approa
h we use is not only less spe
ialized than the one used in a higher-order logi
al framework

like LF [13℄ or Isabelle [26℄, but it has also more explanatory power, sin
e we explain higher-order 
al
uli in

terms of a �rst-order system with a straightforward semanti
s.

In order to make the spe
i�
ation of PTS systems more 
on
rete, we introdu
e the notion of uniform pure type

systems (UPTS) [31℄, that do not abstra
t from the treatment of names but use CINNI, a new and very simple

�rst-order 
al
ulus of names and substitutions. UPTS systems solve the problem of 
losure under �-
onversion

in a simple and elegant way. Again, a membership equational logi
 spe
i�
ation of UPTS systems 
an be given

that dire
tly formalizes the informal de�nition.

As an intermediate step we employ an optimized version of UPTS systems, namely UPTS with valid 
ontexts

(UPTS/VC). This system 
ontains an expli
it judgement for valid 
ontexts, and 
an be seen as a re�nement

towards a more eÆ
ient implementation of type 
he
king.

Last but not least, we des
ribe how meta-operational aspe
ts of an important 
lass of UPTS/VC systems, like

type 
he
king and type inferen
e, 
an be seen as rewrite systems and 
an likewise be formalized in rewriting

logi
. The result of this formalization is an exe
utable spe
i�
ation of UPTS/VC systems that is 
orre
t w.r.t.

the logi
al spe
i�
ation given before in a very obvious way. Let us abbreviate the rewriting based presentation

of UPTS/VC by RUPTS/VC. A similar presentation is the basis of the proof assistant for the open 
al
ulus of


onstru
tions mentioned above.

Formally, these di�erent presentations of PTS systems are families of unary entailment systems parameterized by

PTS spe
i�
ations. We use the notation PTS

S

, UPTS

S

, UPTS/VC

S

and RUPTS/VC

S

to denote the entailment

systems asso
iated with a PTS spe
i�
ation S.

For appropriate PTS spe
i�
ations S we obtain a 
hain of sound and 
omplete 
orresponden
es

PTS

S

 UPTS

S

 UPTS/VC

S

 RUPTS/VC

S

:

A
tually we have two di�erent kinds of 
onne
tions between the �rst two entailment systems leading to two

di�erent 
orresponden
es of the form PTS

S

 UPTS

S

. By 
omposing three 
orresponden
es of the form above

we �nally arrive at a total, sound and 
omplete 
orresponden
e

PTS

S

 RUPTS/VC

S

whi
h shows the equivalen
e of the high-level spe
i�
ation of PTS with the implementation of a type 
he
ker.

By internalizing derivability w.r.t. a rewrite theory T , rewriting logi
 
an be seen as a unary entailment system

(Sen;`) with senten
es of the form T ` �, where � is an equation, a membership or a rewrite. Then, ` T ` �

means that � is derivable in the theory T . Membership equational logi
 
an likewise be seen as the unary

entailment system obtained by restri
ting T to membership equational logi
 theories and � to equations and

memberships.

The entailment systems PTS

S

, UPTS

S

, UPTS/VC

S

and RUPTS/VC

S


an be easily spe
i�ed in membership

equational logi
 or in rewriting logi
. Spe
i�
ally, we have the following total, sound and 
omplete 
orrespon-

den
es

PTS

S

 MEL; UPTS

S

 MEL; UPTS/VC

S

 MEL; RUPTS/VC

S

 RWL:
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In all 
ases the representational distan
e between ea
h type system and its representation is pra
ti
ally zero,

that is, both the syntax and the inferen
e system of ea
h type theory are very dire
tly and faithfully represented

in the framework logi
.

The �rst 
orresponden
e is the representation of PTS systems in membership equational logi
 given in Se
tion

4. Let PTS

S

be the membership equational logi
 spe
i�
ation of PTS

S

. Then, for all PTS judgements � of

PTS

S

and possible representations �

0

of � in membership equational logi
, the senten
e PTS

S

` �

0

is derivable

in membership equational logi
 i� the judgement � is derivable in PTS

S

. This de�nes a total, sound and


omplete 
orresponden
e of the form PTS

S

 MEL. We are 
on
erned with a 
orresponden
e rather than a

map of senten
es, due to the fa
t that PTS systems abstra
t from names, but in the membership equational

logi
 representation names are part of the des
ription of terms, although by adding appropriate equations an

equivalent abstra
tion 
an be a
hieved in membership equational logi
.

In the remaining three systems UPTS

S

, UPTS/VC

S

, and RUPTS/VC

S

we do not abstra
t from names. Hen
e,

the three asso
iated representational 
orresponden
es a
tually take the form of 
onservative maps of entailment

systems, i.e., with ea
h judgement of the type system we 
an asso
iate a unique senten
e in membership

equational logi
 or rewriting logi
, respe
tively.

4 The Metalogi
al View of PTS

A PTS spe
i�
ation is a triple (S;A;R) where S is a set of sorts, A � S � S is the set of axioms, and

R � S � S � S is the set of rules. S will range over PTS spe
i�
ations.

In PTS systems there is no a priori distin
tion between terms and types. PTS (pseudo-)terms are de�ned by

the following syntax with binders:

X j (M N) j [X : A℄M j fX : AgM j s

Here, and in the following, s ranges over S; M;N;A;B; T range over terms; and X ranges over names. We

should add that in [X : A℄M and fX : AgM the name X is bound in M , and we assume that �-
onvertible

terms, i.e., terms that are equal up to renaming of bound variables, are identi�ed.

A PTS (pseudo-)
ontext is a �nite list of de
larations, ea
h of the form [X : A℄. The empty 
ontext is denoted

by [℄ and 
on
atenation is written as juxtaposition. In the following, � ranges over PTS 
ontexts.

Given a PTS spe
i�
ation S, the set of derivable typing judgements of the form � `M : T is de�ned indu
tively

by the following rules:

[℄ ` s

1

: s

2

(s

1

; s

2

) 2 A (AX)

� ` A : s

�[X : A℄ ` X : A

X =2 � (START)

� `M : A � ` B : s

�[X : B℄ `M : A

X =2 � (WEAK)

� ` A : s

1

�[X : A℄ ` B : s

2

� ` fX : AgB : s

3

(s

1

; s

2

; s

3

) 2 R (PI)

� ` A : s

1

�[X : A℄ `M : B �[X : A℄ ` B : s

2

� ` [X : A℄M : fX : AgB

(s

1

; s

2

; s

3

) 2 R (LDA)

� `M : fX : AgB � ` N : A

� ` (MN) : [X :=A℄B

(APP)

� `M : A � ` B : s � ` A � B

� `M : B

(CONV)
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X =2 � means that there is no [X : A℄ 2 � for any A. [X :=A℄ is the standard metatheoreti
 operator for 
apture-

free substitution. In the last rule, � is the usual notion of �-
onvertibility whi
h 
ontains �-
onvertibility (this

is trivially satis�ed in this presentation).

As an example, we 
an instantiate PTS systems by S = fProp;Typeg; A = f(Prop;Type)g; and

R = f(Prop;Prop;Prop); (Prop;Type;Type); (Type;Prop;Prop); (Type;Type;Type)g

to obtain the 
al
ulus of 
onstru
tions CC.

This presentation of PTS systems is rather abstra
t for two reasons: �rstly, we are working modulo �-
onversion,

i.e., we identify �-equivalent terms, and se
ondly, we are 
on
erned with an indu
tive de�nition of a set of

derivable judgements, but not with an algorithm to type-
he
k a parti
ular term.

Mathemati
ally the abstra
t presentation has an important bene�t: It allows us to reason about pure type

systems metalogi
ally, without assuming anything about the 
on
rete realization of names. This leads to very

general results [1, 33℄ and frees proofs from unne
essary te
hni
al details.

4.1 PTS in Membership Equational Logi


In the following spe
i�
ations, given in Maude syntax, we use the logi
al semanti
s of membership equational

logi
 for representing PTS systems exa
tly as given above; a more operational version suited for use as an

implementation is dis
ussed in Se
tion 5.2.

First, noti
e that we plan to des
ribe not a single type system but an in�nite family of type systems parameter-

ized by sorts, axioms and rules. All su
h PTS spe
i�
ations 
an be formalized as models of a single parameter

theory that 
an be spe
i�ed in Maude as follows:

fth PTS-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .

subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .

endfth

As an example, the PTS spe
i�
ation of CC is given by the following fun
tional module:

fmod CC-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .

subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .

op Prop : -> Sorts .

op Type : -> Sorts .

mb (Prop,Type) : Axioms .

mb (Prop,Prop,Prop) : Rules .

mb (Prop,Type,Type) : Rules .

mb (Type,Prop,Prop) : Rules .

mb (Type,Type,Type) : Rules .

endfm

Pure type systems 
an then be spe
i�ed as a fun
tional module parameterized by the theory PTS-SPEC. Sin
e

fun
tional modules have an initial (in this 
ase free) model semanti
s, this formalization of PTS systems is in

fa
t an indu
tive de�nition that 
aptures in a pre
ise model-theoreti
 way the indu
tive 
hara
ter of PTS rules.
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fmod PTS[PAR :: PTS-SPEC℄ is

First we de�ne the sort Trm of terms as an algebrai
 data type. Noti
e that we distinguish between a sort of

identi�ers Qid, that are used in pla
es where an identi�er is de
lared, and a sort of variables Var, that are used

to refer to an already de
lared identi�er.

sorts Var Trm .

subsort Qid < Var .

subsort Var < Trm .

subsort Sorts < Trm .

op __ : Trm Trm -> Trm .

op [_:_℄_ : Qid Trm Trm -> Trm .

op {_:_}_ : Qid Trm Trm -> Trm .

vars s s1 s2 s3 : Sorts .

vars X Y Z : Qid .

vars A B M N O P Q R T A' B' M' N' T' : Trm .

The usual deterministi
 version of 
apture-free substitution 
an be naturally de�ned in membership equational

logi
 as demonstrated in [20, 22℄. An important point is that we do not want to restri
t ourselves to a parti
ular


hoi
e of fresh names, sin
e this would make the spe
i�
ation overly 
on
rete. This 
an be a

omplished by

leaving unspe
i�ed the deterministi
 fun
tion for 
hoosing fresh variables su
h that the a
tual fun
tion varies

with the 
hoi
e of the model; for details we refer to [20, 22℄. Here we only give the signature for set membership,

free variables and the substitution fun
tion:

op _in_ : Qid QidSet -> Bool .

op FV : Trm -> QidSet .

op [_:=_℄_ : Qid Trm Trm -> Trm .

We 
an use the substitution operator [_:=_℄_ to semanti
ally identify terms that are �-
onvertible (we refer

to the indu
ed equality as �-equality) by means of the following equations.


eq [X : A℄ M = [Y : A℄ ([X := Y℄ M) if not(Y in FV(M)) .


eq {X : A} M = {Y : A} ([X := Y℄ M) if not(Y in FV(M)) .

We next de�ne the binary relation of �-
onvertibility, whi
h is used in the CONV rule of PTS systems. The

following (
onditional) memberships, together with the initiality 
ondition, de�ne �-
onversion as the smallest


ongruen
e (w.r.t. the term 
onstru
tors) 
ontaining one step �-redu
tion.

sorts Convertible Convertible? .

subsort Convertible < Convertible? .

op _===_ : Trm Trm -> Convertible? .

mb M === M : Convertible .


mb M === N : Convertible if N === M : Convertible .


mb P === R : Convertible if P === Q : Convertible and Q === R : Convertible .


mb (M N) === (M' N') : Convertible if M === M' : Convertible and N === N' : Convertible .


mb ([X : A℄ M) === ([X : A'℄ M') : Convertible if A === A' : Convertible and M === M' : Convertible .


mb ({X : A} B) === ({X : A'} B') : Convertible if A === A' : Convertible and B === B' : Convertible .

mb (([X : A℄ M) N) === ([X := N℄ M) : Convertible .

The only judgements of PTS systems are of the form � ` M : A. We next de�ne the syntax of 
ontexts and

judgements. Also, we de�ne the fun
tion _in_ used in the side 
onditions of some PTS rules.
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sorts Context Judgement .

op [℄ : -> Context .

op [_:_℄ : Qid Trm -> Context .

op __ : Context Context -> Context [asso
 id : [℄℄ .

var G : Context .

op _|-_:_ : Context Trm Trm -> Judgement .

op _in_ : Qid Context -> Bool .

eq X in [℄ = false .

eq X in (G [Y : A℄) = (X in G) or (X == Y) .

We are now ready to de�ne the inferen
e rules. Formally the inferen
e rules de�ne an indu
tive subset of

derivable judgements. The derivability predi
ate is usually impli
it in informal reasoning, where � ` M : A

refers either to the judgement itself or to the fa
t that it is derivable.

sort Derivable .

subsort Derivable < Judgement .


mb ([℄ |- s1 : s2) : Derivable if (s1,s2) : Axioms .


mb (G [X : A℄ |- X : A) : Derivable if

(G |- A : s) : Derivable and not(X in G) .


mb (G [X : B℄ |- M : A) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable and not(X in G) .


mb (G |- {X : A} B : s3) : Derivable if

(G |- A : s1) : Derivable and

(G [X : A℄ |- B : s2) : Derivable and (s1,s2,s3) : Rules .


mb (G |- [X : A℄ M : {X : A} B) : Derivable if

(G |- A : s1) : Derivable and

(G [X : A℄ |- M : B) : Derivable and

(G [X : A℄ |- B : s2) : Derivable and (s1,s2,s3) : Rules .


mb (G |- (M N) : [X := A℄ B) : Derivable if

(G |- M : {X : A} B) : Derivable and

(G |- N : A) : Derivable .


mb (G |- M : B) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable and A === B : Convertible .

endfm

In this formalization we have avoided any arbitrary en
oding of syntax with binders that would require nontrivial

justi�
ations. Also, we have seen that the �rst-order framework is suÆ
iently powerful to represent PTS systems

without making any 
ommitments. In parti
ular, there was no need to 
hange the syntax or the rules of PTS

systems to obtain a faithful representation.

4.2 Taking Names Seriously

Although the abstra
t treatment of names in PTS systems leads to a general metatheory that 
an be used as

a high-level theoreti
al basis for quite di�erent implementations of PTS systems, there is a pri
e to be paid,

namely in that an abstra
t view ne
essarily limits the expressivity of the theory. Indeed, we often need a

more 
on
rete representation with more spe
ialized results to deal, for example, with the implementation of a



8 M.-O. Stehr, J.Meseguer Pure Type Systems in Rewriting Logi


formal system, or with tools that use the formal system in an essential way. Also, for reasoning about a formal

system a more 
on
rete spe
i�
ation that is 
omputationally meaningful is either ne
essary or useful, e.g., for

formalizations in 
onstru
tive type theories or logi
s with 
omputational sublanguages.

However, as soon as we give up the identi�
ation of �-
onvertible terms and take the inferen
e rules literally,

we en
ounter at least two problems �rst pointed out in [27℄.

1

The �rst problem is that the set of derivable judgements is not 
losed under �-
onversion. For instan
e, adapting

an example given for �! in [27℄, we 
annot derive a judgment of the form

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄A : fX : AgfX : PXgProp;

say in CC, although an �-equivalent version where all bound variables are distin
t 
an be derived.

A se
ond diÆ
ulty reported in [27℄ is that we want to derive

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄X : fX : AgfY : PXg(PX);

but we should not be able to derive

[A : Prop℄[P : fZ : AgProp℄ ` [X : A℄[X : PX ℄X : fX : AgfX : PXg(PX):

However, we 
annot derive the �rst judgement, sin
e the name X in the 
on
lusion of the LDA rule is the same

on both sides of the 
olon.

To ta
kle the �rst problem, Polla
k proposed a type system `

lt

, a variation of �!. It uses a more liberal

notion of 
ontext that allows multiple de
larations of the same identi�er, the most re
ent one being visible

inside the judgement. Unfortunately, he did not pursue this dire
tion further be
ause of the se
ond diÆ
ulty,

whi
h appears in the 
ontext of PTS systems with dependent types but is not present in �!. Con
erning `

lt

,

he remarks \I don't think we 
an do the same for PTS."

The solution �nally dis
ussed in [27℄ is the solution employed in the 
onstru
tive engine [14℄ used in proof

assistants su
h as LEGO [18℄ and COQ [15℄ and formalized rigorously in [23℄. The idea is to use a hybrid

naming s
heme whi
h employs distin
t names for global variables de
lared in the 
ontext of a judgement and

a de Bruijn representation of terms with bound lo
al variables. Clearly, PTS systems based on su
h a hybrid

naming s
heme are a 
orre
t implementation of (abstra
t) PTS systems as des
ribed above. More pre
isely, PTS

systems using the hybrid naming s
heme 
an be seen as parti
ular models of the membership logi
 spe
i�
ation

of PTS systems in the sense that the 
orresponding model is isomorphi
 to the one given by the appropriately

instantiated fun
tional module PTS. Nevertheless, an approa
h whi
h maintains a distin
tion between global

and lo
al variables appears not to be very uniform, 
ompli
ating formal metatheoreti
 proofs and type 
he
king.

Of 
ourse, s
aling up Polla
k's `

lt

to PTS systems would be mu
h more satisfying and this is the dire
tion we

pursue in the following.

4.3 Indexed Names and Named Indi
es

We believe that the root of the se
ond diÆ
ulty dis
ussed above is that the traditional notion of binding used

in logi
 and in programming reveals an undesirable property, whi
h may be 
alled a

idental hiding, if the

language is re�ned in the most dire
t way, i.e., by giving up identi�
ation by �-
onversion.

Consider for instan
e the formula

8X:(A ^ 8Y:(B ) 8X:C(X)))

for distin
t names X and Y . C(X) is a formula that 
ontains X free. Ea
h o

urren
e of X in C(X) is 
aptured

by the inner 8 quanti�er, so that the outer 8 quanti�er is hidden from the viewpoint of C(X). Indeed there is

no way to refer to the outer 8 quanti�er within C(X).

Hen
e, we are fa
ed with the following problem: a 
al
ulus without �-equality is not only less abstra
t, whi
h is

an unavoidable 
onsequen
e of giving up identi�
ation by �-
onversion, but also, depending on the (a

idental)

1

The problem of �-
onversion also remains unsolved in [19℄, where a system with dependent types is presented that does not

enjoy this property.
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hoi
e of names, visibility of (bound) variables may be restri
ted. It is important to emphazise that visibility is

not restri
ted in the original 
al
ulus with �-equality, sin
e renaming 
an be performed ta
itly at any time.

Clearly, this phenomenon of hiding that o

urs in the example above is undesirable

2

, be
ause it is not present in

the original 
al
ulus with �-equality. It is merely an a

ident 
aused by giving up identi�
ation by �-
onversion

without adding a 
ompensating 
exibility to the language.

This suggests ta
kling this general problem by migrating to a more 
exible syntax, where we express a binding


onstraint by annotating ea
h identi�er X with an index i 2 IN, written X

i

, that indi
ates how many X-binders

should be skipped before we rea
h the one that X

i

refers to. For instan
e we will write

8X:(A ^ 8Y:(B ) 8X:C(X

0

)))

to express that X

0

is bound by the inner 8 and

8X:(A ^ 8Y:(B ) 8X:C(X

1

)))

meaning that X

1

is bound by the outer 8. To make the language a 
onservative extension of the traditional

notation, we identify X and X

0

. This generalized syntax will be 
alled CINNI syntax, where CINNI refers to

Cal
ulus of Indexed Names and Named Indi
es [31℄, a new and very simple 
al
ulus of expli
it substitutions to

be introdu
ed in the next se
tion.

It might appear that there is some similarity to a notation based on de Bruijn indi
es [9℄. But noti
e that there

is an essential di�eren
e: the index m in the o

urren
e X

m

is not the number of binders to be skipped; it states

that we have to skip m binders for the parti
ular name X , not 
ounting binders for other names. Still a formal

relation to de Bruijn's notation 
an be established: if we restri
t ourselves to terms that 
ontain only a single

name X , then we 
an repla
e ea
h X

i

by the index i without loss of information and we arrive at de Bruijn's

purely indexed notation.

3

In other words, if we restri
t the available identi�ers to a single one, we obtain de

Bruijn's notation as a very spe
ial 
ase. In this sense, the CINNI syntax 
an be formally seen as a proper

generalization of de Bruijn's notation. Pragmati
ally, however, the relation to de Bruijn's syntax plays only a

minor role, sin
e a typi
al user will exploit the dimension of names mu
h more than the dimension of indi
es.

Hen
e, in pra
ti
e the notation 
an be used as a standard named notation, with the additional advantage that

a

idental hiding and weird renamings

4

are avoided.

The pragmati
 advantage of CINNI notation is that it 
an be used to redu
e the distan
e between the formal

system and its implementation: it 
an be dire
tly employed by the user who wants to think in terms of names,

so that the need for a translation between an internal representation (e.g., using de Bruijn indi
es) and a user

friendly syntax (e.g., using ordinary names) disappears 
ompletely. As far as we know the CINNI substitution


al
ulus is the �rst 
al
ulus of expli
it substitutions whi
h 
ombines named and index-based representations

and hen
e provides a link between these two worlds of expli
it substitution 
al
uli.

4.4 Expli
it Substitutions

So far we have presented a simple �rst-order syntax for expressions whi
h 
ontains the 
onventional named

notation as well as de Bruijn's indexed notation as spe
ial 
ases. The most important operation to be performed

on su
h terms is 
apture-free substitution. Therefore, we now present the CINNI substitution 
al
ulus.

Stri
tly speaking, CINNI is a family of expli
it substitution 
aluli, parameterized by the syntax (in
luding

information about binding) of the language we want to represent. Below we present the instantiation of this

substitution 
al
ulus for the untyped �-
al
ulus with terms in CINNI syntax, i.e.

X

m

j (M N) j [X ℄M

As a motivation for the substitution 
al
ulus given below, 
onsider the following example of a �-redu
tion step

in the traditional �-
al
ulus with distin
t names X and Y , again taking names literally, i.e., not presupposing

identi�
ation by �-
onversion:

(([X ℄[Y ℄X)Y )! [Z℄Y

2

Of 
ourse, in general hiding is important but it is not an issue of binding; it should be treated independently.

3

With the slight di�eren
e that de Bruijn's indi
es start at 1 instead of 0.

4

See the dis
ussion on weird renaming in the next se
tion.
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Clearly, Z must be an identi�er di�erent from Y to avoid 
apturing. Unfortunately, there is no 
anoni
al 
hoi
e

if all identi�ers should be treated as being equal. We 
all this phenomenon weird renaming of bound variables.

It is a
tually a 
ombination of two undesirable e�e
ts: (1) names that have been 
arefully 
hosen by the user

have to be 
hanged, and (2) the enfor
ed 
hoi
e of a new name 
ollides with the right of names to be treated

as equal 
itizens.

These e�e
ts are avoided in the CINNI 
al
ulus, when instantiated to the �-
al
ulus. It is spe
i�ed by the �rst-

order equational theory given below. Indeed, the only operation assumed on names is equality. CINNI has also

an operational semanti
s viewing equations as rewrite rules. Apart from the two basi
 kinds of substitutions,

namely simple substitutions [X :=M ℄, and shift substitutions "

X

, substitutions 
an be lifted using *

X

(S), where

the variable S ranges over substitutions.

[X :=M ℄ X

0

= M

[X :=M ℄ X

m+1

= X

m

[X :=M ℄ Y

n

= Y

n

if X 6= Y

"

X

X

m

= X

m+1

"

X

Y

n

= Y

n

if X 6= Y

*

X

(S) X

0

= X

0

*

X

(S) X

m+1

= "

X

(S X

m

)

*

X

(S) Y

n

= "

X

(S Y

n

) if X 6= Y

S (MN) = (SM)(SN)

S ([X ℄M) = [X ℄(*

X

(S) M)

We 
an instantiate the CINNI 
al
ulus to give a more 
on
rete treatment of di�erent formal systems. The only

equations spe
i�
 to the syntax of the language are the stru
tural equations. Here, the last two equations in

the right 
olumn are the stru
tural equations for the �-
al
ulus.

Now we 
an de�ne �-redu
tion by the rule

([X ℄N)M !

�

[X :=M ℄N:

Noti
e that weird renaming of bound variables as in the previous example is avoided with the new notion of

�-redu
tion:

(([X ℄[Y ℄X)Y )!

�

([Y ℄Y

1

)

As another appli
ation of substitution, 
onsider the renaming of a bound variable X by � as in the following

rule of �-redu
tion:

([X ℄N)!

�

([ � ℄[X := � ℄ "

�

N)

where � is an arbitrary but �xed name. Using this rule every CINNI term 
an be redu
ed to a nameless �-

normal form whi
h is essentially its de Bruijn index representation. For terms M ,N we use M �

�

N to denote

that M and N are equal up to renaming of bound variables.

Just as CINNI syntax 
ontains de Bruijn's indexed notation as a very spe
ial 
ase, the instantiation of CINNI

for the �-
al
ulus redu
es to the 
al
ulus �� of expli
it substitutions proposed by Pierre Les
anne [16, 17, 3℄,

but only in the degenerate 
ase where we only admit a single identi�er. It is noteworthy that �� is the smallest

known indexed substitution 
al
ulus enjoying good theoreti
al properties like 
on
uen
e and preservation of

strong normalization. It seems that its simpli
ity is inherited by CINNI although in pra
ti
e the dimension of

names will be mu
h more important than the dimension of indi
es. Hen
e, we tend to think of CINNI more as

a substitution 
al
ulus with names than as one with indi
es.

4.5 Uniform Pure Type Systems

The appli
ation of CINNI to PTS turns out to be surprisingly simple, and indeed it leads to a system whi
h


an be seen as Polla
k's `

lt

s
aled up to PTS systems.

In 
ontrast to the hybrid approa
h to PTS systems adopted in the 
onstru
tive engine [14℄ and in the formal-

ization [23℄, both distinguishing between global and lo
al variables, we use indexed identi�ers uniformly. This

suggests de�ning uniform pure type systems (UPTS) by modifying PTS in three steps:
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First, PTS terms are generalized to UPTS terms in the way explained before, i.e., UPTS (pseudo-)terms are

now given by the �rst-order CINNI syntax:

X

m

j (M N) j [X : A℄M j fX : AgM j s

As a se
ond step, we adapt the syntax-dependent part of the CINNI 
al
ulus to UPTS terms:

S s = s

S (MN) = (SM)(SN)

S ([X : A℄M) = [X : (S A)℄(*

X

(S) M)

S (fX : AgM) = fX : (S A)g(*

X

(S) M)

The third and �nal step is to de�ne the derivable typing judgements. Sin
e we do not want to identify �-

equivalent terms, this is a fundamental 
hange in the formal system. However, a 
areful inspe
tion of the typing

rules under the new reading shows that only minor 
hanges in the rules START and WEAK are needed. The

new rules are:

� ` A : s

�[X : A℄ ` X

0

: "

X

A

(START)

� `M : A � ` B : s

�[X : B℄ ` "

X

M : "

X

A

(WEAK)

It might appear that the UPTS systems we have de�ned above are a spe
ialization of PTS systems, sin
e we

have 
ommitted ourselves to a parti
ular representation of names. But this is not the full truth, be
ause on the

other hand we have des
ribed a generalization of PTS systems where names may o

ur multiple times in the

same 
ontext. Noti
e that in both rules above we have dropped the side 
ondition X =2 �, whi
h means that

we have 
ompletely eliminated the need for these side 
onditions in UPTS systems. We would also like to point

out, that, in parti
ular, we have not tou
hed the LDA rule: the only pla
e where �-
onversion 
omes into play

is the CONV rule, where � subsumes �- and �- 
onversion, just as in the original PTS systems.

Finally, we des
ribe how these 
hanges are re
e
ted in the membership equational logi
 spe
i�
ation.

First, instead of using identi�ers as variables we use indexed identi�ers. So we repla
e subsort Qid < Var by

op _{_} : Qid Nat -> Var .

Se
ond, instead of 
onventional substitution [ := ℄ , we use CINNI for UPTS terms:

sort Subst .

op [_:=_℄ : Qid Trm -> Subst .

op [shift_℄ : Qid -> Subst .

op [lift__℄ : Qid Subst -> Subst .

op __ : Subst Trm -> Trm .

var S : Subst .

vars n m : Nat .

eq ([X := M℄ (X{0})) = M .

eq ([X := M℄ (X{su
(m)})) = (X{m}) .


eq ([X := M℄ (Y{n})) = (Y{n}) if X =/= Y .

eq ([shift X℄ (X{m})) = (X{su
(m)}) .


eq ([shift X℄ (Y{n})) = (Y{n}) if X =/= Y .

eq ([lift X S℄ (X{0})) = (X{0}) .

eq ([lift X S℄ (X{su
(m)})) = [shift X℄ (S (X{m})) .
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eq ([lift X S℄ (Y{m})) = [shift X℄ (S (Y{m})) if X =/= Y .

eq (S s) = s .

eq (S (M N)) = ((S M) (S N)) .

eq S ([X : A℄ M) = [X : (S A)℄ ([lift X S℄ M) .

eq S ({X : A} M) = {X : (S A)} ([lift X S℄ M) .

Third, 
onversion now expli
itly 
ontains �-
onversion, that was impli
it in the equality of the previous spe
i-

�
ation:

mb [X : A℄ M === [Y : A℄ ([X := Y{0}℄ [shift Y℄ M) : Convertible .

mb {X : A} M === {Y : A} ([X := Y{0}℄ [shift Y℄ M) : Convertible .

Finally, the new versions of START and WEAK are:


mb (G [X : A℄ |- X{0} : [shift X℄ A) : Derivable if

(G |- A : s) : Derivable .


mb (G [X : B℄ |- [shift X℄ M : [shift X℄ A) : Derivable if

(G |- M : A) : Derivable and

(G |- B : s) : Derivable .

Again, we 
an see that the representational distan
e between the mathemati
al presentation of UPTS systems

and their membership equational logi
 spe
i�
ation is pra
ti
ally zero. In parti
ular, the equational nature of

the CINNI substitution 
al
ulus is dire
tly 
aptured by the membership equational logi
 spe
i�
ation.

UPTS are more liberal than PTS, sin
e a derivable judgement � ` M : A may 
ontain multiple de
larations

of the same identi�er in �. The set of derivable judgments � ` M : A of PTS 
an be re
overed as the set of

derivable UPTS judgements � `

1

M : A generated by adding the following rule:

� `M : A

� `

1

M : A

if no variable is de
lared in � more than on
e. (CTXTRESTR)

The representation of judgements � `

1

M : A together with this rule in membership equational logi
 is

straightforward, and we omit it here and in all the following formalizations for sake of brevity.

Using the terminology introdu
ed in Se
tion 2.1 for entailment systems, ea
h of the following two propositions

establishes a total, sound and 
omplete 
orresponden
e of the form PTS

S

 UPTS

S

, where S is an arbitrary

PTS spe
i�
ation.

Proposition 4.1 (Soundness and Completeness of UPTS I) For all PTS termsM ,A and PTS 
ontexts

�, if the PTS judgement � `

1

M : A is derivable in UPTS

S

then � ` M : A is derivable in PTS

S

and vi
e

versa.

5

This proposition implies that UPTS systems are 
onservative over PTS systems. A slightly weaker but more


omprehensive 
orresponden
e between PTS and UPTS 
an be given modulo renaming of variables. For this

purpose one 
an extend the renaming equivalen
e �

�

to judgements su
h that � ` M : A �

�

�

0

` M

0

: A

0

i�

�

0

` M

0

: A

0

and � ` M : A are equal up to renaming of de
lared and bound variables. Then we have the

following

Proposition 4.2 (Soundness and Completeness of UPTS II) For all UPTS terms M ,A, PTS terms

M

0

,A

0

, UPTS 
ontexts � and PTS 
ontexts �

0

with � ` M : A �

�

�

0

` M

0

: A

0

, if the UPTS judgement

� `M : A is derivable in UPTS

S

then �

0

`M

0

: A

0

is derivable in PTS

S

and vi
e versa.

The last proposition implies that, 
on
erning judgements of the form � `M : A, PTS and UPTS are equivalent

modulo �-equivalen
e. Hen
e all (metatheoreti
) results about PTS apply to UPTS after apropriate renaming.

5

Here we make use of the 
onvention introdu
ed in Se
tion 4.3 that ordinary terms (here PTS terms) 
an be seen as CINNI

terms (here UPTS terms).
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The proposition also implies that the new form of judgement � `

1

M : A is not ne
essary to ensure soundness

and 
ould therefore be dropped. Sometimes, however, judgements of the form � `

1

M : A instead of � `M : A

are more 
onvenient, e.g., to formulate the thinning lemma, sin
e 
ontexts without multiple de
larations of the

same name 
an be treated as sets. Hen
e, both kinds of judgements are useful for metatheoreti
 reasoning.

4.6 A Conservative Optimization

The presentations of pure type systems (PTS and UPTS) given above maintain a good e
onomy in the number of

rules and are therefore well-suited for metatheoreti
 (indu
tive) reasoning: the judgement � `M : A impli
itly

subsumes another judgement � `, stating that � is a well-typed 
ontext. Sin
e in pra
ti
e 
he
king 
ontexts is as

important as 
he
king types, we swit
h to a 
onservative extension of UPTS systems that is not biased towards

any of the two forms of judgement. From a pra
ti
al point of view, the addition of a separate judgement for valid


ontexts 
an be seen as an optimization whi
h avoids unne
essary re
he
king of 
ontexts in ea
h subderivation.

We will refer to this optimized type system as UPTS with valid 
ontexts (UPTS/VC). The only modi�
ations

we need are des
ribed below. We use judgements of the form � ` (valid 
ontext), � `M : A (weak typing) and

� 
M : A (strong typing) and we add the following rules:

[℄ `

(CEMPTY)

� ` � ` A : s

�[X : A℄ `

(CEXT)

� ` X

m

: lookup(�;X

m

)

if lookup(X

m

;�) 6= ? (LOOKUP)

� ` � `M : A

� 
M : A

(CTXT)

where ? denotes a failure and lookup(�;X

m

) is de�ned by

lookup([℄;X

m

) = ?

lookup(�[X : A℄;X

0

) = "

X

A

lookup(�[X : A℄;X

m+1

) = "

X

lookup(�;X

m

)

lookup(�[X : A℄;Y

m

) = "

X

lookup(�;Y

m

) if X 6= Y

Then we repla
e AX and CTXTRESTR by

� ` s

1

: s

2

(s

1

; s

2

) 2 A (AX)

� 
M : A

� 


1

M : A

if no variable is de
lared in � more than on
e. (CTXTRESTR)

respe
tively, and we remove the rules START and WEAK, sin
e they are admissible rules in the new system.

The system we have just obtained is similar to the system `

vtyp

, `

v
xt

presented in [34℄, but here we are


on
erned with UPTS systems instead of PTS systems and as a minor di�eren
e we make use of an expli
it

lookup fun
tion. Also all freshness side 
onditions are eliminated thanks to CINNI.

Again, the representation in membership equational logi
 is quite dire
t. It ni
ely illustrates the mixed spe
i�-


ation style using equations and memberships:

sort Trm? .

subsort Trm < Trm? .

op undefTrm : -> Trm? .

op lookup : Context Var -> Trm? .

eq lookup([℄, X{m}) = undefTrm .

eq lookup(G [X : A℄, X{0}) = [shift X℄ A .
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eq lookup(G [X : A℄, X{su
(m)}) = [shift X℄ lookup(G,X{m}) .


eq lookup(G [X : A℄, Y{m}) = lookup(G,Y{m}) if (X =/= Y) .

op _|- : Context -> Judgement .

op _|-_:_ : Context Trm Trm -> Judgement .

op _||-_:_ : Context Trm Trm -> Judgement .

mb ([℄ |-) : Derivable .


mb (G [X : A℄ |-) : Derivable if

(G |-) : Derivable and (G |- A : s) : Derivable .


mb (G |- X{m} : lookup(G,X{m})) : Derivable if

lookup(G,X{m}) =/= undefTrm .


mb (G ||- M : A) : Derivable if

(G |- M : A) : Derivable and (G |-) : Derivable .


mb (G |- s1 : s2) : Derivable if (s1,s2) : Axioms .

UPTS/VC are equivalent to UPTS, i.e. there is total, sound and 
omplete 
orresponden
e of the kind UPTS

S

 

UPTS/VC

S

for arbitrary PTS spe
i�
ations S, in the following sense:

Proposition 4.3 (Soundness and Completeness of UPTS/VC) LetM ,A be UPTS terms and � a UPTS


ontext. If the judgement � 
 M : A (� 


1

M : A) is derivable in UPTS/VC then � ` M : A (� `

1

M : A) is

derivable in UPTS and vi
e versa.

This proposition is similar to Lemma 23 in [34℄, but here we are 
onsidering UPTS instead of PTS systems.

5 The Meta-Operational View of PTS

PTS systems 
an not only be equipped with a logi
al semanti
s, e.g., via the proposition-as-types interpretation

6

,

but, more fundamentally, PTS systems are usually equipped with an operational semanti
s, de�ned by an

internal notion of fun
tional 
omputation, like �-redu
tion. The operational view of PTS systems is 
on
erned

with their internal notion of 
omputation, but here we are interested in the meta-operational view, whi
h deals

with the question of how to embed PTS systems in a formal system with an operational semanti
s, so that

typi
al 
omputational tasks like type 
he
king and type inferen
e be
ome possible by exploiting the operational

semanti
s of the metalanguage. In the following we employ for this purpose the eÆ
iently exe
utable sublanguage

of rewriting logi
 that is supported by Maude.

We introdu
e below several 
lasses of PTS spe
i�
ations giving rise to 
orresponding PTS systems that are

pra
ti
ally interesting and enjoy parti
ulary good properties.

De�nition 5.1 A PTS spe
i�
ation S is de
idable i�: (1) S is denumerable, (2) A and R are de
idable, and

(3) for all s

1

; s

2

2 S the predi
ates 9s

0

2

: (s

1

; s

0

2

) 2 A and 9s

0

3

: (s

1

; s

2

; s

0

3

) 2 R are de
idable.

De
idability of a PTS spe
i�
ation is a reasonable requirement to ensure that type inferen
e and type 
he
king

do not be
ome unde
idable be
ause of a too 
omplex spe
i�
ation S.

De�nition 5.2 A PTS spe
i�
ation S is fun
tional i� (1) (s

1

; s

2

) 2 A and (s

1

; s

0

2

) 2 A implies s

2

= s

0

2

, and

(2) (s

1

; s

2

; s

3

) 2 R and (s

1

; s

2

; s

0

3

) 2 R implies s

3

= s

0

3

.

In fun
tional PTS spe
i�
ations, the relations A and R 
an be viewed as fun
tions A : S ! S? and R : S�S !

S? where S? := S [f?g. Fun
tionality ensures that every term has a unique type (up to 
onversion). The 
lass

of fun
tional PTS systems

7

in
ludes, for example, all systems of the �-
ube.

6

Of 
ourse, we must be 
areful, sin
e many PTS systems are in
onsistent under the propositions-as-types interpretation.

7

The attributes for PTS spe
i�
ations are naturally lifted to the 
orresponding entailment systems.
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De�nition 5.3 A PTS spe
i�
ation S is full i� for all s

1

; s

2

2 S there is an s

3

su
h that (s

1

; s

2

; s

3

) 2 R. A

PTS spe
i�
ation S is semi-full i� (s

1

; s

2

; s

3

) 2 R implies that for ea
h s

0

2

there is an s

0

3

su
h that (s

1

; s

0

2

; s

0

3

) 2 R.

Full PTS systems allow us to form fX : AgB types very liberally by avoiding those restri
tions on the sorts of

A and B that are imposed by the side 
ondition (s

1

; s

2

; s

3

) 2 R of the PI rule. As an example, CC is a full PTS

system.

De�nition 5.4 Given a PTS spe
i�
ation S, a top sort is a sort s su
h that there is no sort s

0

with (s; s

0

) 2 A.

The set of top sorts is denoted by S

top

. S is topless i� S

top

is empty.

Topless PTS disallow top sorts, whi
h introdu
e some kind of non-uniformity in the set of sorts. Just as in full

PTS spe
i�
ations R 
an be seen as a fun
tion R : S � S ! S, in fun
tional, topless PTS spe
i�
ations A 
an

be viewed as a fun
tion A : S ! S.

Semi-full PTS systems have the ni
e property that we 
an get rid of the third premise in the LDA rule by

repla
ing it with the following rule:

� ` A : s

1

�[X : A℄ `M : B

� ` [X : A℄M : fX : AgB

(s

1

; s

2

; s

3

) 2 R and B =2 S

top

(LDA')

The premises together with the side 
onditions in LDA' imply that fX : AgB is a well-formed type (
f. rule

PI). Indeed, as explained in [34℄ in the 
ontext of PTS systems, repla
ing LDA by LDA' does not 
hange the set

of derivable judgements in semi-full UPTS systems.

For full and topless UPTS systems we 
an eliminate the side 
onditions in the rule LDA', and we obtain LDA"

without 
hanging the set of derivable judgements:

� ` A : s �[X : A℄ `M : B

� ` [X : A℄M : fX : AgB

(LDA")

The 
al
ulus of 
onstru
tions has Type as a top sort and therefore is not topless. However, it is straightforward

to extend CC by an in�nite universe hierar
hy yielding a topless PTS.

Together with the introdu
tion of UPTS in the previous se
tion, we have now presented three families of

inferen
e systems whi
h only di�er in the 
hoi
e of the rule LDA. For a full and topless PTS spe
i�
ation S all

of them de�ne the same unary entailment system, whi
h is denoted by UPTS

S

.

In the remainder of this paper we will present a type 
he
king algorithm for a 
lass of UPTS using rewriting

logi
 as a formal spe
i�
ation language. Type 
he
king for PTS is not trivial, but in spite of some unsolved

theoreti
al questions su
h as the expansion postponement problem, eÆ
ient algorithms for the important 
lasses

of fun
tional PTS and semi-full PTS (satisfying appropriate de
idability and normalization properties) have

been presented in [34℄. In order to avoid ex
essive te
hni
al details and to make 
lear the general way we use

rewriting logi
 to represent type 
he
king algorithms, we restri
t ourselves in the following to UPTS that are

de
idable, normalizing

8

, fun
tional, full and topless. The 
lass of UPTS systems that are de
idable, normalizing,

fun
tional and semi-full 
an be treated along the same lines (using the rule LDA' instead of LDA").

The use of UPTS instead of PTS is motivated by our desire to obtain a formal representation that takes names

seriously and makes type 
he
king more uniform. This is di�erent from [34℄ that uses names informally for

presentation purposes but a
tually assumes identi�
ation by �-
onversion as justi�ed by the formalization [23℄

whi
h abstra
ts from lo
al names by representing them using de Bruijn indi
es.

5.1 UPTS in Membership Equational Logi


The standard way to implement type 
he
king is to 
ast the inferen
e rules into an equivalent syntax-dire
ted

indu
tive de�nition, and to de�ne a type-inferen
e fun
tion on the basis of this new system. Formally and

te
hni
ally this 
ould be done in the exe
utable sublanguage of membership equational logi
 or in any other

fun
tional programming language, but the use of membership equational logi
 is attra
tive, sin
e it allows us to

formulate the logi
al and operational versions of PTS systems in a single uniform language with an extremely

8

w.r.t. �-redu
tion
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simple semanti
s, whi
h in parti
ular does not presuppose higher-order 
onstru
ts, but is used to explain them

in more elementary terms. Also, data stru
tures and fun
tions of the spe
i�
ation 
an be dire
tly used in the

implementation.

In our setting there is another reason why membership equational logi
 is more natural than the use of a (higher-

order) fun
tional programming language: the equational spe
i�
ation of the 
al
ulus of substitutions presented

above is naturally equipped with an operational semanti
s just by viewing the equations as rewrite rules. By


ontrast, in a fun
tional programming language that is not based on equational rewriting, the substitution


al
ulus has to be en
oded, whi
h essentially means that a (spe
ialized) rewrite engine for this 
al
ulus has

to be implemented in the fun
tional language itself and, what is even more 
umbersome, this engine has to

be expli
itly invoked when needed. In this sense, a spe
i�
ation/programming style based on rewriting is

more abstra
t and 
loser to mathemati
al pra
ti
e for appli
ations of this kind than a higher-order fun
tional

programming approa
h.

Using the spe
i�
ation of the above substitution 
al
ulus, a purely equational exe
utable spe
i�
ation of a

type 
he
ker for UPTS systems with de
idable type 
he
king 
an be written in membership equational logi


using standard equational/fun
tional programming te
hniques. The 
ore of this spe
i�
ation 
onsists of a

type-inferen
e fun
tion

op type : Context Trm -> Trm? .

that 
omputes a type for ea
h typable term and yields undefTrm otherwise. The fun
tion 
an be de�ned in a

way similar to the one given in [30℄, but using CINNI, instead of abstra
ting from the treatment of names.

Thanks to CINNI, freshness 
onditions are avoided. Therefore, an implementation based on this spe
i�
ation

appears to be more elegant than the 
onstru
tive engine with its hybrid treatment of names. As an additional

advantage, multiple de
larations of the same identi�er are naturally admitted in 
ontexts (if we use judgement

� 
 M : A). However, it is also easy to disallow these more general 
ontexts if desired (by implementing the

more 
onventional judgement � 


1

M : A).

Instead of dis
ussing this purely equational approa
h in more detail, we present an alternative approa
h in the

following se
tion that exploits features of rewriting logi
 that are beyond equational and fun
tional languages.

Our experien
e shows that this alternative approa
h s
ales up to more 
omplex type theories (e.g., extensions

of UPTS systems) in a more satisfa
tory way than the purely fun
tional and equational approa
hes to type


he
king.

5.2 UPTS in Rewriting Logi


As shown by an extensive 
olle
tion of examples in [20, 21, 22℄, rewriting logi
 
an be used as a logi
al framework

that 
an naturally represent inferen
e systems of di�erent kinds in a logi
ally and operationally satisfying way.

In the present se
tion we view a type 
he
ker as a parti
ular inferen
e system. In 
ontrast to a (higher-order)

fun
tional programming approa
h that would require us to en
ode the inferen
e system in terms of a type


he
king fun
tion, the rewriting logi
 approa
h o�ers the 
lear advantage that inferen
e rules 
an be expressed

dire
tly, namely, as rewrite rules. We will in fa
t make use of a type inferen
e system expressed as a 
olle
tion of

rewrite rules that transform a 
onjun
tion of judgements into a simpli�ed form, in the style of 
onstraint solving

systems. This yields a rewrite system that is eÆ
iently exe
utable, while still maintaining a 
lose 
orresponden
e

to the logi
al spe
i�
ation of UPTS systems.

The rewriting logi
 spe
i�
ation represents RUPTS/VC systems and is able to perform type 
he
king, i.e., to

de
ide derivability of judgements of the form � ` M : A and � `, for the 
lass of de
idable, normalizing,

fun
tional, full and topless UPTS/VC systems dis
ussed before. As in PTS systems, type 
he
king redu
es to

type inferen
e, that is, to solving in
omplete queries of the form � `M !: ?T .

Instead of giving an informal a

ount we dire
tly dis
uss the formal spe
i�
ation in rewriting logi
.

First, we exploit our assumption that the PTS spe
i�
ation is de
idable, fun
tional, full and topless, whi
h

means that the relations A and R 
an be spe
i�ed by equationally-de�ned fun
tions Axioms and Rules:
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fth PTS-SPEC is

sort Sorts .

op Axioms : Sorts -> Sorts .

op Rules : Sorts Sorts -> Sorts .

endfth

As in the syntax-dire
ted approa
h, we \invert" the inferen
e rules in order to obtain a goal-dire
ted algorithm

from the generating indu
tive de�nition. In 
ontrast to a purely equational and fun
tional approa
h, the

rewriting logi
 spe
i�
ation we aim at has rewrite transition systems as models, and 
an therefore be seen

as an operational generalization of the equational and fun
tional paradigms. In 
ontrast to [34℄, the type-


he
king algorithm itself re
eives a dire
t formal status, whi
h is a prerequisite for reasoning formally about its


orre
tness.

The indu
tive de�nition of UPTS systems, e.g., the one in membership equational logi
, 
an also be seen as

a stati
 des
ription of a set of judgements that we would like to equip with a dynami
 interpretation. More

pre
isely, a (stati
) logi
al impli
ation

A

1

^ � � � ^ A

n

) B


an be seen as an inferen
e rule or (dynami
) state transition re�ning a goal B into subgoals A

1

; : : : ; A

n

, and


an be dire
tly represented as a rewrite rule

B ! A

1

^ � � � ^ A

n

in rewriting logi
. Ea
h state 
onsists of a �nite set of subgoals that remain to be solved.

The stati
 des
ription 
an be seen as indu
ing the following invariant that our dynami
 system should always

satisfy: for ea
h state, the empty set of goals is rea
hable i� the logi
al interpretation (given by the stati


des
ription) of the state is true.

Although the inferen
e rules of a formal system typi
ally take the form of Horn 
lauses that 
an be operationally

re�ned to rewrite rules, there may be fun
tional and equational parts (e.g., auxiliary fun
tions or substitution


al
uli) that are more naturally expressed in the membership equational logi
 fragment. It is this mix of di�erent

paradigms in a uniform framework that allows us to express the type-
he
king algorithm in a way that is very


lose to the logi
al spe
i�
ation.

In the re�ned spe
i�
ation we make use of a number of auxiliary judgements:

Judgement Meaning

A Sort there is an s 2 S su
h that A � s

(A;B; s) Rule there are s

1

; s

2

2 S su
h that A � s

1

, B � s

2

and (s

1

; s

2

; s) 2 R

A = B A = B literally

A$ B A � B (for A and B normalizing)

� `M !: A there is an A

0

with A � A

0

su
h that � `M : A

0

� ` ((M !: A)(N !: B))!: C � `M !: A, � ` N !: B and � ` (MN)!: C

We dis
uss below the rewriting logi
 spe
i�
ation of the UPTS type 
he
ker in some detail. Instead of a (purely)

fun
tional module, introdu
ed by fmod, the spe
i�
ation takes the form of a system module, introdu
ed by mod,

that has a rewrite system as its initial semanti
s:

mod PTS[PAR :: PTS-SPEC℄ is

We reuse most 
omponents of the fun
tional module de�ned before, but we add the auxiliary judgements:

op _Sort : Trm -> Judgement .

op `(_,_,_`)Rule : Trm Trm Trm -> Judgement .

op _=_ : Trm Trm -> Judgement .

op _<->_ : Trm Trm -> Judgement .

op _|-_->:_ : Context Trm Trm -> Judgement .

op _|-`(_->:_`)`(_->:_`)->:_ : Context Trm Trm Trm Trm Trm -> Judgement .
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In order to express intermediate goals or queries, like � ` M !: ?T , that are present in the operational

re�nement but not in the abstra
t presentation, we extend terms by expli
it metavariables:

sort MetaVar .

subsort MetaVar < Trm .

op ? : Qid -> MetaVar .

var ?T : MetaVar .

The use of weak head normal form, 
al
ulated by the following fun
tion whnf, is an eÆ
ient way to 
he
k

whether a term is 
onvertible to the form s or fX : AgM . We also use sorts WhNf and WhRedu
ible 
ontaining

terms in weak head normal form and weak head redu
ible terms, respe
tively. For sake of brevity we omit the

straightforward de�nitions in membership equational logi
.

sort WhNf WhRedu
ible .

subsort WhNf < Trm .

subsort WhRedu
ible < Trm .

op whnf : Trm -> Trm? .

A 
on�guration is a 
onjun
tive set of judgements that have to be solved or veri�ed by the type 
he
ker:

sort JudgementSet .

op emptyJudgementSet : -> JudgementSet .

subsort Judgement < JudgementSet .

op __ : JudgementSet JudgementSet -> JudgementSet

[asso
 
omm id: emptyJudgementSet℄ .

var JS : JudgementSet .

sort Configuration .

op {{_}} : JudgementSet -> Configuration .

Repla
ement of metavariables by terms (that is, textual repla
ement) has the obvious de�nition, not spelled

out here, ex
ept for its syntax:

op <_:=_>_ : MetaVar Trm Trm -> Trm .

op <_:=_>_ : MetaVar Trm Subst -> Subst .

op <_:=_>_ : MetaVar Trm Context -> Context .

op <_:=_>_ : MetaVar Trm Judgement -> Judgement .

op <_:=_>_ : MetaVar Trm JudgementSet -> JudgementSet .

It is used only in the following rule, that instantiates a metavariable throughout the entire 
on�guration if it is

uniquely determined by an equality:

rl {{ (?T = A) JS }} => {{ < ?T := A > JS }} .

A rule like this is typi
al of a 
onstraint-based programming approa
h, and indeed the 
on�guration 
an be

seen as a set of 
onstraints that should be simpli�ed using the subsequent rules [20, 22℄. Instead of dete
ting

an in
onsisten
y, the goal is to eliminate all 
onstraints. In addition to simpli�
ation of 
onstraints by general

rewrite rules, simpli�
ation by equational rewriting also plays a major role in our approa
h.

For example, the judgement of 
onvertibility between normalizing terms 
an be 
he
ked as follows. In order to

avoid redundant redu
tions we redu
e the general problem to 
he
king 
onvertibility between weak head normal

forms (whi
h are treated by the last three rules below). In the 
ase of binders we perform renaming to equalize

names.
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rl (T <-> T) => emptyJudgementSet .


rl (M <-> N) => (whnf(M) <-> N) if M : WhRedu
ible .


rl (M <-> N) => (M <-> whnf(N)) if N : WhRedu
ible .


rl (M N) <-> (M' N') => (M <-> M') (N <-> N') if (M N) : WhNf and (M' N') : WhNf .

rl ({X : A} T <-> {Y : A'} T') => (A <-> A') (T <-> [Y := X{0}℄ [shift X℄ T') .

rl ([X : A℄ M <-> [Y : A'℄ M') => (A <-> A') (M <-> [Y := X{0}℄ [shift X℄ M') .

We use two auxiliary judgements to implement side 
onditions:

rl (s Sort) => emptyJudgementSet .

rl ((s1,s2,?T) Rule) => (?T = Rules(s1,s2)) .

Ea
h inferen
e rule of UPTS/VC systems gives rise to a rewrite rule obtained by reversing the dire
tion of

inferen
e:

rl (G |- s ->: ?T) => (?T = Axioms(s)) .


rl (G |- X{m} ->: ?T) => (?T = lookup(G,X{m})) if lookup(G,X{m}) =/= undefTrm .

rl (G |- {X : A} B ->: ?T) =>

(G |- A ->: ?(NEW1))

(G [X : A℄ |- B ->: ?(NEW2))

((?(NEW1), ?(NEW2), ?T) Rule) .

rl (G |- [X : A℄ M ->: ?T) =>

(G |- A ->: ?(NEW1)) (?(NEW1) Sort)

(G [X : A℄ |- M ->: ?(NEW2))

(?T = {X : A} ?(NEW2)) .

rl (G |- (M N) ->: ?T) =>

(G |- (M ->: ?(NEW1))(N ->: ?(NEW2)) ->: ?T)

(G |- M ->: ?(NEW1)) (G |- N ->: ?(NEW2)) .

rl (G |- (M ->: {X : A} B)(N ->: A') ->: ?T) =>

(A <-> A') (?T = [X := N℄ B) .

The terms ?(NEW1) and ?(NEW2) above denote fresh metavariables. Hen
e rewriting has to be 
ontrolled by a

simple strategy, that 
onstraints the possible rewrites by instantiating the variables NEW1 and NEW2 only with

fresh identi�ers ea
h time a rule is applied. Noti
e that, in 
ontrast to ordinary variables, where names are

taken seriously, we abstra
t from (i.e. we do not 
are about) metavariable names, sin
e they do not have a

formal status inside UPTS systems, but belong instead to the metalevel.

9

A

ording to the explanations given before, the new judgements have 
ertain 
onversion 
losure properties. The

following partial normalization rules allow us to work with normalized judgements in the above rules:


rl (T Sort) => (whnf(T) Sort) if T : WhRedu
ible .


rl ((A,B,T) Rule) => ((whnf(A),B,T) Rule) if A : WhRedu
ible .


rl ((A,B,T) Rule) => ((A,whnf(B),T) Rule) if B : WhRedu
ible .


rl (G |- (M ->: A)(N ->: B) ->: T) => (G |- (M ->: whnf(A))(N ->: B) ->: T) if A : WhRedu
ible .

This 
ompletes the de�nition of the type-inferen
e system for judgements of the form � ` M !: A. Sin
e our

goal was to de�ne the operational 
ounterpart of � `M : A, i.e., to give a type-
he
king algorithm, we redu
e

type 
he
king to type inferen
e in the standard way using the 
onditional rules:

9

By a straightforward re�nement of the present spe
i�
ation we 
an obtain a system with takes even metavariables seriously,

but this is not ne
essary for the purpose of the present paper.
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rl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)

if {{ A Sort }} => {{ emptyJudgementSet }} .


rl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)

if {{ (G |- A ->: ?(NEW1)) }} => {{ emptyJudgementSet }} .

A
tually these two rules 
onstitute an operational formulation of Lemma 3 (Chara
terization of PTS) proved

in [28℄ for PTS. Finally, we add rules in reversed form to 
he
k valid 
ontexts and the strong typing judgement:

rl ([℄ |-) => emptyJudgementSet .


rl (G [X : A℄ |-) =>

(G |- A ->: ?(NEW)) (?(NEW) Sort)

if {{ (G |-) }} => {{ emptyJudgementSet }} .


rl (G ||- M : A) => (G |- M : A)

if {{ (G |-) }} => {{ emptyJudgementSet }} .

endm

Again we have omitted the straightforward rule 
orresponding to CTXTRESTR, whi
h allows us to 
he
k deriv-

ability of strong judgements � 


1

M : A that disallow multiple o

urren
es of the same variable in �.

To verify a judgement J we start with an initial 
on�guration ffJgg. Either this 
on�guration 
an be redu
ed

to ffemptyJudgementSetgg, meaning that the judgement has been proved, or the �nal 
on�guration 
ontains

unsolved 
onstraints that 
an be seen an informative indi
ation of a type-
he
king error.

Noti
e that we have not only used indu
tive de�nitions to spe
ify PTS systems and UPTS systems logi
ally,

but that, in addition, the operational version of UPTS systems given by the rewrite rules above is essentially

an indu
tive de�nition of a rewrite system whi
h gives us a more re�ned view of the type-
he
king pro
ess.

The most important property of a type 
he
ker is soundness. The soundness of ea
h of the rewrite rules above is

obvious and 
an be veri�ed by inspe
tion (even by a user of the algorithm who would like to obtain 
on�den
e

in its 
orre
tness) without resorting to diÆ
ult metatheoreti
al proofs.

Let S range over de
idable, normalizing, fun
tional, full and topless PTS spe
i�
ations. RUPTS/VC denotes

the rewrite based version of UPTS/VC that has been presented above in terms of rewriting logi
. Then the

next proposition gives a sound and 
omplete 
orresponden
e UPTS/VC

S

 RUPTS/VC

S

.

Proposition 5.5 (Soundness and Completeness of RUPTS/VC) Let M ,A be UPTS terms, let � be

a UPTS 
ontext, and let J be one of the judgements � `, � 
 M : A, or � 


1

M : A. If the senten
e

ffJgg �! ffemptyJudgementSetgg is derivable in RUPTS/VC

S

, then J is derivable in UPTS/VC

S

and vi
e

versa.

Completeness as stated above does not immediately imply 
ompleteness of the implementation, sin
e the rewrite

theory is usually exe
uted using a strategy that restri
ts the rewrites to those that are a
tually 
hosen. Ideally,

and this is the 
ase in our spe
i�
ation, there is no additional restri
tion on the strategy beyond the freshness

requirement for metavariables mentioned before.

6 Con
lusions

In this paper we give presentations of PTS systems at di�erent levels of abstra
tion. Moreover we have dis-


ussed very natural representations of these systems in membership equational logi
 or rewriting logi
. Both,

abstra
tions and representations are uniformly 
aptured by the notion of a 
orresponden
e between entailment

systems. Apart from this more general 
ontribution that demonstrates how pure type systems 
an be formally

spe
i�ed using rewriting logi
 as a logi
al framework, there are more te
hni
al 
ontributions, namely CINNI, a
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simple and general 
al
ulus of expli
it substitutions, and UPTS, a new variant of pure type systems that 
an be

seen as a new approa
h to the problems with 
losure under �-
onversion in systems with dependent types.

Furthermore, we would like to point out that the te
hniques presented in this paper are 
urrently being applied

in the design and implementation of a proof assistant for OCC, the open 
al
ulus of 
onstru
tions, an extension

of the 
al
ulus of 
onstru
tions that in
orporates equational logi
 as a 
omputational sublanguage. Similar to

membership equational logi
, OCC supports 
onditional equations and 
onditional assertions together with an

operational semanti
s based on 
onditional rewriting modulo equations. Using the Maude rewriting engine and

its re
e
tive 
apabilities, we have developed with a modest amount of e�ort an experimental version of a proof

assistant for OCC of a

eptable performan
e that is based on the ideas on CINNI and UPTS presented here.

We 
on
lude with the remark that we have emphasized the representational aspe
ts in this paper, sin
e the


hoi
e of the right formal representation is important in its own right and should pre
eed attempts to give

formal metatheoreti
al proofs. There are many interesting properties that should not require 
omplex proofs.

For example, soundness is a property that 
an often be made easy to verify using spe
i�
ation te
hniques like

those employed above. On the other hand, membership equational logi
 and rewriting logi
 together with their

initial model semanti
s provide very general notions of equational indu
tive de�nitions, a fa
t that has been

exploited for representing (indu
tively de�ned) formal systems in this paper. The remaining problem of 
arrying

out metatheoreti
al proofs about su
h 
losed formal systems { 
ompleteness proofs are one example { requires

the development of useful indu
tion prin
iples on the basis of possibly di�erent but related presentations of the

formal system. On
e appropriate indu
tion prin
iples are found, they 
an be formulated using either higher-

order logi
, e.g., simply by using a formal system su
h as OCC as a metalogi
, or using re
e
tive te
hniques (
f.

the approa
h to re
e
tive metalogi
al frameworks presented in [2℄).
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