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Abstract. The logical and operational aspects of rewriting logic as a logical framework are illustrated in detail by
representing pure type systems as object logics. More precisely, we apply membership equational logic, the equational
sublogic of rewriting logic, to specify pure type systems as they can be found in the literature and also a new variant of
pure type systems with explicit names that solves the problems with closure under a-conversion in a very satisfactory
way. Furthermore, we use rewriting logic itself to give a formal operational description of type checking, that directly
serves as an efficient type checking algorithm. The work reported here is part of a more ambitious project concerned with
the development in Maude [7] of a proof assistant for OCC, the open calculus of constructions, an equational extension
of the calculus of constructions.

1 Introduction

This paper is a detailed case study on the ease and naturalness with which a family of higher-order formal
systems, namely pure type systems (PTS) [4, 32], can be represented in the first-order logical framework of
rewriting logic [25]. PTS systems generalize the A-cube [1], which already contains important calculi like A—
[6], F [12, 29], Fw [12], a system AP close to the logical framework LF [13], and their combination, the calculus of
constructions CC [8]. PTS systems are considered to be of key importance, since their generality and simplicity
makes them an ideal basis for representing higher-order logics either via the propositions-as-types interpretation
[11] or via their use as a higher-order logical framework in the spirit of LF [13, 10] or Isabelle [26].

Exploiting the fact that rewriting logic and its membership equational sublogic [5] have initial and free models,
we can define the representation of PTS systems as a parameterized theory in the framework logic; that is, we
define in a single parametric way all the representations for the infinite family of PTS logics. Furthermore,
the representational versatility of rewriting logic, and of membership equational logic, are also exercised by
considering four different representations of PTS systems at different levels of abstraction, from a more abstract
textbook version in which terms are identified up to a-conversion, to a more concrete version with a calculus
of names and explicit substitutions, and with a type checking inference system that can in fact be used as a
reasonably efficient implementation of PTS systems by executing the representation in the Maude language [7].
This more concrete version is the basis of a proof assistant for OCC, the open calculus of constructions, an
equational extension of the calculus of constructions, that is under development.

This case study complements earlier work [20, 21, 22], showing that rewriting logic has good properties as a
logical framework to represent a wide range of logics, including linear logic, Horn logic with equality, first-order
logic, modal logics, sequent-based presentations of logics, and so on. In particular, representations for the \-
calculus, and for binders and quantifiers have already been studied in [20], but this is the first systematic study
on the representation of typed higher-order systems. One property shared by all the above representations,
including all those discussed in this paper, is that what might be called the representational distance between
the logic being formalized and its rewriting logic representation is virtually zero. That is, both the syntax
and the inference system of the object logic are directly and faithfully mirrored by the representation. This is
an important advantage both in terms of understandability of the representations, and in making the use of
encoding and decoding functions unnecessary in a so-called adequacy proof.

Besides the directness and naturalness with which logics can be represented in a framework logic, another
important quality of a logical framework is the scope of its applicability; that is, the class of logics for which
faithful representations preserving relevant structure can be defined. Typically, we want representations that
both preserve and reflect theoremhood; that is, something is a theorem in the original logic if and only if its
translation can be proved in the framework’s representation of the logic. Such mappings go under different
names and differ in their generality; in higher-order logical frameworks representations are typically required to
be adequate mappings [10], and in the theory of general logics more liberal, namely conservative mappings of
entailment systems [24], are studied. In this paper we further generalize conservative mappings to the notion of
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a sound and complete total correspondence of sentences between two entailment systems. In particular, all the
representations of PTS systems that we consider are correspondences of this kind. In fact, sound and complete
total correspondences are systematically used not only to state the correctness of the representations of PTS
systems at different levels of abstraction, but also to relate those different levels of abstraction, showing that
the more concrete representations correctly implement their more abstract counterparts.

A systematic way of comparing the scopes of two logical frameworks F and G is to exhibit a sound and complete
total correspondence F ~~ G, representing F in G. Since such correspondences form a category, and therefore
compose, this then shows that the scope of G is at least as general as that of F. Since pure type systems include
the system AP, close to the logical framework LF, and the calculus of constructions CC, the results in this paper
indicate that the scope of rewriting logic is at least as general as that of those logics. Furthermore, since there
are no adequate mappings from linear logic to LF in the sense of [10], but there is a conservative mapping of
logics from linear logic to rewriting logic [20], this seems to indicate that the LF methodology together with its
rather restrictive notion of adequate mapping is more specialized than the rewriting logic approach.

2 Preliminaries
2.1 Entailment Systems

In the following sections we are concerned with a variety of different interrelated formal systems which can all
be viewed as entailment systems, a notion defined in [24] as a main component of general logics. Since the
notion of entailment system is more general than what is needed for the purposes of the present paper, we work
with unary entailment systems. A wunary entailment system (Sen,F) is a set of sentences Sen, together with a
unary entailment predicate -C Sen.

In [24] maps between sentences are used to relate different logics. Here we introduce a more general notion of
morphism, namely a correspondence between sentences of different entailment systems. Let (Sen,t), (Sen',F')
be unary entailment systems. A correspondence between (Sen,t) and (Sen’,F') is a relation ~~C Sen x Sen/.
Given such a correspondence ~+, we say that ~ is sound iff for all ¢ ~ ¢', - ¢ implies ' ¢'. Similarly, we say
that ~ is complete iff for all ¢ ~ ¢', F' ¢' implies F ¢. Moreover, ~ is called total iff for each ¢ € Sen there is
a ¢ such that ¢ ~» ¢'. Correspondences compose in the obvious relational way, giving rise to a category CEnt.
Often a correspondence of sentences ~C Sen x Sen’ takes the form of a function « : Sen —» Sen', in which case
we speak of a map of sentences. A map of entailment systems in the sense of [24] is a sound map of sentences,
and a conservative map is precisely a sound and complete map.

2.2 Rewriting Logic and Membership Equational Logic

A rewrite theory is a triple T' = (X, E, R), with ¥ a signature of function symbols, E a set of equations, and R a
set of (possibly conditional) rewrite rules of the form ¢ — ¢' (with ¢ and ¢’ X-terms) which are applied modulo
the equations E. Rewriting logic (RWL) then has rules of deduction to infer all possible rewrites provable in a
given rewrite theory [25]. Since an equational theory (X, E) can be regarded as a rewrite theory (X, E, () with
no rules, equational logic is a sublogic of rewriting logic. In fact, rewriting logic is parameterized by the choice
of its underlying equational logic, which can be unsorted, many-sorted, and so on.

In this paper, and in the design of the Maude language, we have chosen membership equational logic (MEL)
[5] as the underlying equational logic. Membership equational logic is quite expressive. It has sorts, subsorts,
overloading of function symbols, and can express partiality very directly by defining membership in a sort by
means of equational conditions. The atomic sentences are equalities ¢ = ¢’ and memberships ¢ : s, with s a
sort, and general sentences are Horn clauses on the atoms. Both membership equational logic and rewriting
logic have initial and free models [25, 5]. We denote by MEL C RWL the sublogic inclusion from membership
equational logic into rewriting logic.

Logics can be naturally represented as rewrite theories by defining the formulas, or other proof-theoretic struc-
tures such as sequents, as elements of appropriate sorts in an abstract data type specified by an equational
theory (X, E). Then, each inference rule in the logic can be axiomatized as a, possibly conditional, rewrite
rule, giving rise to a representation as a rewrite theory (X, E, R). Alternatively, we can exploit the rich sort
structure of membership equational logic to represent the inference rules of a logic not as rewrite rules, but as
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Horn clauses H expressing membership in an adequate sort of derivable sentences, leading to a membership
equational logic representation of the form (X, E U H). In this paper we will use both forms of representations
for different versions of PTS systems.

Membership equational logic together with its categorical initial model semantics provides a very general scheme
for inductive definitions of equational theories which is much more powerful than the free algebraic data types
well-known from many functional programming languages. Beyond that, rewriting logic generalizes equational
logic and gives us via its initial semantics a very general scheme for inductive definitions of rewrite systems.

3 Overview and Main Results

In Section 4 we show how the definition of PTS systems can easily be formalized in membership equational
logic. The approach we use is not only less specialized than the one used in a higher-order logical framework
like LF [13] or Isabelle [26], but it has also more explanatory power, since we explain higher-order calculi in
terms of a first-order system with a straightforward semantics.

In order to make the specification of PTS systems more concrete, we introduce the notion of uniform pure type
systems (UPTS) [31], that do not abstract from the treatment of names but use CINNI, a new and very simple
first-order calculus of names and substitutions. UPTS systems solve the problem of closure under a-conversion
in a simple and elegant way. Again, a membership equational logic specification of UPTS systems can be given
that directly formalizes the informal definition.

As an intermediate step we employ an optimized version of UPTS systems, namely UPTS with valid contexts
(UPTS/VC). This system contains an explicit judgement for valid contexts, and can be seen as a refinement
towards a more efficient implementation of type checking.

Last but not least, we describe how meta-operational aspects of an important class of UPTS/VC systems, like
type checking and type inference, can be seen as rewrite systems and can likewise be formalized in rewriting
logic. The result of this formalization is an executable specification of UPTS/VC systems that is correct w.r.t.
the logical specification given before in a very obvious way. Let us abbreviate the rewriting based presentation
of UPTS/VC by RUPTS/VC. A similar presentation is the basis of the proof assistant for the open calculus of
constructions mentioned above.

Formally, these different presentations of PTS systems are families of unary entailment systems parameterized by
PTS specifications. We use the notation PTSg, UPTSg, UPTS/VC4 and RUPTS/VCy to denote the entailment
systems associated with a PTS specification S.

For appropriate PTS specifications S we obtain a chain of sound and complete correspondences

PTSg ~+ UPTSg ~» UPTS/VC4 ~» RUPTS/VCy.

Actually we have two different kinds of connections between the first two entailment systems leading to two
different correspondences of the form PTSg ~~ UPTSg. By composing three correspondences of the form above
we finally arrive at a total, sound and complete correspondence

PTSs ~ RUPTS/VCg
which shows the equivalence of the high-level specification of PTS with the implementation of a type checker.

By internalizing derivability w.r.t. a rewrite theory 7', rewriting logic can be seen as a unary entailment system
(Sen, ) with sentences of the form T F ¢, where ¢ is an equation, a membership or a rewrite. Then, F T F ¢
means that ¢ is derivable in the theory T". Membership equational logic can likewise be seen as the unary
entailment system obtained by restricting 7' to membership equational logic theories and ¢ to equations and
memberships.

The entailment systems PTSs, UPTSgs, UPTS/VCg and RUPTS/VCg can be easily specified in membership
equational logic or in rewriting logic. Specifically, we have the following total, sound and complete correspon-
dences

PTSg ~~» MEL, UPTSs ~~ MEL, UPTS/VCg4 ~» MEL, RUPTS/VCg4 ~» RWL.
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In all cases the representational distance between each type system and its representation is practically zero,
that is, both the syntax and the inference system of each type theory are very directly and faithfully represented
in the framework logic.

The first correspondence is the representation of PTS systems in membership equational logic given in Section
4. Let PTSg be the membership equational logic specification of PTSg. Then, for all PTS judgements ¢ of
PTSs and possible representations ¢’ of ¢ in membership equational logic, the sentence PTSg - ¢ is derivable
in membership equational logic iff the judgement ¢ is derivable in PTSg. This defines a total, sound and
complete correspondence of the form PTSg ~» MEL. We are concerned with a correspondence rather than a
map of sentences, due to the fact that PTS systems abstract from names, but in the membership equational
logic representation names are part of the description of terms, although by adding appropriate equations an
equivalent abstraction can be achieved in membership equational logic.

In the remaining three systems UPTSs, UPTS/VCg, and RUPTS/VCg we do not abstract from names. Hence,
the three associated representational correspondences actually take the form of conservative maps of entailment
systems, i.e., with each judgement of the type system we can associate a unique sentence in membership
equational logic or rewriting logic, respectively.

4 The Metalogical View of PTS

A PTS specification is a triple (S, A, R) where S is a set of sorts, A C S x S is the set of azioms, and
R C S xS xS is the set of rules. S will range over PTS specifications.

In PTS systems there is no a priori distinction between terms and types. PTS (pseudo-)terms are defined by
the following syntax with binders:

X | (MN) | [X:AM | {X:A}M | s

Here, and in the following, s ranges over §; M, N, A, B,T range over terms; and X ranges over names. We
should add that in [X : A]M and {X : A}M the name X is bound in M, and we assume that a-convertible
terms, i.e., terms that are equal up to renaming of bound variables, are identified.

A PTS (pseudo-)context is a finite list of declarations, each of the form [X : A]. The empty context is denoted
by [] and concatenation is written as juxtaposition. In the following, I" ranges over PTS contexts.

Given a PTS specification S, the set of derivable typing judgements of the form I' - M : T is defined inductively
by the following rules:

TFoisy Gvs)ed (AX)

F'-A:s
MNX:AlFX:A

X¢rT (START)

'FM:A TFB:s
NX:BJFM:A

X¢gT (WEAK)

F’'FA:sy I[X:AFB:so

I {XA}B : S3 (81782783) ER (PI)
F'FA:s; T[X:AlFM:B T[X:A]FB:s:
1 FE‘[X 3]A]M:{X:£}B : 2 (s1,82,83) €R (LDA)
PEM:{X:A}B TEN:A
' (MN):[X:=AB (APP)
'rM:4 I'tB:s THA=B
S (CONV)

I'-M:B
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X ¢ I’ means that there is no [X : A] € T for any A. [X:=A4] is the standard metatheoretic operator for capture-
free substitution. In the last rule, = is the usual notion of S-convertibility which contains a-convertibility (this
is trivially satisfied in this presentation).

As an example, we can instantiate PTS systems by S = {Prop, Type}, A = {(Prop, Type)}, and
R = {(Prop, Prop, Prop), (Prop, Type, Type), (Type, Prop, Prop), (Type, Type, Type)}
to obtain the calculus of constructions CC.

This presentation of PTS systems is rather abstract for two reasons: firstly, we are working modulo a-conversion,
i.e., we identify a-equivalent terms, and secondly, we are concerned with an inductive definition of a set of
derivable judgements, but not with an algorithm to type-check a particular term.

Mathematically the abstract presentation has an important benefit: It allows us to reason about pure type
systems metalogically, without assuming anything about the concrete realization of names. This leads to very
general results [1, 33] and frees proofs from unnecessary technical details.

4.1 PTS in Membership Equational Logic

In the following specifications, given in Maude syntax, we use the logical semantics of membership equational
logic for representing PTS systems exactly as given above; a more operational version suited for use as an
implementation is discussed in Section 5.2.

First, notice that we plan to describe not a single type system but an infinite family of type systems parameter-
ized by sorts, axioms and rules. All such PTS specifications can be formalized as models of a single parameter
theory that can be specified in Maude as follows:

fth PTS-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .
subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .
endfth

As an example, the PTS specification of CC is given by the following functional module:

fmod CC-SPEC is

sorts Sorts Axioms Axioms? Rules Rules? .
subsort Axioms < Axioms? .

subsort Rules < Rules? .

op (_,_) : Sorts Sorts -> Axioms? .

op (_,_,_) : Sorts Sorts Sorts -> Rules? .

op Prop : -> Sorts .
op Type : -> Sorts .

mb (Prop,Type) : Axioms .

mb (Prop,Prop,Prop) : Rules .
mb (Prop,Type,Type) : Rules .
mb (Type,Prop,Prop) : Rules .
mb (Type,Type,Type) : Rules .

endfm

Pure type systems can then be specified as a functional module parameterized by the theory PTS-SPEC. Since
functional modules have an initial (in this case free) model semantics, this formalization of PTS systems is in
fact an inductive definition that captures in a precise model-theoretic way the inductive character of PTS rules.
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fmod PTS[PAR :: PTS-SPEC] is

First we define the sort Trm of terms as an algebraic data type. Notice that we distinguish between a sort of
identifiers Qid, that are used in places where an identifier is declared, and a sort of variables Var, that are used
to refer to an already declared identifier.

sorts Var Trm .

subsort Qid < Var .

subsort Var < Trm .

subsort Sorts < Trm .

op __ : Trm Trm -> Trm .

op [_:_1_ : Qid Trm Trm -> Trm .
op {_:_}_ : Qid Trm Trm -> Trm .

vars s sl s2 s3 : Sorts .
vars X Y Z : Qid .
vars ABMNOPQRTA”> B> M N> T : Trm .

The usual deterministic version of capture-free substitution can be naturally defined in membership equational
logic as demonstrated in [20, 22]. An important point is that we do not want to restrict ourselves to a particular
choice of fresh names, since this would make the specification overly concrete. This can be accomplished by
leaving unspecified the deterministic function for choosing fresh variables such that the actual function varies
with the choice of the model; for details we refer to [20, 22]. Here we only give the signature for set membership,
free variables and the substitution function:

op _in_ : Qid QidSet -> Bool .
op FV : Trm -> QidSet .
op [L:=_1_ : Qid Trm Trm -> Trm .

We can use the substitution operator [_:=_]_ to semantically identify terms that are a-convertible (we refer
to the induced equality as a-equality) by means of the following equations.

Y] M) if not(Y in FV(M))
Y] M) if not(Y in FV(M))

ceq [X : Al M = [Y : A] ([X :
ceq {X : AY M ={Y : A} ([X :

We next define the binary relation of S-convertibility, which is used in the CONV rule of PTS systems. The
following (conditional) memberships, together with the initiality condition, define S-conversion as the smallest
congruence (w.r.t. the term constructors) containing one step S-reduction.

sorts Convertible Convertible? .
subsort Convertible < Convertible? .

op _===_ : Trm Trm -> Convertible? .

mb M === M : Convertible .

cmb M === N : Convertible if N === M : Convertible .

cmb P === R : Convertible if P === Q : Convertible and Q === : Convertible .

cmb (M N) === (M’ N’) : Convertible if M === M’ : Convertible and N === N’ : Convertible .

cmb ([X : A] M) === ([X : A’] M’) : Convertible if A === A’ : Convertible and M === M’ : Convertible .
cmb ({X : A} B) === ({X : A’} B’) : Convertible if A === A’ : Convertible and B === B’ : Convertible .
mb (([X : A] M) N) === ([X := N] M) : Convertible .

The only judgements of PTS systems are of the form I' - M : A. We next define the syntax of contexts and
judgements. Also, we define the function _in_ used in the side conditions of some PTS rules.
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sorts Context Judgement .

op [1 : -> Context .
op [L:_] : Qid Trm -> Context .
op __ : Context Context -> Context [assoc id : []]

var G : Context .
op _I-_:_ : Context Trm Trm -> Judgement .

op _in_ : Qid Context -> Bool .
eq X in [] = false .
eq X in (G [Y : A]) = (X in G) or (X == 1Y)

We are now ready to define the inference rules. Formally the inference rules define an inductive subset of
derivable judgements. The derivability predicate is usually implicit in informal reasoning, where I' - M : A
refers either to the judgement itself or to the fact that it is derivable.

sort Derivable .
subsort Derivable < Judgement .

cmb ([] |- s1 : s2) : Derivable if (s1,s2) : Axioms .

cmb (G [X : Al |- X : A) : Derivable if
(G |- A : s) : Derivable and not(X in G)

cmb (G [X : B] |- M : A) : Derivable if
(G |- M : A) : Derivable and
(G |- B : s) : Derivable and not(X in G)

cmb (G |- {X : A} B : s3) : Derivable if
(G |- A : s1) : Derivable and
(G [X: Al |I-B : s2) : Derivable and (s1,s2,s3) : Rules .

cmb (G |- [X : A1 M : {X : A} B) : Derivable if
(G |- A : s1) : Derivable and
(G [X : Al |- M : B) : Derivable and
(G [X : Al |- B : s2) : Derivable and (s1,s2,s3) : Rules .

cmb (G |- (M N) : [X := A] B) : Derivable if
(G |-M: {X : A} B) : Derivable and
(G |- N : A) : Derivable .

cmb (G |- M : B) : Derivable if
(G |- M : A) : Derivable and
(G |- B : s) : Derivable and A === : Convertible .

endfm

In this formalization we have avoided any arbitrary encoding of syntax with binders that would require nontrivial
justifications. Also, we have seen that the first-order framework is sufficiently powerful to represent PTS systems
without making any commitments. In particular, there was no need to change the syntax or the rules of PTS
systems to obtain a faithful representation.

4.2 Taking Names Seriously

Although the abstract treatment of names in PTS systems leads to a general metatheory that can be used as
a high-level theoretical basis for quite different implementations of PTS systems, there is a price to be paid,
namely in that an abstract view necessarily limits the expressivity of the theory. Indeed, we often need a
more concrete representation with more specialized results to deal, for example, with the implementation of a
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formal system, or with tools that use the formal system in an essential way. Also, for reasoning about a formal
system a more concrete specification that is computationally meaningful is either necessary or useful, e.g., for
formalizations in constructive type theories or logics with computational sublanguages.

However, as soon as we give up the identification of a-convertible terms and take the inference rules literally,
we encounter at least two problems first pointed out in [27].!

The first problem is that the set of derivable judgements is not closed under a-conversion. For instance, adapting
an example given for A= in [27], we cannot derive a judgment of the form

[A:Prop][P : {Z : A}Prop] F [X : A][X : PX]A: {X : A}{X : PX}Prop,
say in CC, although an a-equivalent version where all bound variables are distinct can be derived.

A second difficulty reported in [27] is that we want to derive

[A: Prop][P:{Z: A}Prop| F [X : A][X : PX]X : {X : AH{Y : PX}(PX),
but we should not be able to derive

[A: Prop][P :{Z : A}Prop] F [X : A][X : PX]|X : {X : A}{X : PX}(PX).

However, we cannot derive the first judgement, since the name X in the conclusion of the LDA rule is the same
on both sides of the colon.

To tackle the first problem, Pollack proposed a type system F;, a variation of A—. It uses a more liberal
notion of context that allows multiple declarations of the same identifier, the most recent one being visible
inside the judgement. Unfortunately, he did not pursue this direction further because of the second difficulty,
which appears in the context of PTS systems with dependent types but is not present in A—. Concerning F;,
he remarks “I don’t think we can do the same for PTS.”

The solution finally discussed in [27] is the solution employed in the constructive engine [14] used in proof
assistants such as LEGO [18] and COQ [15] and formalized rigorously in [23]. The idea is to use a hybrid
naming scheme which employs distinct names for global variables declared in the context of a judgement and
a de Bruijn representation of terms with bound local variables. Clearly, PTS systems based on such a hybrid
naming scheme are a correct implementation of (abstract) PTS systems as described above. More precisely, PTS
systems using the hybrid naming scheme can be seen as particular models of the membership logic specification
of PTS systems in the sense that the corresponding model is isomorphic to the one given by the appropriately
instantiated functional module PTS. Nevertheless, an approach which maintains a distinction between global
and local variables appears not to be very uniform, complicating formal metatheoretic proofs and type checking.
Of course, scaling up Pollack’s F;; to PTS systems would be much more satisfying and this is the direction we
pursue in the following.

4.3 Indexed Names and Named Indices

We believe that the root of the second difficulty discussed above is that the traditional notion of binding used
in logic and in programming reveals an undesirable property, which may be called accidental hiding, if the
language is refined in the most direct way, i.e., by giving up identification by a-conversion.

Consider for instance the formula
VX.(AAVYY.(B = VX.C(X)))

for distinct names X and Y. C(X) is a formula that contains X free. Each occurrence of X in C'(X) is captured
by the inner V quantifier, so that the outer V quantifier is hidden from the viewpoint of C'(X). Indeed there is
no way to refer to the outer ¥ quantifier within C'(X).

Hence, we are faced with the following problem: a calculus without a-equality is not only less abstract, which is
an unavoidable consequence of giving up identification by a-conversion, but also, depending on the (accidental)

I The problem of a-conversion also remains unsolved in [19], where a system with dependent types is presented that does not
enjoy this property.
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choice of names, visibility of (bound) variables may be restricted. It is important to emphazise that visibility is
not restricted in the original calculus with a-equality, since renaming can be performed tacitly at any time.

Clearly, this phenomenon of hiding that occurs in the example above is undesirable?, because it is not present in
the original calculus with a-equality. It is merely an accident caused by giving up identification by a-conversion
without adding a compensating flexibility to the language.

This suggests tackling this general problem by migrating to a more flexible syntax, where we express a binding
constraint by annotating each identifier X with an index i € IN, written X;, that indicates how many X-binders
should be skipped before we reach the one that X; refers to. For instance we will write

VX.(AAVY.(B = YX.C(X))))
to express that Xy is bound by the inner V and
VX.(AAVY.(B = VX.C(X1)))

meaning that X; is bound by the outer V. To make the language a conservative extension of the traditional
notation, we identify X and Xy. This generalized syntax will be called CINNI syntax, where CINNI refers to
Calculus of Indezed Names and Named Indices [31], a new and very simple calculus of explicit substitutions to
be introduced in the next section.

It might appear that there is some similarity to a notation based on de Bruijn indices [9]. But notice that there
is an essential difference: the index m in the occurrence X,, is not the number of binders to be skipped; it states
that we have to skip m binders for the particular name X, not counting binders for other names. Still a formal
relation to de Bruijn’s notation can be established: if we restrict ourselves to terms that contain only a single
name X, then we can replace each X; by the index ¢ without loss of information and we arrive at de Bruijn’s
purely indexed notation.? In other words, if we restrict the available identifiers to a single one, we obtain de
Bruijn’s notation as a very special case. In this sense, the CINNI syntax can be formally seen as a proper
generalization of de Bruijn’s notation. Pragmatically, however, the relation to de Bruijn’s syntax plays only a
minor role, since a typical user will exploit the dimension of names much more than the dimension of indices.
Hence, in practice the notation can be used as a standard named notation, with the additional advantage that
accidental hiding and weird renamings?® are avoided.

The pragmatic advantage of CINNI notation is that it can be used to reduce the distance between the formal
system and its implementation: it can be directly employed by the user who wants to think in terms of names,
so that the need for a translation between an internal representation (e.g., using de Bruijn indices) and a user
friendly syntax (e.g., using ordinary names) disappears completely. As far as we know the CINNI substitution
calculus is the first calculus of explicit substitutions which combines named and index-based representations
and hence provides a link between these two worlds of explicit substitution calculi.

4.4 Explicit Substitutions

So far we have presented a simple first-order syntax for expressions which contains the conventional named
notation as well as de Bruijn’s indexed notation as special cases. The most important operation to be performed
on such terms is capture-free substitution. Therefore, we now present the CINNI substitution calculus.

Strictly speaking, CINNI is a family of explicit substitution caluli, parameterized by the syntax (including
information about binding) of the language we want to represent. Below we present the instantiation of this
substitution calculus for the untyped A-calculus with terms in CINNI syntax, i.e.

Xpm | (M N) | [X]M

As a motivation for the substitution calculus given below, consider the following example of a S-reduction step
in the traditional A-calculus with distinct names X and Y, again taking names literally, i.e., not presupposing
identification by a-conversion:

(XIY]X)Y) = [2]Y

20f course, in general hiding is important but it is not an issue of binding; it should be treated independently.
3With the slight difference that de Bruijn’s indices start at 1 instead of 0.
4See the discussion on weird renaming in the next section.
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Clearly, Z must be an identifier different from Y to avoid capturing. Unfortunately, there is no canonical choice
if all identifiers should be treated as being equal. We call this phenomenon weird renaming of bound variables.
It is actually a combination of two undesirable effects: (1) names that have been carefully chosen by the user
have to be changed, and (2) the enforced choice of a new name collides with the right of names to be treated
as equal citizens.

These effects are avoided in the CINNI calculus, when instantiated to the A-calculus. It is specified by the first-
order equational theory given below. Indeed, the only operation assumed on names is equality. CINNI has also
an operational semantics viewing equations as rewrite rules. Apart from the two basic kinds of substitutions,
namely simple substitutions [X:=M], and shift substitutions 1x, substitutions can be lifted using }x(S), where
the variable S ranges over substitutions.

[X:M] XO =M ﬂx(S) XO == XO

[X:i=M] Xpy1 = Xy Px(S) X1 = Tx (S Xin)
[X:=M]Y, = YV, it X #Y tx(S) Y, =tx (SY,)if X#Y
TxXm = Xms1 S (MN) = (SM)(SN)

TxVn = Vi XAV S ((XIM) = [X](fx(S) M)

We can instantiate the CINNI calculus to give a more concrete treatment of different formal systems. The only
equations specific to the syntax of the language are the structural equations. Here, the last two equations in
the right column are the structural equations for the A-calculus.

Now we can define #-reduction by the rule
([XIN)M —5 [X:=M]N.

Notice that weird renaming of bound variables as in the previous example is avoided with the new notion of
[-reduction:

(X]Y]X)Y) =5 (Y1)

As another application of substitution, consider the renaming of a bound variable X by e as in the following
rule of a-reduction:

([(XIN) =a ([o][X:=e] TeN)

where e is an arbitrary but fixed name. Using this rule every CINNI term can be reduced to a nameless a-
normal form which is essentially its de Bruijn index representation. For terms M ,N we use M =, N to denote
that M and N are equal up to renaming of bound variables.

Just as CINNI syntax contains de Bruijn’s indexed notation as a very special case, the instantiation of CINNI
for the A-calculus reduces to the calculus Av of explicit substitutions proposed by Pierre Lescanne [16, 17, 3],
but only in the degenerate case where we only admit a single identifier. It is noteworthy that Av is the smallest
known indexed substitution calculus enjoying good theoretical properties like confluence and preservation of
strong normalization. It seems that its simplicity is inherited by CINNI although in practice the dimension of
names will be much more important than the dimension of indices. Hence, we tend to think of CINNI more as
a substitution calculus with names than as one with indices.

4.5 Uniform Pure Type Systems

The application of CINNI to PTS turns out to be surprisingly simple, and indeed it leads to a system which
can be seen as Pollack’s Fj; scaled up to PTS systems.

In contrast to the hybrid approach to PTS systems adopted in the constructive engine [14] and in the formal-
ization [23], both distinguishing between global and local variables, we use indexed identifiers uniformly. This
suggests defining uniform pure type systems (UPTS) by modifying PTS in three steps:
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First, PTS terms are generalized to UPTS terms in the way explained before, i.e., UPTS (pseudo-)terms are
now given by the first-order CINNTI syntax:

X | (MN) | [X:AM | {X:AM | s

As a second step, we adapt the syntax-dependent part of the CINNI calculus to UPTS terms:

Ss =s

S (MN) = (SM)(SN)

S (X :AM) = [X: (S A(hx(S) M)
S ({X AM) = {X : (S A)}Nx(S) M)

The third and final step is to define the derivable typing judgements. Since we do not want to identify a-
equivalent terms, this is a fundamental change in the formal system. However, a careful inspection of the typing
rules under the new reading shows that only minor changes in the rules START and WEAK are needed. The
new rules are:

'FA:s
X :AlFXo : txA

(START)

'rM:A T'+B:s
F[XB]I—T)(M :TxA

(WEAK)

It might appear that the UPTS systems we have defined above are a specialization of PTS systems, since we
have committed ourselves to a particular representation of names. But this is not the full truth, because on the
other hand we have described a generalization of PTS systems where names may occur multiple times in the
same context. Notice that in both rules above we have dropped the side condition X ¢ I', which means that
we have completely eliminated the need for these side conditions in UPTS systems. We would also like to point
out, that, in particular, we have not touched the LDA rule: the only place where a-conversion comes into play
is the CONV rule, where = subsumes a- and 8- conversion, just as in the original PTS systems.

Finally, we describe how these changes are reflected in the membership equational logic specification.

First, instead of using identifiers as variables we use indexed identifiers. So we replace subsort Qid < Var by
op _{_} : Qid Nat -> Var .

Second, instead of conventional substitution [_:=_]_, we use CINNI for UPTS terms:

sort Subst .

op [_:=_]1 : Qid Trm -> Subst .

op [shift_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .
op __ : Subst Trm -> Trm .

var S : Subst .
vars n m : Nat .

eq ([X :=M] Xx{O})) =M .
eq ([X := M E{sucm})) = X{m}) .
ceq ([X := M] (Y{n})) = (Y{u}) if X =/=7Y .

eq ([shift X1 (X{m}))
ceq ([shift X1 (Y{n}))

(X{suc(m)}) .
(Y{n}) if X =/=Y .

eq ([1ift X 8] (X{0})) = (x{0}) .
eq ([1ift X 81 (X{suc(m)})) = [shift X] (S (X{m})) .
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ceq ([1ift X S] (Y{m})) = [shift X] (S (Y{m})) if X =/=Y .

eq (Ss) =s.

eq (S MM = ((5M (58N .

eq S ([X : Al M) =[X: (S A] ([1ift X S1 M) .
eq S ({X : AY M) = {X : (S A} ([1ift X S]1 M) .

Third, conversion now explicitly contains a-conversion, that was implicit in the equality of the previous speci-
fication:

mb [X : Al M === [
mb {X : A} M === {Y : A} ([X :

<
=
—_
~
=
>d
n

Y{0}] [shift Y] M) : Convertible .
Y{0}] [shift Y] M) : Convertible .

Finally, the new versions of START and WEAK are:

cmb (G [X : Al |- X{0} : [shift X] A) : Derivable if
(G |- A : s) : Derivable .

cmb (G [X : B] |- [shift X] M : [shift X] A) : Derivable if
(G |- M : A) : Derivable and
(G |- B : s) : Derivable .

Again, we can see that the representational distance between the mathematical presentation of UPTS systems
and their membership equational logic specification is practically zero. In particular, the equational nature of
the CINNI substitution calculus is directly captured by the membership equational logic specification.

UPTS are more liberal than PTS, since a derivable judgement I' - M : A may contain multiple declarations
of the same identifier in I". The set of derivable judgments I' H M : A of PTS can be recovered as the set of
derivable UPTS judgements I' F; M : A generated by adding the following rule:

r-M:A

TF M A if no variable is declared in I' more than once. (CTXTRESTR)

The representation of judgements I' Fy M : A together with this rule in membership equational logic is
straightforward, and we omit it here and in all the following formalizations for sake of brevity.

Using the terminology introduced in Section 2.1 for entailment systems, each of the following two propositions
establishes a total, sound and complete correspondence of the form PTSg ~~ UPTSg, where S is an arbitrary
PTS specification.

Proposition 4.1 (Soundness and Completeness of UPTS I) For all PTS terms M,A and PTS contexts

I, if the PTS judgement I' Fy M : A is derivable in UPTSg then I' M : A is derivable in PTSg and vice
5

versa.

This proposition implies that UPTS systems are conservative over PTS systems. A slightly weaker but more
comprehensive correspondence between PTS and UPTS can be given modulo renaming of variables. For this
purpose one can extend the renaming equivalence =, to judgements such that ' M : A=, "+ M': A" iff
I'tM': A and ' - M : A are equal up to renaming of declared and bound variables. Then we have the
following

Proposition 4.2 (Soundness and Completeness of UPTS II) For all UPTS terms M,A, PTS terms
M' A", UPTS contexts I' and PTS contexts I'" with ' - M : A =, I - M' : A') if the UPTS judgement
I' - M : Ais derivable in UPTSg then IV = M’ : A’ is derivable in PTSg and vice versa.

The last proposition implies that, concerning judgements of the form I' - M : A, PTS and UPTS are equivalent
modulo a-equivalence. Hence all (metatheoretic) results about PTS apply to UPTS after apropriate renaming.

5Here we make use of the convention introduced in Section 4.3 that ordinary terms (here PTS terms) can be seen as CINNI
terms (here UPTS terms).
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The proposition also implies that the new form of judgement I" -; M : A is not necessary to ensure soundness
and could therefore be dropped. Sometimes, however, judgements of the form I' -y M : A instead of ' M : A
are more convenient, e.g., to formulate the thinning lemma, since contexts without multiple declarations of the
same name can be treated as sets. Hence, both kinds of judgements are useful for metatheoretic reasoning.

4.6 A Conservative Optimization

The presentations of pure type systems (PTS and UPTS) given above maintain a good economy in the number of
rules and are therefore well-suited for metatheoretic (inductive) reasoning: the judgement I' - M : A implicitly
subsumes another judgement I' |-, stating that I is a well-typed context. Since in practice checking contexts is as
important as checking types, we switch to a conservative extension of UPTS systems that is not biased towards
any of the two forms of judgement. From a practical point of view, the addition of a separate judgement for valid
contexts can be seen as an optimization which avoids unnecessary rechecking of contexts in each subderivation.
We will refer to this optimized type system as UPTS with valid contexts (UPTS/VC). The only modifications
we need are described below. We use judgements of the form I' I (valid context), I' - M : A (weak typing) and
[ IF M : A (strong typing) and we add the following rules:

—_ CEMPTY
s ( )
' I'HA:s

[X: A+ (CEXT)
T X, Tookup(T, Xoo) if lookup(Xm,I") # L (LOOKUP)
' T'FM:A

FkFM:A (CTXT)

where L denotes a failure and lookup(T’, X,,,) is defined by
lookup([], Xm) = L
lookup(I'[X : A],Xo) = 1x4
lookup(I'[X : A], X;,41) = Txlookup(T, X,,)
lookup(I'[X : A], Ym) = Txlookup(T', Yy,) if X #Y

Then we replace AX and CTXTRESTR by

m (51,82) S ./4 (AX)

_LiPAM:A if no variable is declared in I' more than once. (CTXTRESTR)
r ”’1 M: A

respectively, and we remove the rules START and WEAK, since they are admissible rules in the new system.
The system we have just obtained is similar to the system Fyiyp, Fuyeee presented in [34], but here we are
concerned with UPTS systems instead of PTS systems and as a minor difference we make use of an explicit
lookup function. Also all freshness side conditions are eliminated thanks to CINNI.

Again, the representation in membership equational logic is quite direct. It nicely illustrates the mixed specifi-
cation style using equations and memberships:

sort Trm? .
subsort Trm < Trm? .
op undefTrm : -> Trm? .

op lookup : Context Var -> Trm? .
eq lookup([], X{m}) = undefTrm .
eq lookup(G [X : Al, X{0}) = [shift X] A .
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eq lookup(G [X : Al, X{suc(m)}) = [shift X] lookup(G,X{m})
ceq lookup(G [X : Al, Y{m}) = lookup(G,Y{m}) if (X =/=7Y) .

op _|- : Context -> Judgement .
op _l-_:_ : Context Trm Trm -> Judgement .
op _ll-_:_ : Context Trm Trm -> Judgement .

mb ([] |-) : Derivable .

cmb (G [X : Al |-) : Derivable if
(G |-) : Derivable and (G |- A : s) : Derivable .

cmb (G |- X{m} : lookup(G,X{m})) : Derivable if
lookup(G,X{m}) =/= undefTrm .

cmb (G ||- M : A) : Derivable if
(G |- M : A) : Derivable and (G |-) : Derivable .

cmb (G |- s1 : s2) : Derivable if (s1,s2) : Axioms .

UPTS/VC are equivalent to UPTS, i.e. there is total, sound and complete correspondence of the kind UPTSg ~~»
UPTS/VCy for arbitrary PTS specifications S, in the following sense:

Proposition 4.3 (Soundness and Completeness of UPTS/VC) Let M,Abe UPTS terms and I' a UPTS
context. If the judgement I' IF M : A (T Iky M : A) is derivable in UPTS/VC then TH M : A (T M : A) is
derivable in UPTS and vice versa.

This proposition is similar to Lemma 23 in [34], but here we are considering UPTS instead of PTS systems.

5 The Meta-Operational View of PTS

PTS systems can not only be equipped with a logical semantics, e.g., via the proposition-as-types interpretation®,
but, more fundamentally, PTS systems are usually equipped with an operational semantics, defined by an
internal notion of functional computation, like S-reduction. The operational view of PTS systems is concerned
with their internal notion of computation, but here we are interested in the meta-operational view, which deals
with the question of how to embed PTS systems in a formal system with an operational semantics, so that
typical computational tasks like type checking and type inference become possible by exploiting the operational
semantics of the metalanguage. In the following we employ for this purpose the efficiently executable sublanguage
of rewriting logic that is supported by Maude.

We introduce below several classes of PTS specifications giving rise to corresponding PTS systems that are
practically interesting and enjoy particulary good properties.

Definition 5.1 A PTS specification S is decidable iff: (1) S is denumerable, (2) A and R are decidable, and
(3) for all s1,s2 € S the predicates 3sh, : (s1,s5) € A and 3sj : (s1, 52, 54) € R are decidable.

Decidability of a PTS specification is a reasonable requirement to ensure that type inference and type checking
do not become undecidable because of a too complex specification S.

Definition 5.2 A PTS specification S is functional iff (1) (s1,s2) € A and (s1,sh) € A implies sy = sb, and
(2) (s1,82,83) € R and (s1,s2,s5) € R implies s3 = sj.

In functional PTS specifications, the relations A and R can be viewed as functions 4 : S - S7and R : S xS —
S? where §7 := SU{L}. Functionality ensures that every term has a unique type (up to conversion). The class
of functional PTS systems’ includes, for example, all systems of the A-cube.

60f course, we must be careful, since many PTS systems are inconsistent under the propositions-as-types interpretation.
"The attributes for PTS specifications are naturally lifted to the corresponding entailment systems.
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Definition 5.3 A PTS specification S is full iff for all s;,s2 € S there is an s3 such that (sq,s2,s3) € R. A
PTS specification Sis semi-full iff (s1, s2, s3) € R implies that for each s} there is an s§ such that (s, s5, s5) € R.

Full PTS systems allow us to form {X : A}B types very liberally by avoiding those restrictions on the sorts of
A and B that are imposed by the side condition (s1, s2,s3) € R of the Pl rule. As an example, CC is a full PTS
system.

Definition 5.4 Given a PTS specification S, a top sort is a sort s such that there is no sort s’ with (s, s’) € A.
The set of top sorts is denoted by Siop. S is topless iff Siop, is empty.

Topless PTS disallow top sorts, which introduce some kind of non-uniformity in the set of sorts. Just as in full
PTS specifications R can be seen as a function R : § x & = §, in functional, topless PTS specifications A can
be viewed as a function A:S — S.

Semi-full PTS systems have the nice property that we can get rid of the third premise in the LDA rule by
replacing it with the following rule:
'A:s; I[X:AFM:B
PH[X:AM:{X:A}B

(81, S92, 83) € R and B ¢ Smp (LDA’)

The premises together with the side conditions in LDA' imply that {X : A} B is a well-formed type (cf. rule
Pl). Indeed, as explained in [34] in the context of PTS systems, replacing LDA by LDA" does not change the set
of derivable judgements in semi-full UPTS systems.

For full and topless UPTS systems we can eliminate the side conditions in the rule LDA’, and we obtain LDA”
without changing the set of derivable judgements:
F'A:s T[X:AlFM:B
FH[X:AM:{X:A}B

(LDA")

The calculus of constructions has Type as a top sort and therefore is not topless. However, it is straightforward
to extend CC by an infinite universe hierarchy yielding a topless PTS.

Together with the introduction of UPTS in the previous section, we have now presented three families of
inference systems which only differ in the choice of the rule LDA. For a full and topless PTS specification S all
of them define the same unary entailment system, which is denoted by UPTSg.

In the remainder of this paper we will present a type checking algorithm for a class of UPTS using rewriting
logic as a formal specification language. Type checking for PTS is not trivial, but in spite of some unsolved
theoretical questions such as the expansion postponement problem, efficient algorithms for the important classes
of functional PTS and semi-full PTS (satisfying appropriate decidability and normalization properties) have
been presented in [34]. In order to avoid excessive technical details and to make clear the general way we use
rewriting logic to represent type checking algorithms, we restrict ourselves in the following to UPTS that are
decidable, normalizing®, functional, full and topless. The class of UPTS systems that are decidable, normalizing,
functional and semi-full can be treated along the same lines (using the rule LDA" instead of LDA").

The use of UPTS instead of PTS is motivated by our desire to obtain a formal representation that takes names
seriously and makes type checking more uniform. This is different from [34] that uses names informally for
presentation purposes but actually assumes identification by a-conversion as justified by the formalization [23]
which abstracts from local names by representing them using de Bruijn indices.

5.1 UPTS in Membership Equational Logic

The standard way to implement type checking is to cast the inference rules into an equivalent syntax-directed
inductive definition, and to define a type-inference function on the basis of this new system. Formally and
technically this could be done in the executable sublanguage of membership equational logic or in any other
functional programming language, but the use of membership equational logic is attractive, since it allows us to
formulate the logical and operational versions of PTS systems in a single uniform language with an extremely

8w.r.t. B-reduction
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simple semantics, which in particular does not presuppose higher-order constructs, but is used to explain them
in more elementary terms. Also, data structures and functions of the specification can be directly used in the
implementation.

In our setting there is another reason why membership equational logic is more natural than the use of a (higher-
order) functional programming language: the equational specification of the calculus of substitutions presented
above is naturally equipped with an operational semantics just by viewing the equations as rewrite rules. By
contrast, in a functional programming language that is not based on equational rewriting, the substitution
calculus has to be encoded, which essentially means that a (specialized) rewrite engine for this calculus has
to be implemented in the functional language itself and, what is even more cumbersome, this engine has to
be explicitly invoked when needed. In this sense, a specification/programming style based on rewriting is
more abstract and closer to mathematical practice for applications of this kind than a higher-order functional
programming approach.

Using the specification of the above substitution calculus, a purely equational executable specification of a
type checker for UPTS systems with decidable type checking can be written in membership equational logic
using standard equational/functional programming techniques. The core of this specification consists of a
type-inference function

op type : Context Trm -> Trm? .

that computes a type for each typable term and yields undefTrm otherwise. The function can be defined in a
way similar to the one given in [30], but using CINNI, instead of abstracting from the treatment of names.

Thanks to CINNI, freshness conditions are avoided. Therefore, an implementation based on this specification
appears to be more elegant than the constructive engine with its hybrid treatment of names. As an additional
advantage, multiple declarations of the same identifier are naturally admitted in contexts (if we use judgement
LIk M : A). However, it is also easy to disallow these more general contexts if desired (by implementing the
more conventional judgement ' IFy M : A).

Instead of discussing this purely equational approach in more detail, we present an alternative approach in the
following section that exploits features of rewriting logic that are beyond equational and functional languages.
Our experience shows that this alternative approach scales up to more complex type theories (e.g., extensions
of UPTS systems) in a more satisfactory way than the purely functional and equational approaches to type
checking.

5.2 UPTS in Rewriting Logic

As shown by an extensive collection of examples in [20, 21, 22], rewriting logic can be used as a logical framework
that can naturally represent inference systems of different kinds in a logically and operationally satisfying way.
In the present section we view a type checker as a particular inference system. In contrast to a (higher-order)
functional programming approach that would require us to encode the inference system in terms of a type
checking function, the rewriting logic approach offers the clear advantage that inference rules can be expressed
directly, namely, as rewrite rules. We will in fact make use of a type inference system expressed as a collection of
rewrite rules that transform a conjunction of judgements into a simplified form, in the style of constraint solving
systems. This yields a rewrite system that is efficiently executable, while still maintaining a close correspondence
to the logical specification of UPTS systems.

The rewriting logic specification represents RUPTS/VC systems and is able to perform type checking, i.e., to
decide derivability of judgements of the form I' F M : A and ' I, for the class of decidable, normalizing,
functional, full and topless UPTS/VC systems discussed before. As in PTS systems, type checking reduces to
type inference, that is, to solving incomplete queries of the form I' - M —: 7T,

Instead of giving an informal account we directly discuss the formal specification in rewriting logic.

First, we exploit our assumption that the PTS specification is decidable, functional, full and topless, which
means that the relations A and R can be specified by equationally-defined functions Axioms and Rules:
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fth PTS-SPEC is

sort Sorts .

op Axioms : Sorts -> Sorts .

op Rules : Sorts Sorts -> Sorts .
endfth

As in the syntax-directed approach, we “invert” the inference rules in order to obtain a goal-directed algorithm
from the generating inductive definition. In contrast to a purely equational and functional approach, the
rewriting logic specification we aim at has rewrite transition systems as models, and can therefore be seen
as an operational generalization of the equational and functional paradigms. In contrast to [34], the type-
checking algorithm itself receives a direct formal status, which is a prerequisite for reasoning formally about its
correctness.

The inductive definition of UPTS systems, e.g., the one in membership equational logic, can also be seen as
a static description of a set of judgements that we would like to equip with a dynamic interpretation. More
precisely, a (static) logical implication

AN ANA, =B

can be seen as an inference rule or (dynamic) state transition refining a goal B into subgoals A, ..., A4,,, and
can be directly represented as a rewrite rule

B— A AN--NA,
in rewriting logic. Each state consists of a finite set of subgoals that remain to be solved.

The static description can be seen as inducing the following invariant that our dynamic system should always
satisfy: for each state, the empty set of goals is reachable iff the logical interpretation (given by the static
description) of the state is true.

Although the inference rules of a formal system typically take the form of Horn clauses that can be operationally
refined to rewrite rules, there may be functional and equational parts (e.g., auxiliary functions or substitution
calculi) that are more naturally expressed in the membership equational logic fragment. It is this mix of different
paradigms in a uniform framework that allows us to express the type-checking algorithm in a way that is very
close to the logical specification.

In the refined specification we make use of a number of auxiliary judgements:

Judgement Meaning
A Sort there is an s € S such that A =s
(4, B, s) Rule there are s1,s2 € S such that A = s, B = s and (s1,82,5) E R
A=B A = B literally
A< B A = B (for A and B normalizing)
'-M—: A there is an A’ with A = A’ such that '+ M : A’
k(M —:A)(N —:B)) »:C M —:ATFN—>:BandT'F (MN) —»:C

We discuss below the rewriting logic specification of the UPTS type checker in some detail. Instead of a (purely)
functional module, introduced by fmod, the specification takes the form of a system module, introduced by mod,
that has a rewrite system as its initial semantics:

mod PTS[PAR :: PTS-SPEC] is
We reuse most components of the functional module defined before, but we add the auxiliary judgements:

op _Sort : Trm -> Judgement .
op ‘(_,_,_)Rule : Trm Trm Trm -> Judgement .

op _=_ : Trm Trm -> Judgement .
op _<->_ : Trm Trm -> Judgement .
op _I-_=>:_ : Context Trm Trm -> Judgement .

op _|=(_=>:_9)(_~>:_9)->:_ : Context Trm Trm Trm Trm Trm -> Judgement .
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In order to express intermediate goals or queries, like I' - M —: 77T, that are present in the operational
refinement but not in the abstract presentation, we extend terms by explicit metavariables:

sort MetaVar .

subsort MetaVar < Trm .
op 7 : Qid -> MetaVar .
var 7T : MetaVar .

The use of weak head normal form, calculated by the following function whnf, is an efficient way to check
whether a term is convertible to the form s or {X : A} M. We also use sorts WhNf and WhReducible containing
terms in weak head normal form and weak head reducible terms, respectively. For sake of brevity we omit the
straightforward definitions in membership equational logic.

sort WhNf WhReducible .
subsort WhNf < Trm .
subsort WhReducible < Trm .
op whnf : Trm -> Trm? .

A configuration is a conjunctive set of judgements that have to be solved or verified by the type checker:

sort JudgementSet .

op emptyJudgementSet : -> JudgementSet .
subsort Judgement < JudgementSet .
op __ : JudgementSet JudgementSet -> JudgementSet

[assoc comm id: emptyJudgementSet]
var JS : JudgementSet .
sort Configuration .

op {{_}} : JudgementSet -> Configuration .

Replacement of metavariables by terms (that is, textual replacement) has the obvious definition, not spelled
out here, except for its syntax:

op <_:=_>_ : MetaVar Trm Trm -> Trm .

op <_:=_>_ : MetaVar Trm Subst -> Subst .

op <_:=_>_ : MetaVar Trm Context -> Context .

op <_:=_>_ : MetaVar Trm Judgement -> Judgement .

op <_:=_>_ : MetaVar Trm JudgementSet -> JudgementSet .

It is used only in the following rule, that instantiates a metavariable throughout the entire configuration if it is
uniquely determined by an equality:

rl {{ (?T =4) JS }} => {{ < ?T :=A>JS }}.

A rule like this is typical of a constraint-based programming approach, and indeed the configuration can be
seen as a set of constraints that should be simplified using the subsequent rules [20, 22]. Instead of detecting
an inconsistency, the goal is to eliminate all constraints. In addition to simplification of constraints by general
rewrite rules, simplification by equational rewriting also plays a major role in our approach.

For example, the judgement of convertibility between normalizing terms can be checked as follows. In order to
avoid redundant reductions we reduce the general problem to checking convertibility between weak head normal
forms (which are treated by the last three rules below). In the case of binders we perform renaming to equalize
names.
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rl (T <-> T) => emptyJudgementSet .

crl (M <-> N) => (whnf(M) <-> N) if M : WhReducible .

crl (M <-> N) => (M <-> whnf(N)) if N : WhReducible .

crl (M N) <-> (M> N’) => (M <-> M’) (N <-> N’) if (M N) : WhNf and (M’ N’) : WhNf .
rl ({X : A} T <> {Y : A’} T’) => (A <=> A’) (T <-> [Y := X{0}] [shift X] T’)

rl ([X : Al M <> [Y : A’] M’) => (A <=> A’) (M <-> [Y := X{0}] [shift X] M’)

We use two auxiliary judgements to implement side conditions:

rl (s Sort) => emptyJudgementSet .

rl ((s1,s2,?T) Rule) => (?T = Rules(sl,s2))

Each inference rule of UPTS/VC systems gives rise to a rewrite rule obtained by reversing the direction of
inference:

rl (G |- s ->: ?T) => (?T = Axioms(s))
crl (G |- X{m} ->: ?T) => (?T = lookup(G,X{m})) if lookup(G,X{m}) =/= undefTrm .

rl (G |- {X : A} B ->: ?T) =>
(G |- A ->: ?(NEW1))
(G [X : Al |- B ->: ?7(NEW2))
((?(NEW1), ?(NEW2), ?T) Rule)

rl (G |- [X : Al M ->: ?T) =>
(G |- A ->: ?(NEW1)) (7?(NEW1) Sort)
(G [X : A] |- M ->: ?(NEW2))
(?T = {X : A} 7(NEW2))

rl (G |- (M N) ->: ?T) =>
G |- M ->: ?7(NEWLD)) (N ->: 7(NEW2)) ->: 7T)
G |- M->: ?(NEW1)) (G |- N ->: 7(NEW2))

rl (G |- (M ->: X : A} B)(N ->: A’) =>: 7T) =>
(A <> A’) (?T = [X :=N] B)

The terms 7(NEW1) and 7(NEW2) above denote fresh metavariables. Hence rewriting has to be controlled by a
simple strategy, that constraints the possible rewrites by instantiating the variables NEW1 and NEW2 only with
fresh identifiers each time a rule is applied. Notice that, in contrast to ordinary variables, where names are
taken seriously, we abstract from (i.e. we do not care about) metavariable names, since they do not have a
formal status inside UPTS systems, but belong instead to the metalevel.”

According to the explanations given before, the new judgements have certain conversion closure properties. The
following partial normalization rules allow us to work with normalized judgements in the above rules:

crl (T Sort) => (whnf(T) Sort) if T : WhReducible .
crl ((A,B,T) Rule) => ((whnf(A),B,T) Rule) if A : WhReducible .
crl ((A,B,T) Rule) => ((A,whnf(B),T) Rule) if B : WhReducible .

crl (G [- (M ->: A)(N ->: B) ->: T) => (G |- (M ->: whnf(A)) (N ->: B) ->: T) if A : WhReducible .

This completes the definition of the type-inference system for judgements of the form I' - M —: A. Since our
goal was to define the operational counterpart of ' - M : A, i.e., to give a type-checking algorithm, we reduce
type checking to type inference in the standard way using the conditional rules:

9By a straightforward refinement of the present specification we can obtain a system with takes even metavariables seriously,
but this is not necessary for the purpose of the present paper.



20 M.-O. Stehr, J.Meseguer Pure Type Systems in Rewriting Logic

crl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)
if {{ A Sort }} => {{ emptyJudgementSet }} .

crl (G |- M : A) => (G |- M ->: ?(NEW2)) (?(NEW2) <-> A)
if {{ (G |- A ->: ?(NEW1)) }} => {{ emptyJudgementSet }} .

Actually these two rules constitute an operational formulation of Lemma 3 (Characterization of PTS) proved
in [28] for PTS. Finally, we add rules in reversed form to check valid contexts and the strong typing judgement:

rl ([1 |-) => emptyJudgementSet .

crl (G [X : A] [-) =>
(G |- A ->: 7(NEW)) (7(NEW) Sort)
if {{ (G |-) }} => {{ emptyJudgementSet }} .

crl (G [|-M : A) => (G |- M : B
if {{ (G [-) }} => {{ emptyJudgementSet }} .

endm

Again we have omitted the straightforward rule corresponding to CTXTRESTR, which allows us to check deriv-
ability of strong judgements I" IF; M : A that disallow multiple occurrences of the same variable in I'.

To verify a judgement J we start with an initial configuration {{.J}}. Either this configuration can be reduced
to {{emptyJudgementSet}}, meaning that the judgement has been proved, or the final configuration contains
unsolved constraints that can be seen an informative indication of a type-checking error.

Notice that we have not only used inductive definitions to specify PTS systems and UPTS systems logically,
but that, in addition, the operational version of UPTS systems given by the rewrite rules above is essentially
an inductive definition of a rewrite system which gives us a more refined view of the type-checking process.

The most important property of a type checker is soundness. The soundness of each of the rewrite rules above is
obvious and can be verified by inspection (even by a user of the algorithm who would like to obtain confidence
in its correctness) without resorting to difficult metatheoretical proofs.

Let S range over decidable, normalizing, functional, full and topless PTS specifications. RUPTS/VC denotes
the rewrite based version of UPTS/VC that has been presented above in terms of rewriting logic. Then the
next proposition gives a sound and complete correspondence UPTS/VCg ~ RUPTS/VCy.

Proposition 5.5 (Soundness and Completeness of RUPTS/VC) Let M,A be UPTS terms, let I" be
a UPTS context, and let J be one of the judgements I' -, T' I M : A, or ' IF; M : A. If the sentence
{{J}} — {{emptyJudgementSet}} is derivable in RUPTS/VCyg, then J is derivable in UPTS/VCy and vice
versa.

Completeness as stated above does not immediately imply completeness of the implementation, since the rewrite
theory is usually executed using a strategy that restricts the rewrites to those that are actually chosen. Ideally,
and this is the case in our specification, there is no additional restriction on the strategy beyond the freshness
requirement for metavariables mentioned before.

6 Conclusions

In this paper we give presentations of PTS systems at different levels of abstraction. Moreover we have dis-
cussed very natural representations of these systems in membership equational logic or rewriting logic. Both,
abstractions and representations are uniformly captured by the notion of a correspondence between entailment
systems. Apart from this more general contribution that demonstrates how pure type systems can be formally
specified using rewriting logic as a logical framework, there are more technical contributions, namely CINNI, a
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simple and general calculus of explicit substitutions, and UPTS, a new variant of pure type systems that can be
seen as a new approach to the problems with closure under a-conversion in systems with dependent types.

Furthermore, we would like to point out that the techniques presented in this paper are currently being applied
in the design and implementation of a proof assistant for OCC, the open calculus of constructions, an extension
of the calculus of constructions that incorporates equational logic as a computational sublanguage. Similar to
membership equational logic, OCC supports conditional equations and conditional assertions together with an
operational semantics based on conditional rewriting modulo equations. Using the Maude rewriting engine and
its reflective capabilities, we have developed with a modest amount of effort an experimental version of a proof
assistant for OCC of acceptable performance that is based on the ideas on CINNI and UPTS presented here.

We conclude with the remark that we have emphasized the representational aspects in this paper, since the
choice of the right formal representation is important in its own right and should preceed attempts to give
formal metatheoretical proofs. There are many interesting properties that should not require complex proofs.
For example, soundness is a property that can often be made easy to verify using specification techniques like
those employed above. On the other hand, membership equational logic and rewriting logic together with their
initial model semantics provide very general notions of equational inductive definitions, a fact that has been
exploited for representing (inductively defined) formal systems in this paper. The remaining problem of carrying
out metatheoretical proofs about such closed formal systems — completeness proofs are one example — requires
the development of useful induction principles on the basis of possibly different but related presentations of the
formal system. Once appropriate induction principles are found, they can be formulated using either higher-
order logic, e.g., simply by using a formal system such as OCC as a metalogic, or using reflective techniques (cf.
the approach to reflective metalogical frameworks presented in [2]).
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