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1 Introduction

We may implement an automated deduction system for a logic using a general
purpose programming language or a logical framework. With a general purpose
programming language, such as Lisp or Standard ML, we may create an auto-
mated deduction system as a collection of components. The primary component
is responsible for performing reasoning within the logic. The other components,
such as editors, pretty printers, and tables for storing theorems, provide ser-
vices that make the system user—friendly. Alternatively, we may implement an
automated deduction system for a logic by encoding it as an object logic of a
logical framework, such as Twelf [10, 9] or Isabelle [8]. With this approach, we
implement a deduction system by inherting all the components of the logical
framework. Clearly, implementing an automated deduction system using a log-
ical framework is easier than implementing it using a general purpose language.
However, an automated deduction system implemented with a general purpose
language may be easier to use than one implemented with a logical framework.
The former only requires the user to know how to reason within the object logic.
The latter requires the user to know how to reason within the base logic and to
understand the encoding of the object logic in the base logic. As a result, we
decided to create a program development environment, called the Java Logical
Framework (JaLoF), that supports rapid development of deduction systems in
which users reason directly within the object logic. JaLoF is currently under
development, and in this extended abstract, we describe is current status.

JaLoF consists of an abstract syntax for representing constructs of an object
language, a language for specifying the structured operational semantics of an
object language, and a language for specifying a proof system for reasoning
about entities of the object language. JaLoF is implemented in Java as an
extendable command line interpreter. An object logic is encoded into JaLoF by
defining a collection of classes that implement methods for constructing terms
and assertions of the object logic, evaluating terms of the object logic, and
performing inference on assertions of the object logic.



Our motivation for creating JaLoF comes from discovering that the Nuprl
Proof Development System (Nuprl PDS) [2] is implemented as a program devel-
opment environment for building reasoning system for the Nuprl type theory [1].
With the Nuprl PDS, we can develop reasoning systems for logics without en-
coding them into the Nuprl type theory. We discovered this feature of the Nuprl
PDS when re-implementing Nuprl to exploit parallelism on a shared memory
multiprocessor [7, 6]. Jason Hickey has recently developed an architecture for
the Nuprl PDS, MetaPRL [4], to exploit the independence of the Nuprl PDS
from the Nuprl Type Theory.

The Nuprl PDS contains an untyped abstract syntax, the Nuprl term lan-
guage, that is used to encode the Nuprl type theory. Although the Nuprl PDS
only defines operational semantics rules for terms of the Nuprl type theory, we
can extend the semantics by defining new rules for terms independently of ex-
isting rules. We can encode an object language by extending the semantics of
the Nuprl term language to include Nuprl terms representing constructs of an
object language. Unlike HOAS [3], this approach supports evaluation for an
object language using structural induction. However, the Nuprl term language
contains features that we believe make it inadequate for our needs.

Nuprl defines two distinct functions to perform first order substitution and
second order substitution. First order substitution replaces a first order variable
with a Nuprl term. Second order substitution replaces a second order variable
instance with a non-Nuprl term representing an abstraction. A second order
variable instance in Nuprl corresponds to a A-term in which a variable is applied
to a term, for example (f a). In Nuprl, replacing a second order variable instance
consists of replacing the variable with an abstraction and then performing [-
reduction on the resulting term. Using Nuprl’s second order substitution in the
A-calculus, for example, to replace f with Az.(sz) in (f a) produces (sa). To
define a single function for substitution, we change the binding structure of the
Nuprl term language. In Nuprl, bindings are placed on subterms. For instance,
Ax.t is represented as the Nuprl term lambda(x.t). This term specifies that
only binds ¢ because it appears as a subterm of lambda(z.t). In other words,
lambda(z.t) is obtained by placing ¢ in the hole in lambda(z.0).

The Nuprl term language designates a specific class of terms as variables.
Substitution is defined with respect to this class of terms. Therefore, an object
language must encode its variables as Nuprl’s variables to use Nuprl’s substi-
tution. This requirement eliminates encoding object languages whose variables
cannot be represented as Nuprl variables, for example variables that are tagged
with a type. Encoding these languages into the Nuprl term language requires
defining substitution for each of them.

JaLoF overcomes these problems of the Nuprl term language by defining
the JaLoF abstract syntax (JAS). We created JAS by modifing the bindings
structure of the Nuprl term language to support abstractions. In other words,
we changed the binding structure so that the bindings of a term occur over
the entire term and not only the subterms. Therefore, we can define a single
function for substitution of first order and higher order variables. Futhermore,
JAS has no terms designated as variables, but defines substitution to operate



on any class of terms designated as variables. Therefore, an object language
can use JAS’s substitution regardless of the class terms it uses as variables. To
define the operational semantics of terms, JaLoF contains a language dedicated
for specifying operational semantics. In addition, we are currently designing a
language for specifying inference rules of an object logic. This language resem-
bles the language for specifying the operational semantics except it attempts
to model natural language specifications of inference rules. This language al-
lows users to specify inference rules intended for constructing either top-down
or bottom-up proofs.

We organize this extended abstract as follows. In Section 2 we define JAS.
In Section 3 we describe the language for specifying evaluation rules by en-
coding the typed A-calculus into JAS and then encoding its type system as
evaluation rules. In Section 4 we give a brief overview of the language for spec-
ifying inference rules. In Section 5, we briefly describe the current status of the
development of JaLoF.

2 JAS: The JaLoF Abstract Syntax

The JaLoF abstract syntax, JAS, is an untyped language and supports higher
order substitution and a restricted form of higher order matching. We begin
defining JAS by assuming that we have a set of countably infinite identifiers
Z. We use identifiers to create operators. An operator is an identifier paired
with a list of zero or more identifiers. In other words, if o is an identifier and
Di,---,Pn, for n > 0, are identifiers, then o{p,...,p,} is an operator: o is the
operator identifier and each p; is a parameter. Parameters provide the ability
to inject objects from a model, such as a model for integers, into the abstract
syntax. We use identifiers to represent a parameter.

We use operators to construct terms. A term is an object of the form
X1y Tm-alty, ..., tn) where

e ¢ is an operator,
e m > 0 and each z; is an operator with at least one parameter, and
e n > 0 and each ¢; is a term.

A term is an abstraction if m > 0.

We require that each operator used as a binding have at least one parameter,
so that each binding will have a name. Therefore, we may represent Az.(sx) in
JAS as

var{x}.lambda(app(var{s}(),var{z}())). (1)

In (1), the term var{z}() represents the lambda calculus variable z. JAS
does not designate any term as a variable because some object languages may
represent variables differently. For example, for a typed language, variables
may be tagged with a type. Therefore, we may represent variables in a typed



language as var{z,T}(). In an untyped language, however, we may represent
variables as var{z}().

We use a term signature to identify a particular class of terms as vari-
ables. A term signature of a term x1,...,%,..0{p1,...,pn}(t1,...,tm) is the
triple {(o,n,r). Variables of an object language must have a term signature
where the number of parameters is greater than zero.

A variable is higher order if it has subterms. For example,

var{f}(var{x}(), var{y}())

and

var{g}(var{x}.var{x}())

are higher order occurrences. A higher order variable occurrence corresponds to
application of a variable to one or more terms in the A-calculus. Therefore, the
higher order occurrences above represent the applications f(x,y) and g(Az.x)
in the A-calculus.

In JAS, we substitute for free first and higher order variables. A variable
term with signature s is free if it does not occur in the scope of a binding equal to
its operator. Two operators are equal if they have the same operator identifier
and their parameters are pairwise equal. We use FV(t) to denote the set of
operators of free variables in ¢ with signature s. A variable term z of signature
s is bound in ¢ if z is a subterm of ¢ and z’s operator is not a member of FV(t).
We define substitution for JAS below.

Definition 2.1 Let ¢t be a term and s a signature of variables. Let ty,...,t, be
terms in which no binding or variable of signature s in ¢ occurs in any ¢;. Let
Zi,...,Z, be variables with signature s. Let 0 = [t1/x1,...,t,/x,]. Then ot is

the term defined inductively as follows.

1. Suppose t = o(t},...,t,). If m = 0 then ot = t; if t = z;; otherwise

-
ot = t. Ifm > 0 thenif o = x; and t; = y1,...,yn.t"”, then ot =
oty /y1,-.. 0t [ym]t"; otherwise ot = o(ot],...,atl.).

2. Ift=y1,...,yn.t' then ot = o't' where o' is o with t;/x; removed if y; = z;.

3 Specifying Evaluation

To demonstrate how to specify evaluation rules for an object logic, we encode
the simply typed lambda calculus with natural numbers and addition in JAS.
There are three ways we can encode the natural numbers in JAS. One way is to
use a unary constructor, succ, and a single constant, 0. This approach leads to
a simple recursive definition of evaluation for addition. From a pragmatic point
of view, however, this encoding is inefficient because it represents integers as
lists. A more efficient encoding represents each natural number distinctively as
a constant. However, to define evaluation for addition requires a separate rule



Terms:

n nat{ﬁ}ﬁ)

vl var{v,T}()

a+b add(a,b)

f(z)  app(f,x)

Mr®'t var{z,T}.lambda(t)

Types:

N nat()
T—T' arrow(T,T")

Judgments:
t has type T' typeof(t) T

Figure 1: Encoding of A-calculus in JAS

for each pair of constants. For example, we would have to define separate rules
for add(3,4) and add(30, 40).

The third encoding uses only one evaluation rule for addition without rep-
resenting terms as lists. This encoding uses partial functions to map identifiers
to and from elements of a model of the natural numbers. We define a model as
a semantic algebra M and the partial functions ®p : D—Z and Yp : T—D for
each domain D in M. A model also contains a function Qp for each domain
D that maps elements of D to JAS terms. Each function ®p, ¥p, and Qp is
one-to-one. Furthermore, for each d € D, ¥p(®p(d)) = d. For the remainder
of this abstract, we write ®p(d) as d where d € D.

nat{n}(): — nat{n}()

add(t,t') : ¢t nat{n}() & t' § nat{n'}() — nat{®x (Tn(n) + Tar(n))}()
var{v,T}(): — var{v,T}()

app(f,z) : f Y var{y,T}.lambda(t) & z || ' — ¢[2']
var{z,T}.lambda(t) : — var{z, T'}.lambda(t)

Figure 2: Reduction Rules of A calculus in JAS

We give an encoding of the typed A-calculus with natural numbers based on
a model of natural numbers and a model of type tags in Figure 1. The model
of natural numbers contains the domain A and operator + : N' x N—=N. The
model of type tags contains the domain P of strings created with the alphabet
{n,->}. The column on the right in Figure 1 contains the JAS version of the
lambda calculus object on the left. We encode the judgment ¢ has type T as an
evaluation rule. In particular, we say that ¢ has type T, if typeof(t) evaluates to



typeof(nat{n}()): — nat()
typeof(add{t,t'}()) : typeof(t) | nat() & typeof(t') I nat() — nat()
typeof(var{v,T}()): — (Qpo¥p)(T)
typeof(app(f,z)) : typeof(f) | arrow(A4, B) & typeof(z) | A — B
typeof(var{z, T'}.lambda(t)) :
typeof(var{z,T}()) J A & typeof(t) § B — arrow(A, B)

Figure 3: Typing Rules of A calculus in JAS

T.

We define the evaluation rules of our encoding of the A-calculus in Figure 2
using a specification language. We omit the details of the language here, but
describe components of the language as needed. The general form of an eval-
uation rule is ¢ : clauses — ¢'. Intuitively, an evaluation rule states that ¢
evaluates to t' if all the clauses are true. The clause r |} r' is true if a term that
matches r evaluates to a term that matches 7'. The expression t[z'] represents
substituting z’ for the first binding of ¢. Notice that the evaluation rule for
addition uses addition from the model of natural numbers. More specifically,
the evaluation rule converts the identifers n and n' into natural numbers, adds
them, and converts the result into an identifer.

We specify the typing rules also as evaluation rules. We give the typing
rules in Figure 3. The typing rule for variables uses the function Qp o ¥p to
convert the type tag on a variable into an actual term. For example, Qp o ¥p
converts the identifer n—>n into the term arrow(nat(),nat()). The typing rule
for abstraction makes the term var{x, n}.lambda(var{x, n—>n}()) typeable. This
term should be typeable because var{x,n}() and var{x,n—>n}() are not equal.

Our encoding of the A-calculus is not adequate because there are JAS terms,
such as var{x,n}.lambda(zoo()), that are not A-terms. Although we expected
the encoding to be inadequate, our reduction rules do not guarantee that they
will not produce values for invalid A-terms. For example, the reduction rule for
abstraction generates a value for var{x,n}.lambda(zoo()). Likewise the typing
rule for nat{n}() makes invalid A terms typeable. For example, suppose ¥,/ is
undefined on the identifier -3. Then nat{-3}() is not a A term, but it is typeable.
Fortunately, we can decide whether a JAS term is a A-term. More specifically,
we can determine whether a JAS term ¢ is a A-term if the term islamb(t) has a
value, namely tt(). We use the following evaluation rules to produce a value for
islamb(¢).

islamb(nat{n}()): (QxoPrx)(n)z — tt()
islamb(add(¢,t')) : islamb(t) | tt() & islamb(¢') | tt() — tt()
islamb(var{v,T}()): (Qpo¥p)(T)z — tt()
islamb(app(f,z)) : islamb(f) | tt() & islamb(z) § tt() — tt()
islamb(var{z,T}.lambda(t)) : islamb(var{v,T}()) { tt() & islamb(t) § tt() — tt()

The use of the model functions in the evaluation rules for islamb(nat{n}())



and islamb(var{v,T'}()) determine whether the parameters n and T' are valid
representations of elements of A" and P, respectively. Recall that Qa0 ¥ and
Qp o Up are partial functions. Therefore, they will only return a value if the
parameter represents an element in N or P.

4 Specifying Inference Rules

In addition to a language for specifying the operational semantics of an object
language, JaLoF also contains a language for specifying inference rules of a
proof system. Currently, this language is still under development. However,
we intend the language to be able to adequately define proof rules such as the
following proof rule taken verbatim from [5].

The sequent P—V,z.B is provable if and only if the sequent P— B[y /z]
is provable, where y is some (eigen)variable that does not occur free
in PorinV,z.B.

Although, JaLoF’s specification language for defining inference rules is under
construction, it will meet the following requirements.

1. Support specification of rules for top-down and bottom-up proofs.

2. Support matching against JAS terms and parameters within JAS terms.
. Provide a construct for term evaluation.

. Provide a construct to invoke model functions.

. Provide a construct for referring to free variables of a term.

. Provide a construct for stating a proviso.

. Provide a construct for stating that a term belongs to a class of terms.

. Provide a construct for substitution.
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. Provide a construct to express that an inference rule can contain an arbi-
trary number of antecedents.

5 Implementation

We have begun implementing a prototype of JaLoF in Java. In addition to being
widely availiable and multi-threaded, we choose Java because of its ability to
dynamically load classes. This feature makes it easier to extend our system with
new terms, evaluation rules, inference rules, and models.

Our prototype of JaLoF is a command line interpreter that contains four
separate environments that map names to commands, term families, terms,



and models.! Each command is represented as an instance of a subclass of the
class Command. When a user types in a command, the runtime system obtains
the object corresponding to the command from the command environment.
Afterwards, the runtime system executes the command invoking the command
object’s execute method on the command line arguments. A user may define
a new command by creating a subclass of Command and loading it into JaLoF.
JaLoF has a built-in command that loads a command subclass into JaLoF,
creates an instance of the subclass, and stores the instance in the command
environment,.

JaLoF also contains a built-in command for loading term family classes. A
term family represents the set of terms that have the same term signature. Recall
from Section 2 that a term signature is the operator identifier of a term, the
number of parameters that occur in its operator, and the number of bindings. A
class representing a term family contains methods to create and evaluate terms
belonging to the term family. A term family is defined by a user by creating
a subclass of TermFamily that overrides the instance0f and eval methods of
TermFamily . The instance0f method creates a term in the term family and the
eval evaluates a term in the term family. We intend to develop a GUI that will
assist a user to create a term family class instead of explicitly programming it
in Java. Using the GUI, a user will create a term family by completing a form.
The GUI will automatically generate Java code for the instance0f method based
upon the user’s input. Also, the GUI will implement the language for specifying
evaluation rules described in Section 3. The GUI will automatically convert
specifications of the evaluation rules into Java code for the eval method.

Users create terms using the def-term built—-in command. The arguments of
this command is a name and the concrete syntax of a term. From the concrete
syntax, the def-term command determines the signature of the term and uses
it to invoke the instance0f method of the term family with the same signature.
The term produced by the instance0f method is stored in the term environment.

Models are represented as instances of subclasses of the class Model. In our
implementation, each model class contains only one domain and three methods
representing the marshalling functions @, ¥, and 2. To create a model, a user
develops a subclass of Model and loads it into JaLoF using the built-in command
for loading model classes. When a model class is loaded into JaLoF an instance
of the class is created and stored in the model environment. Once a model
object is stored in the model environment, the eval method of a term family
class can access any of its public methods.

6 Conclusion

We are currenlty developing JaLoF, a program development environment imple-
mented in Java for rapid development of deduction systems. Unlike most logical
frameworks, deduction systems created with JaLoF will allow users to reason

IWe do not have an environment for proof objects because we have not determined how
we will represent them in JaLoF.



directly within the object logic. Our motivation for creating JaLoF comes from
discovering that the Nuprl Proof Development System is implemented as a pro-
gram development environment for building reasoning system for the Nuprl type
theory. We believe that Nuprl is inadequate as a general purpose development
environment for automated deduction systems for the following reasons. Nuprl
defines two separate functions for performing substitution, designates a spe-
cific class of variables as terms, and does not provide users with the capability
to extend the semantics of the Nuprl term language. JaLoF overcomes these
problems by creating a modification of the Nuprl term language called JAS.
The binding structure of JAS permits the definition of a single function for
substitution of first order and higher order variables. Futhermore, JAS defines
substitution to operate over any class of terms that a user designates as vari-
ables of an object langauge. JaLoF also allows users to extend the operational
semantics of JAS with evaluation rules for constructs of an object langauge.
JaLoF utitlizes Java’s ability to load classes dynamically to make it extendable.
An object logic is defined as a collection of classes which are loaded dynamically
into JaLoF. These classes are used to create Java objects that JaLoF uses for
reasoning within the object logic.
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