
JaLoF: A Development Environment for

Dedu
tion Systems

Roderi
k Moten

Colgate Univesity

Extended Abstra
t

1 Introdu
tion

We may implement an automated dedu
tion system for a logi
 using a general

purpose programming language or a logi
al framework. With a general purpose

programming language, su
h as Lisp or Standard ML, we may 
reate an auto-

mated dedu
tion system as a 
olle
tion of 
omponents. The primary 
omponent

is responsible for performing reasoning within the logi
. The other 
omponents,

su
h as editors, pretty printers, and tables for storing theorems, provide ser-

vi
es that make the system user{friendly. Alternatively, we may implement an

automated dedu
tion system for a logi
 by en
oding it as an obje
t logi
 of a

logi
al framework, su
h as Twelf [10, 9℄ or Isabelle [8℄. With this approa
h, we

implement a dedu
tion system by inherting all the 
omponents of the logi
al

framework. Clearly, implementing an automated dedu
tion system using a log-

i
al framework is easier than implementing it using a general purpose language.

However, an automated dedu
tion system implemented with a general purpose

language may be easier to use than one implemented with a logi
al framework.

The former only requires the user to know how to reason within the obje
t logi
.

The latter requires the user to know how to reason within the base logi
 and to

understand the en
oding of the obje
t logi
 in the base logi
. As a result, we

de
ided to 
reate a program development environment, 
alled the Java Logi
al

Framework (JaLoF), that supports rapid development of dedu
tion systems in

whi
h users reason dire
tly within the obje
t logi
. JaLoF is 
urrently under

development, and in this extended abstra
t, we des
ribe is 
urrent status.

JaLoF 
onsists of an abstra
t syntax for representing 
onstru
ts of an obje
t

language, a language for spe
ifying the stru
tured operational semanti
s of an

obje
t language, and a language for spe
ifying a proof system for reasoning

about entities of the obje
t language. JaLoF is implemented in Java as an

extendable 
ommand line interpreter. An obje
t logi
 is en
oded into JaLoF by

de�ning a 
olle
tion of 
lasses that implement methods for 
onstru
ting terms

and assertions of the obje
t logi
, evaluating terms of the obje
t logi
, and

performing inferen
e on assertions of the obje
t logi
.

1



Our motivation for 
reating JaLoF 
omes from dis
overing that the Nuprl

Proof Development System (Nuprl PDS) [2℄ is implemented as a program devel-

opment environment for building reasoning system for the Nuprl type theory [1℄.

With the Nuprl PDS, we 
an develop reasoning systems for logi
s without en-


oding them into the Nuprl type theory. We dis
overed this feature of the Nuprl

PDS when re-implementing Nuprl to exploit parallelism on a shared memory

multipro
essor [7, 6℄. Jason Hi
key has re
ently developed an ar
hite
ture for

the Nuprl PDS, MetaPRL [4℄, to exploit the independen
e of the Nuprl PDS

from the Nuprl Type Theory.

The Nuprl PDS 
ontains an untyped abstra
t syntax, the Nuprl term lan-

guage, that is used to en
ode the Nuprl type theory. Although the Nuprl PDS

only de�nes operational semanti
s rules for terms of the Nuprl type theory, we


an extend the semanti
s by de�ning new rules for terms independently of ex-

isting rules. We 
an en
ode an obje
t language by extending the semanti
s of

the Nuprl term language to in
lude Nuprl terms representing 
onstru
ts of an

obje
t language. Unlike HOAS [3℄, this approa
h supports evaluation for an

obje
t language using stru
tural indu
tion. However, the Nuprl term language


ontains features that we believe make it inadequate for our needs.

Nuprl de�nes two distin
t fun
tions to perform �rst order substitution and

se
ond order substitution. First order substitution repla
es a �rst order variable

with a Nuprl term. Se
ond order substitution repla
es a se
ond order variable

instan
e with a non-Nuprl term representing an abstra
tion. A se
ond order

variable instan
e in Nuprl 
orresponds to a �-term in whi
h a variable is applied

to a term, for example (f a). In Nuprl, repla
ing a se
ond order variable instan
e


onsists of repla
ing the variable with an abstra
tion and then performing �-

redu
tion on the resulting term. Using Nuprl's se
ond order substitution in the

�-
al
ulus, for example, to repla
e f with �x:(s x) in (f a) produ
es (s a). To

de�ne a single fun
tion for substitution, we 
hange the binding stru
ture of the

Nuprl term language. In Nuprl, bindings are pla
ed on subterms. For instan
e,

�x:t is represented as the Nuprl term lambda(x:t). This term spe
i�es that x

only binds t be
ause it appears as a subterm of lambda(x:t). In other words,

lambda(x:t) is obtained by pla
ing t in the hole in lambda(x:2).

The Nuprl term language designates a spe
i�
 
lass of terms as variables.

Substitution is de�ned with respe
t to this 
lass of terms. Therefore, an obje
t

language must en
ode its variables as Nuprl's variables to use Nuprl's substi-

tution. This requirement eliminates en
oding obje
t languages whose variables


annot be represented as Nuprl variables, for example variables that are tagged

with a type. En
oding these languages into the Nuprl term language requires

de�ning substitution for ea
h of them.

JaLoF over
omes these problems of the Nuprl term language by de�ning

the JaLoF abstra
t syntax (JAS). We 
reated JAS by modi�ng the bindings

stru
ture of the Nuprl term language to support abstra
tions. In other words,

we 
hanged the binding stru
ture so that the bindings of a term o

ur over

the entire term and not only the subterms. Therefore, we 
an de�ne a single

fun
tion for substitution of �rst order and higher order variables. Futhermore,

JAS has no terms designated as variables, but de�nes substitution to operate

2



on any 
lass of terms designated as variables. Therefore, an obje
t language


an use JAS's substitution regardless of the 
lass terms it uses as variables. To

de�ne the operational semanti
s of terms, JaLoF 
ontains a language dedi
ated

for spe
ifying operational semanti
s. In addition, we are 
urrently designing a

language for spe
ifying inferen
e rules of an obje
t logi
. This language resem-

bles the language for spe
ifying the operational semanti
s ex
ept it attempts

to model natural language spe
i�
ations of inferen
e rules. This language al-

lows users to spe
ify inferen
e rules intended for 
onstru
ting either top-down

or bottom-up proofs.

We organize this extended abstra
t as follows. In Se
tion 2 we de�ne JAS.

In Se
tion 3 we des
ribe the language for spe
ifying evaluation rules by en-


oding the typed �-
al
ulus into JAS and then en
oding its type system as

evaluation rules. In Se
tion 4 we give a brief overview of the language for spe
-

ifying inferen
e rules. In Se
tion 5, we brie
y des
ribe the 
urrent status of the

development of JaLoF.

2 JAS: The JaLoF Abstra
t Syntax

The JaLoF abstra
t syntax, JAS, is an untyped language and supports higher

order substitution and a restri
ted form of higher order mat
hing. We begin

de�ning JAS by assuming that we have a set of 
ountably in�nite identi�ers

I. We use identi�ers to 
reate operators. An operator is an identi�er paired

with a list of zero or more identi�ers. In other words, if o is an identi�er and

p

1

; : : : ; p

n

, for n � 0, are identi�ers, then ofp

1

; : : : ; p

n

g is an operator: o is the

operator identi�er and ea
h p

i

is a parameter. Parameters provide the ability

to inje
t obje
ts from a model, su
h as a model for integers, into the abstra
t

syntax. We use identi�ers to represent a parameter.

We use operators to 
onstru
t terms. A term is an obje
t of the form

x

1

; : : : ; x

m

:a(t

1

; : : : ; t

n

) where

� a is an operator,

� m � 0 and ea
h x

i

is an operator with at least one parameter, and

� n � 0 and ea
h t

i

is a term.

A term is an abstra
tion if m > 0.

We require that ea
h operator used as a binding have at least one parameter,

so that ea
h binding will have a name. Therefore, we may represent �x:(sx) in

JAS as

varfxg:lambda(app(varfsg(); varfxg())): (1)

In (1), the term varfxg() represents the lambda 
al
ulus variable x. JAS

does not designate any term as a variable be
ause some obje
t languages may

represent variables di�erently. For example, for a typed language, variables

may be tagged with a type. Therefore, we may represent variables in a typed

3



language as varfx; Tg(). In an untyped language, however, we may represent

variables as varfxg().

We use a term signature to identify a parti
ular 
lass of terms as vari-

ables. A term signature of a term x

1

; : : : ; x

r

:ofp

1

; : : : ; p

n

g(t

1

; : : : ; t

m

) is the

triple ho; n; ri. Variables of an obje
t language must have a term signature

where the number of parameters is greater than zero.

A variable is higher order if it has subterms. For example,

varffg(varfxg(); varfyg())

and

varfgg(varfxg:varfxg())

are higher order o

urren
es. A higher order variable o

urren
e 
orresponds to

appli
ation of a variable to one or more terms in the �-
al
ulus. Therefore, the

higher order o

urren
es above represent the appli
ations f(x; y) and g(�x:x)

in the �-
al
ulus.

In JAS, we substitute for free �rst and higher order variables. A variable

term with signature s is free if it does not o

ur in the s
ope of a binding equal to

its operator. Two operators are equal if they have the same operator identi�er

and their parameters are pairwise equal. We use FV

s

(t) to denote the set of

operators of free variables in t with signature s. A variable term x of signature

s is bound in t if x is a subterm of t and x's operator is not a member of FV

s

(t).

We de�ne substitution for JAS below.

De�nition 2.1 Let t be a term and s a signature of variables. Let t

1

; : : : ; t

n

be

terms in whi
h no binding or variable of signature s in t o

urs in any t

i

. Let

x

1

; : : : ; x

n

be variables with signature s. Let � = [t

1

=x

1

; : : : ; t

n

=x

n

℄. Then �t is

the term de�ned indu
tively as follows.

1. Suppose t = o(t

0

1

; : : : ; t

0

m

). If m = 0 then �t = t

i

if t = x

i

; otherwise

�t = t. If m > 0 then if o = x

i

and t

i

= y

1

; : : : ; y

m

:t

00

, then �t =

[�t

0

1

=y

1

; : : : ; �t

0

m

=y

m

℄t

00

; otherwise �t = o(�t

0

1

; : : : ; �t

0

m

).

2. If t = y

1

; : : : ; y

n

:t

0

then �t = �

0

t

0

where �

0

is � with t

i

=x

i

removed if y

i

= x

i

.

3 Spe
ifying Evaluation

To demonstrate how to spe
ify evaluation rules for an obje
t logi
, we en
ode

the simply typed lambda 
al
ulus with natural numbers and addition in JAS.

There are three ways we 
an en
ode the natural numbers in JAS. One way is to

use a unary 
onstru
tor, su

, and a single 
onstant, 0. This approa
h leads to

a simple re
ursive de�nition of evaluation for addition. From a pragmati
 point

of view, however, this en
oding is ineÆ
ient be
ause it represents integers as

lists. A more eÆ
ient en
oding represents ea
h natural number distin
tively as

a 
onstant. However, to de�ne evaluation for addition requires a separate rule

4



Terms:

n natfbng()

v

T

varfv;

b

Tg()

a+ b add(a; b)

f(x) app(f; x)

�x

T

:t varfx;

b

Tg:lambda(t)

Types:

N nat()

T!T

0

arrow(T; T

0

)

Judgments:

t has type T typeof(t) + T

Figure 1: En
oding of �-
al
ulus in JAS

for ea
h pair of 
onstants. For example, we would have to de�ne separate rules

for add(3; 4) and add(30; 40).

The third en
oding uses only one evaluation rule for addition without rep-

resenting terms as lists. This en
oding uses partial fun
tions to map identi�ers

to and from elements of a model of the natural numbers. We de�ne a model as

a semanti
 algebra M and the partial fun
tions �

D

: D!I and 	

D

: I!D for

ea
h domain D in M . A model also 
ontains a fun
tion 


D

for ea
h domain

D that maps elements of D to JAS terms. Ea
h fun
tion �

D

, 	

D

, and 


D

is

one-to-one. Furthermore, for ea
h d 2 D, 	

D

(�

D

(d)) = d. For the remainder

of this abstra
t, we write �

D

(d) as

b

d where d 2 D.

natfng() : �! natfng()

add(t; t

0

) : t + natfng() & t

0

+ natfn

0

g() �! natf�

N

�

	

N

(n) + 	

N

(n

0

)

�

g()

varfv; Tg() : �! varfv; Tg()

app(f; x) : f + varfy; Tg:lambda(t) & x + x

0

�! t[x

0

℄

varfx; Tg:lambda(t) : �! varfx; Tg:lambda(t)

Figure 2: Redu
tion Rules of � 
al
ulus in JAS

We give an en
oding of the typed �-
al
ulus with natural numbers based on

a model of natural numbers and a model of type tags in Figure 1. The model

of natural numbers 
ontains the domain N and operator + : N �N!N . The

model of type tags 
ontains the domain P of strings 
reated with the alphabet

fn; ->g. The 
olumn on the right in Figure 1 
ontains the JAS version of the

lambda 
al
ulus obje
t on the left. We en
ode the judgment t has type T as an

evaluation rule. In parti
ular, we say that t has type T , if typeof(t) evaluates to

5



typeof(natfng()) : �! nat()

typeof(addft; t

0

g()) : typeof(t) + nat() & typeof(t

0

) + nat() �! nat()

typeof(varfv; Tg()) : �! (


P

Æ	

P

)(T )

typeof(app(f; x)) : typeof(f) + arrow(A;B) & typeof(x) + A �! B

typeof(varfx; Tg:lambda(t)) :

typeof(varfx; Tg()) + A & typeof(t) + B �! arrow(A;B)

Figure 3: Typing Rules of � 
al
ulus in JAS

T .

We de�ne the evaluation rules of our en
oding of the �-
al
ulus in Figure 2

using a spe
i�
ation language. We omit the details of the language here, but

des
ribe 
omponents of the language as needed. The general form of an eval-

uation rule is t : 
lauses �! t

0

. Intuitively, an evaluation rule states that t

evaluates to t

0

if all the 
lauses are true. The 
lause r + r

0

is true if a term that

mat
hes r evaluates to a term that mat
hes r

0

. The expression t[x

0

℄ represents

substituting x

0

for the �rst binding of t. Noti
e that the evaluation rule for

addition uses addition from the model of natural numbers. More spe
i�
ally,

the evaluation rule 
onverts the identifers n and n

0

into natural numbers, adds

them, and 
onverts the result into an identifer.

We spe
ify the typing rules also as evaluation rules. We give the typing

rules in Figure 3. The typing rule for variables uses the fun
tion 


P

Æ 	

P

to


onvert the type tag on a variable into an a
tual term. For example, 


P

Æ	

P


onverts the identifer n{>n into the term arrow(nat(); nat()). The typing rule

for abstra
tion makes the term varfx; ng:lambda(varfx; n{>ng()) typeable. This

term should be typeable be
ause varfx; ng() and varfx; n{>ng() are not equal.

Our en
oding of the �-
al
ulus is not adequate be
ause there are JAS terms,

su
h as varfx; ng:lambda(zoo()), that are not �-terms. Although we expe
ted

the en
oding to be inadequate, our redu
tion rules do not guarantee that they

will not produ
e values for invalid �-terms. For example, the redu
tion rule for

abstra
tion generates a value for varfx; ng:lambda(zoo()). Likewise the typing

rule for natfng() makes invalid � terms typeable. For example, suppose 	

N

is

unde�ned on the identi�er -3. Then natf-3g() is not a � term, but it is typeable.

Fortunately, we 
an de
ide whether a JAS term is a �-term. More spe
i�
ally,

we 
an determine whether a JAS term t is a �-term if the term islamb(t) has a

value, namely tt(). We use the following evaluation rules to produ
e a value for

islamb(t).

islamb(natfng()) : (


N

Æ	

N

)(n) + x �! tt()

islamb(add(t; t

0

)) : islamb(t) + tt() & islamb(t

0

) + tt() �! tt()

islamb(varfv; Tg()) : (


P

Æ	

P

)(T ) + x �! tt()

islamb(app(f; x)) : islamb(f) + tt() & islamb(x) + tt() �! tt()

islamb(varfx; Tg:lambda(t)) : islamb(varfv; Tg()) + tt() & islamb(t) + tt() �! tt()

The use of the model fun
tions in the evaluation rules for islamb(natfng())

6



and islamb(varfv; Tg()) determine whether the parameters n and T are valid

representations of elements of N and P , respe
tively. Re
all that 


N

Æ	

N

and




P

Æ 	

P

are partial fun
tions. Therefore, they will only return a value if the

parameter represents an element in N or P .

4 Spe
ifying Inferen
e Rules

In addition to a language for spe
ifying the operational semanti
s of an obje
t

language, JaLoF also 
ontains a language for spe
ifying inferen
e rules of a

proof system. Currently, this language is still under development. However,

we intend the language to be able to adequately de�ne proof rules su
h as the

following proof rule taken verbatim from [5℄.

The sequent P�!8

�

x:B is provable if and only if the sequent P�!B[y=x℄

is provable, where y is some (eigen)variable that does not o

ur free

in P or in 8

�

x:B.

Although, JaLoF's spe
i�
ation language for de�ning inferen
e rules is under


onstru
tion, it will meet the following requirements.

1. Support spe
i�
ation of rules for top-down and bottom-up proofs.

2. Support mat
hing against JAS terms and parameters within JAS terms.

3. Provide a 
onstru
t for term evaluation.

4. Provide a 
onstru
t to invoke model fun
tions.

5. Provide a 
onstru
t for referring to free variables of a term.

6. Provide a 
onstru
t for stating a proviso.

7. Provide a 
onstru
t for stating that a term belongs to a 
lass of terms.

8. Provide a 
onstru
t for substitution.

9. Provide a 
onstru
t to express that an inferen
e rule 
an 
ontain an arbi-

trary number of ante
edents.

5 Implementation

We have begun implementing a prototype of JaLoF in Java. In addition to being

widely availiable and multi-threaded, we 
hoose Java be
ause of its ability to

dynami
ally load 
lasses. This feature makes it easier to extend our system with

new terms, evaluation rules, inferen
e rules, and models.

Our prototype of JaLoF is a 
ommand line interpreter that 
ontains four

separate environments that map names to 
ommands, term families, terms,

7



and models.

1

Ea
h 
ommand is represented as an instan
e of a sub
lass of the


lass Command. When a user types in a 
ommand, the runtime system obtains

the obje
t 
orresponding to the 
ommand from the 
ommand environment.

Afterwards, the runtime system exe
utes the 
ommand invoking the 
ommand

obje
t's exe
ute method on the 
ommand line arguments. A user may de�ne

a new 
ommand by 
reating a sub
lass of Command and loading it into JaLoF.

JaLoF has a built{in 
ommand that loads a 
ommand sub
lass into JaLoF,


reates an instan
e of the sub
lass, and stores the instan
e in the 
ommand

environment.

JaLoF also 
ontains a built{in 
ommand for loading term family 
lasses. A

term family represents the set of terms that have the same term signature. Re
all

from Se
tion 2 that a term signature is the operator identi�er of a term, the

number of parameters that o

ur in its operator, and the number of bindings. A


lass representing a term family 
ontains methods to 
reate and evaluate terms

belonging to the term family. A term family is de�ned by a user by 
reating

a sub
lass of TermFamily that overrides the instan
eOf and eval methods of

TermFamily . The instan
eOf method 
reates a term in the term family and the

eval evaluates a term in the term family. We intend to develop a GUI that will

assist a user to 
reate a term family 
lass instead of expli
itly programming it

in Java. Using the GUI, a user will 
reate a term family by 
ompleting a form.

The GUI will automati
ally generate Java 
ode for the instan
eOf method based

upon the user's input. Also, the GUI will implement the language for spe
ifying

evaluation rules des
ribed in Se
tion 3. The GUI will automati
ally 
onvert

spe
i�
ations of the evaluation rules into Java 
ode for the eval method.

Users 
reate terms using the def-term built{in 
ommand. The arguments of

this 
ommand is a name and the 
on
rete syntax of a term. From the 
on
rete

syntax, the def-term 
ommand determines the signature of the term and uses

it to invoke the instan
eOf method of the term family with the same signature.

The term produ
ed by the instan
eOf method is stored in the term environment.

Models are represented as instan
es of sub
lasses of the 
lass Model. In our

implementation, ea
h model 
lass 
ontains only one domain and three methods

representing the marshalling fun
tions �, 	, and 
. To 
reate a model, a user

develops a sub
lass of Model and loads it into JaLoF using the built{in 
ommand

for loading model 
lasses. When a model 
lass is loaded into JaLoF an instan
e

of the 
lass is 
reated and stored in the model environment. On
e a model

obje
t is stored in the model environment, the eval method of a term family


lass 
an a

ess any of its publi
 methods.

6 Con
lusion

We are 
urrenlty developing JaLoF, a program development environment imple-

mented in Java for rapid development of dedu
tion systems. Unlike most logi
al

frameworks, dedu
tion systems 
reated with JaLoF will allow users to reason

1

We do not have an environment for proof obje
ts be
ause we have not determined how

we will represent them in JaLoF.

8



dire
tly within the obje
t logi
. Our motivation for 
reating JaLoF 
omes from

dis
overing that the Nuprl Proof Development System is implemented as a pro-

gram development environment for building reasoning system for the Nuprl type

theory. We believe that Nuprl is inadequate as a general purpose development

environment for automated dedu
tion systems for the following reasons. Nuprl

de�nes two separate fun
tions for performing substitution, designates a spe-


i�
 
lass of variables as terms, and does not provide users with the 
apability

to extend the semanti
s of the Nuprl term language. JaLoF over
omes these

problems by 
reating a modi�
ation of the Nuprl term language 
alled JAS.

The binding stru
ture of JAS permits the de�nition of a single fun
tion for

substitution of �rst order and higher order variables. Futhermore, JAS de�nes

substitution to operate over any 
lass of terms that a user designates as vari-

ables of an obje
t langauge. JaLoF also allows users to extend the operational

semanti
s of JAS with evaluation rules for 
onstru
ts of an obje
t langauge.

JaLoF utitlizes Java's ability to load 
lasses dynami
ally to make it extendable.

An obje
t logi
 is de�ned as a 
olle
tion of 
lasses whi
h are loaded dynami
ally

into JaLoF. These 
lasses are used to 
reate Java obje
ts that JaLoF uses for

reasoning within the obje
t logi
.

7 A
knowledgement

I thank Jesus Christ for giving me the ability to pursue this work.

Referen
es

[1℄ Robert Constable. The Stru
ture of Nuprl's Type Theory .

http://www.
s.
ornell.edu/Info/Proje
ts/NuPrl/do
uments/Constable/1st�le.ps,

1997.

[2℄ Robert L. Constable et al. Implementing Mathemati
s with the Nuprl Proof

Development System. Prenti
e Hall, Englewood Cli�s, NJ, 1986.

[3℄ Jo�elle Despeyroux, Frank Pfenning, and Carsten S
hrmann. Primitive

re
ursion for higher-order abstra
t syntax. In Pro
eedings of the Third

International Conferen
e on Typed Lambda Cal
ulus and Appli
ations

(TLCA'97), number 1210 in Le
ture Notes in Computer S
ien
e, pages

147{163. Springer-Verlag, April 1997.

[4℄ Jason J. Hi
key. Nuprl-Light: An implementation framework for higher-

order logi
s. In Logi
 and Computer S
ien
e. Springer Verlag, 1997.

[5℄ Raymond M
Dowell and Dale Miller. A logi
 for reasoning with higher-

order abstra
t syntax. In Pro
eedings of the Twelfth Annual Symposium on

Logi
 in Computer S
ien
e, pages 434 { 445, 1997.

[6℄ Roderi
k Moten. Con
urrent Re�nement in Nuprl. PhD thesis, Cornell

University, 1997.

9



[7℄ Roderi
k Moten. Exploiting parallelism in intera
tive theorem provers. In

Pro
eedings of the Eleventh International Conferen
e, TPHOLs 98, number

1479 in Le
ture Notes In Computer S
ien
e, pages 315{330, 1998.

[8℄ Lawren
e C. Paulson. Isabelle: A Generi
 Theorem Prover. Number 828

in Le
ture Notes in Computer S
ien
e. Springer-Verlag, Berlin, 1994.

[9℄ Frank Pfenning and Carsten S
h�urmann. System des
ription: Twelf { a

meta-logi
al framework for dedu
tive systems. In Pro
eedings of the 16th

International Conferen
e on Automated Dedu
tion (CADE-16), number

1632 in Le
ture Notes in Arti�
ial Intelligen
e, pages 202{206. Springer-

Verlag, July 1999.

[10℄ Carsten S
h�urmann and Frank Pfenning. Automated theorem proving in a

simple meta-logi
 for LF. In Pro
eedings of the 15th International Confer-

en
e on Automated Dedu
tion (CADE-15), number 1421 in Le
ture Notes

in Arti�
ial Intelligen
e, pages 286{300. Springer-Verlag, July 1998.

10


