
The type theory and type
he
ker of GF

Petri M�aenp�a�a Aarne Ranta

Nokia Tele
ommuni
ations Chalmers & Gothenburg University

pmaenpaa�
s.hut.� aarne�
s.
halmers.se

Abstra
t

GF (Grammati
al Framework) is a Logi
al Framework enri
hed with
on
rete syntax spe
i�
ations.

Ordinary type-theoreti
al judgements of typing and de�nitional equality spe
ify a theory. In addition, a

judgement
arries a des
ription of how to produ
e a string in
on
rete syntax. The intended prin
ipal

appli
ation area of GF is natural languages. It des
ribes formal languages just as well, although less

general tools exist that are optimized for them. Natural and formal languages
an be
ombined in an

interfa
e to a proof editor of a logi
al framework by means of GF. Indeed, su
h an experimental interfa
e

has been made for Agda as an appli
ation of GF. This presentation fo
uses on matters familiar from

syntax-dire
ted editors of logi
al frameworks, although GF also has other appli
ations: in semanti
ally

pre
ise multilingual natural language do
umentation, and in
ompiling the programming language Shines.

1 Overview of GF

This paper presents the type-theoreti
al stru
ture and type
he
king prin
iples of GF (Grammati
al Frame-

work). GF is a variant of Martin-L�of's higher-level type theory with metavariables and rules for
on
rete

syntax, based on type-theoreti
al grammar (Ranta 1994). We shall use the term type theory for Martin-L�of's

higher-level type theory. Se
tion 2
ontains the basi
 rules of type theory that GF uses.

Consider the following spe
i�
ation of a fragment of arithmeti
 in type theory extended with de�nitions by

pattern equations, as in ALF.

Nat, Prop : set

zero : Nat

su

 : (x:Nat)Nat

sum : (x:Nat)(y:Nat)Nat

sum(x,zero) = x : Nat

sum(x,su

(y)) = su

(sum(x,y)) : Nat

EqNat : (x:Nat)(y:Nat)Prop

We would usually like to use a less formal
on
rete syntax instead of the above abstra
t syntax. Logi
al

frameworks do not help here, although many have a user interfa
e with layout
onventions. They might allow

a
on
rete syntax where 0 stands for zero, x' for su

(x), (x+y) for sum(x,y), and x=y for EqNat(x,y).

In GF one may repla
e these layout
onventions by logi
ally rigorous
on
rete syntax de�nitions in the

framework itself. This is done by extending the above type-theoreti
al theory into the GF grammar

Nat, Prop :
at

zero : Nat - "0"

su

 : (x:Nat)Nat - x "'"

sum : (x:Nat)(y:Nat)Nat - "(" x "+" y ")"

sum(x,zero) = x : Nat

sum(x,su

(y)) = su

(sum(x,y)) : Nat

EqNat : (x:Nat)(y:Nat)Prop - x "=" y

1

2 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

The grammar �rst de�nes the synta
ti

ategories (or
ategories for short) Nat and Prop. They are types of

expressions, the synta
ti

ounterpart of the \semanti
" notion of type. The fun
tions zero, su

, sum and

EqNat now form abstra
t syntax trees. Their rules are annotated synta
ti
ally with linear patterns, whi
h

spe
ify the string that
orresponds to a syntax tree. The string is the linearization of the tree, and the tree

is a parse tree of the string.

A linear pattern spe
i�es the
on
rete syntax of an expression generated by a grammati
al rule. The term

expression is in fa
t ambiguous: it
an refer to syntax trees as well as the
orresponding strings. We shall

let the
ontext disambiguate whi
h is meant.

The grammar produ
es for example the strings 0, 0'' and (0''+0), whi
h denote natural numbers, as well

as the string 0 = 0'', whi
h denotes a proposition. The pattern equations imply that the strings (0''+0)

and (0+0'') denote the same natural number. This is be
ause the
orresponding syntax trees
ompute into

the same value su

(su

(zero)).

Moreover, GF
ontains a generi
 parser, generator and type
he
ker. They operate on an arbitrary GF

grammar, just as the type
he
ker of a logi
al framework operates on an arbitrary theory.

A GF grammar
an be seen as a synta
ti
ally annotated theory. A form of this idea appears already in Curry

(1963). It
ontrasts to attribute grammar (Knuth 1968) and its relatives, for example Ya

, that
onsist

of synta
ti
 rules with semanti
 annotations. M�aenp�a�a (1998) is an earlier a

ount of formal languages in

terms of type-theoreti
al grammar, with a systemati

omparison to attribute grammar.

One may also want to interfa
e a proof editor with English or some other natural language. GF allows this on

a par with its treatment of formal languages. It is instru
tive to
ompare a natural language grammar to the

one above with respe
t to syntax and semanti
s. We repla
e the synta
ti
 annotations with very simple ones

for mathemati
al English, disregarding deeper English grammati
al stru
ture (see the GF do
umentation

for that). Only the following de�nitions
hange.

zero : Nat - "zero"

su

 : (x:Nat)Nat - "the su

essor of" x

sum : (x:Nat)(y:Nat)Nat - "the sum of" x "and" y

EqNat : (x:Nat)(y:Nat)Prop - x "is equal to" y

To illustrate the des
riptive power of GF further, we enri
h the grammar with another domain of individuals

besides natural numbers, namely non-negative rationals. This is done by representing Nat now as a set

expression, letting Rat be another, and de
laring a new
ategory Elem parametrized over Set. To de�ne

expressions for proofs of propositions, we furthermore de
lare a
ategory Proof, parametrized over Prop.

Set, Prop :
at ; Elem(X) :
at (X:Set) ; Proof(X) :
at (X:Prop)

These
ategories represent the basi
 types of type theory. Elem must be parametri
, be
ause the judgement

Elem : (set)type is malformed, and similarly for Proof.

The rules for natural numbers now take the following form, with some numerals de�ned by pattern mat
hing.

Nat : Set - "N"

zero : Elem(Nat) - "0"

su

 : (x:Elem(Nat))Elem(Nat) - x "'"

sum : (x:Elem(Nat))(y:Elem(Nat))Elem(Nat) - "(" x "+" y ")"

sum(x,zero) = x : Elem(Nat)

sum(x,su

(y)) = su

(sum(x,y)) : Elem(Nat)

EqNat : (x:Elem(Nat))(y:Elem(Nat))Prop - x "=" y

two : Elem(Nat) - "2"

two = su

(su

(zero)) : Elem(Nat)

four : Elem(Nat) - "4"

four = sum(two,two) : Elem(Nat)

eight : Elem(Nat) - "8"

eight = sum(four,four) : Elem(Nat)

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 3

Rationals are represented as pairs of natural numbers that denote fra
tions. The denumerator of a fra
tion

is positive by
onstru
tion. They also have an equality predi
ate.

Rat : Set - "Q"

zeroRat : Elem(Rat) - "0"

fra
 : (x:Elem(Nat))(y:Elem(Nat))Elem(Rat) - x "/" y "'"

EqRat : (x:Elem(Rat))(y:Elem(Rat))Prop - x "=" y

This grammar shows that GF is able to des
ribe overloading, whereas ordinary logi
al frameworks support

it only by layout
onventions. For instan
e, the string 0 is ambiguous. It
an denote either a natural number

or a rational number. The ambiguity is resolved on the level of syntax trees: zero di�ers from zeroRat.

De
iding whi
h syntax tree an ambiguous string
orresponds to requires type-
he
king in addition to parsing.

Another example of overloading is the string =, whi
h
orresponds to the fun
tions EqNat and EqRat, as well

as to the general equality predi
ate

Eq : (A:Set)(x:Elem(A))(y:Elem(A))Prop - x "=" y

This rule furthermore illustrates overloading
ombined with type argument hiding, a layout
onvention fa-

miliar from logi
al frameworks. The �rst argument of Eq is hidden by its omission in the linear pattern.

Proof arguments
an be omitted as well. The following de�nition of the inverse fun
tion illustrates this.

It also requires de�ning a non-zero predi
ate, a prede
essor fun
tion, and a rule for proving that positive

rationals di�er from zero.

notZero : (x:Elem(Rat))Prop - x "<>" "0"

pred : (x:Elem(Nat))Elem(Nat) - "(" x "- 1)"

pred(zero) = zero : Elem(Nat)

pred(su

(x)) = x : Elem(Nat)

positiveIsNotZero : (x:Elem(Nat))(y:Elem(Nat))Proof(notZero(fra
(su

(x),y))) -

x "'" "/" y "'" "<>" "0"

inv : (z:Elem(Rat))(h:Proof(notZero(z)))Elem(Rat) - "1" "/" "(" z ")"

inv(fra
(x,y),h) = fra
(su

(y),pred(x)) : Elem(Rat)

The inv rule states that the inverse of a rational number z exists only z is not zero. The proof h of this

ondition is omitted in the
on
rete syntax 1 / (z) for the inverse, although it is a
onstituent of the syntax

tree inv(z,h). This kind of omission of proofs is a
ommonpla
e in informal mathemati
al language.

Yet another phenomenon illustrated by the grammar is permutation of arguments of a syntax tree in the

on
rete syntax. This o

urs in the rule

sumList : (a:Elem(Nat))(d:Elem(Nat))(f:(x:Elem(Nat))Elem(Nat))Elem(Nat) -

"sum" "[" f "|" x "<-" "[" a ".." a "+" d "℄" "℄"

sumList(a,zero,f) = f(a) : Elem(Nat)

sumList(a,su

(d),f) = sum(f(sum(a,su

(d))),sumList(a,d,f)) : Elem(Nat)

where the arguments a, d and f, in left-to-right order, are permuted to f, a, d in the linear pattern. (The

on
rete syntax is that of a list
omprehension.)

The sumList rule also illustrates redupli
ation of arguments. The argument a o

urs twi
e in the linear

pattern. Moreover, the linear pattern
ontains an o

urren
e of x, whi
h is a bound variable of the argument

f. This argument is a fun
tion from natural numbers to natural numbers. Se
tion 2 des
ribes the linearization

of bound variables in more detail.

The grammar illustrates how a linear pattern
ontains the arguments of the
orresponding syntax tree, with

possible omissions, permutations and redupli
ations, and strings inserted in between. GF allows all of these

operations in a logi
ally rigorous way. They go beyond the expressive power of
ontext-free grammar. The

4 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

omission of arguments raises the question of how GF grammars
an be parsed. As Se
tion 3 explains, parsing

is su

essful in virtue of metavariables.

Also some other logi
al frameworks support forms of synta
ti
 annotation that are more restri
ted than

those of GF. Thus for example Isabelle (Paulson 1998,
hapter 7) allows the use of priority grammars and

a mix�x notation to spe
ify
on
rete syntax. An example is

"plus" : [exp, exp℄ -> exp ("_ + _" [0,1℄ 0)

Here 0 and 1 are pre
eden
e values. The left argument of plus is expe
ted to have pre
eden
e 0 and the right

argument 1. The whole expression re
eives the pre
eden
e value 0. Parentheses are inserted into produ
ed

strings a

ording to this pre
eden
e spe
i�
ation.

GF also supports spe
ifying pre
eden
e information and
orresponding parentheses. This
omes out as a

spe
ial
ase ofmorphologi
al information. Morphologi
al variation, although ubiquitous in natural languages,

is s
ant in formal languages: pre
eden
e is often the only example of it. Se
tion 2 des
ribes the formal rules

of morphologi
al variation, while the below GF de�nition of the Isabelle plus illustrates its use to de�ne

pre
eden
es:

plus : (x:exp)(y:exp)exp -

lpar(0,Pre
(x)) x rpar(0,Pre
(x)) "+" lpar(1,Pre
(y)) y rpar(1,Pre
(y)) - 0

This de�nition uses a basi

ategory exp of expressions, and the morphologi
al operations lpar and rpar.

They operate on a morphologi
al parameter for pre
eden
e, whose possible values are (at least) 0 and 1. By

omparing the pre
eden
es m and n, lpar(m,n) produ
es either a left parenthesis or the empty string, and

rpar(m,n) produ
es either the right parenthesis or the empty string. (Cf. Appendix B for more examples.)

In
ontrast to GF, the mix�x notation of Isabelle does not support argument hiding, permutation or redu-

pli
ation. The arguments of the fun
tion are represented by the
hara
ter _ in the linear pattern, and this

makes sense only if the arguments o

ur exa
tly on
e and in exa
tly the same order as in the fun
tion

de
laration. Isabelle does allow overloading, whi
h
an be resolved by type inferen
e. Its use of pre
eden
es

is a spe
ial
ase of the morphologi
al parameters of GF.

Some logi
al frameworks do support argument hiding. For example, in ALF one may spe
ify a number of

arguments to be hidden in a fun
tion appli
ation, starting the
ount from the left. This is a spe
ial
ase of

argument omission in GF. The Eq fun
tion above is an example with one argument hidden.

One
an also
ompare GF to L

A

T

E

X (Lamport 1985), whose ma
ros
orrespond to GF linear patterns without

parameters. The de�nition of a L

A

T

E

X ma
ro allows for arbitraty permutations, repetitions, and omissions

of arguments. For instan
e, the inverse fun
tion
ould be represented thus:

\new
ommand{\inv}[3℄{#1 / (#2)}

with the omission of the third argument. An important di�eren
e between GF and L

A

T

E

X is, of
ourse, that

the latter only has one type of expressions: any pie
e of L

A

T

E

X
ode may appear at any argument pla
e of

any ma
ro.

Finally, from the point of view of presenting proofs, GF
an be
ompared with the text generation fun
-

tionality of Coq (Cos
oy, Kahn, and Th�ery 1995). In Appendix C, some of the text formats from that work

are used in linearization rules for proof
onstants. In Coq, natural language generation stops at the level of

proof stru
ture, so that the propositions
ontained in those proofs remain in formal notation. Moreover, the

text generation rules are hard-wired rather than user-de�nable. In fa
t, the emphasis of text generation in

Coq has been on \optimizing" proof texts so as to make them short and idiomati
. This aspe
t of Coq has

no
ounterpart in GF yet.

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 5

2 Forms of judgement and rules of inferen
e

The starting point of GF was the higher-level type theory of Martin-L�of and the way in whi
h it was used

for linguisti
 analysis in Ranta (1994; see
hapter 8 for the version of type theory used). Besides synta
ti

annotations, GF di�ers from Martin-L�of's type theory in two ways: it has no prede�ned basi
 types, and,

like ALF (Magnusson 1994), it has metavariables to stand for unde�ned
onstru
tions.

Metavariables are used in GF for type
he
king and user intera
tion, and they will be dis
ussed in more

detail in Se
tion 3. As for basi
 types, Martin-L�of's two rules

set : type; elem(A) : type (A : set)

are repla
ed by a s
heme for basi
 type de
larations:

C(x

1

; : : : ; x

n

) : type (x

1

: �

1

; : : : ; x

n

: �

n

);

that is, C(x

1

; : : : ; x

n

) is a type depending on the variables x

1

: �

1

; : : : ; x

n

: �

n

. Types are then formed by

instantiations of variables in basi
 types and by dependent fun
tion type formation,

� : type

(x : �)

� : type

(x : �)� : type

:

From the linguisti
 point of view, the basi
 types of GF play the role of synta
ti

ategories. Basi
 type

de
larations are annotated by de�nitions of linearization types, whi
h de�ne the behaviour of obje
ts of those

types in linearization:

�

C(x

1

; : : : ; x

n

) : type (x

1

: �

1

; : : : ; x

n

: �

n

);

C

o

= L : lintype:

Linearization types have a stru
ture of their own, de�nable in simple type theory. There is a type str of

strings, and user-de�nable parameter types, whi
h are �nite sets of parameter values. Examples of parameter

types are the English (or Fren
h, German, or Latin) number, the German (or Latin) gender, and the Latin

ase:

Num = fsg; plg; Gen = fmas
; fem; neutg; Cas = fnom; a

; gen; dat; ablg:

Parametre types
an be asso
iated with synta
ti

ategories either as variable features or as inherent features.

These
orrespond respe
tively to the inherited and synthesized attributes of attribute grammar (Knuth 1968,

see M�aenp�a�a 1998 for a dis
ussion of the distin
tion in terms of type-theoreti
al grammar). For instan
e,

German and Latin
ommon nouns have variable number and
ase, and inherent gender: verbum (\word")

has forms for di�erent numbers and
ases, su
h as verbum (sg. nom. and a

.) and verborum (pl. gen.), but

not for di�erent genders|it is inherently of neuter gender. Adje
tives have both gender, number, and
ase

variable. Verbs in many languages have variable number, mode, and tense, but no
ase.

The general form

1

of the linearization type of a
ategory � is

((Var

�

)str; Inh

�

)

that is, a pair whose �rst
omponent is a fun
tion from the variable features of � to strings, and the se
ond

omponent is a tuple of inherent features of �. For instan
e, Latin
ommon nouns and adje
tives have the

following linearization types:

CN

o

= ((Num;Cas)str; (Gen)); Adj

o

= ((Gen;Num;Cas)str; ()):

The grammati
al rules of GF are fun
tion de
larations annotated by linearization fun
tions.

�

F : (x

1

: �

1

) � � � (x

n

: �

n

)�;

F

o

= l : (x

1

: �

o

1

) � � � (x

n

: �

o

n

)�

o

:

1

The a
tual de�nition of linearization types is slightly more general than this, repla
ing strings by token lists, and re
ognizing

tuples of token lists as linearizations of so-
alled dis
ontinuous
onstituents.

6 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

Thus the linearization fun
tion F

o

orresponding to a fun
tion F is a fun
tion from the linearization types

of the arguments to the linearization type of the value.

A fun
tion type (x

1

: �

1

) � � � (x

n

: �

n

)�
an always be seen in the form in whi
h � is a basi
 type (that is, not

a fun
tion type itself). GF uses this view to impose the rule of full appli
ation, that is, appli
ation whose

value is an obje
t of a basi
 type. Su
h a fun
tion appli
ation
an always be linearized into a string (whi
h

possibly depends on variable features), and its inherent features
an be
al
ulated. The full appli
ation rule

is
ompleted by the generi
 linearization rule of GF:

F : (x

1

: �

1

) � � � (x

n

: �

n

)� a

1

: �

1

: : : a

n

: �

n

(x

1

= a

1

; : : : ; x

n�1

= a

n�1

)

�

F (a

1

; : : : ; a

n

) : �

n

(x

1

= a

1

; : : : ; x

n

= a

n

)

F (a

1

; : : : ; a

n

)

o

= F

o

(a

o

1

; : : : ; a

o

n

) : �

o

Linearization is thus
ompositional, in the sense that the linearization of a fun
tion appli
ation is a fun
tion

of the linearizations of its immediate
onstituents.

For example, the rule of adje
tival modi�
ation in Latin is formalized as follows:

�

Mod : (A : CN)(B : Adj(A))CN

Mod

o

((A; (g)); (B; ())) = ((n)(
)(A(n;
) ++B(g; n;
)); (g))

As for the fun
tion de
laration, noti
e the dependen
e of the
ategory of adje
tives on
ommon nouns:

semanti
ally speaking, a
ommon noun expresses a set, and an adje
tive expresses a propositional fun
tion

over a set. As for the linearization fun
tion, we have used pattern mat
hing against the linearization types

of the arguments of the fun
tion. The result is a
on
atenation of the noun with the adje
tive, both of whi
h

re
eive the number and the
ase of the whole
onstru
tion. The adje
tive also needs a gender, and it re
eives

the inherent gender g of the noun. The inherent gender of the whole
onstru
tion is likewise inherited from

the noun. Now, given appropriate rules for the simple nouns verbum (\word") and vita (\life"), and the

adje
tive �ternus (\eternal"; assume it applies both to word and to life), we
an form, for instan
e

vitam �ternam, \eternal life", feminine noun in the singular a

usative,

verborum �ternorum, \of eternal words", neuter noun in the plural genitive.

The
on
rete GF notation that has been implemented is slightly di�erent from the rule shown above, al-

though it must, of
ourse,
ontain the same information. What we would in fa
t write for Latin adje
tival

modi�
ation is

Mod : (A:CN)(B:Adj(A))CN -
ase (n,
) -> A(n,
) B(Gen(A),n,
) - Gen(A)

A GF grammar is a sequen
e of
ategory and fun
tion de
larations synta
ti
ally annotated in the way

explained above. Given the parallel stru
tures of ordinary (\semanti
") types and linearization types, it is

always possible to
he
k the well-formedness of a GF grammar, both in the semanti
 and in the synta
ti

sense. Semanti
 type
he
king, whi
h we inherit from Martin-L�of's type theory, is explained in Se
tion 3.

Synta
ti
 type
he
king is easier, sin
e it is just a spe
ial
ase of Hindley-Milner type
he
king without

polymorphism. But it is vital for the proper fun
tioning of a GF grammar in its algorithmi
 use, whi
h

omprises linearization and its inverse, parsing. The language of synta
ti
 annotations is so designed that it

is always possible to generate a parsing algorithm
orresponding to a GF grammar.

In addition to
ategory and fun
tion de
larations, GF grammars
an also
ontain de�nitions of parameter

types and of string-valued fun
tions on them (su
h as verb
onjugations). Furthermore, there
an be semanti

de�nitions, whi
h are judgements of the form

a = b : � (x

1

: �

1

; : : : ; x

n

: �

n

)

just like in Martin-L�of's type theory. Semanti
 de�nitions are the basis of notions like
omputation, normal

form, and paraphrase with respe
t to GF grammars. It should be noted that linearization is not invariant

under
omputation: the semanti
 equality of a and b does not guarantee the equality of the strings a

o

and

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 7

b

o

. This should not be surprising: just re
all that 2+2, 2�2, and 4 are di�erent as expressions even though

equal as numbers.

It remains to say a word about the linearization of bound variables. As an intuitive example, take the

type-theoreti
al de
laration of the universal quanti�er,

8 : (A : set)(B : (x : elem(A))prop)prop

and the ordinary expression of a universally quanti�ed proposition,

(8x : A)B(x):

There is a systemati

onne
tion between the two, a
onne
tion that GF annotations should be able to make

pre
ise. In a
tual GF, the de
laration of the universal quanti�er with its synta
ti
 annotation is

forall : (A:Set)(B:(x:Elem(A))Prop)Prop - "(\forall" x�B ":" A ")" B

In this de
laration, the bound variable x is used in the linearization rule alongside with the ordinary argu-

ments A and B. The symbol B is used, not for an expression of the fun
tion type (x:Elem(A))Prop, but for

an expression of the type Prop, where the variable x may o

ur free|the \body" of the fun
tion. In order

for linearization rules like this to work, we need to require that all fun
tions appear in their �-expanded

form. Then it makes sense to distinguish synta
ti
ally between the variables and the body of a fun
tional

expression. The requirement of �-expansion is
losely asso
iated with the previously explained rule of full

appli
ation.

One of the
entral ideas of the higher-level type theory of Martin-L�of is to lo
alize all variable bindings in the

abstra
tion rule. If a fun
tion de
laration in GF has a fun
tion type among its argument types, the fun
tion

is likewise treated as a variable-binding operator, and the synta
ti
 annotation has to spe
ify the way in

whi
h the variable binding is shown in the
on
rete expression. We have already seen two examples of this:

the 8 rule above, and the sumList rule in Se
tion 1. In order to make the annotation language
ompletely

pre
ise, we still have to de�ne the linearization types of fun
tion types, as well as the linearization of fun
tion

abstra
ts:

� : type

(x : �)

� : type

�

(x : �)� : type

((x : �)�)

o

= (str; �

o

)

;

(x : �)

b : �

�

(x)b : (x : �)�

((x)b)

o

= (x

o

; b

o

)

:

In other words, the linearization type of a fun
tion type (if used as an argument type of a synta
ti
 rule) is

the type of strings paired with the linearization type of the value type. The linearization of an abstra
t is

the abstra
ted variable symbol paired with the linearization of the body. We have used the notation x

o

to

denote the variable symbol x.

The rule of universal quanti�er formation
an now be formalized

�

8 : (A : set)(B : (x : elem(A))prop)prop

8

o

(A; (x;B)) = "(" ++"8"++x++" : " ++A++")" ++B

assuming there are no morphologi
al parameters for set and elem, and simplifying the notation for their

linearizations by ignoring empty tuples a

ordingly.

3 Type
he
king in GF

The starting point of GF's type
he
ker is Coquand's (1996) algorithm for type
he
king dependent types.

GF extends this algorithm by a treatment of metavariables and
onstraints. Furthermore, GF repla
es the

axiom type : type by the parametri
 axiom s
heme for basi
 types presented in the Se
tion 2. GF's type

he
ker is thus generi
 over languages with arbitrary basi
 types. Appendix A presents the type
he
ker's

main fun
tions, in Haskell
ode.

8 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

Following Coquand's algorithm, the type
he
ker operates in terms of a distin
tion between (semanti
) values

and (synta
ti
) terms (the datatypes Val and Term). Values
arry lo
al expli
it substitutions, wrapped

together with a term into a
losure (formed by the
onstru
tor VClos). An example is the
losure value

x(x = 1), whi
h
onsists of the variable term x with the lo
al expli
it substitution (x = 1).

Now we des
ribe the main di�eren
es to Coquand's algorithm. One that is also present in the implementation

of Agda's proof
he
ker, although in a di�erent form, is the introdu
tion of metavariables. In
he
king

whether a metavariable ? has a type T , GF �rst looks up ? in the list of open goals of the
urrent proof state.

If it o

urs there, with the type U , the algorithm adds the
onstraint T = U to the proof state. Otherwise,

it adds the new open goal ? : T to the proof state. In the former
ase, the lo
al
ontext x

1

: �

1

; : : : ; x

m

: �

m

of U is mat
hed with the type environment y

1

: �

1

; : : : ; y

n

: �

n

of the proof state. The
onstraints �

i

= �j

for all synta
ti
ally equal variables x

i

= y

j

are added to the proof state.

Perhaps the most signi�
ant di�eren
e to Coquand's algorithm is type
he
king basi
 types. Coquand's

algorithm uses the basi
 type type, whereas GF has the parametri
 s
heme for basi
 types. To
he
k

whether a basi
 type C(a

1

; : : : ; a

n

) is a valid type, GF looks up C in the list of de
lared
ategories of a

grammar. A
ategory de
laration
ontains a parameter list x

1

: �

1

; : : : ; x

n

: �

n

. GF type
he
ks the a
tual

parameters a

1

: �

1

; : : : ; a

n

: �

n

(x

1

= a

1

; : : : ; x

n�1

= a

n�1

) of a
ategory instantiation in turn (the fun
tion

he
k args).

Category and
onstant de
larations make up the data type Theory. It is a
omponent of the type
he
king

environment of type REnv, in addition to the value environment, type environment, goals and
onstraints.

The last main di�eren
e to Coquand's algorithm is that GF type inferen
e and type
he
king return a list

of new open goals and
onstraints (the fun
tions infer type and
he
k type). Type inferen
e of
ourse

returns a type as well. Coquand's type inferen
e algorithm returns just a type upon su

ess, and his type

he
king algorithm returns a boolean value. This di�eren
e is due to GF's introdu
tion of metavariables and

onstraints into the algorithm.

Intera
tive proof editing in GF represents the proof state in terms of values and terms. However, it displays

values to the user by �rst transforming them into terms, be
ause he works in the
ontext of a grammar that

ontains only terms. A value is displayed by
arrying out the lo
al expli
it substitutions in the term. Agda

uses a similar approa
h, although it resolves
onstraints in a di�erent way (Coquand and Coquand 1999).

An important
ase of
onverting a value into a term in intera
tive proof editing is when a
losure
onsists of

a metavariable with lo
al expli
it substitutions. An example is ?(x = 1), where the substitution x = 1 has

no dire
t e�e
t on the metavariable ?.

GF displays a metavariable without substitutions to the user. They have to be retained impli
itly in the

proof state however, be
ause metavariables are
onstants yet to be de�ned. Even if substitutions have

no dire
t e�e
t on a metavariable, be
ause it is a
onstant, they may have an indire
t e�e
t through the

onstraints that determine the possible values that a metavariable may
ome to have. For instan
e, ? may

be an expression depending on x, and the variable may get instantiated before ? itself is resolved.

Type
he
king in GF has a spe
ial fun
tion not present in ordinary logi
al frameworks: the type-theoreti
al

ontrol of overloading by resolving ambiguities. An ambiguous string may have several parse trees, whereas

a tree is always linearized in a determinate way. Parsing a string de�ned by means of argument omission

yields a syntax tree with metavariables in the omitted argument pla
es. Type
he
king then determines their

value, if possible. Sometimes ordinary uni�
ation does the job, but in general user intera
tion is required.

A situation where uni�
ation suÆ
es is parsing the string 0=0. Six possible syntax trees result: EqNat(zero,

zero), EqRat(zeroRat,zeroRat), Eq(?,zero,zero), Eq(?,zeroRat,zeroRat), Eq(?,zero,zeroRat) and

Eq(?,zeroRat,zero). Type
he
king rules out the last two, be
ause the se
ond and third arguments of Eq

are not of the same type. The use of dependent types in the grammar allows enfor
ing this
onstraint. It

enables the type
he
ker to produ
e the unsolvable
onstraint Nat = Rat. The uni�
ation
omponent of the

type
he
ker automati
ally instantiates the third and fourth alternative syntax trees to Eq(Nat,zero,zero)

and Eq(Rat,zeroRat,zeroRat), respe
tively, so there are four type
orre
t parses altogether.

Parsing ambiguous strings into syntax trees with metavariables also illustrates another
ru
ial property of

parsing in GF. Namely, the
ompleteness of parsing is ensured by letting it terminate in syntax trees that

may
ontain metavariables. Finding their instantiations requires �nding proofs in general, and
an hen
e

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 9

be arbitrarily diÆ
ult. Ensuring the
ompleteness of the parsing algorithm makes metavariables ne
essary

in GF, whereas ordinary logi
al frameworks may
hoose to do without them. This is be
ause they la
k

overloading and make proofs always expli
it in expressions.

The use of dependent types in a grammar rules out semanti
ally malformed expressions like Eq(Nat,zero,

zeroRat) in a straightforward way. They simply
annot be
onstru
ted a

ording to the typing rules. Su
h

restri
tions on forms of synta
ti

ombination by means of dependent types
an be
ontrasted to approa
hes

like Higher Order Abstra
t Syntax (Pfenning and Elliott 1988) that use simple types instead, and dis
ard

su
h semanti
ally malformed expressions by
he
king whether separate semanti
al well-formedness predi
ates

hold.

4 Con
lusion

We have presented Grammati
al Framework's system of synta
ti
 annotations for Martin-L�of's higher-level

type theory. Its type-
he
ker is generi
 with respe
t to grammars, rather than theories as in ordinary logi
al

frameworks. It also has a parsing and a linearization algorithm, generi
 over grammars as well. A GF

grammar is a theory with synta
ti
 annotations, together with a s
heme for introdu
ing basi
 types instead

of the single basi
 type of sets or propositions of type theory.

This system of synta
ti
 annotations is suÆ
ient for a wide variety of notations. For example, the layout

onventions in implementations of logi
al frameworks, the priority grammars and mix�x notation of Isabelle,

and the ma
ros of L

A

T

E

X are spe
ial
ases of
on
rete syntax annotations in GF. In fa
t, the GF annotations

suÆ
e for a \mathemati
al verna
ular", a full natural language for mathemati
s.

GF
an also be used as a prototyping tool for programming languages, as is done for Shines (Shines pro-

gramming language). A GF grammar for a language is
apable of des
ribing its type-theoreti
al semanti
s,

both stati
 and dynami
, at the same time as its syntax, both abstra
t and
on
rete. Thus one GF �le is

suÆ
ient for building the entire prototype of a new language.

Referen
es

[1℄ Agda home page. http://www.
s.
halmers.se/
atarina/agda/

[2℄ GF home page. http://www.xr
e.xerox.
om/resear
h/mltt/gf/gf-index/index.html

[3℄ Haskell B. Curry. Some logi
al aspe
ts of grammati
al stru
ture. In Roman Jakobson (ed.), Stru
ture of

Language and its Mathemati
al Aspe
ts: Pro
eedings of the Twelfth Symposium in Applied Mathemati
s,

pp. 56{68. Ameri
an Mathemati
al So
iety, 1963.

[4℄ Thierry Coquand. An algorithm for type-
he
king dependent types. S
ien
e of Computer Programming,

26:167{177, 1996.

[5℄ Catarina and Thierry Coquand. Stru
tured type theory. Preliminary version, June 1999. Available at

http://www.
s.
halmers.se/
oquand/type.html

[6℄ Yanne Cos
oy, Gilles Kahn, and Laurent Th�ery. \Extra
ting text from proofs", Typed Lambda Cal
ulus

and Appli
ations, Le
ture Notes in Computer S
ien
e 902, Springer-Verlag, Heidelberg, 1995.

[7℄ Donald E. Knuth. Semanti
s of
ontext-free languages. Mathemati
al Systems Theory, 2:127{145, 1968.

Errata 5:95{96, 1971.

[8℄ Leslie Lamport. L

A

T

E

X. A Do
ument Preparation System. User's Guide and Referen
e Manual. Addison-

Wesley, Reading, 1985.

[9℄ Petri M�aenp�a�a. Semanti
al BNF. In E. Gimenez and C. Paulin-Mohring (eds.), Types for Proofs and

Programs, International Workshop TYPES'96, LNCS 1512, pp. 196{215, Springer, 1998.

10 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

[10℄ Lena Magnusson. An implementation of ALF, a proof editor based on Martin-L�of 's monomorphi
 type

theory with expli
it substitutions. PhD thesis, Chalmers University of Te
hnology, 1995.

[11℄ Per Martin-L�of. Intuitionisti
 Type Theory. Notes by G. Sambin of a series of le
tures given in Padua,

June 1980. Bibliopolis, Napoli, 1984.

[12℄ Lawren
e C. Paulson. Isabelle Referen
e Manual. With
ontributions by Tobias Nipkow and Markus

Wenzel, 1998. Available at

http://sunsite.do
.i
.a
.uk/pub/0-Most-Pa
kages/smlnj/isabelle/ .

[13℄ Frank Pfenning and Conal Elliott. Higher-order abstra
t syntax. In Pro
eedings of the ACM SIGPLAN

'88 Symposium on Language Design and Implementation, pp. 199{208, Atlanta, Georgia, June 1988.

[14℄ Aarne Ranta. Type-Theoreti
al Grammar. Oxford University Press, 1994.

[15℄ Shines programming language. Do
umentation available at HiBase proje
t home page

http://hibase.
s.hut.fi/hibase/hibase.html .

Appendix A: The type
he
ker

type Ident = String

data Fun = Fun Ident

data Symb = Symb Ident

data Cat = Cat Ident

type MetaSymb = (Cat,Ident)

data Term = Cons Fun

| Var Symb

| Meta MetaSymb

| App Term Term

| Abs Symb Term

| Ground Cat [Term℄ - basi
 types

| Prod Symb Term Term - dependent fun
tion types

| Predef (Ident,Ident) - predefined
onstants

data Val = VGen Int | VApp Val Val | VCons Fun | VClos Env Term | VType

| VPredef (Ident,Ident)

type Theory = ([(Cat, Env)℄, [(Fun, Val)℄)

type Env = [(Symb, Val)℄

type Goals = [((Cat, Ident), (Val, Env))℄

type REnv = (Theory, Env, Env, Goals, Constrs)

type Constrs = [(Val, Val)℄

update :: Env -> Symb -> Val -> Env

update env x u = (x, u) : env

app :: Val -> Val -> Val

eval :: Env -> Term -> Val

app u v =

ase u of

VClos env (Abs x e) -> eval (update env x v) e

_ -> VApp u v

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 11

eval env e =

ase e of

Cons
 -> VCons

Var x ->
ase lookup x env of

Just a -> a

_ -> error ("Unknown identifier: " ++ prTerm (Var x))

App e1 e2 -> app (eval env e1) (eval env e2)

Predef d -> VPredef d

_ -> VClos env e

whnf :: Val -> Val

whnf v =

ase v of

VApp u w -> app (whnf u) (whnf w)

VClos env e -> eval env e

_ -> v

infer_type :: Int -> REnv -> Term -> Err (Val, Goals, Constrs)

infer_type k env�((_,
on), rho,
o, qs,
s) e =

ase e of

Cons
 ->

ase lookup

on of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown
onstant: " ++ prTerm (Cons
))

Predef (
,_) ->

ase lookup
 predefRules of

Just (a,_,_) -> Ok (term_val (predeftype2type a), [℄, [℄)

_ -> Bad ("Unknown predefined
onstant: " ++ prTerm e)

Var x ->

ase lookup x
o of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown variable: " ++ prTerm (Var x))

Meta s�(i, n) ->

ase (lookup s [(s1, t) | (s1, (t,
)) <- qs℄) of

Just a -> Ok (a, [℄, [℄)

_ -> Bad ("Unknown subgoal: " ++ prMeta (i, n))

App f
 ->

ase (infer_type k env f) of

Ok (t, qs1,
s1) ->
ase whnf t of

VClos env1 (Prod x a b) ->

let (qs2,
s2) =
he
k_type k env
 (VClos env1 a)

in Ok (VClos (update env1 x (VClos rho
)) b,

qs2 ++ qs1,
s2 ++
s1)

_ -> Bad "Produ
t expe
ted in appli
ation"

Bad s -> Bad s

_ -> Bad "Cannot infer type"

he
k_type :: Int -> REnv -> Term -> Val -> (Goals, Constrs)

he
k_type k env�((
at,
on), rho,
o, qs,
s) e v =

ase e of

Meta s ->

ase lookup s qs of

Just (a, t) ->

([℄, (a, v) : [(t1, t2) | (x1, t1) <-
o, (x2, t2) <- t, x1 == x2℄)

_ -> ([(s, (v,
o))℄, [℄)

12 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

Abs x n ->

ase whnf v of

VClos env1 (Prod y a b) ->

let w = VGen k

in
he
k_type (k + 1)

((
at,
on), update rho x w, update
o x (VClos env1 a), qs,
s)

n

(VClos (update env1 y w) b)

_ -> error "Produ
t expe
ted in abstra
tion"

Ground
 es ->

ase whnf v of

VType ->

ase lookup

at' of

Just as -> if length as == length es

then
he
k_args k env [℄ es as

else ([℄,arityConstrs (length as) (length es))

_ -> error ("Unknown type identifier in: " ++ prTerm e)

where
at' =
at ++ [(Cat
, [℄) | (
,_) <- predefCats℄

_ -> error "Type expe
ted"

Prod x a b ->

ase whnf v of

VType ->

let (qs1,
s1) =
he
k_type k env a VType

(qs2,
s2) =
he
k_type (k + 1) ((
at,
on),

update rho x (VGen k),

update
o x (VClos rho a),

qs,

s)

b VType

in (qs2 ++ qs1,
s2 ++
s1)

_ -> error "Type expe
ted"

 ->
ase infer_type k env e of

Ok (a, qs1,
s1) -> (qs1, (a, v) :
s1)

Bad s -> (typeProblem s, [℄)

he
k_args :: Int -> REnv -> Env -> [Term℄ -> Env -> (Goals, Constrs)

he
k_args k env�(_, rho, _, _, _) env1 es
ont =

ase (es,
ont) of

([℄, [℄) -> ([℄, [℄)

(a : l, (x, VClos [℄ t1) : m) ->

let (qs1,
s1) =
he
k_type k env a (VClos env1 t1)

(qs2,
s2) =
he
k_args k env (update env1 x (VClos rho a)) l m

in (qs2 ++ qs1,
s2 ++
s1)

_ -> error "Malformed family of types"

Appendix B: A GF grammar of Mini ML

The following is a pie
e of real GF
ode, des
ribing a fun
tional programming language with the basi
 types

of non-negative de
imal integers and Boolean values, with fun
tion types and
artesian produ
ts, and with

let expressions. To give an example, the syntax tree

Prg(Prod(Bool,Int),

App(Int,Prod(Bool,Int),

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 13

Abs(Int,Prod(Bool,Int),

(x)Pair(Bool,Int,True,RP(Int,Int,Pair(Int,Int,Zero,x)))),

UsePos(AddDig(UseDig(Dig2),Dig3))))

of type Prog is linearized into the string

(\ x -> (true, snd (0, x)))23 : Bool * Int

and
an be
omputed into (true, 23) : Bool * Int, by using the de�nitions of the grammar.

The grammar starts with the spe
i�
ation of a Tokenizer, followed by a de
laration of morphologi
al

Parametres and their values, de�nitions of morphologi
al Operations, de
larations of Categories with

their dependen
ies and linearization types, de
larations of expli
it Variables, and, �nally, Rules and

Definitions. For full details of the grammar format, we refer to the do
umentation on GF home page.

Tokenizer
ode Tokens "->" ;

Parametres Pre
(p1,p2,p3) ; (* pre
eden
e *)

Categories Prog ; Type - - Pre
 ; Exp(Type) - - Pre
 ; Dig ; Pos ;

Variables x, y, z, X, Y, Z (Exp) ; (* variables of type Exp *)

Operations (* parentheses as fun
tion of pre
eden
e *)

par(Pre
,Pre
) =

ase (p1,p) -> ("",""),

(p2,p1) -> ("(",")"), (p2,p2) -> ("",""), (p2,p3) -> ("",""),

(p3,p1) -> ("(",")"), (p3,p2) -> ("(",")"), (p3,p3) -> ("","") ;

Rules

Dig1. Dig -> 1 ; (* de
imal integers, using
ontext-free notation *)

Dig2. Dig -> 2 ;

Dig3. Dig -> 3 ;

Dig4. Dig -> 4 ;

Dig5. Dig -> 5 ;

Dig6. Dig -> 6 ;

Dig7. Dig -> 7 ;

Dig8. Dig -> 8 ;

Dig9. Dig -> 9 ;

UseDig. Pos -> Dig ;

AddDig. Pos -> Pos Dig ;

AddZero. Pos -> Pos 0 ;

Prg : (A:Type)(a:Exp(A))Prog - a ":" A ; (* program with its type *)

Int : Type - "Int" - p3 ; (* the type of integers *)

Zero : Exp(Int) - "0" - p3 ;

UsePos : (p:Pos)Exp(Int) - p - p3 ;

Bool : Type - "Bool" - p3 ; (* the type of truth values *)

True : Exp(Bool) - "true" - p3 ;

False : Exp(Bool) - "false" - p3 ;

Fun : (A:Type)(B:Type)Type - (* the fun
tion type *)

par.1(p2,Pre
(A)) A par.2(p2,Pre
(A)) "->" B - p1 ;

Abs : (A:Type)(B:Type)(b:(x:Exp(A))Exp(B))Exp(Fun(A,B)) -

14 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

"\\" x "->" b - p1 ;

App : (A:Type)(B:Type)(
:Exp(Fun(A,B)))(a:Exp(A))Exp(B) -

par.1(p2,Pre
(
))
 par.2(p2,Pre
(
)) par.1(p3,Pre
(a)) a par.2(p3,Pre
(a)) - p2 ;

Prod : (A:Type)(B:Type)Type - (* the
artesian produ
t *)

par.1(p2,Pre
(A)) A par.2(p2,Pre
(A)) "*" par.1(p2,Pre
(B)) B par.2(p2,Pre
(B)) -

p2 ;

Pair : (A:Type)(B:Type)(a:Exp(A))(b:Exp(B))Exp(Prod(A,B)) -

"(" a "," b ")" - p3 ;

LP : (A:Type)(B:Type)(
:Exp(Prod(A,B)))Exp(A) -

"fst" par.1(p3,Pre
(
))
 par.2(p3,Pre
(
)) - p2 ;

RP : (A:Type)(B:Type)(
:Exp(Prod(A,B)))Exp(B) -

"snd" par.1(p3,Pre
(
))
 par.2(p3,Pre
(
)) - p2 ;

Let : (A:Type)(B:Type)(a:Exp(A))(b:(x:Exp(A))Exp(B))Exp(B) -

"let" x "=" a "in" b - p1 ; (* lo
al definition *)

Definitions

Int = {Zero,UsePos} : Type ;

Bool = {True,False} : Type ;

App(A,B,Abs(A,B,b),a) = b(a) : Exp(B) ;

LP(A,B,Pair(A,B,a,b)) = a : Exp(A) ;

RP(A,B,Pair(A,B,a,b)) = b : Exp(B) ;

Let(A,B,a,b) = b(a) : Exp(B) ;

Appendix C: English and Fren
h GF grammars for mathemati
al

proofs

The following two grammars give rules for a fragment of many-sorted predi
ate
al
ulus, su
h as de�ned in

Martin-L�of (1984). The grammars have both proposition formation and proof rules. An example syntax

tree is

ThmWithProof(Neg(Abs),NegI(Abs,(x)Hypo(Abs,x)))

of the type Text. Its English and Fren
h linearizations are

Theorem. It is not the
ase that we have a
ontradi
tion.

Proof. Assume we have a
ontradi
tion. By hypothesis, we have a
ontradi
tion. Hen
e, it is

not the
ase that we have a
ontradi
tion.

Th�eor�eme. Il n'est pas vrai que nous ayons une
ontradi
tion.

D�emonstration. Supposons que nous avons une
ontradi
tion. Par hypoth�ese, nous avons une

ontradi
tion. Don
, il n'est pas vrai que nous ayons une
ontradi
tion.

The stru
ture of GF grammars is summarized in the Appendix B above. We start with the English grammar.

Tokenizer text ;

Parametres Num(sg,pl) ;

Operations nomReg(Num) =
ase (sg) -> "", (pl) -> "s" ;

Categories Text ; Set - Num ; Prop ; Elem(Set) ; Proof(Prop) ;

M�aenp�a�a and Ranta: The type theory and type
he
ker of GF 15

Variables x,y,z,k,l,m,n,a,b,
 (Elem) ; h,r,t (Proof) ;

Rules

ThmWithProof : (A:Prop)(a:Proof(A))Text - (* theorem with a proof *)

"Theorem ." A ". Proof ." a "." ; (* shows the proof *)

ThmWithTrivialProof : (A:Prop)(a:Proof(A))Text -

"Theorem ." A ". Proof . Trivial ." ; (* hides the proof *)

Conj : (A:Prop)(B:Prop)Prop -

A "and" B ;

Univ : (A:Set)(B:(x:Elem(A))Prop)Prop -

"for all" A(pl) x�B "," B ;

Abs : Prop -

"we have a
ontradi
tion" ;

Neg : (A:Prop)Prop -

"it is not the
ase that" A ;

ConjI : (A:Prop)(B:Prop)(a:Proof(A))(b:Proof(B))Proof(Conj(A,B)) - (* proofs *)

a "." b ". Hen
e" A "and" B ;

ConjEl : (A:Prop)(B:Prop)(
:Proof(Conj(A,B)))Proof(A) -

 ". A fortiori," A ;

ConjEr : (A:Prop)(B:Prop)(
:Proof(Conj(A,B)))Proof(B) -

 ". A fortiori," B ;

NegI : (A:Prop)(b:(x:Proof(A))Proof(Abs))Proof(Neg(A)) -

"assume" A "." b ". Hen
e, it is not the
ase that" A ;

NegE : (A:Prop)(
:Proof(Neg(A)))(a:Proof(A))Proof(Abs) -

a ". But"
 ". We have a
ontradi
tion" ;

UnivI : (A:Set)(B:(x:Elem(A))Prop)(b:(x:Elem(A))Proof(B(x)))Proof(Univ(A,B)) -

"
onsider an arbitrary" A(sg) x�b "." b ". Hen
e, for all" A(pl) x�B "," B ;

UnivE : (A:Set)(B:(x:Elem(A))Prop)(
:Proof(Univ(A,B)))(a:Elem(A))Proof(B(a)) -

 ". Hen
e" B "for" x�B "set to" a ;

AbsE : (C:Prop)(
:Proof(Abs))Proof(C) -

 ". We may
on
lude" C ;

Hypo : (A:Prop)(a:Proof(A))Proof(A) -

"by hypothesis," A ;

Definitions

ConjEl(A,B,ConjI(A,B,a,b)) = a : Proof(A) ;

ConjEr(A,B,ConjI(A,B,a,b)) = b : Proof(B) ;

NegE(A,NegI(A,b),a) = b(a) : Proof(Abs) ;

UnivE(A,B,UnivI(A,B,b),a) = b(a) : Proof(B(a)) ;

Neg(A) = Impl(A,Abs) : Prop ;

NegI(A,b) = ImplI(A,Abs,b) : Prop ;

The following Fren
h grammar has exa
tly the same type-theoreti
al (abstra
t) part as the previous English

grammar. In the linearization (
on
rete) part, it has a mu
h ri
her morphology, even for this very limited

fragment of language.

Tokenizer text ;

Parametres Gen(mas
,fem) ; Num(sg,pl) ; Mod(ind,subj) ; Cas(nom,aa,dd) ;

Operations

nomReg(Num) =
ase (sg) -> "", (pl) -> "s" ;

adjReg(Gen,Num) =
ase (mas
,n) -> nomReg(n), (fem,n) -> "e" + nomReg(n) ;

elision = "e", "'" ("a", "e", "i", "o", "u", "y", "\\'e") ;

ne = "n" + elision ;

que = "qu" + elision ;

16 M�aenp�a�a and Ranta: The type theory and type
he
ker of GF

indef(Gen) =
ase (g) -> "un" + adjReg(g,sg) ;

tout(Gen,Num) =
ase (mas
,sg) -> "tout", (mas
,pl) -> "tous",

(fem,n) -> "tout" + adjReg(fem,n) ;

etre(Num,Mod) =
ase (sg,ind) -> "est", (sg,subj) -> "soit",

(pl,ind) -> "sont", (pl,subj) -> "soient" ;

Categories

Text ; Set - Num - Gen ; Prop - Mod ; Elem(Set) - Cas - Gen ; Proof(Prop) ;

Variables x,y,z,k,l,m,n,a,b,
 (Elem) ; h,r,t (Proof) ;

Rules

ThmWithProof : (A:Prop)(a:Proof(A))Text - (* theorem with a proof *)

"Th\\'eor\\`eme ." A(ind) ". D\\'emonstration ." a "." ; (* shows the proof *)

ThmWithTrivialProof : (A:Prop)(a:Proof(A))Text -

"Th\\'eor\\`eme ." A(ind) ". D\\'emonstration . Triviale ." ; (* hides proof *)

Conj : (A:Prop)(B:Prop)Prop - (* logi
al
onstants *)

ase (m) -> A(m) "et" B(m) ;

Univ : (A:Set)(B:(x:Elem(A))Prop)Prop -

ase (m) -> "pour" tout(Gen(A),pl) "les" A(pl) x�B "," B(m) ;

Abs : Prop -

ase (ind) -> "nous avons une
ontradi
tion",

(subj) -> "nous ayons une
ontradi
tion" ;

Neg : (A:Prop)Prop -

ase (m) -> "il" ne etre(sg,m) "pas vrai" que A(subj) ;

ConjI : (A:Prop)(B:Prop)(a:Proof(A))(b:Proof(B))Proof(Conj(A,B)) - (* proofs *)

a "." b ". Don
" A(ind) "et" B(ind) ;

ConjEl : (A:Prop)(B:Prop)(
:Proof(Conj(A,B)))Proof(A) -

 ". A fortiori," A(ind) ;

ConjEr : (A:Prop)(B:Prop)(
:Proof(Conj(A,B)))Proof(B) -

 ". A fortiori," B(ind) ;

NegI : (A:Prop)(b:(x:Proof(A))Proof(Abs))Proof(Neg(A)) -

"supposons" que A(ind) "." b ". Don
 , il n'est pas vrai" que A(subj) ;

NegE : (A:Prop)(
:Proof(Neg(A)))(a:Proof(A))Proof(Abs) -

a ". Mais"
 ". Nous avons une
ontradi
tion" ;

UnivI : (A:Set)(B:(x:Elem(A))Prop)(b:(x:Elem(A))Proof(B(x)))Proof(Univ(A,B)) -

"
onsid\\'erons" indef(Gen(A)) A(sg) x�b "arbitraire." b ". Don
 , pour"

tout(Gen(A),pl) "les" A(pl) x�B "," B(ind) ;

UnivE : (A:Set)(B:(x:Elem(A))Prop)(
:Proof(Univ(A,B)))(a:Elem(A))Proof(B(a)) -

 ". Don
" B(ind) "ave
" x�B "rempla
\\'e par" a(nom) ;

AbsE : (C:Prop)(
:Proof(Abs))Proof(C) -

 ". Nous
on
luons" que C(ind) ;

Hypo : (A:Prop)(a:Proof(A))Proof(A) -

"par hypoth\\`ese," A(ind) ;

(* Definitions as in English *)

