The type theory and type checker of GF

Petri Maenpaa Aarne Ranta
Nokia Telecommunications Chalmers & Gothenburg University
pmaenpaa@Qcs.hut.fi aarne@cs.chalmers.se
Abstract

GF (Grammatical Framework) is a Logical Framework enriched with concrete syntax specifications.
Ordinary type-theoretical judgements of typing and definitional equality specify a theory. In addition, a
judgement carries a description of how to produce a string in concrete syntax. The intended principal
application area of GF is natural languages. It describes formal languages just as well, although less
general tools exist that are optimized for them. Natural and formal languages can be combined in an
interface to a proof editor of a logical framework by means of GF. Indeed, such an experimental interface
has been made for Agda as an application of GF. This presentation focuses on matters familiar from
syntax-directed editors of logical frameworks, although GF also has other applications: in semantically
precise multilingual natural language documentation, and in compiling the programming language Shines.

1 Overview of GF

This paper presents the type-theoretical structure and type checking principles of GF (Grammatical Frame-
work). GF is a variant of Martin-Lof’s higher-level type theory with metavariables and rules for concrete
syntax, based on type-theoretical grammar (Ranta 1994). We shall use the term type theory for Martin-Lo6t’s
higher-level type theory. Section 2 contains the basic rules of type theory that GF uses.

Consider the following specification of a fragment of arithmetic in type theory extended with definitions by
pattern equations, as in ALF.

Nat, Prop : set
zero : Nat
succ : (x:Nat)Nat
sum : (x:Nat) (y:Nat)Nat
sum(x,zero) = x : Nat
sum(x,succ(y)) = succ(sum(x,y)) : Nat
EqNat : (x:Nat) (y:Nat)Prop

We would usually like to use a less formal concrete syntax instead of the above abstract syntax. Logical
frameworks do not help here, although many have a user interface with layout conventions. They might allow
a concrete syntax where 0 stands for zero, x’ for succ(x), (x+y) for sum(x,y), and x=y for EqNat(x,y).

In GF one may replace these layout conventions by logically rigorous concrete syntax definitions in the
framework itself. This is done by extending the above type-theoretical theory into the GF grammar

Nat, Prop : cat
zero : Nat - "O"
succ : (x:Nat)Nat - x ""
sum : (x:Nat) (y:Nat)Nat - "(" x "+" y ")"
sum(x,zero) = x : Nat
sum(x,succ(y)) = succ(sum(x,y)) : Nat
EgNat : (x:Nat) (y:Nat)Prop - x "="y

2 Maenpédé and Ranta: The type theory and type checker of GF

The grammar first defines the syntactic categories (or categories for short) Nat and Prop. They are types of
expressions, the syntactic counterpart of the “semantic” notion of type. The functions zero, succ, sum and
EqNat now form abstract syntax trees. Their rules are annotated syntactically with linear patterns, which
specify the string that corresponds to a syntax tree. The string is the linearization of the tree, and the tree
is a parse tree of the string.

A linear pattern specifies the concrete syntax of an expression generated by a grammatical rule. The term
expression is in fact ambiguous: it can refer to syntax trees as well as the corresponding strings. We shall
let the context disambiguate which is meant.

The grammar produces for example the strings 0, 0’ and (0’’+0), which denote natural numbers, as well
as the string 0 = 0’’, which denotes a proposition. The pattern equations imply that the strings (0’ ’+0)
and (0+0’’) denote the same natural number. This is because the corresponding syntax trees compute into
the same value succ(succ(zero)).

Moreover, GF contains a generic parser, generator and type checker. They operate on an arbitrary GF
grammar, just as the type checker of a logical framework operates on an arbitrary theory.

A GF grammar can be seen as a syntactically annotated theory. A form of this idea appears already in Curry
(1963). It contrasts to attribute grammar (Knuth 1968) and its relatives, for example Yacc, that consist
of syntactic rules with semantic annotations. Maenpédd (1998) is an earlier account of formal languages in
terms of type-theoretical grammar, with a systematic comparison to attribute grammar.

One may also want to interface a proof editor with English or some other natural language. GF allows this on
a par with its treatment of formal languages. It is instructive to compare a natural language grammar to the
one above with respect to syntax and semantics. We replace the syntactic annotations with very simple ones
for mathematical English, disregarding deeper English grammatical structure (see the GF documentation
for that). Ounly the following definitions change.

zero : Nat - "zero"

succ : (x:Nat)Nat - "the successor of" x

sum : (x:Nat) (y:Nat)Nat - "the sum of" x "and" y
EqNat : (x:Nat) (y:Nat)Prop - x "is equal to" y

To illustrate the descriptive power of GF further, we enrich the grammar with another domain of individuals
besides natural numbers, namely non-negative rationals. This is done by representing Nat now as a set
expression, letting Rat be another, and declaring a new category Elem parametrized over Set. To define
expressions for proofs of propositions, we furthermore declare a category Proof, parametrized over Prop.

Set, Prop : cat ; Elem(X) : cat (X:Set) ; Proof (X) : cat (X:Prop)

These categories represent, the basic types of type theory. Elem must be parametric, because the judgement
Elem : (set)type is malformed, and similarly for Proof.

The rules for natural numbers now take the following form, with some numerals defined by pattern matching.

Nat : Set - "N"
zero : Elem(Nat) - "O"
succ : (x:Elem(Nat))Elem(Nat) - x "’"
sum : (x:Elem(Nat)) (y:Elem(Nat))Elem(Nat) - "(" x "+" y ")"
sum(x,zero) = x : Elem(Nat)
sum(x,succ(y)) = succ(sum(x,y)) : Elem(Nat)
EqNat : (x:Elem(Nat)) (y:Elem(Nat))Prop - x "="y
two : Elem(Nat) - "2"
two = succ(succ(zero)) : Elem(Nat)
four : Elem(Nat) - "4"
four = sum(two,two) : Elem(Nat)
eight : Elem(Nat) - "8"
eight = sum(four,four) : Elem(Nat)

Maenpédé and Ranta: The type theory and type checker of GF 3

Rationals are represented as pairs of natural numbers that denote fractions. The denumerator of a fraction
is positive by construction. They also have an equality predicate.

Rat : Set - "Q"

zeroRat : Elem(Rat) - "O"

frac : (x:Elem(Nat)) (y:Elem(Nat))Elem(Rat) - x "/" y "’"
EqRat : (x:Elem(Rat))(y:Elem(Rat))Prop - x "="y

This grammar shows that GF is able to describe overloading, whereas ordinary logical frameworks support
it only by layout conventions. For instance, the string 0 is ambiguous. It can denote either a natural number
or a rational number. The ambiguity is resolved on the level of syntax trees: zero differs from zeroRat.
Deciding which syntax tree an ambiguous string corresponds to requires type-checking in addition to parsing.

Another example of overloading is the string =, which corresponds to the functions EqNat and EqRat, as well
as to the general equality predicate

Eq : (A:Set) (x:Elem(A)) (y:Elem(A))Prop - x "="y

This rule furthermore illustrates overloading combined with type argument hiding, a layout convention fa-
miliar from logical frameworks. The first argument of Eq is hidden by its omission in the linear pattern.

Proof arguments can be omitted as well. The following definition of the inverse function illustrates this.
It also requires defining a non-zero predicate, a predecessor function, and a rule for proving that positive
rationals differ from zero.

notZero : (x:Elem(Rat))Prop - x "<>" "Q"
pred : (x:Elem(Nat))Elem(Nat) - "(" x "- 1)"
pred(zero) = zero : Elem(Nat)
pred(succ(x)) = x : Elem(Nat)
positiveIsNotZero : (x:Elem(Nat)) (y:Elem(Nat))Proof (notZero (frac(succ(x),y))) -
X non l|/l| y non l|<>l| l|0l|
inv : (z:Elem(Rat)) (h:Proof (notZero(z)))Elem(Rat) - "1" "/" (" z ")"
inv(frac(x,y),h) = frac(succ(y),pred(x)) : Elem(Rat)

The inv rule states that the inverse of a rational number z exists only z is not zero. The proof h of this
condition is omitted in the concrete syntax 1 / (z) for the inverse, although it is a constituent of the syntax
tree inv(z,h). This kind of omission of proofs is a commonplace in informal mathematical language.

Yet another phenomenon illustrated by the grammar is permutation of arguments of a syntax tree in the
concrete syntax. This occurs in the rule

sumList : (a:Elem(Nat)) (d:Elem(Nat)) (f:(x:Elem(Nat))Elem(Nat))Elem(Nat) -
" smll " [ll f " | " X ||<_|| " I:" a " .. " a ||+|| d ||] " ||] "

sumList (a,zero,f) = f(a) : Elem(Nat)
sumList (a,succ(d),f) = sum(f(sum(a,succ(d))),sumList(a,d,f)) : Elem(Nat)

where the arguments a, d and f, in left-to-right order, are permuted to f, a, d in the linear pattern. (The
concrete syntax is that of a list comprehension.)

The sumList rule also illustrates reduplication of arguments. The argument a occurs twice in the linear
pattern. Moreover, the linear pattern contains an occurrence of x, which is a bound variable of the argument
£. This argument is a function from natural numbers to natural numbers. Section 2 describes the linearization
of bound variables in more detail.

The grammar illustrates how a linear pattern contains the arguments of the corresponding syntax tree, with
possible omissions, permutations and reduplications, and strings inserted in between. GF allows all of these
operations in a logically rigorous way. They go beyond the expressive power of context-free grammar. The

4 Maenpédé and Ranta: The type theory and type checker of GF

omission of arguments raises the question of how GF grammars can be parsed. As Section 3 explains, parsing
is successful in virtue of metavariables.

Also some other logical frameworks support forms of syntactic annotation that are more restricted than
those of GF. Thus for example Isabelle (Paulson 1998, chapter 7) allows the use of priority grammars and
a mizfix notation to specify concrete syntax. An example is

"plus" : [exp, exp] -> exp ("_ + _" [0,1] 0)

Here 0 and 1 are precedence values. The left argument of plus is expected to have precedence 0 and the right
argument 1. The whole expression receives the precedence value 0. Parentheses are inserted into produced
strings according to this precedence specification.

GF also supports specifying precedence information and corresponding parentheses. This comes out as a
special case of morphological information. Morphological variation, although ubiquitous in natural languages,
is scant in formal languages: precedence is often the only example of it. Section 2 describes the formal rules
of morphological variation, while the below GF definition of the Isabelle plus illustrates its use to define
precedences:

plus : (x:exp) (y:exp)exp -
lpar(0,Prec(x)) x rpar(0,Prec(x)) "+" lpar(1l,Prec(y)) y rpar(l,Prec(y)) - O

This definition uses a basic category exp of expressions, and the morphological operations 1par and rpar.
They operate on a morphological parameter for precedence, whose possible values are (at least) 0 and 1. By
comparing the precedences m and n, lpar(m,n) produces either a left parenthesis or the empty string, and
rpar(m,n) produces either the right parenthesis or the empty string. (Cf. Appendix B for more examples.)

In contrast to GF, the mixfix notation of Isabelle does not support argument hiding, permutation or redu-
plication. The arguments of the function are represented by the character _ in the linear pattern, and this
makes sense only if the arguments occur exactly once and in exactly the same order as in the function
declaration. Isabelle does allow overloading, which can be resolved by type inference. Its use of precedences
is a special case of the morphological parameters of GF.

Some logical frameworks do support argument hiding. For example, in ALF one may specify a number of
arguments to be hidden in a function application, starting the count from the left. This is a special case of
argument omission in GF. The Eq function above is an example with one argument hidden.

One can also compare GF to WTEX (Lamport 1985), whose macros correspond to GF linear patterns without
parameters. The definition of a IATEX macro allows for arbitraty permutations, repetitions, and omissions
of arguments. For instance, the inverse function could be represented thus:

\newcommand{\inv}[3]{#1 / (#2)}

with the omission of the third argument. An important difference between GF and KTEX is, of course, that
the latter only has one type of expressions: any piece of N TEX code may appear at any argument place of
any macro.

Finally, from the point of view of presenting proofs, GF can be compared with the text generation func-
tionality of Coq (Coscoy, Kahn, and Théry 1995). In Appendix C, some of the text formats from that work
are used in linearization rules for proof constants. In Coq, natural language generation stops at the level of
proof structure, so that the propositions contained in those proofs remain in formal notation. Moreover, the
text generation rules are hard-wired rather than user-definable. In fact, the emphasis of text generation in
Coq has been on “optimizing” proof texts so as to make them short and idiomatic. This aspect of Coq has
no counterpart in GF yet.

Maenpédé and Ranta: The type theory and type checker of GF 5

2 Forms of judgement and rules of inference

The starting point of GF was the higher-level type theory of Martin-Lof and the way in which it was used
for linguistic analysis in Ranta (1994; see chapter 8 for the version of type theory used). Besides syntactic
annotations, GF differs from Martin-Lof’s type theory in two ways: it has no predefined basic types, and,
like ALF (Magnusson 1994), it has metavariables to stand for undefined constructions.

Metavariables are used in GF for type checking and user interaction, and they will be discussed in more
detail in Section 3. As for basic types, Martin-L6f’s two rules

set : type, elem(A) : type (A :set)
are replaced by a scheme for basic type declarations:
C(x1,...,my) s type (z1:Q1,...,Tpn : Qy),

that is, C(z1,...,,) is a type depending on the variables z; : aq,..., %, : @,. Types are then formed by
instantiations of variables in basic types and by dependent function type formation,

(z:)
a : type [: type
(z:a)B : type

From the linguistic point of view, the basic types of GF play the role of syntactic categories. Basic type
declarations are annotated by definitions of linearization types, which define the behaviour of objects of those
types in linearization:
{ C(z1,...,x,) s type (21 :Q1,...,Tn : ay),
C° = L :lintype.

Linearization types have a structure of their own, definable in simple type theory. There is a type str of
strings, and user-definable parameter types, which are finite sets of parameter values. Examples of parameter
types are the English (or French, German, or Latin) number, the German (or Latin) gender, and the Latin
case:
Num = {sg,pl}, Gen = {masc,fem,neut}, Cas = {nom,acc,gen,dat,abl}.

Parametre types can be associated with syntactic categories either as variable features or as inherent features.
These correspond respectively to the inherited and synthesized attributes of attribute grammar (Knuth 1968,
see Maenpad 1998 for a discussion of the distinction in terms of type-theoretical grammar). For instance,
German and Latin common nouns have variable number and case, and inherent gender: verbum (“word”)
has forms for different numbers and cases, such as verbum (sg. nom. and acc.) and verborum (pl. gen.), but
not for different genders—it is inherently of neuter gender. Adjectives have both gender, number, and case
variable. Verbs in many languages have variable number, mode, and tense, but no case.

The general form! of the linearization type of a category « is
((Varg)str, Inh,)

that is, a pair whose first component is a function from the variable features of « to strings, and the second
component is a tuple of inherent features of «. For instance, Latin common nouns and adjectives have the
following linearization types:

CN° = ((Num, Cas)str, (Gen)), Adj°® = ((Gen,Num, Cas)str, ()).

The grammatical rules of GF are function declarations annotated by linearization functions.

{ i e

a?) - (zn 1 a2)al.

I The actual definition of linearization types is slightly more general than this, replacing strings by token lists, and recognizing
tuples of token lists as linearizations of so-called discontinuous constituents.

6 Maenpédé and Ranta: The type theory and type checker of GF

Thus the linearization function F© corresponding to a function F is a function from the linearization types
of the arguments to the linearization type of the value.

A function type (z1 : @1) - - - (@), : ay,) can always be seen in the form in which « is a basic type (that is, not
a function type itself). GF uses this view to impose the rule of full application, that is, application whose
value is an object of a basic type. Such a function application can always be linearized into a string (which
possibly depends on variable features), and its inherent features can be calculated. The full application rule
is completed by the generic linearization rule of GF:

F:(x1:01) (xp:ap)a ar:ar ... ap:op(ry =a1,...,Tp—1 = ap—1)
Flay,...,an) : ap(z1 = a1,. .., T, = ayp)
F(ay,...,a,)°? = F°a?,...,ad): a°

Linearization is thus compositional, in the sense that the linearization of a function application is a function
of the linearizations of its immediate constituents.

For example, the rule of adjectival modification in Latin is formalized as follows:

{ Mod : (A : CN)(B : Adj(A))CN
Mod®((4, (9)), (B, ())) = ((n)(c)(A(n, ¢) ++B(g,n,0)), (9))

As for the function declaration, notice the dependence of the category of adjectives on common nouns:
semantically speaking, a common noun expresses a set, and an adjective expresses a propositional function
over a set. As for the linearization function, we have used pattern matching against the linearization types
of the arguments of the function. The result is a concatenation of the noun with the adjective, both of which
receive the number and the case of the whole construction. The adjective also needs a gender, and it receives
the inherent gender g of the noun. The inherent gender of the whole construction is likewise inherited from
the noun. Now, given appropriate rules for the simple nouns verbum (“word”) and wvita (“life”), and the
adjective @ternus (“eternal”; assume it applies both to word and to life), we can form, for instance

vitam eternam, “eternal life”, feminine noun in the singular accusative,

verborum eternorum, “of eternal words”, neuter noun in the plural genitive.

The concrete GF notation that has been implemented is slightly different from the rule shown above, al-
though it must, of course, contain the same information. What we would in fact write for Latin adjectival
modification is

Mod : (A:CN) (B:Adj(A))CN - case (n,c) -> A(n,c) B(Gen(A),n,c) - Gen(A)

A GF grammar is a sequence of category and function declarations syntactically annotated in the way
explained above. Given the parallel structures of ordinary (“semantic”) types and linearization types, it is
always possible to check the well-formedness of a GF grammar, both in the semantic and in the syntactic
sense. Semantic type checking, which we inherit from Martin-Lof’s type theory, is explained in Section 3.
Syntactic type checking is easier, since it is just a special case of Hindley-Milner type checking without
polymorphism. But it is vital for the proper functioning of a GF grammar in its algorithmic use, which
comprises linearization and its inverse, parsing. The language of syntactic annotations is so designed that it
is always possible to generate a parsing algorithm corresponding to a GF grammar.

In addition to category and function declarations, GF grammars can also contain definitions of parameter
types and of string-valued functions on them (such as verb conjugations). Furthermore, there can be semantic
definitions, which are judgements of the form

a=b:a(r:a,...,Tn:ap)
just like in Martin-Lof’s type theory. Semantic definitions are the basis of notions like computation, normal

form, and paraphrase with respect to GF grammars. It should be noted that linearization is not invariant
under computation: the semantic equality of a and b does not guarantee the equality of the strings a® and

Maenpédé and Ranta: The type theory and type checker of GF 7

b°. This should not be surprising: just recall that 2 +2, 2 x 2, and 4 are different as expressions even though
equal as numbers.

It remains to say a word about the linearization of bound variables. As an intuitive example, take the
type-theoretical declaration of the universal quantifier,

V:(A:set)(B: (z:elem(A))prop)prop
and the ordinary expression of a universally quantified proposition,
(Vz : A)B(z).

There is a systematic connection between the two, a connection that GF annotations should be able to make
precise. In actual GF, the declaration of the universal quantifier with its syntactic annotation is

forall : (A:Set)(B: (x:Elem(A))Prop)Prop - "(\forall" x@B ":" A ")" B

In this declaration, the bound variable x is used in the linearization rule alongside with the ordinary argu-
ments A and B. The symbol B is used, not for an expression of the function type (x:Elem(A))Prop, but for
an expression of the type Prop, where the variable x may occur free—the “body” of the function. In order
for linearization rules like this to work, we need to require that all functions appear in their n-expanded
form. Then it makes sense to distinguish syntactically between the variables and the body of a functional
expression. The requirement of n-expansion is closely associated with the previously explained rule of full
application.

One of the central ideas of the higher-level type theory of Martin-Lof is to localize all variable bindings in the
abstraction rule. If a function declaration in GF has a function type among its argument types, the function
is likewise treated as a variable-binding operator, and the syntactic annotation has to specify the way in
which the variable binding is shown in the concrete expression. We have already seen two examples of this:
the V rule above, and the sumList rule in Section 1. In order to make the annotation language completely
precise, we still have to define the linearization types of function types, as well as the linearization of function
abstracts:
(z:a) (z:a)
«a : type B : type b: 3

{ (z:a)B : type ’ { (2)b: (z:)
(@ : a)B)° = (str, B°) (()b)® = (2°,6°)

In other words, the linearization type of a function type (if used as an argument type of a syntactic rule) is
the type of strings paired with the linearization type of the value type. The linearization of an abstract is
the abstracted variable symbol paired with the linearization of the body. We have used the notation z° to
denote the variable symbol .

The rule of universal quantifier formation can now be formalized

V: (A :set)(B: (z: elem(A))prop)prop
VO(A; (w7B)) :77(77 _'_+77V77 ++l, ++77 :77 _'__'_A_'__'_n)” —'——'—B

assuming there are no morphological parameters for set and elem, and simplifying the notation for their
linearizations by ignoring empty tuples accordingly.

3 Type checking in GF

The starting point of GF’s type checker is Coquand’s (1996) algorithm for type checking dependent types.
GF extends this algorithm by a treatment of metavariables and constraints. Furthermore, GF replaces the
axiom type : type by the parametric axiom scheme for basic types presented in the Section 2. GF’s type
checker is thus generic over languages with arbitrary basic types. Appendix A presents the type checker’s
main functions, in Haskell code.

8 Maenpédé and Ranta: The type theory and type checker of GF

Following Coquand’s algorithm, the type checker operates in terms of a distinction between (semantic) values
and (syntactic) terms (the datatypes Val and Term). Values carry local explicit substitutions, wrapped
together with a term into a closure (formed by the constructor VClos). An example is the closure value
z(z = 1), which consists of the variable term z with the local explicit substitution (z = 1).

Now we describe the main differences to Coquand’s algorithm. One that is also present in the implementation
of Agda’s proof checker, although in a different form, is the introduction of metavariables. In checking
whether a metavariable 7 has a type T', GF first looks up 7 in the list of open goals of the current proof state.
If it occurs there, with the type U, the algorithm adds the constraint T' = U to the proof state. Otherwise,
it adds the new open goal ? : T to the proof state. In the former case, the local context &1 : @1,...,&Tm @ Qm
of U is matched with the type environment y; : f1,...,yn : B, of the proof state. The constraints «; = 8J
for all syntactically equal variables z; = y; are added to the proof state.

Perhaps the most significant difference to Coquand’s algorithm is type checking basic types. Coquand’s
algorithm uses the basic type type, whereas GF has the parametric scheme for basic types. To check
whether a basic type C(a,...,ay) is a valid type, GF looks up C in the list of declared categories of a
grammar. A category declaration contains a parameter list ;1 : aq,...,Z, : a,. GF type checks the actual
parameters aj : ai,...,0, : Q,(T1 = a1,...,T,—1 = a,_1) of a category instantiation in turn (the function
check_args).

Category and constant declarations make up the data type Theory. It is a component of the type checking
environment of type REnv, in addition to the value environment, type environment, goals and constraints.

The last main difference to Coquand’s algorithm is that GF type inference and type checking return a list
of new open goals and constraints (the functions infer_type and check_type). Type inference of course
returns a type as well. Coquand’s type inference algorithm returns just a type upon success, and his type
checking algorithm returns a boolean value. This difference is due to GF’s introduction of metavariables and
constraints into the algorithm.

Interactive proof editing in GF represents the proof state in terms of values and terms. However, it displays
values to the user by first transforming them into terms, because he works in the context of a grammar that
contains only terms. A value is displayed by carrying out the local explicit substitutions in the term. Agda
uses a similar approach, although it resolves constraints in a different way (Coquand and Coquand 1999).

An important case of converting a value into a term in interactive proof editing is when a closure consists of
a metavariable with local explicit substitutions. An example is ?(z = 1), where the substitution z = 1 has
no direct effect on the metavariable 7.

GF displays a metavariable without substitutions to the user. They have to be retained implicitly in the
proof state however, because metavariables are constants yet to be defined. Even if substitutions have
no direct effect on a metavariable, because it is a constant, they may have an indirect effect through the
constraints that determine the possible values that a metavariable may come to have. For instance, ? may
be an expression depending on x, and the variable may get instantiated before 7 itself is resolved.

Type checking in GF has a special function not present in ordinary logical frameworks: the type-theoretical
control of overloading by resolving ambiguities. An ambiguous string may have several parse trees, whereas
a tree is always linearized in a determinate way. Parsing a string defined by means of argument omission
yields a syntax tree with metavariables in the omitted argument places. Type checking then determines their
value, if possible. Sometimes ordinary unification does the job, but in general user interaction is required.

A situation where unification suffices is parsing the string 0=0. Six possible syntax trees result: EqNat (zero,
zero), EqRat (zeroRat,zeroRat), Eq(7,zero,zero), Eq(7,zeroRat,zeroRat), Eq(7,zero,zeroRat) and
Eq(?7,zeroRat,zero). Type checking rules out the last two, because the second and third arguments of Eq
are not of the same type. The use of dependent types in the grammar allows enforcing this constraint. It
enables the type checker to produce the unsolvable constraint Nat = Rat. The unification component of the
type checker automatically instantiates the third and fourth alternative syntax trees to Eq(Nat,zero,zero)
and Eq(Rat,zeroRat,zeroRat), respectively, so there are four type correct parses altogether.

Parsing ambiguous strings into syntax trees with metavariables also illustrates another crucial property of
parsing in GF. Namely, the completeness of parsing is ensured by letting it terminate in syntax trees that
may contain metavariables. Finding their instantiations requires finding proofs in general, and can hence

Maenpédé and Ranta: The type theory and type checker of GF 9

be arbitrarily difficult. Ensuring the completeness of the parsing algorithm makes metavariables necessary
in GF, whereas ordinary logical frameworks may choose to do without them. This is because they lack
overloading and make proofs always explicit in expressions.

The use of dependent types in a grammar rules out semantically malformed expressions like Eq(Nat,zero,
zeroRat) in a straightforward way. They simply cannot be constructed according to the typing rules. Such
restrictions on forms of syntactic combination by means of dependent types can be contrasted to approaches
like Higher Order Abstract Syntax (Pfenning and Elliott 1988) that use simple types instead, and discard
such semantically malformed expressions by checking whether separate semantical well-formedness predicates
hold.

4 Conclusion

We have presented Grammatical Framework’s system of syntactic annotations for Martin-Lof’s higher-level
type theory. Its type-checker is generic with respect to grammars, rather than theories as in ordinary logical
frameworks. It also has a parsing and a linearization algorithm, generic over grammars as well. A GF
grammar is a theory with syntactic annotations, together with a scheme for introducing basic types instead
of the single basic type of sets or propositions of type theory.

This system of syntactic annotations is sufficient for a wide variety of notations. For example, the layout
conventions in implementations of logical frameworks, the priority grammars and mixfix notation of Isabelle,
and the macros of INTEX are special cases of concrete syntax annotations in GF. In fact, the GF annotations
suffice for a “mathematical vernacular”, a full natural language for mathematics.

GF can also be used as a prototyping tool for programming languages, as is done for Shines (Shines pro-
gramming language). A GF grammar for a language is capable of describing its type-theoretical semantics,
both static and dynamic, at the same time as its syntax, both abstract and concrete. Thus one GF file is
sufficient for building the entire prototype of a new language.

References

[1] Agda home page. http://www.cs.chalmers.se/ catarina/agda/
[2] GF home page. http://www.xrce.xerox.com/research/mltt/gf/gf-index/index.html

[3] Haskell B. Curry. Some logical aspects of grammatical structure. In Roman Jakobson (ed.), Structure of
Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium in Applied Mathematics,
pp. 56—68. American Mathematical Society, 1963.

[4] Thierry Coquand. An algorithm for type-checking dependent types. Science of Computer Programming,
26:167-177, 1996.

[5] Catarina and Thierry Coquand. Structured type theory. Preliminary version, June 1999. Available at
http://www.cs.chalmers.se/ coquand/type.html

[6] Yanne Coscoy, Gilles Kahn, and Laurent Théry. “Extracting text from proofs”, Typed Lambda Calculus
and Applications, Lecture Notes in Computer Science 902, Springer-Verlag, Heidelberg, 1995.

[7] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2:127-145, 1968.
Errata 5:95-96, 1971.

[8] Leslie Lamport. ITgX. A Document Preparation System. User’s Guide and Reference Manual. Addison-
Wesley, Reading, 1985.

[9] Petri Mienpdd. Semantical BNF. In E. Gimenez and C. Paulin-Mohring (eds.), Types for Proofs and
Programs, International Workshop TYPES’96, LNCS 1512, pp. 196215, Springer, 1998.

10 Maenpédé and Ranta: The type theory and type checker of GF

[10] Lena Magnusson. An implementation of ALF, a proof editor based on Martin-Ldf’s monomorphic type
theory with explicit substitutions. PhD thesis, Chalmers University of Technology, 1995.

[11] Per Martin-Lof. Intuitionistic Type Theory. Notes by G. Sambin of a series of lectures given in Padua,
June 1980. Bibliopolis, Napoli, 1984.

[12] Lawrence C. Paulson. Isabelle Reference Manual. With contributions by Tobias Nipkow and Markus
Wenzel, 1998. Available at
http://sunsite.doc.ic.ac.uk/pub/0-Most-Packages/smlnj/isabelle/ .

[13] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN
88 Symposium on Language Design and Implementation, pp. 199-208, Atlanta, Georgia, June 1988.

[14] Aarne Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

[15] Shines programming language. Documentation available at HiBase project home page
http://hibase.cs.hut.fi/hibase/hibase.html .

Appendix A: The type checker

type Ident = String

data Fun = Fun Ident
data Symb = Symb Ident
data Cat = Cat Ident

type MetaSymb = (Cat,Ident)

data Term = Cons Fun
| Var Symb

| Meta MetaSymb
| App Term Term
|

|

|

|

Abs Symb Term

Ground Cat [Term] - basic types
Prod Symb Term Term - dependent function types
Predef (Ident,Ident) - predefined constants

data Val = VGen Int | VApp Val Val | VCons Fun | VClos Env Term | VType
| VPredef (Ident,Ident)

([(Cat, Env)], [(Fun, Val)l)

type Theory

type Env = [(Symb, Val)]
type Goals = [((Cat, Ident), (Val, Env))]
type REnv = (Theory, Env, Env, Goals, Constrs)

type Comnstrs = [(Val, Val)]
update :: Env -> Symb -> Val -> Env
update env x u = (x, u) : env

app :: Val -> Val -> Val
eval :: Env -> Term -> Val

app u v =
case u of

VClos env (Abs x e) -> eval (update env x v) e
-> VApp u v

Maenpédé and Ranta: The type theory and type checker of GF

eval env e
case e of

Cons c ->
Var x ->
App el e2 >
Predef d ->
_ ->
whnf :: Val ->
whnf v =
case v of
VApp u w

VClos env e

infer_type ::

infer_type k env@((_, con), rho, co, gs, cs) e

case e of

VCons c

case lookup x
Just a

app (eval env

VPredef d

VClos env e

Val

env of

-> a

-> error ("Unknown identifier: " ++ prTerm (Var x))
el) (eval env e2)

-> app (whnf u) (whnf w)

-> eval env e
-> v

Int -> REnv -> Term -> Err (Val, Goals, Constrs)

Cons ¢ ->

case lookup c con of

Just a => 0k (a, [1, [1)

_ -> Bad ("Unknown constant: " ++ prTerm (Cons c))
Predef (c,_) ->

case lookup c predefRules of

Just (a,_,_) -> 0k (term_val (predeftype2type a), [1, [1)

_ -> Bad ("Unknown predefined constant: " ++ prTerm e)
Var x ->

case lookup x co of

Just a -> 0k (a, [1, [1)

_ -> Bad ("Unknown variable: " ++ prTerm (Var x))

Meta s@(i, n) —>
case (lookup s [(s1, t) | (s1, (t, c)) <- gs]) of

Just a -> 0k (a,
-> Bad ("Unknown subgoal: " ++ prMeta (i, n))

App £ ¢ >

1, [

case (infer_type k env f) of

Ok (t, gsi

, csl)

-> case whnf t of

VClos envl (Prod x a b) —>

let (gs2, cs2)

check_type k env c (VClos envl a)

in Ok (VClos (update envl x (VClos rho c)) b,

Bad s -> Bad s
_ —-> Bad "Cannot infer type"

check_type ::

case e of
Meta s ->
case lookup

s gs of

Just (a, t) ->

a, , v
-> ([(s, (v, co)],

[(t1, t2)

gs2 ++ gsl, cs2 ++ csl)

-> Bad "Product expected in application"

Int -> REnv -> Term -> Val -> (Goals, Constrs)
check_type k env@((cat, con), rho, co, gs, cs) e v

| (x1, t1) <- co,
D

(x2, t2) <- t, x1 == x2])

12 Maenpédé and Ranta: The type theory and type checker of GF

Abs x n >
case whnf v of
VClos envl (Prod y a b) —>
let w = VGen k
in check_type (k + 1)
((cat,con), update rho x w, update co x (VClos envl a), gs, cs)
n
(VClos (update envl y w) b)
-> error "Product expected in abstraction"

Ground c es —>
case whnf v of
VType ->
case lookup c cat’ of
Just as —-> if length as == length es
then check_args k env [] es as
else ([],arityConstrs (length as) (length es))
_ -> error ("Unknown type identifier in: " ++ prTerm e)
where cat’ = cat ++ [(Cat c, [1) | (c,_) <- predefCats]
_ -> error "Type expected"
Prod x a b ->
case whnf v of
VType ->
let (gsl, csl) = check_type k env a VType
(gs2, cs2) = check_type (k + 1) ((cat, con),
update rho x (VGen k),
update co x (VClos rho a),
qs,
cs)

b VType
in (gs2 ++ gsl, cs2 ++ csl)
_ —> error "Type expected"
c -> case infer_type k env e of
0k (a, gsl, csl) -> (gsi, (a, v) : csl)
Bad s -> (typeProblem s, [])

check_args :: Int -> REnv -> Env -> [Term] -> Env -> (Goals, Constrs)
check_args k env@(_, rho, _, _, _) envl es cont =
case (es, cont) of
(Q, m -> ([,)
(a : 1, (x, VClos [] t1) : m) ->
let (gsl, csl) = check_type k env a (VClos envl t1)
(gs2, cs2) = check_args k env (update envl x (VClos rho a)) 1m
in (gs2 ++ gsl, cs2 ++ csl)
-> error "Malformed family of types"

Appendix B: A GF grammar of Mini ML

The following is a piece of real GF code, describing a functional programming language with the basic types
of non-negative decimal integers and Boolean values, with function types and cartesian products, and with
let expressions. To give an example, the syntax tree

Prg(Prod(Bool,Int),
App(Int,Prod(Bool,Int),

Maenpédé and Ranta: The type theory and type checker of GF 13

Abs (Int,Prod(Bool,Int),
(x)Pair(Bool,Int,True,RP(Int,Int,Pair(Int,Int,Zero,x)))),
UsePos (AddDig (UseDig(Dig2) ,Dig3))))
of type Prog is linearized into the string

(\ x > (true, snd (0, x)))23 : Bool * Int

and can be computed into (true, 23) : Bool * Int, by using the definitions of the grammar.

The grammar starts with the specification of a Tokenizer, followed by a declaration of morphological
Parametres and their values, definitions of morphological Operations, declarations of Categories with
their dependencies and linearization types, declarations of explicit Variables, and, finally, Rules and
Definitions. For full details of the grammar format, we refer to the documentation on GF home page.
Tokenizer code Tokens "->" ;

Parametres Prec(pl,p2,p3) ; (* precedence *)

Categories Prog ; Type - - Prec ; Exp(Type) - - Prec ; Dig ; Pos ;

Variables x, y, z, X, Y, Z (Exp) ; (* variables of type Exp *)

Operations (* parentheses as function of precedence *)
par (Prec,Prec) =
case (Pl,P) -> (uu’uu)’

(P2:P1) -> (u(u’u)u)’ (P2:P2) -> (uu’uu)’ (P2:P3) -> (uu’uu)’
(p3,p1) -> ("(",""), (p3,p2) -> ("(",")"), (p3,p3) -> ("","")

Rules

Digl. Dig -> 1 ; (* decimal integers, using context-free notation *)
Dig2. Dig -> 2 ;

Dig3. Dig -> 3 ;

Dig4. Dig -> 4 ;

Digh. Dig -> 5 ;

Dig6. Dig -> 6 ;

Dig7. Dig -> 7 ;

Dig8. Dig -> 8 ;

Dig9. Dig -> 9 ;

UseDig. Pos -> Dig ;
AddDig. Pos -> Pos Dig ;
AddZero. Pos -> Pos 0 ;

Prg : (A:Type) (a:Exp(A))Prog - a ":" A ; (* program with its type *)
Int : Type - "Int" - p3 ; (* the type of integers *)
Zero : Exp(Int) - "0" - p3 ;

UsePos : (p:Pos)Exp(Int) - p - p3 ;

Bool : Type - "Bool" - p3 ; (* the type of truth values *)
True : Exp(Bool) - '"true" - p3 ;
False : Exp(Bool) - "false" - p3 ;

Fun : (A:Type) (B:Type)Type - (* the function type *)
par.1(p2,Prec(A)) A par.2(p2,Prec(A)) "->" B - pl ;
Abs : (A:Type) (B:Type) (b: (x:Exp(A))Exp(B))Exp(Fun(A,B)) -

14 Maenpédé and Ranta: The type theory and type checker of GF

l|\\l| X ||_>|| b - P]- ;
App : (A:Type) (B:Type) (c:Exp(Fun(A,B))) (a:Exp(A))Exp(B) -
par.1(p2,Prec(c)) c par.2(p2,Prec(c)) par.1(p3,Prec(a)) a par.2(p3,Prec(a)) - p2 ;

Prod : (A:Type) (B:Type)Type - (* the cartesian product *)
par.1(p2,Prec(A)) A par.2(p2,Prec(A)) "*" par.1(p2,Prec(B)) B par.2(p2,Prec(B)) -
p2 ;
Pair : (A:Type) (B:Type) (a:Exp(A)) (b:Exp(B))Exp(Prod(A,B)) -
"("ma","b"" - p3;
LP : (A:Type) (B:Type) (c:Exp(Prod(A,B)))Exp(A) -
"fst" par.1(p3,Prec(c)) c par.2(p3,Prec(c)) - p2 ;
RP : (A:Type) (B:Type) (c:Exp(Prod(A,B)))Exp(B) -

"snd" par.1(p3,Prec(c)) c par.2(p3,Prec(c)) - p2 ;

Let : (A:Type) (B:Type) (a:Exp(A)) (b: (x:Exp(A))Exp(B))Exp(B) -
"let" x "=" a "in" b - pl ; (* local definition *)

Definitions

Int = {Zero,UsePos} : Type ;

Bool = {True,False} : Type ;
App(A,B,Abs(A,B,b),a) = b(a) : Exp(B) ;
LP(A,B,Pair(A,B,a,b)) a : Exp(4) ;
RP(A,B,Pair(A,B,a,b)) = b : Exp(B) ;
Let(A,B,a,b) b(a) : Exp(B) ;

Appendix C: English and French GF grammars for mathematical
proofs

The following two grammars give rules for a fragment of many-sorted predicate calculus, such as defined in
Martin-Lof (1984). The grammars have both proposition formation and proof rules. An example syntax
tree is

ThmWithProof (Neg(Abs) ,NegI (Abs, (x)Hypo(Abs,x)))
of the type Text. Its English and French linearizations are
Theorem. It is not the case that we have a contradiction.

Proof. Assume we have a contradiction. By hypothesis, we have a contradiction. Hence, it is
not the case that we have a contradiction.

Théoreme. Il n’est pas vrai que nous ayons une contradiction.
Démonstration. Supposons que nous avons une contradiction. Par hypothese, nous avons une
contradiction. Donc, il n’est pas vrai que nous ayons une contradiction.

The structure of GF grammars is summarized in the Appendix B above. We start with the English grammar.

Tokenizer text ;

Parametres Num(sg,pl) ;

" .

’

Operations nomReg(Num) = case (sg) -> "", (pl) -> "s

Categories Text ; Set - Num ; Prop ; Elem(Set) ; Proof(Prop) ;

Maenpédé and Ranta: The type theory and type checker of GF

Variables x,y,z,k,l,m,n,a,b,c (Elem) ; h,r,t (Proof) ;

Rules
ThmWithProof : (A:Prop) (a:Proof(A))Text - (* theorem with a proof *)
"Theorem ." A ". Proof ." a "." ; (* shows the proof *)
ThmWithTrivialProof : (A:Prop) (a:Proof(A))Text -
"Theorem ." A ". Proof . Trivial ." ; (* hides the proof *)
Conj : (A:Prop) (B:Prop)Prop -
A "and" B ;

Univ : (A:Set)(B:(x:Elem(A))Prop)Prop -
"for all" A(pl) x@B "," B ;

Abs : Prop -
"we have a contradiction" ;

Neg : (A:Prop)Prop -
"it is not the case that" A ;

ConjI : (A:Prop) (B:Prop) (a:Proof(A)) (b:Proof (B))Proof(Conj(A,B)) - (* proofs *)

a"." b ". Hence" A "and" B ;

ConjEl : (A:Prop) (B:Prop) (c:Proof(Conj(A,B)))Proof (4) -
c ". A fortiori," A ;

ConjEr : (A:Prop) (B:Prop) (c:Proof(Conj(A,B)))Proof(B) -

c ". A fortiori," B ;
NegI : (A:Prop) (b: (x:Proof (A))Proof (Abs))Proof (Neg(A)) -
"assume" A "." b ". Hence, it is not the case that" A ;
NegE : (A:Prop) (c:Proof (Neg(A))) (a:Proof (A))Proof (Abs) -
a ". But" c ". We have a contradiction" ;

UnivI : (A:Set) (B: (x:Elem(A))Prop) (b: (x:Elem(A))Proof (B(x)))Proof (Univ(A,B)) -
"consider an arbitrary" A(sg) x@ "." b ". Hence, for all" A(pl) x@B "," B ;
UnivE : (A:Set) (B:(x:Elem(A))Prop) (c:Proof (Univ(A,B))) (a:Elem(A))Proof (B(a)) -

c ". Hence" B "for" x0B "set to" a ;
AbsE : (C:Prop) (c:Proof (Abs))Proof (C) -
c ". We may conclude" C ;
Hypo : (A:Prop) (a:Proof(A))Proof(A) -
"by hypothesis," A ;

Definitions

ConjE1(A,B,ConjI(A,B,a,b)) = a : Proof(A) ;
ConjEr(A,B,ConjI(A,B,a,b)) = b : Proof(B) ;
NegE(A,NegI(A,b),a) = b(a) : Proof(Abs) ;
UnivE(A,B,UnivI(A,B,b),a) = b(a) : Proof(B(a)) ;
Neg(A) = Impl(A,Abs) : Prop ;

NegI(A,b) = ImplI(A,Abs,b) : Prop ;

15

The following French grammar has exactly the same type-theoretical (abstract) part as the previous English
grammar. In the linearization (concrete) part, it has a much richer morphology, even for this very limited

fragment of language.
Tokenizer text ;
Parametres Gen(masc,fem) ; Num(sg,pl) ; Mod(ind,subj) ; Cas(nom,aa,dd) ;

Operations
nomReg (Num) = case (sg) -> "", (pl) -> "s"

adjReg(Gen,Num) = case (masc,n) -> nomReg(n), (fem,n) -> "e" + nomReg(n) ;

ellSlOIl = llell’ non (llall’ llell’ llill’ lloll’ llull’ llyll’ |l\\7e|l)
ne = "n" + elision ;
que = "qu" + elision ;

16 Maenpédé and Ranta: The type theory and type checker of GF

indef (Gen) = case (g) -> "un" + adjReg(g,sg) ;

tout (Gen,Num) = case (masc,sg) -> "tout", (masc,pl) -> "tous",
(fem,n) -> "tout" + adjReg(fem,n) ;

etre(Num,Mod) = case (sg,ind) -> "est", (sg,subj) -> "soit",
(pl,ind) -> "sont", (pl,subj) -> "soient" ;

Categories
Text ; Set - Num - Gen ; Prop - Mod ; Elem(Set) - Cas - Gen ; Proof(Prop) ;

Variables x,y,z,k,1l,m,n,a,b,c (Elem) ; h,r,t (Proof) ;

Rules
ThmWithProof : (A:Prop) (a:Proof (A))Text - (* theorem with a proof *)
"Th\\’eor\\‘eme ." A(ind) ". D\\’emonstration ." a "." ; (* shows the proof *)
ThmWithTrivialProof : (A:Prop) (a:Proof(A))Text -
"Th\\’eor\\‘eme ." A(ind) ". D\\’emonstration . Triviale ." ; (* hides proof *)
Conj : (A:Prop) (B:Prop)Prop - (* logical constants *)

case (m) -> A(m) "et" B(m) ;

Univ : (A:Set) (B:(x:Elem(A))Prop)Prop -
case (m) -> "pour" tout(Gen(A),pl) "les" A(pl) x@B "," B(m) ;

Abs : Prop -
case (ind) -> "nous avons une contradiction",

(subj) -> "nous ayons une contradiction" ;

Neg : (A:Prop)Prop -
case (m) -> "il" ne etre(sg,m) "pas vrai" que A(subj) ;

ConjI : (A:Prop) (B:Prop) (a:Proof(A)) (b:Proof(B))Proof(Conj(A,B)) - (* proofs *)
a"." b ". Donc" A(ind) "et" B(ind) ;

ConjEl : (A:Prop) (B:Prop) (c:Proof (Conj(A,B)))Proof (A) -

c ". A fortiori," A(ind) ;
ConjEr : (A:Prop) (B:Prop) (c:Proof(Conj(A,B)))Proof(B) -
c ". A fortiori," B(ind) ;

NegI : (A:Prop) (b:(x:Proof (A))Proof (Abs))Proof (Neg(A)) -

"supposons" que A(ind) "." b ". Donc , il n’est pas vrai" que A(subj) ;

NegE : (A:Prop) (c:Proof (Neg(A))) (a:Proof (A))Proof (Abs) -

a ". Mais" c ". Nous avons une contradiction" ;

UnivI : (A:Set) (B:(x:Elem(A))Prop) (b: (x:Elem(A))Proof (B(x)))Proof (Univ(A,B)) -
"consid\\’erons" indef (Gen(A)) A(sg) x@b "arbitraire." b ". Donc , pour"
tout (Gen(A),pl) "les" A(pl) x@B "," B(ind) ;

UnivE : (A:Set) (B:(x:Elem(A))Prop) (c:Proof (Univ(A,B))) (a:Elem(A))Proof(B(a)) -
c ". Donc" B(ind) "avec" x@B "remplac\\’e par" a(nom) ;

AbsE : (C:Prop) (c:Proof (Abs))Proof (C) -

c ". Nous concluons" que C(ind) ;

Hypo : (A:Prop) (a:Proof (A))Proof (A) -
"par hypoth\\‘ese," A(ind) ;

(* Definitions as in English *)

