
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 9:
Architecting and Designing Software

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 2

9.1 The Process of Design

Definition:
• Design is a problem-solving process whose objective is

to find and describe a way:
—To implement the system’s functional

requirements...
—While respecting the constraints imposed by the

non-functional requirements...
- including the budget

—And while adhering to general principles of good
quality

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 3

Design as a Series of Decisions

A designer is faced with a series of design issues
• These are sub-problems of the overall design problem.
• Each issue normally has several alternative solutions:

—design options.
• The designer makes a design decision to resolve each

issue.
—This process involves choosing the best option from

among the alternatives.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 4

Making Decisions

To make each design decision, the software engineer
uses:

• Knowledge of
—the requirements
—the design as created so far
—the technology available
—software design principles and ‘best practices’
—what has worked well in the past

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 5

Design space

The space of possible designs that could be achieved by
choosing different sets of alternatives is often called the
design space

• For example:

client-server

monolithic

separate
user interface
layer for
client

no
separate
user interface
layer for client

fat-client

thin-client

programmmed in Java

programmed in Visual Basic

programmed in C++

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 6

Component

Any piece of software or hardware that has a clear role.
• A component can be isolated, allowing you to replace it with

a different component that has equivalent functionality.
• Many components are designed to be reusable.
• Conversely, others perform special-purpose functions.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 7

Module

A component that is defined at the programming
language level

• For example, methods, classes and packages are
modules in Java.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 8

System

A logical entity, having a set of definable responsibilities or
objectives, and consisting of hardware, software or both.

• A system can have a specification which is then implemented by a
collection of components.

• A system continues to exist, even if its components are changed or
replaced.

• The goal of requirements analysis is to determine the
responsibilities of a system.

• Subsystem:
—A system that is part of a larger system, and which has a

definite interface

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 9

UML Class Diagram of System Parts

Component

name

Module

defined at programmming language level

System

name
has responsibilites

Subsystem

implementedUsing 1..*1..*1..*1..*1..*1..*

Framework

specifies interface

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 10

Top-Down and Bottom-Up Design

Top-down design
• First design the very high level structure of the system.
• Then gradually work down to detailed decisions about

low-level constructs.
• Finally arrive at detailed decisions such as:

—the format of particular data items;
—the individual algorithms that will be used.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 11

Top-Down and Bottom-Up Design

Bottom-up design
• Make decisions about reusable low-level utilities.
• Then decide how these will be put together to create

high-level constructs.

A mix of top-down and bottom-up approaches are
normally used:

• Top-down design is almost always needed to give the
system a good structure.

• Bottom-up design is normally useful so that reusable
components can be created.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 12

Different Aspects of Design

• Architecture design:
—The division into subsystems and components,

- How these will be connected.
- How they will interact.
- Their interfaces.

• Class design:
—The various features of classes.

• User interface design
• Algorithm design:

—The design of computational mechanisms.
• Protocol design:

—The design of communications protocol.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 13

9.2 Principles Leading to Good Design

Overall goals of good design:
• Increasing profit by reducing cost and increasing

revenue
• Ensuring that we actually conform with the requirements
• Accelerating development
• Increasing qualities such as

—Usability
—Efficiency
—Reliability
—Maintainability
—Reusability

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 14

Design Principle 1: Divide and Conquer

Trying to deal with something big all at once is normally
much harder than dealing with a series of smaller things

• Separate people can work on each part.
• An individual software engineer can specialize.
• Each individual component is smaller, and therefore

easier to understand.
• Parts can be replaced or changed without having to

replace or extensively change other parts.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 15

Ways of Dividing a Software System

• A distributed system is divided up into clients and
servers

• A system is divided up into subsystems

• A subsystem can be divided up into one or more
packages

• A package is divided up into classes

• A class is divided up into methods

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 16

Design Principle 2: Increase Cohesion
Where Possible

A subsystem or module has high cohesion if it keeps
together things that are related to each other, and keeps
out other things

• Measures the organization of a system
• Makes the system as a whole easier to understand and

change
• Types of cohesion:

—Functional, Layer, Communicational, Sequential,
Procedural, Temporal, Utility

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 17

Functional Cohesion

This is achieved when all the code that computes a
particular result is kept together - and everything else is
kept out

• i.e. when a module only performs a single computation,
and returns a result, without having side-effects.

• Benefits to the system:
—Easier to understand
—More reusable
—Easier to replace

• Modules that update a database, create a new file or
interact with the user are not functionally cohesive

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 18

Layer Cohesion
All the facilities for providing or accessing a set of related
services are kept together, and everything else is kept
out

• The layers should form a hierarchy
—Higher layers can access services of lower layers,
—Lower layers do not access higher layers

• The set of procedures through which a layer provides its
services is the application programming interface (API)

• You can replace a layer without having any impact on
the other layers

—You just replicate the API

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 19

Examples of the Use of Layers

Screen display
facilities

User account
management

File
system

Kernel
(handling processes

and swapping)

Application programs

User
interface

Application
logic

Database
access

Network
communication

Transmitting
and receiving

Dealing with
packets

Dealing with
connections

Dealing with
application protocols

a) Typical layers in an
 application program

b) Typical layers in an
 operating system

c) Simplified view of layers
 in a communication system

Operating system
access

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 20

Communicational Cohesion

All the modules that access or manipulate certain data
are kept together (e.g. in the same class) - and
everything else is kept out

• A class would have good communicational cohesion if
—all the system’s facilities for storing and

manipulating its data are contained in this class.
—the class does not do anything other than manage its

data.
• Main advantage: When you need to make changes to the

data, you find all the code in one place

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 21

Sequential Cohesion

Procedures, in which one procedure provides input to the
next, are kept together – and everything else is kept out

• You should achieve sequential cohesion, only once you
have already achieved the preceding types of cohesion.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 22

Procedural Cohesion

Keep together several procedures that are used one after
another

• Even if one does not necessarily provide input to the
next.

• Weaker than sequential cohesion.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 23

Temporal Cohesion

Operations that are performed during the same phase of
the execution of the program are kept together, and
everything else is kept out

• Used at a similar period of time
• For example, placing together the code used during

system start-up or initialization.
• Weaker than procedural cohesion.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 24

Utility Cohesion

When related utilities which cannot be logically placed
in other cohesive units are kept together

• A utility is a procedure or class that has wide
applicability to many different subsystems and is
designed to be reusable.

• For example, the java.lang.Math class.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 25

Design Principle 3: Reduce Coupling
Where Possible

Coupling occurs when there are interdependencies
between one module and another

• When interdependencies exist, changes in one place will
require changes somewhere else.

• A network of interdependencies makes it hard to see at a
glance how some component works.

• Type of coupling:
—Content, Common, Control, Stamp, Data, Routine

Call, Type Use, Inclusion/Import, External

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 26

Content Coupling

Occurs when one component surreptitiously modifies
data that is internal to another component

• To reduce content coupling you should therefore
encapsulate all instance variables

—declare them private
—and provide get and set methods

• A worse form of content coupling occurs when you
directly modify an instance variable of an instance
variable

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 27

Example of Content Coupling
public class Line
{
 private Point start, end;
 ...
 public Point getStart() { return start; }
 public Point getEnd() { return end; }
}
!
public class Arch
{
 private Line baseline;
 ...
 void slant(int newY)
 {
 Point theEnd = baseline.getEnd();
 theEnd.setLocation(theEnd.getX(),newY);
 }
}

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 28

Common Coupling

Occurs whenever you use a global variable
• All the components using the global variable become

coupled to each other
• A weaker form of common coupling is when a variable

can be accessed by a subset of the system’s classes
—e.g. a Java package

• Can be acceptable for creating global variables that
represent system-wide default values

• The Singleton pattern provides encapsulated global
access to an object

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 29

Control Coupling

Occurs when one procedure calls another using a ‘flag’
or ‘command’ that explicitly controls what the second
procedure does

• To make a change you have to change both the calling
and called method

• The use of polymorphic operations is normally the best
way to avoid control coupling

• One way to reduce the control coupling could be to have
a look-up table

—commands are then mapped to a method that should
be called when that command is issued

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 30

Example of Control Coupling

public routineX(String command)
{
 if (command.equals("drawCircle")
 {
 drawCircle();
 }
 else
 {
 drawRectangle();
 }
}

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 31

Stamp Coupling

Occurs whenever one of your application classes is
declared as the type of a method argument

• Since one class now uses the other, changing the system
becomes harder

—Reusing one class requires reusing the other

• Two ways to reduce stamp coupling,
—using an interface as the argument type
—passing simple variables

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 32

Example of Stamp Coupling

public class Emailer
{
 public void sendEmail(Employee e, String text)
 {...}
 ...
}

public class Emailer
{
 public void sendEmail(
 String name, String email, String text)
 {...}
 ...
}

Using simple data types to avoid it:

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 33

Example of Stamp Coupling

public interface Addressee
{
 public abstract String getName();
 public abstract String getEmail();
}
!
public class Employee implements Addressee {…}
!
public class Emailer
{
 public void sendEmail(
 Addressee e, String text)
 {...}
 ...
}

Using an interface to avoid it:

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 34

Data Coupling

Occurs whenever the types of method arguments are
either primitive or else simple library classes

• The more arguments a method has, the higher the
coupling

—All methods that use the method must pass all the
arguments

• You should reduce coupling by not giving methods
unnecessary arguments

• There is a trade-off between data coupling and stamp
coupling

—Increasing one often decreases the other

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 35

Routine Call Coupling

Occurs when one routine (or method in an object
oriented system) calls another

• The routines are coupled because they depend on each
other’s behaviour

• Routine call coupling is always present in any system.

• If you repetitively use a sequence of two or more
methods to compute something

—then you can reduce routine call coupling by writing
a single routine that encapsulates the sequence.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 36

Type Use Coupling

Occurs when a module uses a data type defined in
another module

• It occurs any time a class declares an instance variable or
a local variable as having another class for its type.

• The consequence of type use coupling is that if the type
definition changes, then the users of the type may have
to change

• Always declare the type of a variable to be the most
general possible class or interface that contains the
required operations

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 37

Inclusion or Import Coupling

Occurs when one component imports a package
• (as in Java)

or when one component includes another
• (as in C++).
• The including or importing component is now exposed

to everything in the included or imported component.
• If the included/imported component changes something

or adds something.
—This may raises a conflict with something in the

includer, forcing the includer to change.
• An item in an imported component might have the same

name as something you have already defined.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 38

External Coupling

When a module has a dependency on such things as the
operating system, shared libraries or the hardware

• It is best to reduce the number of places in the code
where such dependencies exist.

• The Façade design pattern can reduce external coupling

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 39

Design Principle 4: Keep the Level of
Abstraction as High as Possible

Ensure that your designs allow you to hide or defer
consideration of details, thus reducing complexity

• A good abstraction is said to provide information hiding
• Abstractions allow you to understand the essence of a

subsystem without having to know unnecessary details

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 40

Abstraction and Classes

Classes are data abstractions that contain procedural
abstractions

• Abstraction is increased by defining all variables as
private.

• The fewer public methods in a class, the better the
abstraction

• Superclasses and interfaces increase the level of
abstraction

• Attributes and associations are also data abstractions.
• Methods are procedural abstractions

—Better abstractions are achieved by giving methods
fewer parameters

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 41

Design Principle 5: Increase Reusability
Where Possible

Design the various aspects of your system so that they
can be used again in other contexts

• Generalize your design as much as possible
• Follow the preceding three design principles
• Design your system to contain hooks
• Simplify your design as much as possible

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 42

Design Principle 6: Reuse Existing Designs
and Code Where Possible

Design with reuse is complementary to design for
reusability

• Actively reusing designs or code allows you to take
advantage of the investment you or others have made in
reusable components

—Cloning should not be seen as a form of reuse

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 43

Design Principle 7: Design for Flexibility

Actively anticipate changes that a design may have to
undergo in the future, and prepare for them

• Reduce coupling and increase cohesion
• Create abstractions
• Do not hard-code anything
• Leave all options open

—Do not restrict the options of people who have to
modify the system later

• Use reusable code and make code reusable

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 44

Design Principle 8: Anticipate Obsolescence

Plan for changes in the technology or environment so
the software will continue to run or can be easily
changed

• Avoid using early releases of technology
• Avoid using software libraries that are specific to

particular environments
• Avoid using undocumented features or little-used

features of software libraries
• Avoid using software or special hardware from

companies that are less likely to provide long-term
support

• Use standard languages and technologies that are
supported by multiple vendors

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 45

Design Principle 9: Design for Portability

Have the software run on as many platforms as possible
• Avoid the use of facilities that are specific to one

particular environment
• E.g. a library only available in Microsoft Windows

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 46

Design Principle 10: Design for Testability

Take steps to make testing easier
• Design a program to automatically test the software

—Discussed more in Chapter 10
—Ensure that all the functionality of the code can by

driven by an external program, bypassing a graphical
user interface

• In Java, you can create a main() method in each class in
order to exercise the other methods

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 47

Design Principle 11: Design Defensively

Never trust how others will try to use a component you
are designing

• Handle all cases where other code might attempt to use
your component inappropriately

• Check that all of the inputs to your component are valid:
the preconditions

—Unfortunately, over-zealous defensive design can
result in unnecessarily repetitive checking

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 48

Design by Contract

A technique that allows you to design defensively in an
efficient and systematic way

• Key idea
—each method has an explicit contract with its callers

• The contract has a set of assertions that state:
—What preconditions the called method requires to be

true when it starts executing
—What postconditions the called method agrees to

ensure are true when it finishes executing
—What invariants the called method agrees will not

change as it executes

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 49

9.3 Techniques for Making Good Design
Decisions

Using priorities and objectives to decide among
alternatives

• Step 1: List and describe the alternatives for the design
decision.

• Step 2: List the advantages and disadvantages of each
alternative with respect to your objectives and priorities.

• Step 3: Determine whether any of the alternatives
prevents you from meeting one or more of the
objectives.

• Step 4: Choose the alternative that helps you to best
meet your objectives.

• Step 5: Adjust priorities for subsequent decision making.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 50

Example Priorities and Objectives
Imagine a system has the following objectives, starting with top
priority:

• Security: Encryption must not be breakable within 100 hours
of computing time on a 400Mhz Intel processor, using known
cryptanalysis techniques.

• Maintainability. No specific objective.
• CPU efficiency. Must respond to the user within one second

when running on a 400MHz Intel processor.
• Network bandwidth efficiency: Must not require

transmission of more than 8KB of data per transaction.
• Memory efficiency. Must not consume over 20MB of RAM.
• Portability. Must be able to run on Windows 98, NT 4, ME

and XP as well as Linux

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 51

Example Evaluation of Alternatives

‘NO’ means that the objective is not met

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 52

Using Cost-Benefit Analysis to Choose
Among Alternatives

• To estimate the costs, add up:
—The incremental cost of doing the software

engineering work, including ongoing maintenance
—The incremental costs of any development

technology required
—The incremental costs that end-users and product

support personnel will experience
• To estimate the benefits, add up:

—The incremental software engineering time saved
—The incremental benefits measured in terms of either

increased sales or else financial benefit to users

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 53

9.4 Software Architecture

Software architecture is process of designing the global
organization of a software system, including:

• Dividing software into subsystems.
• Deciding how these will interact.
• Determining their interfaces.

—The architecture is the core of the design, so all
software engineers need to understand it.

—The architecture will often constrain the overall
efficiency, reusability and maintainability of the
system.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 54

The Importance of Software Architecture

Why you need to develop an architectural model:
• To enable everyone to better understand the system
• To allow people to work on individual pieces of the

system in isolation
• To prepare for extension of the system
• To facilitate reuse and reusability

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 55

Contents of a Good Architectural Model

A system’s architecture will often be expressed in terms
of several different views

• The logical breakdown into subsystems
• The interfaces among the subsystems
• The dynamics of the interaction among components at

run time
• The data that will be shared among the subsystems
• The components that will exist at run time, and the

machines or devices on which they will be located

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 56

Design Stable Architecture

To ensure the maintainability and reliability of a system,
an architectural model must be designed to be stable.

• Being stable means that the new features can be easily
added with only small changes to the architecture

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 57

Developing an Architectural Model

Start by sketching an outline of the architecture
• Based on the principal requirements and use cases
• Determine the main components that will be needed
• Choose among the various architectural patterns

—Discussed next
• Suggestion: have several different teams independently

develop a first draft of the architecture and merge
together the best ideas

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 58

Developing an Architectural Model

• Refine the architecture
—Identify the main ways in which the components

will interact and the interfaces between them
—Decide how each piece of data and functionality will

be distributed among the various components
—Determine if you can re-use an existing framework,

if you can build a framework
• Consider each use case and adjust the architecture to

make it realizable
• Mature the architecture

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 59

Describing an Architecture Using UML

• All UML diagrams can be useful to describe aspects of
the architectural model

• Four UML diagrams are particularly suitable for
architecture modelling:

—Package diagrams
—Subsystem diagrams
—Component diagrams
—Deployment diagrams

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 60

Package Diagrams

common

simplechat1 ocsf

client

server

client «imports»

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 61

Subsystem Diagrams

requestToRegister(aStudent) : boolean
dropCourse(aStudent)
getSchedule() : Iterator

Register in
a course

Student
Actor

Display
schedule

Drop
a course

***** CourseSection

*

*

Registration

Student

Realization Elements

Specification Elements

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 62

Component Diagrams

Client Server
<<communication>>

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 63

Deployment Diagrams

Machine1:
TCP/IP

Machine2:GPS
Satellite

Wireless
communication

Client1:

Client2:
Server:

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 64

9.5 Architectural Patterns

The notion of patterns can be applied to software
architecture.

• These are called architectural patterns or architectural
styles.

• Each allows you to design flexible systems using
components

—The components are as independent of each other as
possible.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 65

The Multi-Layer Architectural Pattern

In a layered system, each layer communicates only with the layer
immediately below it.

• Each layer has a well-defined interface used by the layer
immediately above.

—The higher layer sees the lower layer as a set of services.
• A complex system can be built by superposing layers at increasing

levels of abstraction.
—It is important to have a separate layer for the UI.
—Layers immediately below the UI layer provide the application

functions determined by the use-cases.
—Bottom layers provide general services.

- e.g. network communication, database access

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 66

Example of Multi-Layer Systems -
Layer Cohesion Revisited

Screen display
facilities

User account
management

File
system

Kernel
(handling processes
and swapping)

Application programs

User
interface

Application
logic

Database
access

Network
communication

Transmitting
and receiving

Dealing with
packets

Dealing with
connections

Dealing with
application protocols

a) Typical layers in an
application program

b) Typical layers in an
operating system

c) Simplified view of layers
in a communication system

Operating system
access

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 67

The Multi-Layer Architecture -
Design Principles

1. Divide and conquer: The layers can be independently
designed.

2. Increase cohesion: Well-designed layers have layer
cohesion.

3. Reduce coupling: Well-designed lower layers do not
know about the higher layers and the only connection
between layers is through the API.

4. Increase abstraction: you do not need to know the
details of how the lower layers are implemented.

5. Increase reusability: The lower layers can often be
designed generically.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 68

The Multi-Layer Architecture -
Design Principles Continued

6. Increase reuse: You can often reuse layers built by
others that provide the services you need.

7. Increase flexibility: you can add new facilities built on
lower-level services, or replace higher-level layers.

8. Anticipate obsolescence: By isolating components in
separate layers, the system becomes more resistant to
obsolescence.

9. Design for portability: All the dependent facilities can
be isolated in one of the lower layers.

10. Design for testability: Layers can be tested
independently.

11. Design defensively: The APIs of layers are natural
places to build in rigorous assertion-checking.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 69

The Client-Server and Other Distributed
Architectural Patterns

• There is at least one component that has the role of
server, waiting for and then handling connections.

• There is at least one component that has the role of
client, initiating connections in order to obtain some
service.

• A further extension is the Peer-to-Peer pattern.
—A system composed of various software components

that are distributed over several hosts.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 70

An Example of a Distributed System

Client2:

Server:

Client1:

Client3:

<<communication>>
look up addresses<<communication>>

exchange messages

<<communication>>
exchange messages <<communication>>

exchange messages

<<communication>>
look up addresses

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 71

The Distributed Architecture -
Design Principles

1. Divide and conquer: Dividing the system into client and server
processes is a strong way to divide the system.

—Each can be separately developed.
2. Increase cohesion: The server can provide a cohesive service to

clients.
3. Reduce coupling: There is usually only one communication channel

exchanging simple messages.
4. Increase abstraction: Separate distributed components are often

good abstractions.
6. Increase reuse: It is often possible to find suitable frameworks on

which to build good distributed systems
—However, client-server systems are often very application

specific.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 72

The Distributed Architecture -
Design Principles Continued

7. Design for flexibility: Distributed systems can often be
easily reconfigured by adding extra servers or clients.

9. Design for portability: You can write clients for new
platforms without having to port the server.

10 Design for testability: You can test clients and servers
independently.

11. Design defensively: You can put rigorous checks in the
message handling code.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 73

The Broker Architectural Pattern

• Transparently distribute aspects of the software system
to different nodes

—An object can call methods of another object without
knowing that this object is remotely located.

—CORBA is a well-known open standard that allows
you to build this kind of architecture.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 74

Example of a Broker System

Client Brokerobject request

Proxy
Remote Object

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 75

The Broker Architecture -
Design Principles

1. Divide and conquer: The remote objects can be independently
designed.

5. Increase reusability: It is often possible to design the remote
objects so that other systems can use them too.

6. Increase reuse: You may be able to reuse remote objects that others
have created.

7. Design for flexibility: The brokers can be updated as required, or
the proxy can communicate with a different remote object.

9. Design for portability: You can write clients for new platforms
while still accessing brokers and remote objects on other platforms.

11. Design defensively: You can provide careful assertion checking in
the remote objects.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 76

The Transaction-Processing Architectural
Pattern

A process reads a series of inputs one by one.
• Each input describes a transaction – a command that

typically some change to the data stored by the system
• There is a transaction dispatcher component that decides

what to do with each transaction
• This dispatches a procedure call or message to one of a

series of component that will handle the transaction

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 77

Example of a Transaction-Processing
System - Airline Reservations

Transaction
input

Transaction
dispatcher

transactions

Handler for
Reservation
transaction

Handler for
Flight cancellation
transaction

...

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 78

The Transaction-Processing Architecture -
Design Principles

1. Divide and conquer: The transaction handlers are
suitable system divisions that you can give to separate
software engineers.

2. Increase cohesion: Transaction handlers are naturally
cohesive units.

3. Reduce coupling: Separating the dispatcher from the
handlers tends to reduce coupling.

7. Design for flexibility: You can readily add new
transaction handlers.

11. Design defensively: You can add assertion checking in
each transaction handler and/or in the dispatcher.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 79

The Pipe-and-Filter Architectural Pattern

A stream of data, in a relatively simple format, is passed
through a series of processes

• Each of which transforms it in some way.
• Data is constantly fed into the pipeline.
• The processes work concurrently.
• The architecture is very flexible.

—Almost all the components could be removed.
—Components could be replaced.
—New components could be inserted.
—Certain components could be reordered.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 80

Example of a Pipe-and-Filter System -
Sound Processing

encoders for
microphone
input

encoder for
ambient
noise

cancel
noise

equalize
dynamic
range

remove
non-voice
frequencies

compress transmit

receivedecompress
encode
speaker
output

microphones
near
sound
source

distant
microphone

cancel
echo

TCP/IP Transmission

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 81

The Pipe-and-Filter Architecture -
Design Principles

1. Divide and conquer: The separate processes can be
independently designed.

2. Increase cohesion: The processes have functional
cohesion.

3. Reduce coupling: The processes have only one input
and one output.

4. Increase abstraction: The pipeline components are
often good abstractions, hiding their internal details.

5. Increase reusability: The processes can often be used in
many different contexts.

6. Increase reuse: It is often possible to find reusable
components to insert into a pipeline.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 82

The Pipe-and-Filter Architecture -
Design Principles Continued

7. Design for flexibility: There are several ways in which
the system is flexible.

10. Design for testability: It is normally easy to test the
individual processes.

11. Design defensively: You rigorously check the inputs of
each component, or else you can use design by contract.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 83

The Model-View-Controller (MVC)
Architectural Pattern

An architectural pattern used to help separate the user
interface layer from other parts of the system

• The model contains the underlying classes whose
instances are to be viewed and manipulated

• The view contains objects used to render the appearance
of the data from the model in the user interface

• The controller contains the objects that control and
handle the user’s interaction with the view and the
model

• The Observable design pattern is normally used to
separate the model from the view

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 84

Example of the MVC Architecture for a User
Interface

Controller

View

Model

notify about
changes

create and update

modify

viewed
by actor

receives
actor events

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 85

The MVC Architecture -
Design Principles

1. Divide and conquer: The three components can be somewhat
independently designed.

2. Increase cohesion: The components have stronger layer cohesion
than if the view and controller were together in a single UI layer.

3. Reduce coupling: The communication channels between the three
components are minimal.

6. Increase reuse: The view and controller normally make extensive
use of reusable components for various kinds of UI controls.

7. Design for flexibility: It is usually quite easy to change the UI by
changing the view, the controller, or both.

10. Design for testability: You can test the application separately from
the UI.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 86

9.6 Writing a Good Design Document

Design documents as an aid to making better designs
• They force you to be explicit and consider the important

issues before starting implementation.
• They allow a group of people to review the design and

therefore to improve it.
• Design documents as a means of communication.

—To those who will be implementing the design.
—To those who will need, in the future, to modify the

design.
—To those who need to create systems or subsystems

that interface with the system being designed.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 87

Structure of a Design Document
A. Purpose:

—What system or part of the system this design document describes.
—Make reference to the requirements that are being implemented by this

design (traceability) .
B. General priorities:

—Describe the priorities used to guide the design process. !
C. Outline of the design:

—Give a high-level description of the design that allows the reader to
quickly get a general feeling for it. !

D. Major design issues:
—Discuss the important issues that had to be resolved.
—Give the possible alternatives that were considered, the final decision

and the rationale for the decision.
E. Other details of the design:

—Give any other details the reader may want to know that have not yet
been mentioned.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 88

When Writing the Document:
Some General Rules about What to Exclude

• Avoid documenting information that would be readily
obvious to a skilled programmer or designer.

• Avoid writing details in a design document that would
be better placed as comments in the code.

• Avoid writing details that can be extracted automatically
from the code, such as the list of public methods.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 89

9.7 Design of a Feature of the SimpleChat
System

A. Purpose
This document describes important aspects of the implementation of
the #block, #unblock, #whoiblock and #whoblocksme
commands of the SimpleChat system.

B. General Priorities
Decisions in this document are made based on the following priorities
(most important first): Maintainability, Usability, Portability,
Efficiency

C. Outline of the design
Blocking information will be maintained in the
ConnectionToClient objects. The various commands will update
and query the data using setValue and getValue.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 90

Design Example - Issues

D. Major design issue

Issue 1: Where should we store information regarding the establishment of
blocking?
!
Option 1.1: Store the information in the ConnectionToClient object
associated with the client requesting the block.
!
Option 1.2: Store the information in the ConnectionToClient object
associated with the client that is being blocked.
!
Decision: Point 2.2 of the specification requires that we be able to block a
client even if that client is not logged on. This means that we must choose
option 1.1 since no ConnectionToClient will exist for clients that are
logged off.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 91

Design Example - Details - Client Side

E. Details of the design:

Client side:
!
• The four new commands will be accepted by
handleMessageFromClientUI and passed unchanged to the server.

• Responses from the server will be displayed on the UI. There will be no
need for handleMessageFromServer to understand that the
responses are replies to the commands.

!

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 92

Design Example - Details - Server Side

Server side:

• Method handleMessageFromClient will interpret #block
commands by adding a record of the block in the data associated with
the originating client.

This method will modify the data in response to #unblock.

• The information will be stored by calling
setValue("blockedUsers", arg)

where arg is a Vector containing the names of the blocked
users.

• Method handleMessageFromServerUI will also have to have
an implementation of #block and #unblock.

These will have to save the blocked users as elements of a new
instance variable declared thus: Vector blockedUsers;

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 93

Design Example - Continued

• The implementations of #whoiblock in
handleMessageFromClient and
handleMessageFromServerUI will straightforwardly process
the contents of the vectors.

• For #whoblocksme, a new method will be created in the server class
that will be called by both handleMessageFromClient and
handleMessageFromServerUI.

This will take a single argument (the name of the initiating client, or
else 'SERVER').

It will check all the blockedUsers vectors of the connected
clients and also the blockedUsers instance variable for matching
clients.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 94

Design Example - Conclusion

• The #forward, #msg and #private commands will be
modified as needed to reflect the specifications.

Each of these will each examine the relevant
blockedUsers vectors and take appropriate action.

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 95

9.8 Difficulties and Risks in Design

Like modelling, design is a skill that requires considerable
experience

—Individual software engineers should not attempt the
design of large systems

—Aspiring software architects should actively study
designs of other systems

Poor designs can lead to expensive maintenance
—Ensure you follow the principles discussed in this

chapter

© Lethbridge/Laganière 2001 Chapter 9: Architecting and designing software 96

Difficulties and Risks in Design

It requires constant effort to ensure a software system’s
design remains good throughout its life

—Make the original design as flexible as possible so
as to anticipate changes and extensions.

—Ensure that the design documentation is usable and
at the correct level of detail

—Ensure that change is carefully managed

