
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 6:
Using Design Patterns

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 2

6.1 Introduction to Patterns

The recurring aspects of designs are called design patterns.
• A pattern is the outline of a reusable solution to a general problem

encountered in a particular context
• Many of them have been systematically documented for all software

developers to use
• A good pattern should

—Be as general as possible
—Contain a solution that has been proven to effectively solve the

problem in the indicated context.
Studying patterns is an effective way to learn from the experience of

others

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 3

Pattern description

Context:
• The general situation in which the pattern applies

Problem:
—A short sentence or two raising the main difficulty.

Forces:
• The issues or concerns to consider when solving the problem

Solution:
• The recommended way to solve the problem in the given context.

—‘to balance the forces’
Antipatterns: (Optional)

• Solutions that are inferior or do not work in this context.
Related patterns: (Optional)

• Patterns that are similar to this pattern.
References:

• Who developed or inspired the pattern.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 4

6.2 The Abstraction-Occurrence Pattern

• Context:
—Often in a domain model you find a set of related objects

(occurrences).
—The members of such a set share common information

- but also differ from each other in important ways.
• Problem:

—What is the best way to represent such sets of occurrences in a
class diagram?

• !Forces:
—You want to represent the members of each set of occurrences

without duplicating the common information

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 5

 Abstraction-Occurrence

• Solution:

TVSeries

seriesName
producer

Episode

number
title
storySynopsis

«Occurrence»«Abstraction» ******

Title

name
author

LibraryItem

barCodeNumber

isbn
publicationDate
libOfCongress

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 6

 Abstraction-Occurrence

Antipatterns:

name
author

LibraryItem

barCodeNumber

isbn
publicationDate
libOfCongress

Title

name
author

LibraryItem

barCodeNumber

isbn
publicationDate
libOfCongress

name
author

LibraryItem

barCodeNumber

isbn
publicationDate
libOfCongress

GulliversTravels MobyDick

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 7

 Abstraction-Occurrence

Square variant
ScheduledTrain

number

SpecificTrain

date
**

* *

ScheduledLeg SpecificLeg

actualDepTime
*

actualArrTime
scheduledDepTime
scheduledArrTime

Station

origin destination
* *

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 8

6.3 The General Hierarchy Pattern
• Context:

—Objects in a hierarchy can have one or more objects above them
(superiors),

- and one or more objects below them (subordinates).
—Some objects cannot have any subordinates

• Problem:
—How do you represent a hierarchy of objects, in which some

objects cannot have subordinates?
• Forces:

—You want a flexible way of representing the hierarchy
- that prevents certain objects from having subordinates

—All the objects have many common properties and operations

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 9

 General Hierarchy

• Solution: «subordinate»
*«Node»

«SuperiorNode»«NonSuperiorNode»

* supervises

Manager

Employee

TechnicianSecretary

0..1

0..1

* contains

Directory

FileSystemItem

File

0..1

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 10

 General Hierarchy

Antipattern:

RockRecordingBluesRecordingClassicalRecordingJazzRecordingMusicVideo

VideoRecoding AudioRecording

Recording

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 11

6.4 The Player-Role Pattern

• Context:
—A role is a particular set of properties associated

with an object in a particular context.
—An object may play different roles in different

contexts.
• Problem:

—How do you best model players and roles so that a
player can change roles or possess multiple roles?

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 12

Player-Role

• Forces:
—It is desirable to improve encapsulation by capturing

the information associated with each separate role in
a class.

—You want to avoid multiple inheritance.
—You cannot allow an instance to change class

• Solution:
«Player»

«Role1» «Role2»

«AbstractRole»

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 13

Player-Role

Example 1:

Animal HabitatRole

habitattypeOfFood

OmnivoreHerbivore LandAnimalAquaticAnimal

0..2

Carnivore

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 14

Player-Role

Example 2:

LevelRole

attendance

PartTimeStudentFullTimeStudent UndergraduateStudentGraduateStudent

level

StudentAttendanceRole

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 15

Player-Role

Antipatterns:

• Merge all the properties and behaviours into a single
«Player» class and not have «Role» classes at all.

• Create roles as subclasses of the «Player» class.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 16

6.5 The Singleton Pattern

• Context:
—It is very common to find classes for which only one

instance should exist (singleton)
• Problem:

—How do you ensure that it is never possible to create
more than one instance of a singleton class?

• Forces:
—The use of a public constructor cannot guarantee that

no more than one instance will be created.
—The singleton instance must also be accessible to all

classes that require it

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 17

Singleton

• Solution:

Company

theCompany

Company «private»
getInstance

if (theCompany==null)
 theCompany= new Company();

return theCompany;

«Singleton»

theInstance

getInstance

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 18

6.6 The Observer Pattern

• Context:
—When an association is created between two classes,

the code for the classes becomes inseparable.
—If you want to reuse one class, then you also have to

reuse the other.
• Problem:

—How do you reduce the interconnection between
classes, especially between classes that belong to
different modules or subsystems?

• Forces:
—You want to maximize the flexibility of the system

to the greatest extent possible

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 19

Observer

• Solution:

WeatherViewer

* ******

Observers are
notified when a new
prediction is readyForecaster

Observable

«ConcreteObservable» «ConcreteObserver»

«Observable»

addObserver
notifyObservers

«interface»
«Observer»

update

* ****** «interface»
Observer

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 20

Observer

Antipatterns:
• Connect an observer directly to an observable so that

they both have references to each other.
• Make the observers subclasses of the observable.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 21

6.7 The Delegation Pattern

• Context:
—You are designing a method in a class
—You realize that another class has a method which

provides the required service
—Inheritance is not appropriate

- E.g. because the isa rule does not apply
• Problem:

—How can you most effectively make use of a method
that already exists in the other class?

• Forces:
—You want to minimize development cost by reusing

methods

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 22

Delegation

• Solution:

LinkedList

addFirst
addLast
addAfter
removeFirst
removeLast
delete
isEmpty

Stack

push
pop
isEmpty

«Delegate»«Delegator»
delegatingMethod()
 {

delegate.method();
 } delegatingMethod method

push()
 {

list.addFirst();
 }

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 23

Delegation

Example:

****** SpecificFlightBooking

flightNumber() flightNumber()

RegularFlight

flightNumber()

*

flightNumber()

return
 specificFlight.flightNumber();

 }

 {
flightNumber()

return
 regularFlight.flightNumber();

 }

 {

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 24

Delegation

Antipatterns
• Overuse generalization and inherit the method that is to

be reused
• Instead of creating a single method in the «Delegator»

that does nothing other than call a method in the
«Delegate

—consider having many different methods in the
«Delegator» call the delegate’s method

• Access non-neighboring classes
return specificFlight.regularFlight.flightNumber();

return getRegularFlight().flightNumber();

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 25

6.8 The Adapter Pattern

• Context:
—You are building an inheritance hierarchy and want to

incorporate it into an existing class.
—The reused class is also often already part of its own inheritance

hierarchy.
• Problem:

—How to obtain the power of polymorphism when reusing a class
whose methods

- have the same function
- but not the same signature

as the other methods in the hierarchy?
• Forces:

—You do not have access to multiple inheritance or you do not
want to use it.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 26

Adapter

• Solution:

«Adaptee»

adaptedMethod

«Superclass»

polymorphicMethod

«Adapter»

polymorphicMethod()

return
 adaptee.adaptedMethod();

 {

 }

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 27

Adapter

Example:

TimsTorus

calcVolume

ThreeDShape

volume

Sphere Torus

volume()

return
 adaptee.calcVolume();

 {

 }

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 28

6.9 The Façade Pattern

• Context:
—Often, an application contains several complex packages.
—A programmer working with such packages has to manipulate

many different classes
• Problem:

—How do you simplify the view that programmers have of a
complex package?

• Forces:
—It is hard for a programmer to understand and use an entire

subsystem
—If several different application classes call methods of the

complex package, then any modifications made to the package
will necessitate a complete review of all these classes.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 29

Façade

• Solution:

«PackageClass3»

«PackageClass2»

«PackageClass1»

****** RegularFlight

Person

Airline

findFlight
makeBooking
deleteBooking

«Facade»

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 30

6.10 The Immutable Pattern

• Context:
—An immutable object is an object that has a state that never

changes after creation
• Problem:

—How do you create a class whose instances are immutable?
• Forces:

—There must be no loopholes that would allow ‘illegal’
modification of an immutable object

• Solution:
—Ensure that the constructor of the immutable class is the only

place where the values of instance variables are set or modified.
—Instance methods which access properties must not have side

effects.
—If a method that would otherwise modify an instance variable is

required, then it has to return a new instance of the class.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 31

6.11 The Read-only Interface Pattern

• Context:
—You sometimes want certain privileged classes to be able to

modify attributes of objects that are otherwise immutable
• Problem:

—How do you create a situation where some classes see a class as
read-only whereas others are able to make modifications?

• Forces:
—Restricting access by using the public, protected and
private keywords is not adequately selective.

—Making access public makes it public for both reading and
writing

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 32

Read-only Interface

• Solution:

«UnprivilegedClass»

****** «Mutator»

«Mutable»

attribute «private»

getAttribute
setAttribute

«interface»
«ReadOnlyInterface»

getAttribute

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 33

Read-only Interface

Example:

Mutableperson

firstName
lastName

setFirstName
setLastName
getName

«interface»
Person

getName

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 34

Read-only Interface

Antipattern:
• Make the read-only class a subclass of the «Mutable» class

—Override all methods that modify properties
- such that they throw an exception

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 35

6.12 The Proxy Pattern

• Context:
—Often, it is time-consuming and complicated to create instances

of a class (heavyweight classes).
—There is a time delay and a complex mechanism involved in

creating the object in memory
• Problem:

—How to reduce the need to create instances of a heavyweight
class?

• Forces:
—We want all the objects in a domain model to be available for

programs to use when they execute a system’s various
responsibilities.

—It is also important for many objects to persist from run to run
of the same program

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 36

Proxy

• Solution:

«interface»
«ClassIF»

* ******«Client» «HeavyWeight»«Proxy»

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 37

Proxy

Example:
«interface»

ListIF
The list elements will
be loaded into local
memory only when
needed.

ListProxy PersistentList

«interface»
Student

PersistentStudentStudentProxy

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 38

6.13 Detailed Example: The Observable
layer of OCSF

ObservableServerObservableClient

AbstractServerAbstractClient

Observable

ConnectionToClient

AdaptableServer

clientConnected
clientDisconnected
serverStarted
serverStopped
handleMessageFromClient

AdaptableClient

connectionEstablished
connectionClosed
handleMessageFromServer

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 39

The Observable layer of OCSF (continued)

ObservableServer

listen
stopListening
close
sendToAllClients
isListening
getClientConnections
getNumberOfClients
getPort
setPort
clientConnnected
clientDisconnected
serverStarted
serverStopped
handleMessageFromClient

ObservableClient

openConnection
closeConnection
sendToServer
isConnected
getPort
setPort
getHost
setHost
getInetAddress
handleMessageFromServer
connectionClosed
connectionEstablished

Observable
AdaptableServerAdaptableClient

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 40

Using the Observable layer

1. Create a class that implements the Observer interface.
2. Register it as an observer of the Observable:
 public MessageHandler(Observable client)
 {
 client.addObserver(this);
 ...
 }
!
3. Define the update method in the new class:!
 public void update(Observable obs, Object message)
 {
 if (message instanceOf SomeClass)
 {
 // process the message
 }
 }
!

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 41

6.14 Difficulties and Risks When Working
with Patterns

• Patterns are not a panacea:
—Whenever you see an indication that a pattern should

be applied, you might be tempted to blindly apply the
pattern. However this can lead to unwise design
decisions .

• Resolution:
— Always understand in depth the forces that need to

be balanced, and when other patterns better balance
the forces.

—Make sure you justify each design decision carefully.

© Lethbridge/Laganière 2001 Chapter 6: Using design patterns 42

Difficulties and Risks When Working With
Patterns

• Developing patterns is hard
—Writing a good pattern takes considerable work.
—A poor pattern can be hard to apply correctly

• Resolution:
—Do not write patterns for others to use until you

have considerable experience both in software design
and in the use of patterns.

—Take an in-depth course on patterns.
—Iteratively refine your patterns, and have them peer

reviewed at each iteration.

