
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 3:
Basing Software Development on

Reusable Technology

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

2

3.1 Building on the Experience of Others

Software engineers should avoid re-developing software
already developed

Types of reuse:
• Reuse of expertise
• Reuse of standard designs and algorithms
• Reuse of libraries of classes or procedures
• Reuse of powerful commands built into languages and

operating systems
• Reuse of frameworks
• Reuse of complete applications

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

3

3.2 Reusability and Reuse in SE

Reuse and design for reusability should be part of the
culture of software development organizations

But there are problems to overcome:
• Why take the extra time needed to develop something

that will benefit other projects/customers?
• Management may only reward the efforts of people who

create the visible ‘final products’.
• Reusable software is often created in a hurry and without

enough attention to quality.

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

4

A vicious cycle

Developers tend not develop high quality reusable
components, so there is often little to reuse

To solve the problem, recognize that:
• This vicious cycle costs money
• Investment in reusable code is important
• Attention to quality of reusable components is essential

—So that potential reusers have confidence in them
—The quality of a software product is only as good as

its lowest-quality reusable component
• Developing reusable components can often simplify

design

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

5

3.3 Frameworks: Reusable Subsystems

A framework is reusable software that implements a
generic solution to a generalized problem.

• It provides common facilities applicable to different
application programs.

Principle: Applications that do different, but related,
things tend to have quite similar designs

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

6

Frameworks to promote reuse

A framework is intrinsically incomplete
• Certain classes or methods are used by the framework,

but are missing (slots)

• Some functionality is optional
— Allowance is made for developer to provide it

(hooks)

• Developers use the services that the framework provides
—Taken together the services are called the

Application Program Interface (API)

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

7

Object-oriented frameworks

In the object oriented paradigm, a framework is
composed of a library of classes.

• The API is defined by the set of all public methods of
these classes.

• Some of the classes will normally be abstract

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

8

Examples of frameworks

• A framework for payroll management

• A framework for frequent buyer clubs

• A framework for university registration

• A framework for e-commerce web sites

• A framework for controlling microwave ovens

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

9

Types of frameworks
•A horizontal framework provides general application facilities
that a large number of applications can use
•A vertical framework (application framework) is more
‘complete’ but still needs some slots to be filled to adapt it to
specific application needs

Application Application

Horizontal framework

Vertical
framework

Code to be provided to adapt the framework to the
needs of the application

Services offered
by the framework

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

10

3.4 The Client-Server Architecture

A distributed system is a system in which:
• computations are performed by separate programs
• … normally running on separate pieces of hardware
• … that co-operate to perform the task of the system.

Server:
• A program that provides a service for other programs

that connect to it using a communication channel
Client

• A program that accesses a server (or several servers) to
obtain services

• A server may be accessed by many clients
simultaneously

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

11

Sequence of activities in a client-server
system

1. The server starts running
2. The server waits for clients to connect. (listening)
3. Clients start running and perform operations

— Some operations involve requests to the server
4. When a client attempts to connect, the server accepts

the connection (if it is willing)
5. The server waits for messages to arrive from

connected clients
6. When a message from a client arrives, the server

takes some action in response, then resumes waiting
7. Clients and servers continue functioning in this

manner until they decide to shut down or disconnect

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

12

A server program communicating with two
client programs

disconnect

send message

disconnect

send reply

listen for connections

stop listening

connect

Client 2

send message

connect

Client 1Server

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

13

Alternatives to the client server architecture

• Have a single program on one computer that does
everything

• Have no communication
— Each computer performs the work separately

• Have some mechanism other than client-server
communication for exchanging information

—E.g. one program writes to a database; the other
reads from the database

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

14

Advantages of client-server systems

• The work can be distributed among different machines
• The clients can access the server’s functionality from a

distance
• The client and server can be designed separately
• They can both be simpler
• All the data can be kept centrally at the server
• Conversely, data can be distributed among many

different geographically-distributed clients or servers
• The server can be accessed simultaneously by many

clients
• Competing clients can be written to communicate with

the same server, and vice-versa

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

15

Example of client-server systems

• The World Wide Web
• Email
• Network File System
• Transaction Processing System
• Remote Display System
• Communication System
• Database System

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

16

Activities of a server

1. Initializes itself
2. Starts listening for clients
3. Handles the following types of

events originating from clients
1. accepts connections
2. responds to messages
3. handles client disconnection

4. May stop
 listening
1. Must cleanly terminate

Waiting for Connections

Handling a Connection

do: react to messages

handle
disconnection

Waiting

start listening stop listening

For each connection:

For the server as a whole:

accept connection

Initializing

terminate

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

17

Activities of a client

1. Initializes itself
2. Initiates a connection
3. Sends messages
4. Handles the following

types of events
originating from the
server

1. responds to messages
2. handles server

disconnection
5. Must cleanly terminate

initiate a connection
to a server

respond to events
triggered by the server

do: respond to messages
 and
handle server
disconnection

interact with the
user,
sending messages
to the server
as necessary

terminate

initialize

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

18

Threads in a client-server system

kill client
disconnect

reply to message

create

reply to message

connect

display
disconnect

display reply

display reply

create

wait for
connections

interact
with user

wait for server
events

wait for
messages:

client A

interact with
server user

wait for
messages:

client B

send message

send message

Client Side (Client A) Server Side

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

19

Thin- versus fat-client systems
Thin-client system (a)

• Client is made as small as possible
• Most of the work is done in the server.
• Client easy to download over the network

Fat-client system (b)
• As much work as possible is delegated to the clients.
• Server can handle more clients

Light computation

Light computation

Heavy computation

Heavy computation

results
for display

simple
commands

requests
for services

results
of requests

a b

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

20

Communications protocols

• The messages the client sends to the server form a
language.

— The server has to be programmed to understand that
language.

• The messages the server sends to the client also form a
language.

— The client has to be programmed to understand that
language.

• When a client and server are communicating, they are in
effect having a conversation using these two languages

• The two languages and the rules of the conversation,
taken together, are called the protocol

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

21

Tasks to perform to develop
client-server applications

1. Design the primary work to be performed by both client
and server

2. Design how the work will be distributed
3. Design the details of the set of messages that will be sent
4. Design the mechanism for

1. Initializing
2. Handling connections
3. Sending and receiving messages
4. Terminating

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

22

3.5 Technology Needed to Build Client-
Server Systems

Internet Protocol (IP)
• Route messages from one computer to another
• Long messages are normally split up into small pieces

Transmission Control Protocol (TCP)
• Handles connections between two computers
• Computers can then exchange many IP messages over a connection
• Assures that the messages have been satisfactorily received

A host has an IP address and a host name
• Several servers can run on the same host.
• Each server is identified by a port number (0 to 65535).
• To initiate communication with a server, a client must know both

the host name and the port number

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

23

Establishing a connection in Java

The java.net package
• Permits the creation of a TCP/IP connection between

two applications

Before a connection can be established, the server must
start listening to one of the ports:

ServerSocket serverSocket = new
 ServerSocket(port);
Socket clientSocket = serverSocket.accept();

For a client to connect to a server:
Socket clientSocket= new Socket(host, port);

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

24

Exchanging information in Java

• Each program uses an instance of
— InputStream to receive messages from the other

program
— OutputStream to send messages to the other

program
—These are found in package java.io

output = clientSocket.getOutputStream();

input = clientSocket.getInputStream();

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

25

Sending and receiving messages

• without any filters (raw bytes)
output.write(msg);
msg = input.read();

• or using DataInputStream / DataOutputStream filters
output.writeDouble(msg);
msg = input.readDouble();

• or using ObjectInputStream / ObjectOutputStream filters
output.writeObject(msg);
msg = input.readObject();

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

26

3.6 The Object Client-Server Framework
 (OCSF)

AbstractClient

openConnection

closeConnection
sendToServer

connectionEstablished

connectionClosed

handleMessageFromServer

connectionException

ConnectionToClient

sendToClient
close
setInfo
getInfo

AbstractServer

listen
stopListening
close

clientConnected
clientDisconnected

serverStarted

handleMessageFromClient

serverStopped

sendToAllClients
getClientConnections

serverClosed

clientException

listeningException

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

27

Using OCSF

Software engineers using OCSF never modify its three
classes

They:
• Create subclasses of the abstract classes in the

framework

• Call public methods that are provided by the framework

• Override certain slot and hook methods (explicitly
designed to be overridden)

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

28

3.7 The Client Side

Consists of a single class: AbstractClient
• Must be subclassed

—Any subclass must provide an implementation for
handleMessageFromServer

- Takes appropriate action when a message is received from a
server

• Implements the Runnable interface
—Has a run method which

- Contains a loop that executes for the lifetime of the thread

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

29

The public interface of AbstractClient

Controlling methods:
•openConnection
•closeConnection
•sendToServer

Accessing methods:
•isConnected
•getHost
•setHost
•getPort
•setPort
•getInetAddress

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

30

The callback methods of AbstractClient

Methods that may be overridden:
•connectionEstablished
•connectionClosed

Method that must be implemented:
•handleMessageFromServer

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

31

Using AbstractClient

• Create a subclass of AbstractClient
• Implement handleMessageFromServer slot

method
• Write code that:

—Creates an instance of the new subclass
—Calls openConnection
—Sends messages to the server using the
sendToServer service method

• Implement the connectionClosed callback
• Implement the connectionException callback

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

32

Internals of AbstractClient

Instance variables:
• A Socket which keeps all the information about the

connection to the server
• Two streams, an ObjectOutputStream and an
ObjectInputStream

• A Thread that runs using AbstractClient’s run
method

• Two variables storing the host and port of the server

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

33

3.8 The Server Side

Two classes:
• One for the thread which listens for new connections

(AbstractServer)

• One for the threads that handle the connections to clients
(ConnectionToClient)

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

34

The public interface of AbstractServer

Controlling methods:
•listen
•stopListening
•close
•sendToAllClients

Accessing methods:
•isListening
•getClientConnections
•getPort
•setPort
•setBacklog

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

35

The callback methods of AbstractServer

Methods that may be overridden:
•serverStarted
•clientConnected
•clientDisconnected
•clientException
•serverStopped
•listeningException
•serverClosed

Method that must be implemented:
•handleMessageFromClient

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

36

The public interface of
ConnectionToClient

Controlling methods:
•sendToClient
•close

Accessing methods:
•getInetAddress
•setInfo
•getInfo

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

37

Using AbstractServer and
ConnectionToClient

• Create a subclass of AbstractServer
• Implement the slot method

handleMessageFromClient
• Write code that:

— Creates an instance of the subclass of
AbstractServer

— Calls the listen method
— Sends messages to clients, using:

- the getClientConnections and sendToClient
service methods

- or sendToAllClients
• Implement one or more of the other callback methods

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

38

Internals of AbstractServer and
ConnectionToClient

• The setInfo and getInfo methods make use of a
Java class called HashMap

• Many methods in the server side are synchronized

• The collection of instances of
ConnectionToClient is stored using a special
class called ThreadGroup

• The server must pause from listening every 500ms to see
if the stopListening method has been called

—if not, then it resumes listening immediately

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

39

3.11 An Instant Messaging Application:
SimpleChat

EchoServer

handleMessageFromClient
serverStarted
serverStopped
main

<<interface>>

ChatIF

display

ChatClient

handleMessageFromServer
handleMessageFromClientUI
quit

AbstractServer

ClientConsole

accept
display
main

AbstractClient

ClientConsole can eventually be replaced by ClientGUI

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

40

The server

EchoServer is a subclass of AbstractServer
• The main method creates a new instance and starts it

— It listens for clients and handles connections until
the server is stopped

• The three callback methods just print out a message to
the user
— handleMessageFromClient,

serverStarted and serverStopped
• The slot method handleMessageFromClient

calls sendToAllClients
— This echoes any messages

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

41

Key code in EchoServer

public void handleMessageFromClient
 (Object msg, ConnectionToClient client)
{
 System.out.println(
 "Message received: "
 + msg + " from " + client);
 this.sendToAllClients(msg);
}

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

42

The client
When the client program starts, it creates instances of two classes:
•ChatClient

—A subclass of AbstractClient
—Overrides handleMessageFromServer

- This calls the display method of the user interface

•ClientConsole
—User interface class that implements the interface ChatIF

- Hence implements display which outputs to the console

—Accepts user input by calling accept in its run method

—Sends all user input to the ChatClient by calling its
handleMessageFromClientUI

- This, in turn, calls sendToServer

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

43

Key code in ChatClient
public void handleMessageFromClientUI(
 String message)
{
 try
 {
 sendToServer(message);
 }
 catch(IOException e)
 {
 clientUI.display (
 "Could not send message. " +
 "Terminating client.");
 quit();
 }
}

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

44

Key code in ChatClient - continued

public void handleMessageFromServer(Object msg)
{
 clientUI.display(msg.toString());
}

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

45

3.12 Risks when reusing technology

• Poor quality reusable components

—Ensure that the developers of the reusable
technology:

- follow good software engineering practices

- are willing to provide active support

• Compatibility not maintained

—Avoid obscure features

—Only re-use technology that others are also re-using

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

46

Risks when developing reusable technology

• Investment uncertainty

—Plan the development of the reusable technology, just
as if it was a product for a client

• The ‘not invented here syndrome’

—Build confidence in the reusable technology by:

- Guaranteeing support

- Ensuring it is of high quality

- Responding to the needs of its users

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

47

Risk when developing reusable technology –
continued

• Competition

—The reusable technology must be as useful and as
high quality as possible

• Divergence (tendency of various groups to change
technology in different ways)

—Design it to be general enough, test it and review it
in advance

© Lethbridge/Laganière 2001 Chap. 3: Basing Development on Reusable
Technology

48

Risks when adopting a client-server
approach

• Security
—Security is a big problem with no perfect solutions:

consider the use of encryption, firewalls, ...

• Need for adaptive maintenance
—Ensure that all software is forward and backward

compatible with other versions of clients and servers

