
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 1:
Software and Software Engineering

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 2

1.1 The Nature of Software...

Software is intangible
• Hard to understand development effort

Software is easy to reproduce
• Cost is in its development

—in other engineering products, manufacturing is the
costly stage

The industry is labor-intensive
• Hard to automate

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 3

The Nature of Software ...

Untrained people can hack something together
• Quality problems are hard to notice

Software is easy to modify
• People make changes without fully understanding it

Software does not ‘wear out’
• It deteriorates by having its design changed:

—erroneously, or
—in ways that were not anticipated, thus making it

complex

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 4

The Nature of Software

Conclusions
• Much software has poor design and is getting worse
• Demand for software is high and rising
• We are in a perpetual ‘software crisis’
• We have to learn to ‘engineer’ software

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 5

Types of Software...

Custom
• For a specific customer

Generic
• Sold on open market
• Often called

—COTS (Commercial Off The Shelf)
—Shrink-wrapped

Embedded
• Built into hardware
• Hard to change

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 6

Types of Software

Differences among custom, generic and embedded
software

 Custom Generic Embedded
Number of copies in use

low medium high

Total processing power
devoted to running this type
of software

low high medium

Worldwide annual
 development effort

high medium low

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 7

Types of Software

Real time software
• E.g. control and monitoring systems
• Must react immediately
• Safety often a concern

Data processing software
• Used to run businesses
• Accuracy and security of data are key

Some software has both aspects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 8

1.2 What is Software Engineering?...

The process of solving customers’ problems by the
systematic development and evolution of large, high-
quality software systems within cost, time and other
constraints

Solving customers’ problems
• This is the goal of software engineering
• Sometimes the solution is to buy, not build
• Adding unnecessary features does not help solve the

problem
• Software engineers must communicate effectively to

identify and understand the problem

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 9

What is Software Engineering?…

Systematic development and evolution
• An engineering process involves applying well understood

techniques in a organized and disciplined way
• Many well-accepted practices have been formally standardized

—e.g. by the IEEE or ISO
• Most development work is evolution

Large, high quality software systems
• Software engineering techniques are needed because large systems

cannot be completely understood by one person
• Teamwork and co-ordination are required
• Key challenge: Dividing up the work and ensuring that the parts of

the system work properly together
• The end-product that is produced must be of sufficient quality

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 10

What is Software Engineering?

Cost, time and other constraints
• Finite resources
• The benefit must outweigh the cost
• Others are competing to do the job cheaper and faster
• Inaccurate estimates of cost and time have caused many

project failures

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 11

1.3 Software Engineering and the
Engineering Profession

The term Software Engineering was coined in 1968
• People began to realize that the principles of engineering

should be applied to software development

Engineering is a licensed profession
• In order to protect the public
• Engineers design artifacts following well accepted

practices which involve the application of science,
mathematics and economics

• Ethical practice is also a key tenet of the profession

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 12

1.4 Stakeholders in Software Engineering

1. Users
• Those who use the software

2. Customers
• Those who pay for the software

3. Software developers
4. Development Managers

All four roles can be fulfilled by the same person

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 13

1.5 Software Quality...

Usability
• Users can learn it and fast and get their job done easily

Efficiency
• It doesn’t waste resources such as CPU time and

memory
Reliability

• It does what it is required to do without failing
Maintainability

• It can be easily changed
Reusability

• Its parts can be used in other projects, so reprogramming
is not needed

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 14

Software Quality...

QUALITY
SOFTWARE

Developer:
easy to design;
easy to maintain;
easy to reuse its parts

User:
easy to learn;
efficient to use;
helps get work done

Customer:
solves problems at
an acceptable cost in
terms of money paid and
resources used

Development manager:
sells more and
pleases customers
while costing less
to develop and maintain

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 15

Software Quality

The different qualities can conflict
• Increasing efficiency can reduce maintainability or

reusability
• Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering
activity

• You then design to meet the objectives
• Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary
• E.g. obtain the highest possible reliability using a fixed

budget

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 16

Internal Quality Criteria

These:
• Characterize aspects of the design of the software
• Have an effect on the external quality attributes
• E.g.

—The amount of commenting of the code
—The complexity of the code

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 17

Short Term Vs. Long Term Quality

Short term:
• Does the software meet the customer’s immediate

needs?
• Is it sufficiently efficient for the volume of data we have

today?
Long term:

• Maintainability
• Customer’s future needs

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 18

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,
involving work on legacy systems

• Corrective projects: fixing defects
• Adaptive projects: changing the system in response to

changes in
—Operating system
—Database
—Rules and regulations

• Enhancement projects: adding new features for users
• Reengineering or perfective projects: changing the

system internally so it is more maintainable

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 19

Software Engineering Projects

‘Green field’ projects
• New development
• The minority of projects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 20

Software Engineering Projects

Projects that involve building on a framework or a set of
existing components.

• The framework is an application that is missing some
important details.

—E.g. Specific rules of this organization.
• Such projects:

—Involve plugging together components that are:
- Already developed.
- Provide significant functionality.

—Benefit from reusing reliable software.
—Provide much of the same freedom to innovate

found in green field development.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 21

1.7 Activities Common to Software
Projects...

Requirements and specification
• Includes

—Domain analysis
—Defining the problem
—Requirements gathering

- Obtaining input from as many sources as possible
—Requirements analysis

- Organizing the information
—Requirements specification

- Writing detailed instructions about how the software should
behave

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 22

Activities Common to Software Projects...

Design
• Deciding how the requirements should be implemented,

using the available technology
• Includes:

—Systems engineering: Deciding what should be in
hardware and what in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will
interact

—Detailed design of the internals of a subsystem
—User interface design
—Design of databases

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 23

Activities Common to Software Projects

Modeling
• Creating representations of the domain or the software

—Use case modeling
—Structural modeling
—Dynamic and behavioural modeling

Programming
Quality assurance

• Reviews and inspections
• Testing

Deployment
Managing the process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 24

1.8 The Eight Themes of the Book

1. Understanding the customer and the user
2. Basing development on solid principles and reusable
technology
3. Object orientation
4. Visual modeling using UML
5. Evaluation of alternatives
6. Iterative development
7. Communicating effectively using documentation
8. Risk management in all SE activities

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 25

1.9 Difficulties and Risks in Software
Engineering

• Complexity and large numbers of details
• Uncertainty about technology
• Uncertainty about requirements
• Uncertainty about software engineering skills
• Constant change
• Deterioration of software design
• Political risks

