
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 8:
Modelling Interactions and Behaviour

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 2

8.1 Interaction Diagrams

Interaction diagrams are used to model the dynamic
aspects of a software system

They help you to visualize how the system runs.
An interaction diagram is often built from a use case and
a class diagram.

—The objective is to show how a set of objects
accomplish the required interactions with an actor.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 3

Interactions and messages

Interaction diagrams show how a set of actors and
objects communicate with each other to perform:

—The steps of a use case, or
—The steps of some other piece of functionality.

The set of steps, taken together, is called an interaction.

Interaction diagrams can show several different types of
communication.

—E.g. method calls, messages send over the network
—These are all referred to as messages.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 4

Elements found in interaction diagrams

Instances of classes
—Shown as boxes with the class and object identifier

underlined

Actors
—Use the stick-person symbol as in use case diagrams

Messages
—Shown as arrows from actor to object, or from object

to object

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 5

Creating instances diagrams

You should develop a class diagram and a use case
model before starting to create an interaction diagram.

There are two kinds of interaction diagrams:
—Sequence diagrams
—Collaboration diagrams

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 6

Sequence diagrams – an example

requestToRegister

addToSchedule
<<create>>

:Student

:Registration

:CourseSection

addToRegistrationList

***** ****** *CourseSection

requestToRegister

RegistrationCourse

getPrerequisite

Student

addToSchedule
hasPassedCourseaddToRegistrationList

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 7

Sequence diagrams

A sequence diagram shows the sequence of messages exchanged by
the set of objects performing a certain task

The objects are arranged horizontally across the diagram.
An actor that initiates the interaction is often shown on the left.
The vertical dimension represents time.
A vertical line, called a lifeline, is attached to each object or actor.
The lifeline becomes a broad box, called an activation box during
the live activation period.
A message is represented as an arrow between activation boxes of
the sender and receiver.

—A message is labelled and can have an argument list and a
return value.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 8

Sequence diagrams –
same example, more details

requestToRegister
(aStudent)

addToSchedule

aStudent:
Student

:Registration

:CourseSectionGUI

requestToRegister

:Course

[hasPrerequisite]
<<create>>

prereq :=
getPrerequisitehasPrerequisite :=

hasPassedCourse(prereq)

addToRegistrationList

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 9

An iteration over objects is indicated by an asterisk
preceding the message name

****** *Purchase

quantity

Bill Item

price

*[for all Purchase] getSubtotal

:Item:Bill

getUnitPrice

computeTotal

:Purchase

Sequence diagrams –
an example with replicated messages

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 10

If an object’s life ends, this is shown with an X at the
end of the lifeline

Sequence diagrams –
an example with object deletion

cancelBooking

deleteFromItinerary
cancel

:PassengerRole:Booking:SpecificFlight

deleteFromPassengerList

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 11

Collaboration diagrams – an example

2: addToSchedule1: <<create>>

:Student:Registration:CourseSection

3: addToRegistrationList

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 12

Collaboration diagrams

Collaboration diagrams emphasise how the objects
collaborate in order to realize an interaction

A collaboration diagram is a graph with the objects as
the vertices.
Communication links are added between objects
Messages are attached to these links.

—Shown as arrows labelled with the message name
Time ordering is indicated by prefixing the message with
some numbering scheme.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 13

Collaboration diagrams –
same example, more details

1: requestToRegister(aStudent)
<<local>>

5: addToSchedule
<<parameter>>

aStudent:
Student

:Registration

:CourseSectionGUI :Course

4: [hasPrerequisite]
<<create>>

2: prereq := getPrerequisite

3: hasPrerequisite :=
hasPassedCourse(prereq)

<<parameter>>

5: addToRegistrationList
<<parameter>>

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 14

Communication links

A communication link can exist between two objects
whenever it is possible for one object to send a message
to the other one.

Several situations can make this message exchange
possible:

1. The classes of the two objects have an association
between them.

- This is the most common case.
- If all messages are sent in the same direction, then probably

the association can be made unidirectional.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 15

Other communication links

2. The receiving object is stored in a local variable of
the sending method.

- This often happens when the object is created in the sending
method or when some computation returns an object .

- The stereotype to be used is «local» or [L].

3. A reference to the receiving object has been received
as a parameter of the sending method.

- The stereotype is «parameter» or [P].

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 16

Other communication links

4. The receiving object is global.
- This is the case when a reference to an object can be

obtained using a static method.
- The stereotype «global», or a [G] symbol is used in this

case.

5. The objects communicate over a network.
- We suggest to write «network».

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 17

How to choose between using a sequence
or collaboration diagram

Sequence diagrams
Make explicit the time ordering of the interaction.

—Use cases make time ordering explicit too
—So sequence diagrams are a natural choice when you

build an interaction model from a use case.

Make it easy to add details to messages.
—Collaboration diagrams have less space for this

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 18

How to choose between using a sequence
or collaboration diagram

Collaboration diagrams
Can be seen as a projection of the class diagram

—Might be preferred when you are deriving an
interaction diagram from a class diagram.

—Are also useful for validating class diagrams.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 19

Collaboration diagrams and patterns

A collaboration diagram can be used to represent aspects of
a design pattern

Student PersistentStudent

:Client :Proxy
1: request

2: [information needed
and not loaded]

loadHeavyWeight :HeavyWeight

Proxy

CourseSection

a)

b)

proxy heavyWeight

client

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 20

8.2 State Diagrams

A state diagram describes the behaviour of a system,
some part of a system, or an individual object.

At any given point in time, the system or object is in a
certain state.

—Being in a state means that it is will behave in a
specific way in response to any events that occur.

Some events will cause the system to change state.
—In the new state, the system will behave in a

different way to events.
A state diagram is a directed graph where the nodes are
states and the arcs are transitions.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 21

State diagrams – an example

tic-tac-toe game

OTurn

XTurn

Tie

OWin

XWin

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 22

States

At any given point in time, the system is in one state.

It will remain in this state until an event occurs that
causes it to change state.

A state is represented by a rounded rectangle containing
the name of the state.

Special states:
—A black circle represents the start state
—A circle with a ring around it represents an end state

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 23

Transitions

A transition represents a change of state in response to
an event.

—It is considered to occur instantaneously.

The label on each transition is the event that causes the
change of state.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 24

after(30s)

after(5s)

after(25s)

RedLight

GreenLight

YellowLight

after(25s since exit from
state RedLight)

RedLight

GreenLightChangeTriggered

YellowLight

after(5s)

after(30s)

vehicleWaitingToTurn

GreenLightNoTrigger

State diagrams – an example of transitions
with time-outs and conditions

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 25

State diagrams – an example with
conditional transitions

requestToRegister
(aStudent)

/createRegistration

Closed
classSize >= maximum

cancel

openRegistration

Planned

OpenEnoughStudents

OpenNotEnoughStudents

classSize >= minimum

requestToRegister
(aStudent)

/createRegistration

closeRegistration

closeRegistration

cancel

Cancelled

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 26

Activities in state diagrams

An activity is something that takes place while the
system is in a state.

—It takes a period of time.

—The system may take a transition out of the state in
response to completion of the activity,

—Some other outgoing transition may result in:
- The interruption of the activity, and
- An early exit from the state.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 27

State diagram – an example with activity

press button

do:
play chosen
selection

MusicPlayingProposeSelection

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 28

Actions in state diagrams

An action is something that takes place effectively
instantaneously

—When a particular transition is taken,
—Upon entry into a particular state, or
—Upon exit from a particular state

An action should consume no noticeable amount of time

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 29

State diagram – an example with actions

Enter /
run motor forwards

Enter /
run motor in reverse

Enter /
stop motor

Enter /
stop motor

openingCompleted

closingCompleted

pressButton

pressButton

pressButton

Closing Open

OpeningClosed

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 30

State diagrams – another example

Exit / stop

endOfProgram

startOfTape / stop

endOfTape

Wait

RewindingRecording

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 31

Nested substates and guard conditions

A state diagram can be nested inside a state.
The states of the inner diagram are called substates.

First Second Third

ReverseNeutral

selectDrive

reachThirdSpeed
[driveSelected]

dropBelowThirdSpeed

reachSecondSpeed
[driveSelected]

dropBelowSecondSpeed
[driveSelected]

selectFirst selectSecond selectNeutral

selectNeutral

selectReverse

selectFirst selectSecond

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 32

State diagram – an example with substates

requestToRegister
(aStudent)

/createRegistration

openRegistration

Planned

EnoughStudents

NotEnoughStudents

classSize >= minimum

Open

Closed
classSize >= maximum

cancel

closeRegistration

closeRegistration

Cancelled

do:
unregister
students

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 33

8.3 Activity Diagrams

An activity diagram is like a state diagram.
—Except most transitions are caused by internal events, such as

the completion of a computation.

An activity diagram
—Can be used to understand the flow of work that an object or

component performs.
—Can also be used to visualize the interrelation and interaction

between different use cases.
—Is most often associated with several classes.

One of the strengths of activity diagrams is the representation of
concurrent activities.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 34

Activity diagrams – an example

Verify
course not

full

Receive course
registration request

Check
prerequisites

Check
special

permission

Complete
registration

[ok]

[ok]
[ok][not ok]

[not ok]

[not ok]

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 35

Representing concurrency

Concurrency is shown using forks, joins and rendezvous.

—A fork has one incoming transition and multiple
outgoing transitions.

- The execution splits into two concurrent threads.

—A rendezvous has multiple incoming and multiple
outgoing transitions.

- Once all the incoming transitions occur all the outgoing
transitions may occur.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 36

Representing concurrency

—A join has multiple incoming transitions and one
outgoing transition.

- The outgoing transition will be taken when all incoming
transitions have occurred.

- The incoming transitions must be triggered in separate
threads.

- If one incoming transition occurs, a wait condition occurs at
the join until the other transitions occur.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 37

Swimlanes

Activity diagrams are most often associated with several
classes.

The partition of activities among the existing classes can
be explicitly shown using swimlanes.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 38

Activity diagrams – an example with
swimlanes

Verify
course not

full

Receive course
registration request

Check
prerequisites

Check
special

permission

Complete
registration

[ok]

[ok]
[ok][not ok]

[not ok]

[not ok]

Student CourseSection

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 39

8.4 Implementing Classes Based on
Interaction and State Diagrams

You should use these diagrams for the parts of your
system that you find most complex.

—I.e. not for every class

Interaction, activity and state diagrams help you create a
correct implementation.

This is particularly true when behaviour is distributed
across several use cases.

—E.g. a state diagram is useful when different
conditions cause instances to respond differently to
the same event.

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 40

Example: The CourseSection class

States:
‘Planned’:
— closedOrCancelled == false && open ==
false

‘Cancelled’:
— closedOrCancelled == true &&
registrationList.size() == 0

‘Closed’ (course section is too full, or being taught):
— closedOrCancelled == true &&
registrationList.size() > 0

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 41

Example: The CourseSection class

States:
‘Open’ (accepting registrations):
— open == true

‘NotEnoughStudents’ (substate of ‘Open’):
— open == true && registrationList.size() <
course.getMinimum()

‘EnoughStudents’ (substate of ‘Open’):
— open == true && registrationList.size() >=
course.getMinimum()

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 42

Example: The CourseSection class

***** **** *CourseSection

requestToRegister

RegistrationCourse

getPrerequisite

Student

addToSchedule
hasPassedCourseaddToRegistrationList

Class diagram

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 43

Example: The CourseSection class

public class CourseSection
{
// The many-1 abstraction-occurence association
private Course course;

// The 1-many association to class Registration
private List registationList;

// The following are present only to determine
// the state
// The initial state is ‘Planned’
private boolean open = false;
private boolean closedOrCancelled = false;
...
}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 44

Example: The CourseSection class

public CourseSection(Course course)
{
this.course = course;
RegistrationList = new LinkedList();

}

public void cancel()
{
// to ‘Cancelled’state
open = false;
closedOrCancelled = true;
unregisterStudents();

}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 45

Example: The CourseSection class

public void openRegistration()
{
if(!closedOrCancelled)
// must be in ‘Planned’state
{
open = true;
// to 'OpenNotEnoughStudents'state
}

}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 46

Example: The CourseSection class

public void closeRegistration()
{
// to 'Cancelled' or 'Closed' state
open = false;
closedOrCancelled = true;
if (registrationList.size() <
course.getMinimum())

{
unregisterStudents();
// to ‘Cancelled’ state
}
}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 47

Example: The CourseSection class
public void requestToRegister(Student student)
{
if (open) // must be in one of the two 'Open' states
{
// The interaction specified in the sequence diagram
Course prereq = course.getPrerequisite();
if (student.hasPassedCourse(prereq))
{
// Indirectly calls addToRegistrationList
new Registration(this, student);

}

// Check for automatic transition to 'Closed' state
if (registrationList.size() >= course.getMaximu m())
{
// to ‘Closed’ state
open = false;
closedOrCancelled = true;

}
}
}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 48

Example: The CourseSection class
// Activity associated with ‘Cancelled’ state.
private void unregisterStudents()
{
Iteratorit = registrationList.iterator();
while (it.hasNext())
{
Registration r = (Registration)it.next();
r.unregisterStudent();
it.remove();
}

}

// Called within this package only, by the
// constructor of Registration
void addToRegistrationList(
Registration newRegistration)

{
registrationList.add(newRegistration);
}

}

© Lethbridge/Laganière 2001 Chapter 8: Modelling Interactions and Behaviour 49

8.5 Difficulties and Risks in Modelling
Interactions and Behaviour

Dynamic modelling is a difficult skill
In a large system there are a very large number of possible paths a
system can take.
It is hard to choose the classes to which to allocate each behaviour:

—Ensure that skilled developers lead the process, and ensure that
all aspects of your models are properly reviewed.

—Work iteratively:
- Develop initial class diagrams, use cases, responsibilities,

interaction diagrams and state diagrams;
- Then go back and verify that all of these are consistent, modifying

them as necessary.
—Drawing different diagrams that capture related, but distinct,

information will often highlight problems.

