
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 1:
Software and Software Engineering

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 2

1.1 The Nature of Software...

Software is intangible
Hard to understand development effort

Software is easy to reproduce
Cost is in its development

—in other engineering products, manufacturing is the
costly stage

The industry is labor-intensive
Hard to automate

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 3

The Nature of Software ...

Untrained people can hack something together
Quality problems are hard to notice

Software is easy to modify
People make changes without fully understanding it

Software does not ‘wear out’
It deteriorates by having its design changed:

—erroneously, or
—in ways that were not anticipated, thus making it

complex

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 4

The Nature of Software

Conclusions
Much software has poor design and is getting worse
Demand for software is high and rising
We are in a perpetual ‘software crisis’
We have to learn to ‘engineer’ software

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 5

Types of Software...

Custom
For a specific customer

Generic
Sold on open market
Often called

—COTS (Commercial Off The Shelf)
—Shrink-wrapped

Embedded
Built into hardware
Hard to change

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 6

Types of Software

Differences among custom, generic and embedded
software

 Custom Generic Embedded
Number of copies in use

low medium high

Total processing power
devoted to running this type
of software

low high medium

Worldwide annual
 development effort

high medium low

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 7

Types of Software

Real time software
E.g. control and monitoring systems
Must react immediately
Safety often a concern

Data processing software
Used to run businesses
Accuracy and security of data are key

Some software has both aspects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 8

1.2 What is Software Engineering?...

The process of solving customers’ problems by the
systematic development and evolution of large, high-
quality software systems within cost, time and other
constraints

Solving customers’ problems
This is the goal of software engineering
Sometimes the solution is to buy, not build
Adding unnecessary features does not help solve the
problem
Software engineers must communicate effectively to
identify and understand the problem

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 9

What is Software Engineering?…

Systematic development and evolution
An engineering process involves applying well understood
techniques in a organized and disciplined way
Many well-accepted practices have been formally standardized

—e.g. by the IEEE or ISO
Most development work is evolution

Large, high quality software systems
Software engineering techniques are needed because large systems
cannot be completely understood by one person
Teamwork and co-ordination are required
Key challenge: Dividing up the work and ensuring that the parts of
the system work properly together
The end-product that is produced must be of sufficient quality

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 10

What is Software Engineering?

Cost, time and other constraints
Finite resources
The benefit must outweigh the cost
Others are competing to do the job cheaper and faster
Inaccurate estimates of cost and time have caused many
project failures

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 11

1.3 Software Engineering and the
Engineering Profession

The term Software Engineering was coined in 1968
People began to realize that the principles of engineering
should be applied to software development

Engineering is a licensed profession
In order to protect the public
Engineers design artifacts following well accepted
practices which involve the application of science,
mathematics and economics
Ethical practice is also a key tenet of the profession

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 12

1.4 Stakeholders in Software Engineering

1. Users
Those who use the software

2. Customers
Those who pay for the software

3. Software developers
4. Development Managers

All four roles can be fulfilled by the same person

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 13

1.5 Software Quality...

Usability
Users can learn it and fast and get their job done easily

Efficiency
It doesn’t waste resources such as CPU time and
memory

Reliability
It does what it is required to do without failing

Maintainability
It can be easily changed

Reusability
Its parts can be used in other projects, so reprogramming
is not needed

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 14

Software Quality...

QUALITY
SOFTWARE

Developer:
easy to design;
easy to maintain;
easy to reuse its parts

User:
easy to learn;
efficient to use;
helps get work done

Customer:
solves problems at
an acceptable cost in
terms of money paid and
resources used

Development manager:
sells more and
pleases customers
while costing less
to develop and maintain

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 15

Software Quality

The different qualities can conflict
Increasing efficiency can reduce maintainability or
reusability
Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering
activity

You then design to meet the objectives
Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary
E.g. obtain the highest possible reliability using a fixed
budget

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 16

Internal Quality Criteria

These:
Characterize aspects of the design of the software
Have an effect on the external quality attributes
E.g.

—The amount of commenting of the code
—The complexity of the code

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 17

Short Term Vs. Long Term Quality

Short term:
Does the software meet the customer’s immediate
needs?
Is it sufficiently efficient for the volume of data we have
today?

Long term:
Maintainability
Customer’s future needs

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 18

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,
involving work on legacy systems

Corrective projects: fixing defects
Adaptive projects: changing the system in response to
changes in

—Operating system
—Database
—Rules and regulations

Enhancement projects: adding new features for users
Reengineering or perfective projects: changing the
system internally so it is more maintainable

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 19

Software Engineering Projects

‘Green field’ projects
New development
The minority of projects

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 20

Software Engineering Projects

Projects that involve building on a framework or a set of
existing components.

The framework is an application that is missing some
important details.

—E.g. Specific rules of this organization.
Such projects:

—Involve plugging together components that are:
- Already developed.
- Provide significant functionality.

—Benefit from reusing reliable software.
—Provide much of the same freedom to innovate

found in green field development.

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 21

1.7 Activities Common to Software
Projects...

Requirements and specification
Includes

—Domain analysis
—Defining the problem
—Requirements gathering

- Obtaining input from as many sources as possible
—Requirements analysis

- Organizing the information
—Requirements specification

- Writing detailed instructions about how the software should
behave

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 22

Activities Common to Software Projects...

Design
Deciding how the requirements should be implemented,
using the available technology
Includes:

—Systems engineering: Deciding what should be in
hardware and what in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will
interact

—Detailed design of the internals of a subsystem
—User interface design
—Design of databases

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 23

Activities Common to Software Projects

Modeling
Creating representations of the domain or the software

—Use case modeling
—Structural modeling
—Dynamic and behavioural modeling

Programming
Quality assurance

Reviews and inspections
Testing

Deployment
Managing the process

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 24

1.8 The Eight Themes of the Book

1. Understanding the customer and the user
2. Basing development on solid principles and reusable
technology
3. Object orientation
4. Visual modeling using UML
5. Evaluation of alternatives
6. Iterative development
7. Communicating effectively using documentation
8. Risk management in all SE activities

© Lethbridge/Laganière 2001 Chapter 1: Software and Software Engineering 25

1.9 Difficulties and Risks in Software
Engineering

 Complexity and large numbers of details
 Uncertainty about technology
 Uncertainty about requirements
 Uncertainty about software engineering skills
 Constant change
 Deterioration of software design
 Political risks

