\

Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 5:
Modelling with Classes

e/ www.lloseng,com
/ g

5.1 What is UML?

The Unified Modelling Languageis a standard graphical language
for modelling object oriented software

At the end of the 1980s and the beginning of 1990s, the first object-
oriented development processes appeared

The proliferation of methods and notations tended to cause
considerable confusion

Two important methodol ogists Rumbaugh and Booch decided to
merge their approaches in 1994,

—They worked together at the Rational Software Corporation
In 1995, another methodologist, Jacobson, joined the team
—Hiswork focused on use cases

In 1997 the Object Management Group (OMG) started the process
of UML standardization

£ wwaw.lloseng.com

Chapter 5: Modelling with classes 2

/ © Lethbridge/Laganiére 2001

UML diagrams

\

Class diagrams
—describe classes and their relationships
Interaction diagrams

—show the behaviour of systemsin terms of how
objects interact with each other

State diagrams and activity diagrams
—show how systems behave internally
Component and deployment diagrams

—show how the various components of systems are
arranged logically and physically

g wwaw.lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 3

UML features

\

It has detailed semantics

It has extension mechanisms

It has an associated textual language
—Object Constraint Language (OCL)

Theobjective of UML isto assist in software
development

—It is not a methodol ogy

£ wwaw.lloseng.com

Chapter 5: Modelling with classes 4

/ © Lethbridge/Laganiére 2001

What constitutes a good model?

A model should
use a standard notation
be understandable by clients and users

lead software engineers to have insights about the
system

provide abstraction

Models are used:
to help create designs

to permit analysis and review of those designs.
/ as the core documentation describing the system.

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 5

5.2 Essentials of UML Class Diagrams

The main symbols shown on classdiagrams are:

Classes

- represent the types of data themselves
Associations

- represent linkages between instances of classes
Attributes

- aresimple datafound in classes and their instances
Operations

- represent the functions performed by the classes and their

instances

Generalizations
- group classesinto inheritance hierarchies

£ wwaw.lloseng.com

\

Chapter 5: Modelling with classes 6

/ © Lethbridge/Laganiére 2001

Classes

A classissimply represented as a box with the name of
the classinside

The diagram may also show the attributes and operations
The complete signature of an operationis.

operationName(parameterName: parameterType ...): returnType

| Rectangle | Rectangle Rectangle Rectangle Rectangle
getArea height height height: int
resize width width width: int
getArea getArea(): int
resize resize(int,int)
' www. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 7

5.3 Associations and Multiplicity

An association is used to show how two classes are
related to each other

Symbolsindicating multiplicity are shown at each end of

the association
Employee . Company
Secretary | * 1" | Manager
Company BoardOfDirectors
Office |01 - Employee
/ Person |03.8 " | BoardOfDirectors

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 8

Labelling associations

Analyzing and validating associations

Each association can be labelled, to make explicit the One-to-one
nature of the association —For each company, there is exactly one board of
Employee | - worksFor Company directors
—A board is the board of only one company
Secretary |~ 1.7 | Manager —A company must always have a board
i —A board must always be of some company
Company BoardOfDirectors
Company BoardOfDirectors
Office 0.1 allocatedTob Employee
P 0.3.8 ”| BoardofDi /
/ erson PSTvI— oart irectors /
I weaw lloseng.com I weaw. lloseng.com
// © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 9 / © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 10
Analyzing and validating associations Analyzing and validating associations
M any-to-many One-to-one
—A secretary can work for many managers —For each company, there is exactly one board of
—A manager can have many secretaries directors
—Secretaries can work in pools —A board is the board of only one company
—Managers can have agroup of secretaries —A company must always have a board
—Some managers might have zero secretaries. —A board must always be of some company
—Isit possible for a secretary to have, perhaps -
. Company BoardOfDirectors
temporarily, zero managers?
Secretary 1_"* Manager
supervisor
I weaw lloseng.com weaw. lloseng.com

Chapter 5: Modelling with classes

/ © Lethbridge/Laganiére 2001

11

© Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 12

Analyzing and validating associations

Person

Avoid this

Personlinfo

name

\

s

address
email
birthdate

Avoid unnecessary one-to-one associations

dothis

Person

name
address
email
birthdate

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

13

A more complex example

A booking is always for exactly one passenger
—no booking with zero passengers
—abooking could never involve more than one

passenger.

A Passenger can have any number of Bookings
—a passenger could have no bookings at all
—a passenger could have more than one booking

\

Passenger

s,

Booking

SpecificFlight

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

14

Association classes

\

Sometimes, an attribute that concerns two associated
classes cannot be placed in either of the classes

The following are equivalent

Student

Registration

grade

«
CourseSection

Student

. Registration .

s,

grade

CourseSection

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

15

Reflexive associations

\

It is possible for an association to connect a class to

successor
*| Course

s,

itself

|

prerequisite

isMutuallyExclusiveWith

weaw. lloseng.com

4

© Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

16

Directionality in associations

Associations are by default bi-directional

It is possible to limit the direction of an association by
adding an arrow at one end

5.4 Generalization

Specializing a superclassinto two or mor e subclasses

The discriminator is alabel that describes the criteria
used in the specialization

Animal Animal
*
Day — Note é é habitat éétypeOfFood
AquaticAnimal | [LandAnimal Carnivore Herbivore

/ weaw lloseng.com I weaw. lloseng.com

/ © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 17 / © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 18
Avoiding unnecessary generalizations Handling multiple discriminators
. . Recording
Inappropriate hierarchy of — . . N
; Creating higher-level generalization

classes, which shouldbe —L —

.

Instances 7N 7Y

‘] ‘ Animal
’ ‘ ’ H ‘ ‘ habitat é ;
—. | -
e PasCalegon - cerpton ‘:l'subcategc,y Improved class diagram, AquaticAnimal LandAnimal
Wlth Its Co_rrespondl ng typeOfFood typeOfFood
// \ instance diagram
| i Z:MWH i mwa Recordi ateg 'Y% {b. ingCateg >H cord Categ 'Y% AquaticCarnivore | |AquaticHerbivore LandCarnivore | | LandHerbivore
/ :Recording Recording /
I Sectioven T B weaw lloseng.com I weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 19

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 20

Handling multiple discriminators

\

Using multiple inheritance Animal

habitat é ; fl ;typeOfFood

LandAnimal || Carnivore

AquaticAnimal Herbivore

e

AquaticCarnivore || AquaticHerbivore ||LandCarnivore | |LandHerbivore

Using the Player-Role pattern (in Chapter 6)

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 21

Avoiding having instances change class

An instance should never need to change class

Student

é ;attendance

FullTimeStudent PartTimeStudent

\

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 22

9.5

\

Instance Diagrams

A link is an instance of an association

—In the same way that we say an object is an instance
of aclass

Pat:Employee

Wayne:Employee

OOCorg:Comgany|__| OOCorp's Board:

Ali:Employee

Carla:Employee |_| UML inc:Compan UML inc's Board

Terry:Employee

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 23

Associations versus generalizations in
instance diagrams

Associations describe the relationships that will exist
between instances at run time.
—When you show an instance diagram generated from
aclass diagram, there will be an instance of both
classes joined by an association

Generalizations describe rel ationships between classes
in class diagrams.

—They do not appear in instance diagrams at all.

—An instance of any class should also be considered
to be an instance of each of that class's superclasses

\

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 24

5.6 More Advanced Features: Aggregation

Aggregations are specia associations that represent
‘part-whole’ relationships.
—The‘whole’ side is often called the assembly or the
aggregate
—This symbol is a shorthand notation association
namedi sPart @

Vehicle <>— VehiclePart

Country <>—* Region

\

g wwaw.lloseng.com

Chapter 5: Modelling with classes 25

/ © Lethbridge/Laganiére 2001

When to use an aggregation

Asageneral rule, you can mark an association as an
aggregation if thefollowing aretrue:
Y ou can state that
—the parts ‘are part of’ the aggregate
—or the aggregate ‘is composed of’ the parts

When something owns or controls the aggregate, then they
also own or control the parts

\

£ wwaw.lloseng.com

Chapter 5: Modelling with classes 26

/ © Lethbridge/Laganiére 2001

Composition

A composition isastrong kind of aggregation
—if the aggregate is destroyed, then the parts are
destroyed as well

Building i Room

Two aternatives for addresses

Employee Employee @ —| Address

address: Address street
municipality
region
country
postalCode

\

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 27

Aggregation hierarchy

Vehicle
[[* [*
Chassis BodyPanel Door
I I I [«
Frame Engine Transmission Wheel
,' www lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 28

Propagation

A mechanism where an operation in an aggregate is
implemented by having the aggregate perform that
operation on its parts

At the same time, properties of the parts are often
propagated back to the aggregate

Propagation is to aggregation asinheritance isto
generalization.

—The magjor differenceis:
- inheritance is an implicit mechanism
- propagation has to be programmed when required

Polygon o ——— | LineSegment

\

s

weaw lloseng.com

Chapter 5: Modelling with classes 29

/ © Lethbridge/Laganiére 2001

Interfaces

An interface describes a portion of the visible behaviour
of a set of objects.

An interfaceis similar to a class, except it lacks instance
variables and implemented methods

«interface»

Person

Cashier Machine Person Machine

withdr:aw Cashier
deposit Q
AN

Lﬁ Ca$ier

Employee | = ATM Employee ATM

\

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 30

Notes and descriptive text

Descriptive text and other diagrams
—Embed your diagramsin alarger document
—Text can explain aspects of the system using any
notation you like
—Highlight and expand on important features, and
giverationale
Notes:

—A noteisasmall block of text embedded inaUML
diagram

—It acts like acomment in a programming language

\

s,

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 31

Object Constraint Language (OCL)

OCL isa specification language designed to formally
specify constraintsin software modules

An OCL expression simply specifiesalogical fact (a
constraint) about the system that must remain true
A constraint cannot have any side-effects

—it cannot compute a non-Boolean result nor modify
any data.

OCL statements in class diagrams can specify what the
values of attributes and associations must be

\

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 32

OCL statements

OCL statementscan be built from:

References to role names, association names, attributes
and the results of operations

Thelogical valuestrue andfd se

Logica operators such as and, or, = >, < or <> (not
equals)

String values such as: * a stri ng

Integers and real numbers

Arithmetic operations*,/, +,-

\

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 33

An example: constraints on Polygons

\

{edge->forAll(e1,e2 |

el <>e2

implies e1.startPoint <> e2.startpoint
a LinearShape is any shape ™ and e1.endPoint <> e2.endpoint)}

that can be constructed of ling N {ordered} edge [

segments (in contrast with LinearShape 7+ | LineSegment

shapes that contain curves). startPoint: Point
endPoint: Point

| | | length : int
Path |Line | |Polygon | {startPoint <> endPoint}

length [{edge->size=1} / \ {edge->first.startPoint =
{length = edge->last.endPoint}

edge.length->sum}
RegularPolygon

{edge->forAli(e1,e2 |
e1.length = e2.length)}

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 34

5.7 Detailed Example: A Class Diagram for
Genealogy

Person
name
sex
placeOfBirth
dateOfBirth
placeOfDeath
{husband.sex dateOfDeath
= #fmale} .
husband placeOfMarriage child
usban dateOfMarraige
011 gateOfDivorce
0..1 | wife parent | 2
{wife.sex {parent->forAll(p1,p2:
= #female} p1 <> p2
implies p1.sex <> p2.sex)}
Problems
—A person must have two parents

—NMarriages not properly accounted for

\

g wwaw.lloseng.com

Chapter 5: Modelling with classes 35

/ © Lethbridge/Laganiére 2001

Genealogy example: Possible solutions

\

Person Person
name name
sex placeOfBirth
placeOfBirth dateOfBirth
dateOfBirth il placeOfDeath child
laceOfDeath dateOfDeath
ZateOfDeath " S
{partner->forAll(p1,p2 | partner | 0..2
p1<>p2 |
implies p1.sex <> p2.sex]
plesp P h . | Woman || Man |
Union femalePartner|0..1 0..1| malePartner
0..1
placeOfMarriage [arents N N
dateOfMarriage
dateOfDivorce Union
0.1
placeOfMarriage s
dateOfMarriage P
dateOfDivorce
' www lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 36

5.8 The Process of Developing Class
Diagrams

You can create UML models at different stages and with
different purposes and levels of details

Exploratory domain model:

—Developed in domain analysis to learn about the
domain

System domain model:

—NModels aspects of the domain represented by the
system

System model:

—Includes also classes used to build the user interface
and system architecture

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 37

System domain model vs System model

The system domain model omits many classes that are
needed to build a complete system

—Can contain less than half the classes of the system.

—Should be developed to be used independently of
particular sets of

- user interface classes
- architectural classes

The complete system model includes
—The system domain model
—User interface classes

\

—Architectural classes
—Utility classes

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 38

Suggested sequence of activities

Identify afirst set of candidate classes
Add associations and attributes

Find generalizations

List the main responsibilities of each class
Decide on specific operations

Iterate over the entire process until the mode is
satisfactory

—Add or delete classes, associations, attributes,
generalizations, responsibilities or operations
—Ildentify interfaces
—Apply design patterns (Chapter 6)
Don’t be too disorganized. Don’'t betoo rigid either.

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 39

Identifying classes

\

When developing a domain model you tend to discover
classes

When you work on the user interface or the system
architecture, you tend to invent classes

—Needed to solve a particular design problem

—(Inventing may aso occur when creating a domain
model)

Reuse should always be a concern
—Frameworks
—System extensions
—Similar systems

' www lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 40

A simple technique for discovering domain
classes

\

Look at a source materia such as a description of
reguirements

Extract the nouns and noun phrases
Eliminate nouns that:
—are redundant
—represent instances
—are vague or highly general
—not needed in the application

Pay attention to classes in a domain model that represent
types of users or other actors

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 41

|dentifying associations and attributes

\

Start with classes you think are most central and
important

Decide on the clear and obvious data it must contain and
its relationships to other classes.

Work outwards towards the classes that are less
important.

Avoid adding many associations and attributes to a class
—A system is simpler if it manipulates less
information

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 42

Tip

s about identifying and specifying valid

associations

\

An association should exist if aclass
- possesses
- controls
- isconnected to
- isrelated to
- isapart of
- hasasparts
- isamember of, or
- hasasmembers

some other classin your model
Specify the multiplicity at both ends
Labdl it clearly.

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 43

Actions versus associations

\

A common mistake is to represent actions as if they
were associations

LibraryPatron

borrow return Loan

| LibraryPatron
borrowedDate
dueDate * "
returnedDate [| Collectionltem

Better: Theborr ow operation createsal_oan, and
Bad, dueto the use of associations thereturn operation setsther et ur nedDat e
that are actions attribute.

Collectionltem

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 44

Identifying attributes

Look for information that must be maintained about each
class

Several nouns rejected as classes, may now become
attributes

An attribute should generally contain asimple value
—E.g. string, number

\

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 45

Tips about identifying and specifying valid
attributes

It is not good to have many duplicate attributes

If a subset of a class's attributes form a coherent group,
then create a distinct class containing these attributes

Person Person Person d Address
addresses
name name name =| street
addresses street1 municipality
municipality1 provOrState
provOrState1 country
Bad dueto country1 postalcode
a pI_ural postalCode 1 type
attribute street2
municipality2 Good solution. The
P’°‘:]?r’32tatez type indicates whether
;g:taléod 2 it Is a home address,
business address etc.

Bad due to too many
attributes, and inability
2 to add more addresses

/ © Lethbridge/Laganiére 2001

\

weaw. lloseng.com

Chapter 5: Modelling with classes 46

An example (attributes and associations)

Employee .
Passenger ploy . RegularFlight
name -
name employeeNumber I time
number jobFunction supervisor flightNumber
Booking | - SpecificFlight
seatNumber date
,' www. lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 47

Identifying generalizations and interfaces

There are two waysto identify generalizations:
—bottom-up
- Group together similar classes creating a new superclass
—top-down

- Look for more general classes first, specidize them if
needed

Create an interface, instead of a superclass if

—The classes are very dissimilar except for having a
few operationsin common

—One or more of the classes aready have their own
superclasses

—Different implementations of the same class might
be available

weaw. lloseng.com

© Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 48

An example (generalization)

0.2 Person

PersonRole

name

ZF idNumber

RegularFlight]

[' :

EmployeeRole
PassengerRole

jobFunction supervisor

time

flightNumber

*

*

* *

Booking | *

SpecificFlight

seatNumber

date

\

s

weaw lloseng.com

Chapter 5: Modelling with classes

/ © Lethbridge/Laganiére 2001

49

Allocating responsibilities to classes

A responsibility is something that the system isrequired to do.
Each functional requirement must be attributed to one of the classes

—All the responsibilities of a given class should be clearly
related.

—If aclass has too many responsibilities, consider splitting it into
distinct classes

—If a class has no responsibilities attached to it, then it is
probably useless

—When aresponsibility cannot be attributed to any of the existing
classes, then anew class should be created

To determine responsibilities
—Perform use case analysis

—Look for verbs and nouns describing actions in the system
description

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 50

\

Categories of responsibilities

Setting and getting the values of attributes
Creating and initializing new instances
Loading to and saving from persistent storage
Destroying instances

Adding and deleting links of associations

outputting

Computing numerical results
Navigating and searching
Other specialized work

\

s,

Copying, converting, transforming, transmitting or

weaw lloseng.com

Chapter 5: Modelling with classes

/ © Lethbridge/Laganiére 2001

51

An example (responsibilities)

—Creating a new
regular flight o2 Person L~ Airline

. PersonRole| ~-
—Searching for a name

flight Z% idNumber .
—Modifying | |

RegularFlight

attributes of a ok :
flight PassengerRole ploy time

Creating a jobFunction Supervisor flightNumber

specific flight
—Booking a

passenger
—Canceling a

booking

*

*

Booking SpecificFlight

seatNumber date

\

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 52

Prototyping a class diagram on paper

Asyou identify classes, you write their names on small
cards

Asyou identify attributes and responsibilities, you list
them on the cards
— If you cannot fit al the responsibilities on one card:

- this suggests you should split the class into two related
classes.

Move the cards around on a whiteboard to arrange them
into a class diagram.

Draw lines among the cards to represent associations and
generalizations.

\

s

weaw lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes 53

Identifying operations

\

/ © Lethbridge/Laganiére 2001

Operations are needed to realize the responsibilities of
each class

There may be several operations per responsibility

The main operations that implement a responsibility are
normally declared pulic

Other methods that collaborate to perform the
responsibility must be as private as possible

s,

weaw. lloseng.com
Chapter 5: Modelling with classes 54

An example (class collaboration)

EmployeeRole

+ getName [e2]

\

crewMember *
Bookin P Airplane
9 SpecificFlight 0.1
Booking [c2] e addLinkToSpecificFlight [a2, d3]
+ specifyAirplane [a] deleteLinkToSpecificFlight [d2]
+ createFlightLog [b1]
+ changeAirplane [d1]
+ findCrewMember [e1] .
PassengerRole addLinkToBooking [c3] 0.1| FlightLog
- FlightLog [b2]
+ makeBooking [c1]
addLinkToBooking [c4]
' www. lloseng.com
/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 55

Class collaboration ‘a’

\

/ © Lethbridge/Laganiére 2001

SpecificFlight * 0.1 Airplane

+ specifyAirplane [a1]

addLinkToSpecificFlight [a2, d3]

Making a bi-directional link between two existing objects,

e.g. adding a link between an instance of SpecificHight
and an instance of Arpdane.

1. (public) Theinstance of Specifi cHight

— makes a one-directional link to the instance of
Ardane

— then calls operation 2.
2. (non-public) Theinstance of Aird ane

— makes a one-directional link back to the instance
of SpedificHight

s,

weaw. lloseng.com
Chapter 5: Modelling with classes 56

Class collaboration ‘b’ SpecificFlight 0.1] FiightLog

+ createFlightLog [b1] FlightLog [b2]

Creating an object and linking it to an existing object
eg. creating a HightLog, and linking it to a
SpecificHight .

1. (public) Theinstance of Specifi cHi ght
—callsthe constructor of Hi ght Log (operation 2)

—then makes a one-directional link to the new
instance of Hi ght Log.

2. (non-public) ClassHight Log’s constructor

—makes a one-directional link back to the
instance of SpedficHight .

\

P

Role king SpecificFlight

Class collaboration ‘C’| masei | (]’ [t
Creating an association class, given two existing objects

e.g. creating an instance of Booki ng, which will link a
SpecificHight toaPassenger Rd e.
1. (public) Theinstance of Passenger Rd e
— callsthe constructor of Booki ng (operation 2).
2. (non-public) Class Booki ng’s constructor, among its other actions

— makes a one-directional link back to the instance of
Passenger Rd e

— makes a onedirectiona link to the instance of
SpecificHi ght
— callsoperations 3 and 4.
3. (non-public) Theinstance of Specifi cHi ght
— makes aone-directional link to the instance of Booki ng.
4. (non-public) Theinstance of Passenger Rd e

— makes aone-directional link to the instance of Booki ng.

\

/ weaw lloseng.com I weaw. lloseng.com
/ © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 57 / © Lethbridge/Laganiére 2001 Chapter 5: Modelling with classes 58
. 3) [. Airplane . ¢] I
Class collaboration ‘d’ | seeencren | 01— terr Class collaboration ‘e’ |gmpioyeckoke). | Specificiight
+ changeAirplane [d1] deleteLinkToSpecificFlight [d2] + getName [e2] |crewMember + findCrewMember [e1]

Changing the destination of a link
e.g. changing the Arpdane of to a SpecificHight, from
ardaneltoargdane2
1. (public) Theinstance of Specifi cHi ght
—deletesthelinktoai rd anel
—makes a one-directiona link toal r d ane2
—calls operation 2
—then calls operation 3.
2. (non-public) a r @ anel
—deletes its one-directional link to the instance of
SpecificHight .
3. (non-public) a r @ ane2

—makes a onedirectiona link to the instance of
Specifi cHi ght .

/ © Lethbridge/Laganiére 2001

\

weaw lloseng.com
Chapter 5: Modelling with classes 59

Searching for an associated instance

e.g. searching for a crew member associated with a
SpecificHight that has a certain name.

1. (public) Theinstance of Specifi cAi ght
— creates anltera o over al the crewMe mber links
of the Speda ficHi ght \

— for each of them call operation 2, until it finds a
match.

2. (may be public) The instance of Empl oyeeRdl e returns
its name.

\

£ wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 60

5.9 Implementing Class Diagrams in Java
Attributes are implemented as instance variables
Generalizations are implemented using ext ends
Interfaces are implemented usingi g enents
Associations are normally implemented using instance variables
Divide each two-way association into two one-way associations
—s0 each associated class has an instance variable.
For a one-way association where the multiplicity at the other
endis‘on€ or ‘optional’
—declare avariable of that class (areference)
For a one-way association where the multiplicity at the other
endis‘many’:
—use acollection classimplementing Li st , such as Vect or

\

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 61

Example: Specifi cHi ght

c ass SpecificHi ght

{
private Cdendar dat e
privat e Regul ar Hight regul ar Hi ght;
private Term nal d Arport desti nation;
private Arplane ard ane;
privat e Hi ght Log fli ght Log;

private Arrayli st crewMe mbers;
/I o Enpl oyeeRdl e
private Arrayli st booki ngs

\

s,

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

62

Example: Specifi cHi ght

/I Constructor that shoud ony be cdledfrom
/I add Specifi cHi ght
Specifi cHight (
Cd endar aDat e
Regul ar Hight aRegul arHi ght)
{
date = aDate
regu ar Hight =aRegul ar Hi ght;
}

\

g wwaw.lloseng.com

/ © Lethbridge/L aganiére 2001 Chapter 5: Modelling with classes 63

Example: Regula Hi ght

cl ass Regu arHi ght

{
private Arrayli st specificHights;

/I Met hod that has pri mary
/[responsibility

public va d addSpecifi cHi ght(
Cd endar aDat €)
{
SpecificHight newSpecifi cHi ght;
newSpecificHight =
new Specifi cHi ght(aDat g th s);
specifi cHight s. add(newSpecifi cHight);
}

\

73

weaw. lloseng.com

/ © Lethbridge/Laganiére 2001

Chapter 5: Modelling with classes

64

