Supplementary material for Chapter 2 of the McGraw Hill book:
“Object Oriented Software Engineering:
Practical Software Development Using UML and Java”

Copyright © 2001 Timothy C. Lethbridge and Robert Laganiére

See www.lloseng.com for more information.

Programming Style Guidelines

An important part of developing good software is to make sure programs follow consistent
guiddines that make them easy to read. In this book we use the guidelines described below; we
recommend that you dso follow these guidelines in the programs that you write.

Programming can be seen as the most detailed level of design, so the guidelines described
here can be seen as design guidelines. Later on, in Chapter 8, we will discuss design at a higher
level. You will then see that some of the principles mentioned here also apply to other aspects of
design.

General principle: Remember that programs are for people to read

Although programs are executed by computers, dmost dl the guidelinesin this section are designed
to make them easier to read and understand by humans. Simpler programs save money because
software developers are more likely to notice defects. Also, when changes are needed, it iseasier to
change simpler programs. A general prindple thereforeis:

* |If you havetwo aternative ways of programming something and one alternative makes the code
simpler, then choose that smpler aternative.

Corollariesto thisare:

o Actively seek smpler dternatives, restructuring the code if necessary.

* Regject ‘clever’ or ‘cool’ coding techniques unless they make the code simpler to understand.

* Remember that shorter code is not necessarily better code, but unnecessarily long code is also
bad.

The only exception to the above rules occurs when simplification requires a significant drop
in efficiency. By significant, we mean that the efficiency drop will have afinancial impact on
end-users (slowing them down or forcing them to buy faster hardware) that will more than
counterbalance the benefits of simpler code to the software devel opers.

Choose good names

We discussad naming of classes earlier in this chapter; the naming of al other elements of a
program, such as variables, methods and packages, is equally important. Good names ensure that
people can read the code easily.

» Always choose names for variables, dasses, packages and methods that are highly descriptive of
the purpose and function of the element.

« Do not worry about using very long names if the length is justified because it adds dlarity.

* Avoid names less than about six characters, except perhaps for loop counter variables, where i
andj arecommonly used.

Programming Style Guidelines 2

Comment effectively

Although code should be written as clearly as possible, it cannot always be made completely
obvious. Comments are therefore essentid to give readers an overview and to help them understand
its complexities quickly. The following are somevery general commenting guidelines:

Comment whatever is non-obvious. Unfortunately, it is not always clear what is ‘ non-obvious.
So err on the side of caution: Provide comments if there is any risk that someone reading the
code may not completdy understand some aspect of it. Remember that the audience for your
comments will be other designers and programmers; as you write comments, try to imagine how
they will think and what information they may need.

Avoid writing comments that state the obvious, since they add clutter. For example, following
the declaration i nt f oobar; there isno need to say in acomment /* foobar is an
int */.

The comments in code should normally range between about 20% and 35% of thetotd length of
the code.

Write comments when you first write the code. In fact it is an excellent idea to write the
comments before writing the code — writing comments can help you think and design the code
effectively.

Thefollowingisalist of types of comments you should provide:

Place a block comment a the top of each class describing the purpose of the class, how it should
be used, its authors and its history of modification.

Each method should also have a comment at its head describing its function and usage.

Each non-obvious variable should have a comment.

Loops and conditiona statementsinside complex algorithms should have comments. In generd,
readers of complex dgorithms should be able to read the comments alone, in order to understand
roughly what the algorithm does.

Comment any changesto the code so that it is easy to see what has changed from one version to
the next.

Follow the specific conventions for commenting classes and methods that alow for
documentation to be automaticaly generated using a program caled ‘javadoc’. See
http://java.sun.com/javadoc for details.

Use a logical ordering within classes

Inside a class, order the elements as follows; within each group, start with the most public ones.

Class variables

Instance variables

Constructors

The most important public methods

Methods that are ssimply used to access variables
Private methods

We suggest using a horizontal line or some other comment to allow the reader to clearly see

the divisions between the above sections.

K eep related methods together, where this does not conflict with the above.
If a class has many methods, group them into logical sectionswith a clear comment separating
each section.

Programming Style Guidelines 3

Pay attention to detailed layout

There are a number of different detailed stylistic approaches for how to lay out code within
methods. The most important ruleis:

» Beconsistent in your approach to layout: Follow the same stylethroughout your code and follow
the same approach as the other software devel opers who work in your company or team.

The web site http://java.sun.com/docs/codeconv/ provides a good set of layout principles. The
following are some highlights.

» Alwaysindent the contents of nested blocks carefully.

e Try to minimize the number of statements that take more than oneline.

* When long statements are necessary, divide them into multiple lines such that the second and
subsequent lines begin with an operator and are indented.

» Ensure that no lineislonger than 80 characters, so that readers do not have to scroll right, and so
that the code always prints correctly.

The following are some stylistic rules that we like to follow, but with which some people may
disagree:

» Do not embed ‘tab’ charactersin your code. Use two spaces for indentation. Tab characters can
be fast to type but when code is printed on certain printers, or displayed in certain editors, the
width of the indentation resulting from the tab can vary and make the code hard to read.

* Weusethefollowing layout style for blocks:

i f(condition)

{

/] statenents

}
instead of the following alternative which some people, including Sun, prefer:

i f(condition) {
/] statenents

}

The first style ensures that the open and close braces always line up at the same level of
indentation, at the cost of having afew extralines of code. About half of the books we looked at
do it the first way and the other half do it the second way. The most important point, however, is
to be consistent in al the code you write.

Avoid duplication

Itisabig problem to have the same or very similar code in two or more places. It increases the total
volume of code and means tha if you change the code in one place, then you might forget to change
the code in the other places.

« Avoid cloning more than about one line of code. Cloning means deliberately copying code to
use somewhere else. If you feel tempted to do this, you should normally create a separate
method that has the common code, and call it from the origind location and any other needed
locations.

« |If you find several substantidly similar lines of code in several places, then normally you should
writeasingle method to contain the code, and call it wherever necessary.

e |f the duplication exists in two separate classes, then consider creating a common superclass
(athough stick to the rules discussed earlier that determine what congtitutes a good
generalization — such astheisarule).

Programming Style Guidelines 4

Adhere to object oriented principles

Take full advantage of polymorphism and inheritance as well as abstract classes and methods.
Ensure the‘isa ruleisrdigioudy applied.

Ensure that anything that istrue in asuperclassisaso truein its subclasses.

Avoid over-use of class variables or class methods. Wherever possibletry to create designs tha
use instance variables and instance methods instead.

» Create severa smdl classes, rather than one big, complex class.

» Keep the number of instance variables small. If this number exceeds 10, then consider splitting
the class into separate classes — e.g. asuperclass and a subclass.

Prefer private as opposed to public

Favouring privacy improves encapsulaion, by ensuring that only programmers working inside a
class (or inside a package) can use all of itsfacilities. This allows changes to be more easily made
since one can be confident that ‘outsiders’ are not relying on too many details.

» Make variables and methods as private as possible. In other words, prefer private to
pr ot ect ed; pr ot ect ed to the default package access, and package accesstopubl i c.

» Unlessthere is a compeling reason to the contrary, declare instance variablesto be pri vat e,
and provide methods to access the private variables if necessary.

Restrict user interface statements to classes specifically designed for this

This guiddine is one that we will re-visit in much more detail in later chapters. However, it is so
important, yet so often remains unknown to beginners, that it needs mentioning now. Most of the
classes in the system should do not interact with the user in any way (neither using windows nor
using system i n and syst em out objects). Most classes should simply store data in their
instance variables, and provide methods for manipulating those instance variables. When you need
to get information from the user, you should set up a separate set of classesto do this.

Other ways to simplify code

* In genera, ensure that there is only one place from which a method returns to its caller; this
should be the last statement. This rule can be violated if adhering to it would add extra
indentation or several extrastatements.

» Avoidtoo many levels of nesting (i.e. indentation), where possible. Y ou should think carefully if
the nesting level exceeds five— the code then becomes quite hard to understand.

« Divide up long methods into shorter ones. If amethod exceeds about 20 lines, seeif you can take
part of the method and make it into a separate method that can be called by the original method.

» Split complex conditions. For example, imagine you had the following:

if(a==5 &b > 40 || c) && (d > a+2 || e==5))

A statement likethis might be easier to read if the parts of the condition were placed on separate
lineslikethis:
i f(a==5

& (b > 40 || ¢)

&& (d > a+2 || e==5))

