
Supplementary material for Chapter 2 of the McGraw Hill book:
“Object Oriented Software Engineering:
Practical Software Development Using UML and Java”

Copyright © 2001 Timothy C. Lethbridge and Robert Laganière

See www.lloseng.com for more information.

The Basi cs of  Java

I n the  f ir st pa r t of  this chapter  w e  have  r eview ed some  of  the ma in pr inc iples of  obje ct or ie nta tion.
I n this se c tion we  r e view  the Java progr a mming langua ge  and show how  its objec t- oriented f e atur e s
a re  impleme nted. T his sec tion is not inte nded to give  c ompre hensive cover age  of Java; it is instea d
intended to ser ve as a re vie w f or  those w ho ha ve  ta ke n a  f ir st course in Ja va, a nd to assist those  w ho
lea rne d an OO  la ngua ge other  than Ja va  to unde rsta nd the  e xa mples la te r  in the  book.

Java, like C++, shares much of its syntax with the C programming language. If you know
how to write statements, including variable declarations and loops, in one of these three
languages, then you have a head start in learning the others. However, many other details differ
among the languages. In particular, the data types and libraries available are considerably
different.

Java was developed at Sun Microsystems. It has a useful combination of features that,
combined with the fact that it is a member of the C/C++ family, have made it very popular in
recent years:

• P latf orm  inde pe nde nc e : Java  is designed to be r un using a  v irtual mac hine , or V M. Java 
c ompiler s c ompile sourc e c ode ( typic ally found in f iles ending with the  .java suff ix)  into f ile s
c onta ining bytec ode  (typica lly in f iles ending with the  .class suff ix, or  in libra r ie s e nding w ith
.jar) . Bytec ode  is like a  univer sa l mac hine langua ge  – it is ver y low - le ve l in the  se nse tha t it is
not de signe d to be  r e ad by huma n be ings. At the sa me time, pr ogra ms in byte c ode c an be  r un on
a ny c ompute r tha t ha s a  V M. The  V M a cts a s an interpre te r for the  byte code; this ma ke s Java
progr a ms portable.

• U se  over  t he Int er ne t : Java  is designed w ith ve ry e a sy-to-progra m networ king ca pa bilities. I n
a ddition, sma ll pr ogr ams c alle d a pplets c an be  loa ded dire ctly into a w eb br ow se r .

• Sec ur ity c hec ks: A  pr oper ly configur ed Ja va  V M w ill not allow  violations of  ce rta in se curity
c onstr aints w he n progra ms ar e dow nloaded over  the I nter net.

• R em oval of  tr ouble som e C++ f eat ur es: C++  ha s many pow er f ul c a pa bilitie s, suc h as pointer 
a rithmetic , multiple  inhe r itanc e, ma cr os and ope ra tor  over loa ding. A lthough powe r ful, these  c an
make progr a ms diff icult to unde rsta nd, so the y have  bee n delibe ra tely lef t out of  Java . Also, Ja va 
w ill not le t pr ogr ammer s r ef er  to informa tion be yond the  e nd of  a n a rr a y, or  f ollow  a n inva lid
pointe r. I n C a nd C+ + , the se  situations f re que ntly ca use  progra ms to c r ash.

• Gar bage colle ct ion: Y ou do not ne e d to fr ee  obje c ts f r om me mory when you no longe r nee d
the m. The V M will re c la im obje c ts that is no longe r  being use d.

Java tends to be less efficient than programming languages like C or C++ for two reasons:
Firstly, Java’s safety checks and garbage collection can slow down execution. Secondly, the
interpretation of bytecode is not as fast as direct execution of machine code. Most virtual
machines mitigate this latter problem by using what is called just-in-time compilation (JITC); this
means that the first time a method is executed, the VM converts it into machine code and stores
the machine code to save work on subsequent calls. However, even with JITC, Java is not as fast
as a fully compiled language.



The Basics of Java 2

However, the reduced efficiency of Java is often not a problem. In today’s world, hardware is
so fast that efficiency does not always need to be a high priority. Also, the cost of programmers’
time tends to be far more expensive than hardware, so development teams can save money by
using Java, which is easier to program than C++. The savings in programmer time can easily pay
for faster CPUs.

Nevertheless, Java’s lower efficiency means that it is not suited to every application: A
program that primarily performs CPU-intensive calculations should probably be written in a more
efficient language.

Incidentally, the fact that Java uses a virtual machine or has garbage collection is not unique.
Smalltalk is another OO language that also has these features; in fact many of the ideas in Java
were adopted from Smalltalk.

One more point about Java before we start discussing its details: There is a related language
called JavaScript which is used to add functionality to web pages. Despite sharing much of the
same syntax and many of the same keywords, Java and JavaScript should be seen as clearly
separate languages.

T he simp lest st atemen ts

A n assignme nt stateme nt in Java  use s the  ‘= ’ symbol; a semic olon ter minates state me nts:

aVariable = 5;

A call to a procedure (a method) in the current class looks like the following:

resultVariable = methodName(argument1, argument2);

In this case, the result is assigned to the variable aVariable.
If there are no arguments to a method, use open and close parentheses with nothing in

between, thus:

resultVariable = noArgumentMethod();

A call to an instance method of the object in variable b looks like the following:

resultVariable = b.methodName(argument);

The dot (.) symbol is also used to access an instance variable of an object stored in a variable,
thus:

aVariable = b.variableName;

It is considered better design practice, however, to avoid directly accessing instance variables
in this manner. Instead, try to obtain the same information using an instance method of the object
in variable b, as in the previous example.

Several statements can be placed together in a block, surrounded by braces (‘{‘ and ‘}’, also
colloquially known as curly brackets). Blocks are used primarily as the bodies of classes, loops,
conditional statements and for exception handling; all of these uses are discussed later. Here is an
example of a block:

{
   a = 5;
   b = computeSomething(c);
}



The Basics of Java 3

A  simp le in st an ce met ho d

A  method in Java  looks like the  f ollow ing e xa mple. The hea ding of  the method has these 
c omponents:

• I t c an be  de clar e d public, protected or  private; w e w ill discuss the se  ke yw or ds la ter .
• I t ha s a  r e turn type , w hic h ma y be void, indica ting tha t the  method does not re tur n a nything.
• I t ha s a  pa ir  of  par e nthe ses w hic h c an e nclose  a  list of  f or mal a r gume nt de cla ra tions, separ a te d

by comma s.

public double credit(double amountToCredit)
{
  balance = balance + amountToCredit;
  return balance;
}

C ommen ts

Comme nts in Java  take  two forms: Tw o sla she s ‘ //’  indica te  that the r est of the  line  is to be 
c onsider ed a comme nt and hence  ignor ed by the  compile r. Alte r na tively you c a n sta rt a  comme nt
w ith ‘ /*’  a nd end it with ‘*/’ ; anything betw ee n this pair of ma r ke rs is ignore d.

Variab le d eclaration s and  basic d at a t yp es

Y ou de clar e  var iable s in Java by giving the  da ta  type  f ollow e d by the name of the  var iable . A 
var ia ble  de clar a tion ca n be pla ce d pra ctica lly a nyw he re  in Ja va  c ode , a lthough it is good pra ctice  to
only dec la r e va r ia ble s at the beginning of blocks. The f ollow ing a re  some  e xample s of  va ria ble
dec la r ations, illustr ating the  primitiv e Ja va  da ta  type s.

byte aByte; // an 8-bit value
short aShort; // a 16-bit integer
int anInteger; // a 32-bit integer
long aLong; // a 64-bit integer
float aFloat; // a floating point number
double aDouble; // a double-precision floating-point number
char aChar; // a character of Unicode, discussed below
boolean aBoolean; // must be one of true or false

In the above declarations, the types all start with a lower-case letter. This distinguishes them
as primitive data types. You can use primitive data types for many purposes, but variables
declared using these types do not contain objects – their contents are not instances of any class.

The set of operations available to work with primitive data types is rather limited. The basic
arithmetic operators +, -, *, / and % (for modulus) can be used with values that have type byte,
short, int, long, float, or double.

The logical operators && (and), || (or) and ! (not) can be used to operate on boolean
values.

Sidebar:  Short c ircuit ope rators

The && operator has an interesting property. In the expression a() && b(), Java would not
even bother to compute b() if a() turned out to be false. The entire expression would
immediately return false as soon as the falseness of a() is determined. The value of b()
would only need to be calculated if a() is, in fact, true. The && operator is therefore called a
short circuit operator. It is important that the programmer be aware that the right-hand side of the
expression might never be computed.

Similarly, || is also a short circuit operator. Its right-hand side is not computed if the left-
hand side returns true.



The Basics of Java 4

In addition to manipulating primitive values, variables are also used to manipulate objects in a
Java program. To declare such variables, you use the name of a class as their type, indicating that
an instance of that class is to be put into the variable. Whenever the type in a variable declaration
starts with a capital letter, you know that it is a class, not a primitive type.

Java defines many standard classes that can be used in any program. Important examples are
String and ArrayList, shown below. You can also define your own classes such as
PostalCode.

String aString; // an object that contains a string of
// characters (discussed later)

ArrayList anArrayList; // an object that contains a list of
// objects (discussed later)

PostalCode aPostalCode; // an object of class PostalCode

To work with variables such as these, you have to call methods or access instance variables
that are found in the declared class or its superclasses. You cannot use the arithmetic operators.

The == operator, which returns a boolean, is used to compare any two items which could
be expression results, simple values or the content of variables. The operator tests if the items are
identical, which means they either refer to the same objects or have the same primitive values. A
common bug is to use the identity operator == when the assignment = was meant, or vice versa.
This bug will normally be caught by the compiler, but not if you are working with boolean
items.

To test whether two variables contain objects that are equal (i.e. contain the same data, or
state, but are not necessarily the same object), you call the equals method using an expression
such as the following:

boolean b = aPostalCode.equals(anotherPostalCode);

In some situations in Java, you want to do something with primitive values beyond what the
basic operators described above can accomplish. Java therefore provides a set of classes, called
wrapper classes, corresponding to each of the primitive types. Each instance of these classes
simply contains an instance variable of the corresponding primitive type. The following are
sample declarations:

Integer anIntegerObject;
Float aFloatObject;
Double aDoubleObject;
Byte aByteObject;
Character aCharacterObject;
Boolean aBooleanObject;

It is very easy to confuse instances of these classes with their primitive equivalents, so it is
important to pay careful attention to where a primitive is required and where an object is required.
When you work with instances of these classes, you cannot use the ordinary arithmetic or logical
operators, instead you have to use methods.

For example imagine you had two instances of class Integer, called integer1 and
integer2. If you wanted to add them and store the result back into integer1, you would
have to write the following rather inconvenient statement:

integer1 = new Integer(integer1.intValue() + integer2.intValue());

Due to this complexity, and the inefficiency of the method calls, arithmetic in Java is
normally done using primitive values instead of instances of the wrapper classes.



The Basics of Java 5

C lass variables an d class meth o ds

A  c lass variable in Ja va  is a  va riable tha t is ma rke d static, dec lar ed in the body of  the c la ss (not
inside  a  me thod) .

You access a class variable by specifying the name of the class, followed by a dot, followed
by the name of the variable. An example is:

Color.blue

Similarly, a class method is a method marked static. When a class method executes it is
not working on a particular instance of the class. You can therefore only manipulate class
variables or call class methods of the class – i.e. you cannot manipulate a class’s instance
variables or call its instance methods.

You call a class method by using the name of the class, followed by a dot, followed by the
name of the method (the name of the class can be omitted when calling a class method in the
current class).

The wrapper classes have many useful class methods such as the following:

int i = Integer.parseInt(aString); // converts aString to an int
String s = Integer.toHexString(anInt); // converts to hexadecimal
boolean b = Character.isDigit(aChar); // tests if the character is a digit

Java d ocument at ion 

O ne  of  the  most impor ta nt skills for  a nyone  de signing or  progra mming softwa r e is to be  a ble  to
naviga te  the doc umentation a nd look up the me thods available  to a c hieve  some  obje ctive . Ja va
c omes with exte nsive  on-line  docume nta tion about e a ch c lass a nd me thod; you should be c ome
f amiliar  w ith how to look up informa tion in this docume nta tion.

The documentation is available on Sun’s web site – see the ‘For More Information’ at the end
of the chapter for details. You may also find a copy of the documentation that was installed with
the Java compiler and VM on your local disk or network.

♦ Exer c ise
E  1 Find the  me thods in the  Ja va  docume nta tion tha t do the f ollow ing:

a ) Conve r t a boolean to a  Boolean and vic e- ver sa .
b) Conve r t an int to a n Integer and vic e- ver sa .
c ) Conve r t a String to a  double (i.e . par se the  double va lue  c ontaine d in a 

String)  a nd vice - ve rsa .
d) Conve r t an int to a  double.
e ) Find out w hat a  ha sh code  is a nd how  to c ompute the  hash c ode  of a  String.
f ) Find out w hat a  Vector is a nd how  to c ompute the  number  of  e le ments it c ontains.

Special op erato rs an d  o perat or precedence

Java, like  C and C++ , has some  spec ial oper ators that a r e widely use d to shorten ce rta in
e xpre ssions. The  most important of the se  ar e shown in T a ble 1.

There is a strict order of precedence that Java uses for evaluation of expressions. The
precedence rules for the operators used in this book are described in Table  2. Operators at the top
take precedence over operators lower in the table. At the same level of the table, operators are
evaluated from left to right.



The Basics of Java 6

C on dit io nal stat emen t s an d  cho ice amon g alt ern at ives

A  c ondition in Ja va  is a  stateme nt that e valua tes to a  boolean va lue  ( true or  false) . The 
f ollow ing a re  e xample s of  conditions:

aNumber > 5
aNumber < 5
aNumber > 5 && anotherNumber < 7
aNumber == anotherNumber

Table  1:  Spe c ial ope rat or s in Java
Ope rat or Example expre ssion Equivale nt  longe r expre ssion

+ + postf ix
f or m

+ + pre fix f or m

a ++ ;
b =a ++ ; 
+ +a ;
b =+ +a ; 

a =a +1 ; 
b =a ; a=a +1 ; 
a =a +1 ; 
a =a +1 ;  b =a ; 

- - postf ix
f or m

- - pre fix f or m

a -- ;
b =a -- ; 
- -a ;
b =- -a ; 

a =a -1 ; 
b =a ; a=a -1 ; 
a =a -1 ; 
a =a -1 ;  b =a ; 

+ = a += b; a =a +b ; 
* = a *= b; a =a *b ; 
- = a -= b; a =a -b ; 
/ = a /= b; a =a /b ; 

Table  2:  P re c edenc e of  the m ost impor t ant ope rat or s in Java.
O pe ra tor s Comme nts
()   [] A nything in par e nthe ses, inc luding a rr ay inde xing, is e valua ted

f ir st
++  --  ! U na ry oper a tors
*   /   % Multiplica tive ope ra tor s
+   - A dditive  bina ry oper a tors
>   >=   <   <= Relational compa rison ope r ator s
==  != I de ntity c ompar ison ope ra tor s
&& L ogic a l AN D 
|| L ogic a l OR
?: T er na r y if - then- else , disc usse d below
=   +=   *=   -=
/=

A ssignme nt

There are three ways in Java to use conditions in order to make choices among alternative
code to execute: if, ?:, and switch statements. The if statement has the following form:

if(condition)
{
   // statements to execute if condition is true
}
else
{
   // statements to execute if condition is false
}

The else block can be omitted if there is nothing to do in the false case.
If there is only a single statement to be executed in the true or false case, then the curly

brackets can be omitted. However leaving the curly brackets can often make the code clearer.
The ?: operator can also be used to execute one of two alternative expressions, depending on

the value of a condition:



The Basics of Java 7

result = (condition) ? doSomething() : doSomethingElse();

If condition is true, then result is set to the expression following the question mark,
otherwise result is set to the expression following the colon. The ?: operator can shorten
some code, but make other code harder to understand. As a rule of thumb, always choose the
form which results in the most readable code.

A switch statement has the following form:

switch(primitiveVariable)
{
   case value1:
      // statements to execute if primitiveVariable equals value1
      break;
   case value2:
      // statements to execute if primitiveVariable equals value2
      break;
   ...
   default:
      // statements to execute if none of the above is true
      break;
}

A few general comments about the switch statement:

• T he  break la be ls ar e  important: If  the break in the value1 ca se  wa s omitte d above , the n
w he ne ver  value1 oc cur re d, the sta te ments for both value1 and value2 would be e xe cuted.

• T he  default ca se  is e xec ute d whe n the  value in primitiveVariable is some thing othe r
tha n one  of  the  explicit c ases.

You should use polymorphism to reduce the need for switch statements.

L oo ps

T he re  ar e two ma in type s of loops in Java , for and while; the ir synta x is ide ntic a l to loops in C
a nd C+ +. A  while loop ha s the  f ollow ing structure :

while(condition)
{
   // statements to keep executing while condition is true
}

A for loop has the following structure:

for(initializer; condition; incrementer)
{
   // statements to keep executing while condition is true
}

The initializer is a simple statement that sets up some kind of initial condition for the loop –
often initializing a variable. The condition is a statement that returns a boolean value, normally
testing the variable initialized in the initializer; the condition is evaluated before every iteration
through the loop. The incrementer is a statement executed after every iteration through the loop,
typically updating the variable set in the initializer.

You can, in general, interchange a while loop and a for loop. To turn a while loop into a
for loop, move the initializer before the while statement, and ensure that the incrementer is the
last statement executed in every iteration. The advantage of using a for loop is that all the
information about controlling the loop is kept in one place; the disadvantage is that it can be
slightly harder to read the code of a for loop.

Examples of loops can be found in the example code later in this chapter.



The Basics of Java 8

Overall st ructu re of  a class

A ll the code of  a Ja va pr ogr am must be  plac ed inside cla sses. T his is a n impor ta nt dif fe re nce  f r om
C++ , w hich allow s some code to exist outside c la sse s. Y ou put e ac h Java  c la ss in a file of  the same
name. An e xce ption to this is in envir onments like  IBM V isua lAge f or  Ja va  w hic h do not orga nize 
c ode into f iles, but inste ad ke ep the code in a repository .

The overall structure of a class should look something like the following:

class classname
{
   // declarations of variables

   // declarations of constructors (discussed below)

   // declarations of other methods with public ones first
}

The exact order of these elements is a matter of style.

C on st ructo rs an d  t he creat io n o f ob jects

Constr uc tor s ar e  proc edur e s tha t ar e  c alled w heneve r a new  obje ct is c r ea te d. Ea c h construc tor has
the  sa me  na me  a s the  class, but c an ha ve  diff e re nt se ts of  a rgume nts. T he  purpose of a  c onstr uc tor  is
to initialize  the insta nc e  var iable s of a  new ly cr e ated obje c t and per f or m a ny othe r nee de d
initia liza tion.

The following are two constructors that might be used in a class Account. The first sets the
balance to a specific initial value, whereas the second, lacking a second argument, sets the
balance to zero.

public Account(String accountHolder, float initialBalance)
{
  this.accountHolder = accountHolder;
  balance = initialBalance;
  opened = Calendar.getInstance();
}

public Account(String accountHolder)
{
  this.accountHolder = accountHolder;
  balance = 0.0;
  opened = Calendar.getInstance();
}

Both of the above constructors initialize three instance variables. The value this represents
the current object. It is being used here to distinguish between the instance variable
accountHolder and each constructor’s argument of the same name.

You use the new operator to create a new object. This operator sets aside memory for the
object and calls a constructor. The following are two illustrations of the use of new:

String accountHolder = “Tim”;
float initialDeposit = 100.0;
acct1 = new Account(accountHolder, initialDeposit);
acct2 = new Account(accountHolder);

The constructor chosen is the one that has the same argument types as the arguments that
follow the new operator. Therefore, when acct1 is created, the first constructor (the one with a
string and a float argument) would be called, whereas acct2 would be constructed using the
second constructor. A constructor may have no arguments at all.

A new object can be created by using the new operator in a variable declaration. An object is
then created whenever execution enters the particular block that contains that declaration, or, in
the case of an instance variable, when an instance is created. The following gives an example:



The Basics of Java 9

Account anAccount = new Account(holderName);

It is important to remember that a constructor of class Account is called in the above
statement. The particular constructor chosen will depend on the class of holderName.

Alternatively, the declaration of the variable can leave it un-initialized – i.e. it is left to be
initialized on a later line. A Java compiler should, however, warn you if your program can
execute code that accesses un-initialized variables.

Account anAccount;
…
anAccount = new Account(holderName, initialBalance);

An instance variable that is declared with an object type, but that is not yet initialized, has the
primitive value null.

A rrays

A n ar r ay va riable in Ja va  is de clar e d using squa re  br ac kets f ollow ing the  type . T he  f ollow ing a r e
some e xa mples:

int[] anIntArray = new int[25];
byte[] aByteArray;  // not initialized
Account[] anAccountArray = new Account[numAccounts];

As these examples show, arrays can be composed both of primitive types like int and byte,
and also of instances of classes, such as Account. The number of elements in an array can be a
constant or a variable.

Arrays have a special status in Java; they are objects, but they are not instances of classes
which you can subclass or for which you can write your own code.

In order to access an element of an array, you use square brackets and specify an index. You
can also request the length of an array. For example, the following sums all the elements of an
int array:

int sum=0;
for(int i=0; i<anIntArray.length; i++)
{
   sum += anIntArray[i];
}

You should generally minimize your use of arrays, and you should always avoid them if you
do not a-priori know the number of items it will contain. Unfortunately, programmers often hard-
code a maximum size, which makes programs inflexible and bug-prone.

The alternatives to arrays are the classes which we will discuss in the next two sections:
Strings, for collections of characters, and collection classes such as Vector and
ArrayList, for collections of arbitrary objects.

Arrays have the advantage of being more efficient than these specialized classes; however,
the specialized classes have wide variety of useful operations, and some of them have the ability
to grow as new objects are inserted. In addition, programs written using the specialized classes
are often easier to read than programs which uses arrays.

An important thing to remember about arrays (and the specialized collection classes) is that
they are zero-based. This means the first element is element 0. It also means that the highest
numbered element is one less than the length of the array.

C haracters an d Strin g s

I n ma ny pr ogr amming langua ge s, a cha ra cte r is an 8- bit byte e nc ode d using A SCI I. Unfor tuna tely,
a lthough A SCI I w as a n e xc e llent inve ntion f or  the E nglish- la nguage  a pplic ations of the  1950’s a nd
1960’ s, it is not ca pable  of  r e pr ese nting the  wide  va rie ty of  printe d symbols use d in othe r  langua ge s.



The Basics of Java 10

To make Java extendible to most of the written languages of the world, it uses a coding
scheme called Unicode instead of ASCII. Characters in Unicode are not restricted to one byte;
however the exact details of the representation of each character is normally not important to
programmers. All a programmer needs to know is that when he or she is working with characters,
they could be from an arbitrary character set. The basic ASCII characters remain a part of
Unicode, and programmers can still use the byte datatype to work with real ASCII characters if
they truly need to do so. It is bad programming practice, however, to use bytes for textual data
which is to be exposed to the end user.

Strings in Java are collections of characters; the String class provides a rich set of facilities
for manipulating such objects. Some facilities for dealing with strings are also built into Java at a
primitive level. In particular, you can define a string constant by placing it in double quotes, and
you can concatenate two strings by using the + symbol. The following are some simple examples
of string manipulations:

 “Insert a variable (” + aVariable + “) between two constant strings”

Note that aVariable above could contain anything. Any object can be converted into a
string using a toString method. In the above example the toString method would be
invoked on aVariable to generate an instance of String. It is good practice to write your
own toString method in every class; it should return a string that will help identify each
instance. The default implementation of toString outputs the name of the class followed by a
hexadecimal code that distinguishes one instance from another.

The following two statements illustrate one of the many operations available to work with
strings in Java. Note that as with arrays, the first character in a string is at index 0. For the
substring operation, the first argument is the starting position, and the second argument is the
ending position +1; the result is a new String with a sequence of characters from the original
string.

String sub = “submariner”.substring(0,3);  // = “sub”
String marine = “submariner”.substring(3,9); // = “marine”

♦ Exer c ise
E  2 U se  the Ja va doc umentation to sea rc h f or  the f ollow ing inf or mation r ega rding the  class

a nd String.
a ) W ha t happens if you c all the  substring oper a tion with only one a rgume nt?
b) H ow  do you re move tr a iling w hite spa ce  f r om a  String? 

C ollection  classes an d th eir it erat o rs

W e ha ve se e n how  you ca n use  a r ra ys to c r ea te  fixe d-siz e  c ollec tion of  obje c ts or  primitive  data 
ite ms. W e have a lso see n how  Strings provide c olle c tions of Characters. Ja va also pr ovide s a 
var ie ty of  othe r  c la sse s f or  w orking w ith c ollec tions of  obje cts. Only the most impor tant one s a re 
shown be low ; you a re  invited to study the  doc ume nta tion to le ar n mor e a bout them.

• ArrayList: T his a llows you to build c ollec tions of  obje cts tha t grow a s mor e objec ts ar e
a dded. I mportant methods inc lude set, add and remove.

• Vector: T his c la ss is like  ArrayList, w ith some  subtle  diff er e nc es that we  w ill not discuss
her e. Vector ha s bee n a round sinc e Ja va wa s f ir st re lea se d, whe re as ArrayList is ne we r.

• LinkedList: A nothe r c la ss that ha s many of the  same  f unc tions a s ArrayList and
Vector, e xc e pt that it is mor e e ff ic ient f or  c e rtain ope r ations, e .g. inse rting a n e le ment in the 
middle , and less e ff icient f or  othe r  ope r ations, e .g. e xtr ac ting a n ar bitra r y ele me nt.

A common operation with collection classes is to do something with every member of the
collection. Java provides a class called Iterator to do this. To create an iterator, you simply
use the methods called iterator or listIterator found in any collection class. Then you
can repeatedly call the method next to obtain successive elements. The method hasNext



The Basics of Java 11

enables you to find out if there are any more elements. The following example counts the number
of empty strings in a collection of strings. We will discuss the notation ‘(String)’ in the next
section.

emptyCount = 0;
Iterator iter = aCollection.iterator();
while(iter.hasNext())
{
  if(((String)iter.next()).length()==0)
    emptyCount++;
}

Iterators also have a remove method, that allows you to selectively delete elements of the
underlying collection.

In older code (prior to Java version 1.2), you may see the use of Enumeration. This should
be avoided now since it is more cumbersome to use, yet provides similar functionality to
Iterator.

C astin g

T he  bloc k of code in the last subse c tion illustr ate d an impor ta nt issue . The  next oper a tion of  a n
Iterator de cla re s tha t it re tur ns an Object, the  class tha t is c onsider ed to be  the  ultimate
super c la ss of  a ll other  c lasse s. Wha t this me a ns is tha t w he n next is e xec ute d, the objec t r etur ned
c an be  of any  Ja va  class – it a ll de pe nds on w ha t w as or igina lly put into the under lying colle ction.

However, if you put the result of next into a variable of type Object, you could only
invoke those few operations defined in class Object. So you have to use a mechanism called
casting. Casting works when you, as a programmer, know that the object in a variable (or the
return type of an expression) is actually a subclass of the declared type of that variable or
expression.

To cast a variable or expression you precede it with the name of the resulting class,
surrounded by parentheses, like this: (String)i.next(). This statement is a bit like making
a contract of the following form: “I, the programmer, know that the next method, in this
particular case, is really going to return a String, even though next is declared to return type
Object. So, trust me, compiler, and let me use the result as if it were a String. I agree to pay
the consequences if I am wrong: an error will occur at run time.” The type of error that occurs is
the raising of a ClassCastException. We discuss exceptions below.

♦ Exer c ise
E  3 W rite  the nec essar y e xpre ssions to do the  f ollow ing: Cr e ate a n ArrayList of  a r bitr a ry

Strings ( which you ca n har d-c ode , eve n though this w ould be  ba d pr a ctic e  in a  r ea l
syste m). T hen use an Iterator to f ind the sum of the  le ngths of the  Strings, as we ll
a s the  longest String and the  shor te st String.

Excep t io ns

W he n something goe s w rong in the exe cution of  a pr ogr am, suc h a s a n attempt to divide  by z e ro,
Java throws an e xc eption. T hr owing an e xce ption me ans tha t inste a d of  exec uting the next line of
c ode, Ja va  looks f or  some  code  to handle  the e xc eption a nd e xec utes tha t inste ad. Java  progra mme rs
a re  r e sponsible  for a ntic ipa ting things tha t c an go w rong and w riting e xc eption handling c ode  in
pre pa r ation. The  try- catch construct pr ovide s the  ba sic c apability for this:



The Basics of Java 12

try
{
   result = numerator / denominator;
   validResult = true;
}
catch (ArithmeticException e)
{
   validResult = false;
}

Any division by zero that occurs when executing the try block will result in execution of the
catch block. Once either block completes, execution continues at the statement after the catch
block.

What happens if an exception is thrown in a statement that is not in a try block with an
appropriate catch statement? The answer is that Java will look to see if the caller of the current
method is within a try block that has an appropriate catch block. It will continue to look at
callers right up to the main program, and will finally report an error if it has not been able to find
any suitable catch block.

If you are writing code in a class that could throw an exception, and you do not want to write
a try-catch block, but want to rely on the caller of the method to catch the exception, then you
have to do something special: At the start of the method definition you have to declare that you
are not handling certain exceptions by listing them in the following manner:

int methodThatMayDivideByZero()
   throws ArithmeticException
{
   // code for the method that could throw the exception
}

Java provides many types of built-in exceptions. Each is, in fact, a class. When an exception
is raised, an instance of that class is created that contains information about the problem causing
the exception.

You can also create your own exception classes representing things that can go wrong in the
computations your code performs. For example, in a banking application you might decide to
define an exception called OverdraftLimitException. You could then explicitly throw an
exception in code that might result in exceeding an overdraft limit. The following illustrates how
this might be done. As with any Java classes, each of the following classes should be in a separate
file.

First, here is the new exception class. (This is also your first exposure to creating a subclass,
using the extends keyword; we will discuss this in more detail shortly).

class OverdraftLimitException extends Exception
{
}

Now, here is the class that uses the exception:

class Account
{
  MoneyAmount overdraftLimit;
  MoneyAmount balance;
  …
  MoneyAmount debit(MoneyAmount debitAmount) throws OverdraftLimitException
  {
    if(debitAmount > balance + overdraftLimit)
      throw new OverdraftLimitException();
    balance -= debitAmount;
    // perhaps do other stuff here
  }
}



The Basics of Java 13

♦ Exer c ise
E  4 W rite  tr y- c atch bloc ks to ha ndle the  f ollow ing situations. Y ou will ne e d to re fe r  to the 

Java doc ume ntation to disc over  the a ppropriate  e xc e ption name s to use.
a ) Y ou a tte mpt to tra nsf or m the  String “1A”  into an int.
b) Y ou a tte mpt to c re ate  a n a rr ay of  size  –3.
c ) Y ou a tte mpt to a cc ess a n a rr ay at inde x 7 w he r e its length is 7.

Simple t ermin al I/O

Most ser ious pr ogr ams inte ra ct with the use r using gr aphic al user  inte r fa ce s. We  will give  some  tips
f or  how to do this in Cha pte r 7.

It is still useful, however, to know how to read and write information from the console (e.g.
the DOS console or a Unix terminal). The following are examples of the basic statements you
need to use.

Java’s basic terminal output statement is rather simple and takes the following form,. Any
String can be an argument to System.out.println, including strings constructed using
the concatenation operator + described earlier.

System.out.println(“This line will be printed”);

Java’s mechanism for inputting what the user types at the console is less elegant. As the
following code shows, you have to first create a byte array of sufficient size. You then call
System.in.read, which waits for the user to hit a carriage return and then places what was
typed into the byte array. Finally you have to convert this into a String, trimming off any
whitespace that may have been unexpectedly added.

byte[] buffer = new byte[1024];
System.in.read(buffer);
String theInput = new String(buffer).trim();

If you wanted to interpret the input as something other than a string, you could write
statements like this:

float aFloat = Float.valueOf(theInput).floatValue();

We will leave it up to you to look up the necessary methods to convert to other data types.

Gen eralizat io n and  in herit an ce

T o cr e ate a  subc la ss in Ja va , you use the  extends ke yw ord, a s in the f ollow ing e xa mple:

public class MortgageAccount extends Account
{
   // body of the class
}

According to the above, class MortgageAccount is a subclass of Account. Any instance
variables or methods defined in Account (or its superclasses) are now also implicitly present in
the new subclass – in other words they are inherited.

In Java, a class can have only one superclass – this is called single inheritance. Other
languages, such as C++ allow more than one parent. Multiple inheritance can result in more
complex systems, hence the designers of Java decided it was better to allow only single
inheritance.

Java does, however, provide a mechanism, interfaces, which provide the important benefits of
multiple inheritance without the drawbacks. We will discuss these shortly.



The Basics of Java 14

A bstract  meth od s and  ab st ract classes

T o cr e ate a n abstr ac t method in Java , you simply ma rk it abstract. Y ou must not w rite  any
e xe cutable  state me nts in the  body of  the  me thod; the body is simply omitted. T he  me thod se r ve s a s
a  pla c eholder , indic a ting that subc lasse s must have  c onc re te  imple me nta tions.

Similarly, you declare a class to be abstract by specifying the abstract keyword on the
first line when you declare the class.

Int erf aces

A n inter fa c e in Ja va  is like  a  class e xc e pt that it doe s not ha ve  any e xe cutable  state me nts – it only
c onta ins a bstra c t me thods and c la ss va ria bles.

An interface differs from an ordinary abstract class in an important way: It cannot have any
concrete methods or instance variables, whereas an abstract class can.

The value of an interface is that it specifies a set of methods that a variety of different classes
are to implement polymorphically. The classes that implement the interface do not have to be
related to each other in any other way.

A class uses an implements clause, as in the example below, to declare that it contains
methods for each of the operations specified by the interface. In Java, a class can implement more
than one interface, whereas it can only extend one superclass. As mentioned above, this is quite
different from languages like C++.

You can declare a variable to have an interface as its type. This means that, using the variable,
you can invoke any operation supported by the interface. Dynamic binding will occur so that the
correct method is run.

For example, the following code specifies that any class can implement the Ownable
interface. Furthermore a class that implements Ownable must provide concrete implementations
for both of the operations. The code for the Ownable interface would be put in a separate file by
that name, just like a class.

public interface Ownable
{
  public abstract String getOwnerName();
  public abstract void setOwnerName(String name);
}

Here are examples of how classes might specify that they implement this interface.

public class BankAccount implements Ownable
{
  …
  public String getOwner()
  {
    return accountHolder;
  }
  public void setOwner(String name)
  {
    accountHolder = name;
  }
…
}

public class Pet extends Animal implements Ownable
{
  …
  public String getOwner()
  {
    return owner;
  }
  public void setOwner(String name)
  {
    owner = name;



The Basics of Java 15

  }
  …
}

The following shows how you could now declare a variable that can contain either a
Shape2D or a Person You can then ask for the image of whatever is in the object.

Drawable aDrawableObject;
…
aDrawableObject.drawImage()

♦ Exer c ise
E  5 L ook in the  Java  doc ume nta tion to disc ove r the  methods a va ila ble in cla sses that

imple ment the  f ollow ing inte rf a ce s:
a ) Comparable
b) Collection
c ) Shape
d) Runnable
e ) Cloneable
f ) Iterator

E  6 Java has a n inte rf ac e  c alled Shape. T his is imple mente d by a  var iety of cla sses in
dif fe r ent hie ra r chie s. Study Shape and its impleme nting c la sse s to de ter mine how  it
dif fe r s fr om the  Shape2D hier a rc hy pr ese nted in Figure   Err or !  R ef e re nc e  sour ce  not
f ound.. W ha t a re  the a dvantages and disadvanta ges of  the  tw o a pproa ches? 

Packag es an d imp ortin g

A  pac kage in Ja va  is use d to group toge the r r elate d cla sses into a subsyste m. E a ch pa ckage  is given
a  name  c omposed of  a  se rie s of  words sepa ra te d by dots. For e xa mple java.lang is one of  the
impor tant pac ka ges of  c la sse s tha t is pa r t of  standar d Java.

All the classes which belong in one package have to be put into a directory with the same
name as the package. The components of a package name that come first correspond to higher-
level directories. For example if you created a package called
finance.banking.accounts, you would put that in a directory called accounts, which
would be in a directory called banking, which would be in a directory called finance. A
further convention, not always adhered to, is to prepend to the package name the domain name of
the organization, with the components inverted. So, for example if mcgrawhill.com owned
the package finance.banking.accounts, then the full package name might be
com.mcgrawhill.finance.banking.accounts. This assures that each package name
is unique in the world.

A file containing a class should always declare the package to which it belongs using the
package keyword, thus:

package finance.banking.accounts;

If a class wants to use the facilities of another package, its file should contain an import
statement, such as the following.

import finance.banking.accounts.*;

By importing a package, you are saying that all the code in that class file knows about the
classes in the imported package – in other words you can refer to the classes in the imported
package by name.

A package therefore defines what is often called a name space; the total name space of any
class file includes the names in the file’s own package plus the names in all imported packages.



The Basics of Java 16

It is possible for two classes to have the same name as long as the names do not clash – i.e.
the identically named classes are not in the same package – and their packages are never both
imported into the same file. Despite this rule, however, it is a good idea to try to avoid giving two
classes the same name, since somebody in the future might want to import both packages and
hence create a name clash. If you ever do encounter a name clash, you can resolve it by
qualifying the name of a class with the name of its package, for example, if there were two
Account classes in the packages you were importing, you could write an expression like this:

mybank.Account newAccount = new myBank.Account(accountHolder);

♦ Exer c ise
E  7 Java has ma ny importa nt pa ckage s tha t pr ogr ammer s use  he avily. Study the conte nts of

the  f ollow ing pa ckage s, using the  Ja va  docume nta tion.
a ) java.lang
b) java.util
c ) java.math
d) java.io

A ccess con t ro l and  scop e:  pu blic, p rot ect ed  an d private

By de f ault, the  me thods a nd va r ia ble s in a cla ss c an be  ac ce ssed by me thods in a ny cla ss in the  sa me 
pac ka ge. T his de fa ult r ule  is insuf f ic ie nt in tw o c ases, how e ve r:

• Sometime s you wa nt to re str ic t a cc ess to var ia ble s or me thods. I f you know  that ma ny me thods
a cc ess a  give n var ia ble , the n c ha nging the va r ia ble ’s de finition bec ome s dif ficult be c ause  you
may ha ve  to c ha nge  a ll pla ce s w he re  it is a cc e ssed. I f you ha d re str ic ted a c ce ss to the va r ia ble 
w he n you f irst develope d the  system, the n it w ould la te r  be e asie r  to c ha nge  the  va ria ble. This is
bec ause it would be a cc essed fr om f e we r pla ce s so it will be  ea sie r to find out w he re  those  pla c es
a re .

• Sometime s you w a nt just the opposite : Y ou w a nt to c re a te  a  list of  me thods tha t a re  wide ly
a va ila ble f or  use by me thods outside  the  curr e nt pa ckage .

When you define any method, instance variable or class variable, you can precede the
definition with the keywords public, protected or private to control exactly what code
can have access to the method or variable. Table  3 shows the effect of each of the keywords,
starting with the least restrictive access and moving to the most restrictive.

It is good practice to restrict access to methods, instance variables and class variables as much
as possible. This is in line with the concept of information hiding presented earlier: You want the
details of the implementation of a class, class hierarchy or package to be hidden as much as
possible from outsiders. This makes code easier to understand and change, and also tends to make
designs more flexible. When we discuss higher level design in Chapter 9, we will see that
restricting access reduces what we will call coupling, which is the interconnection among various
components of a system.

Some simple rules for access control are as follows: Make all instance variables as private as
reasonably possible – almost never make them public. In addition, the only methods that should
be public are those that will definitely need to be called from outside the package.



The Basics of Java 17

Table  3:  Eff e ct  of  t he  ac ce ss contr ol ke yw ords
I f you spe c if y this keywor d be f or e the 
def inition of  a  me thod, instanc e va r ia ble  or
c la ss va ria ble

T he n c ode in the  f ollow ing pla c es c a n ca ll the 
method, or  re ad and w rite  the var ia ble 

public A ny c ode  a nyw he r e.
protected O nly c ode in the  same  pac kage a s this cla ss a s w ell

a s code in any subcla sses, e ve n if the y a re  not in the
same pac ka ge.

( nothing) O nly c ode in the  same  pac kage a s this cla ss. T his is
the  de fa ult.

private O nly c ode in this cla ss.

Note that the keyword public is also applied to the declaration of classes. Unless a class is
declared public, it is not available outside its package.

The access control keywords described above help define the notion of scope in Java. In
general, the scope of a variable or method is the parts of the source code in which reference to the
variable or method can be made. The scope of an instance variable, instance method, class
variable or class method is defined by the public, private and protected keywords.
Variables defined in blocks (defined by curly brackets ‘{‘ and ‘}’), including methods, try-
catch clauses, etc. have the start and end of the block as their scope.

T hread s an d  con curren cy in  Java

A  Thread is se quenc e of  exec uting state me nts tha t c an be  r unning, conce ptually at le ast, at the 
sam e tim e as a nothe r  Thread. Seve ra l thr ea ds ar e  said to e xe cute c oncurre ntly.

Threads are supported by many operating systems and programming languages, and their
effects are visible in many application programs. For example, when you are using a word
processor, you may notice that at the same time as you are typing text, the system is recalculating
where to place the end of the pages. In a complex spreadsheet, at the same time as you are editing
cells, the program is calculating other cells that have been affected by earlier changes you made.

To create a thread in Java, do the following:

1. Cre ate  a  c lass to conta in the c ode tha t w ill c ontr ol the  thr e ad. T his is ma de to imple me nt the
inter f ac e Runnable. ( It ca n a lso be ma ke a subcla ss of  Thread inste ad, but impleme nting
Runnable is by f ar  the pre fe r re d a pproa ch.) 

2. W rite  a method c alled run in your  c lass. The run me thod should nor ma lly ta ke  a  re asona bly
long time to exe cute  – pe r ha ps it w a its f or  input in a loop. When the thr ea d is sta rte d, this r un
method e xe c utes, c onc ur re ntly w ith a ny othe r thr ea d in the  system. W he n the  run method e nds,
the  thre ad te rmina te s. The  r un me thod ac ts like the  ‘ ma in pr ogr am’  of the  thre ad.

3. Cre ate  a n insta nce  of  Thread (or your subcla ss of  Thread)  a nd invoke the  start oper a tion
on this insta nc e . If  you imple mente d the  inte r fa ce  Runnable, you ha ve  to pa ss a n instance  of 
your c la ss to the construc tor of Thread, a s is shown in the  example  be low.

The third step above will differ slightly depending on what you did in step 1. If you
implemented the Runnable interface, then pass your instance to a new instance of Thread. If
you directly subclassed Thread, you can simply start your instance.

The following is a complete program that illustrates how threads work. The program starts
three concurrent threads, each of which prints out a record of its progress. Since the threads are
running concurrently, the output from the different threads is interleaved.

Take note of the following lines of code:

• Line 1: T his c la ss imple me nts Runnable.
• Line 18: T he  run method is use d; it c ontains a loop.
• Line 26: T he  loop conta ins a  c all to sleep whic h dela ys its exe cution, othe rw ise  it might finish

its c omputa tion even be for e, a ny other  thre ads have  a  c hance  to star t.



The Basics of Java 18

• Lines 36-38: T he  thre e  thr e ads ( insta nc es of  this c lass c onta ine d in insta nc e s of  Thread)  a re 
c re ate d. T his is done  in the  main me thod, w hic h is the  method that e xec ute s fir st w hen you
e xe cute a c la ss.

• Lines 40-42: T he  thre e  thr e ads a re  a c tually sta rted.

 1 public class ThreadExample implements Runnable
 2 {
 3   private int counterNumber;  // Identifies the thread
 4   private int counter;  // How far the thread has executed
 5   private int limit;    // Where counter will stop
 6   private long delay;   // Pause in execution of thread in milisecs
 7 
 8   // Constructor
 9   private ThreadExample(int countTo, int number, long delay)
 10   {
 11     counter = 0;
 12     limit = countTo;
 13     counterNumber = number;
 14     this.delay = delay;
 15   }
 16 
 17   //The run method; when this finishes, the thread teminates
 18   public void run()
 19   {
 20     try
 21     {
 22       while (counter <= limit)
 23       {
 24         System.out.println("Counter "
 25           + counterNumber + " is now at " + counter++);
 26         Thread.sleep(delay);
 27       }
 28     }
 29     catch(InterruptedException e) {}
 30   }
 31 
 32   // The main method: Executed when the program is started
 33   public static void main(String[] args)
 34   {
 35     //Create 3 threads and run them
 36     Thread firstThread = new Thread(new ThreadExample(5, 1, 66));
 37     Thread secondThread = new Thread(new ThreadExample(5, 2, 45));
 38     Thread thirdThread = new Thread(new ThreadExample(5, 3, 80));
 39 
 40     firstThread.start();
 41     secondThread.start();
 42     thirdThread.start();
 43   }
 44 }

♦ Exer c ise
E  8 Run the ThreadExample class, which is a va ila ble  on the  book’s we b site a nd obse rve 

its be ha viour 
E  9 I f the re  is a ny aspe c t of  the c ode in the  a bove exa mple  that you do not unde rsta nd, then

look it up in the Ja va doc umentation.

Syn ch ron ization 

I n concurr e nt pr ogra ms, a  diff iculty a rises w hen tw o thr ea ds ca n both modif y the  sa me  obje c t. For
e xa mple, it w ould be  a pr oblem if  one thr ea d w er e trying to r emove  a n e le me nt fr om a list a t the 
same time a s another  thre a d wa s a cc e ssing tha t e le ment.

Java offers a special mechanism called synchronization to avoid such conflicts. By adding the
keyword synchronized in front of the declaration of certain methods, you guarantee that only
one thread at a time can run any of the synchronized methods on a given object. When a



The Basics of Java 19

synchronized method is invoked it obtains a lock on the object; if another thread also invokes a
synchronized method on the same object then it will be put in a queue, waiting for the first object
to finish executing its synchronized method.

You will see several examples of synchronization in the code discussed in the next chapter.

C on clu ding  co mment s abo ut  Java

I n the  a bove ove rvie w  w e have c over ed the  most important f ea tures of  Ja va , but have  only sc ra tc hed
the  surf ac e  in ter ms of  the total number  of  c lasse s a nd me thods a vaila ble . Y ou should now have
e nough know ledge  to w or k thr ough the  book, as long as you ar e  pre par ed to re fe r to the  on- line Java
doc ume ntation. A s we  intr oduce  ce rta in spec if ic topic s, we  w ill intr oduce  more  f e atur e s of  Ja va . I n
par tic ular :

• I n Cha pter  3, a s w e discuss the  c lie nt-se rver  ar chite cture , w e will discuss some  of  Ja va ’s
c apabilitie s for  c ommunic a ting over  the I nter net.

• I n Cha pter  5, a s w e discuss cla ss diagra ms, w e  w ill show  in detail how  to impleme nt such
dia gr a ms.

• I n Cha pter  7, a s w e discuss use r inter fa c es, w e will give you some  tips desc ribing how  to
imple ment a  gra phica l use r  inte rf ac e  in Java.


