Supplementary material for Chapter 2 of the McGraw Hill book:
“Object Oriented Software Engineering:
Practical Software Development Using UML and Java”

Copyright © 2001 Timothy C. Lethbridge and Robert Laganiére

See www.lloseng.com for more information.

The Basics of Java

In thefirst part of this chapter we have reviewed some of the main principles of object orientation.
In this section wereview the Java programming language and show how its object-oriented features
are implemented. This section is not intended to give comprehensive coverage of Java; it isinstead
intended to serve as areview for those who have taken afirst coursein Java, and to assist those who
learned an OO language other than Javato understand the examples later in the book.

Java, like C++, shares much of its syntax with the C programming language. If you know
how to write statements, including variable declarations and loops, in one of these three
languages, then you have a head start in learning the others. However, many other details differ
among the languages. In particular, the data types and libraries available are considerably
different.

Javawas developed at Sun Microsystems. It has a useful combination of features that,
combined with the fact that it isa member of the C/C++ family, have made it very popular in
recent years:

« Platform independence: Java is designed to be run using a virtual machine, or VM. Java
compilers compile source code (typically found in filesending with the . j ava suffix) into files
containing bytecode (typicdly in files ending with the . cl ass suffix, or in libraries ending with
.] ar). Bytecodeis likea universal machine language—it isvery low-level inthe sensetha it is
not designed to be read by human beings. At the same time, programs in bytecode can be run on
any computer that has a VM. The VM acts as an interpreter for the bytecode; this makes Java
programs portable.

e Useover thelnternet: Javais designed with very easy-to-program networking capabilities. In
addition, small programs called applets can be loaded directly into aweb browser.

» Security checks A properly configured Java VM will not allow violations of certain security
constraints when programs are downloaded over the Internet.

¢ Removal of troublesome C++ features: C++ has many powerful capabilities, such as pointer
arithmetic, multiple inheritance, macros and operator overloading. Although powerful, these can
make programs difficult to understand, so they have been deliberately left out of Java Also, Java
will not let programmers refer to information beyond the end of an array, or follow an invalid
pointer. In C and C++, these situations frequently cause programs to crash.

» Garbage collection: You do not need to free objects from memory when you no longer need
them. The VM will reclaim objectsthat is no longer being used.

Javatendsto be less efficient than programming languages like C or C++ for two reasons:
Firstly, Java s safety checks and garbage collection can slow down execution. Secondly, the
interpretation of bytecode is not as fast as direct execution of machine code. Most virtua
machines mitigate this latter problem by using what is called just-in-time compilation (JITC); this
means that the first time a method is executed, the VM converts it into machine code and stores
the machine code to save work on subsequent calls. However, even with JITC, Javais not as fast
as afully compiled language.

The Basics of Java 2

However, the reduced efficiency of Javais often not a problem. In today’ sworld, hardware is
so fast that efficiency does not always need to be a high priority. Also, the cost of programmers’
time tends to be far more expensive than hardware, so devel opment teams can save money by
using Java, which is easier to program than C++. The savings in programmer time can easily pay
for faster CPUs.

Nevertheless, Java' s lower efficiency meansthat it is not suited to every application: A
program that primarily performs CPU-intensive calculations should probably be written in amore
efficient language.

Incidentally, the fact that Java uses a virtual machine or has garbage collection is not unique.
Smalltalk is another OO language that also has these features; in fact many of theideasin Java
were adopted from Smalltalk.

One more point about Java before we start discussing its details: There is arelated language
called JavaScript which is used to add functionality to web pages. Despite sharing much of the
same syntax and many of the same keywords, Java and JavaScript should be seen as clearly
separate languages.

The simplest statements
An assignment statement in Java uses the ‘=" symbol; a semicolon terminates statements:

aVariabl e = 5;

A call to a procedure (a method) in the current class looks like the following:

resul t Vari abl e = et hodNane(ar gunent 1, argumnent 2);

In this case, the result is assigned to the variable avar i abl e.
If there are no arguments to a method, use open and close parentheses with nothing in
between, thus:

resul t Vari abl e = noAr gunent Met hod() ;
A call to an instance method of the object in variable b looks like the following:

resul t Vari abl e = b. met hodNane(ar gunent) ;

Thedot (.) symbol is aso used to access an instance variable of an object stored in avariable,
thus:

aVari abl e = b. vari abl eNang;

It is considered better design practice, however, to avoid directly accessing instance variables
in this manner. Instead, try to obtain the same information using an instance method of the object
invariable b, asin the previous example.

Several statements can be placed together in ablock, surrounded by braces (‘{‘ and ‘} ’, also
colloquially known as curly brackets). Blocks are used primarily as the bodies of classes, loops,
conditional statements and for exception handling; all of these uses are discussed later. Hereis an
example of a block:

{
5;
conput eSonet hi ng(c);

QD
Inn

The Basics of Java 3

A simple instance method

A method in Java looks like the following example. The heading of the method has these
components:

e |tcanbedeclared publ i c, prot ect ed or pri vat e; we will discuss these keywords | ater.

* |t hasareturntype, which may bevoi d, indicating tha the method does not return anything.

» |t hasapair of parentheses which can enclose a list of formal argument declarations, separated
by commes.

publ i c doubl e credit(doubl e ambunt ToCredi t)
{

bal ance = bal ance + ampunt ToCredit;
return bal ance;

}

Comments

Comments in Java take two forms: Two slashes ‘/ /"’ indicate that the rest of the line is to be
considered a comment and hence ignored by the compiler. Alternatively you can start a comment
with*/ *’ and end it with ** / *; anything between this pair of markersisignored.

Variable declarations and basic data types

Y ou declare variables in Java by giving the data type followed by the name of the variable. A
variable declaration can be placed practicaly anywhere in Java code, dthough it isgood practice to
only declare variables at the beginning of blocks. The following are some examples of variable
declarations, illustrating the primitive Java data types.

byt e aByt e; /1 an 8-bit val ue

short aShort; // a 16-bit integer

int anlnteger; I/ a 32-bit integer

| ong along; /1 a 64-bit integer

fl oat aFl oat; /1 a floating point nunber

doubl e aDoubl e; /1 a doubl e-precision floating-point nunber
char aChar; /1 a character of Unicode, discussed bel ow
bool ean aBool ean; /1 nust be one of true or false

In the above declarations, the types all start with alower-case letter. This distinguishes them
as primitive data types. Y ou can use primitive data types for many purposes, but variables
declared using these types do not contain objects — their contents are not instances of any class.

The set of operations available to work with primitive datatypesis rather limited. The basic
arithmetic operators +, - , *, / and %(for modulus) can be used with values that have type byt e,
short,int,long,fl oat,ordoubl e.

Thelogical operators && (and), | | (or) and! (not) can be used to operate on bool ean
values.

Sdebar: Short drcuit operators

The && operator has an interesting property. In the expressiona() && b() , Javawould not
even bother to compute b() if a() turned out to bef al se. The entire expression would
immediately return f al se as soon asthe falseness of a() isdetermined. The value of b()
would only need to be calculated if a() is, infact, t r ue. The && operator istherefore called a
short circuit operator. It isimportant that the programmer be aware that the right-hand side of the
expression might never be computed.

Similarly, | | isalso ashort circuit operator. Its right-hand side is not computed if the left-
hand sidereturnst r ue.

The Basics of Java 4

In addition to manipulating primitive values, variables are also used to manipulate objectsin a
Java program. To declare such variables, you use the name of a class as their type, indicating that
an instance of that classisto be put into the variable. Whenever the type in avariable declaration
starts with a capital letter, you know that it is a class, not a primitive type.

Java defines many standard classes that can be used in any program. Important examples are
StringandArrayli st, shown below. You can also define your own classes such as
Post al Code.

String aString; /1 an object that contains a string of
I/ characters (discussed |ater)

ArraylLi st anArrayli st; // an object that contains a |ist of
/1 objects (discussed |ater)

Post al Code aPost al Code; /1 an object of class Postal Code

To work with variables such as these, you have to call methods or access instance variables
that are found in the declared class or its superclasses. Y ou cannot use the arithmetic operators.

The == operator, which returnsabool ean, isused to compare any two items which could
be expression results, simple values or the content of variables. The operator testsif the items are
identical, which means they either refer to the same objects or have the same primitive values. A
common bug is to use the identity operator == when the assignment = was meant, or vice versa
This bug will normally be caught by the compiler, but not if you are working with bool ean
items.

To test whether two variables contain objects that are equal (i.e. contain the same data, or
state, but are not necessarily the same object), you call the equal s method using an expression
such as the following:

bool ean b = aPost al Code. equal s(anot her Post al Code) ;

In some situations in Java, you want to do something with primitive values beyond what the
basic operators described above can accomplish. Javatherefore provides a set of classes, called
wrapper classes, corresponding to each of the primitive types. Each instance of these classes
simply contains an instance variable of the corresponding primitive type. The following are
sample declarations:

I nt eger anl nt eger vj ect ;

Fl oat aFl oat bj ect ;

Doubl e aDoubl e(hj ect ;

Byt e aByte(bj ect;

Char act er aChar act er bj ect ;
Bool ean aBool eanj ect ;

It isvery easy to confuse instances of these classes with their primitive equivalents, soitis
important to pay careful attention to where a primitive is required and where an object is required.
When you work with instances of these classes, you cannot use the ordinary arithmetic or logical
operators, instead you have to use methods.

For example imagine you had two instances of class| nt eger, calledi nt eger 1 and
i nt eger 2. If you wanted to add them and store the result back into i nt eger 1, you would
have to write the following rather inconvenient statement:

integerl = new I nteger(integerl.intValue() + integer2.intValue());

Due to this complexity, and the inefficiency of the method calls, arithmetic in Javais
normally done using primitive valuesinstead of instances of the wrapper classes.

The Basics of Java 5

Class variables and class methods

A classvariablein Javais avariablethat ismarked st at i ¢, declared in the body of the class (not
inside a method).

Y ou access a class variable by specifying the name of the class, followed by a dot, followed
by the name of the variable. An exampleis:

Col or . bl ue

Similarly, aclass method is a method marked st at i ¢. When a class method executesit is
not working on a particular instance of the class. Y ou can therefore only manipulate class
variables or call class methods of the class—i.e. you cannot manipulate a class' s instance
variables or call its instance methods.

You call aclass method by using the name of the class, followed by a dot, followed by the
name of the method (the name of the class can be omitted when calling a class method in the
current class).

The wrapper classes have many useful class methods such as the following:

int i = Integer.parselnt(aString); // converts aString to an int
String s = Integer.toHexString(anint); // converts to hexadeci nal
bool ean b = Character.isDigit(aChar); // tests if the character is a digit

Java documentation

One of the most important skills for anyone designing or programming software is to be able to
navigate the documentation and look up the methods available to achieve some objective. Java
comes with extensive on-line documentation about each class and method; you should become
familiar with how to look up information in this documentation.

The documentation is available on Sun’s web site — see the ‘ For More Information’ at the end
of the chapter for details. Y ou may aso find a copy of the documentation that wasinstalled with
the Java compiler and VM on your local disk or network.

" Exercise
E1 Findthemethodsin the Java documentation that do the following:
a) Convertabool eantoaBool ean and vice-versa.
b) Convertani nt toan| nt eger and vice-versa.
c) Conveat a String to a doubl e (i.e parse the doubl e vaue contained in a
St ri ng) and vice-versa.
d) Convetani nt toadoubl e.
€) Find out what ahash codeis and how to compute the hash code of aSt ri ng.
f) Find out what aVect or isand how to compute the number of elementsit contains.

Special operators and operator precedence

Java, like C and C++, has some specia operators that are widely used to shorten certain
expressions. The most important of these are shown in Table 1.

Thereisastrict order of precedence that Java uses for evaluation of expressions. The
precedence rules for the operators used in this book are described in Table 2. Operators at the top
take precedence over operators lower in the table. At the same level of the table, operators are
evaluated from left to right.

The Basics of Java 6

Conditional statements and choice among alternatives

A condition in Java is a statement that evaluaes to a bool ean vaue (true or f al se). The
following are examples of conditions:

aNunber > 5

aNunmber < 5

aNunmber > 5 && anot her Nunber < 7
aNunmber == anot her Nunber

Tablel: Special operatorsin Java

Operator Example expression Equivalent longer expression
++ postfix at++; a=a+1;
form b=a++; b=a; a=a+1;
++a,; a=a+l;
++ prefix form b=++3a; a=a+l; b=a;
- - postfix a--; a=a-1;
form b=a--; b=a; a=a-1;
--a; a=a-1;
- - prefix form b=--a; a=a-1; b=a;
+= a+=b; a=a+b;
= a =b; a=a*b;
-= a- =b; a=a- b;
/= al =b; a=al b;

Table2: Precedence of the most important operatorsin Java.

Operators Comments
() [] %A_\nything in parentheses, including array indexing, is evaluaed
irst
-- | Unary operators
/ % Multiplicaive operators
- Additivebinary operators
>= < <= Relational comparison opeators
| dentity comparison operators
Logical AND
| Logical OR
Ternary if-then-else, discussed below
+= * = - = Assignment

+

HV+*+
|

NT

=1l
1]

There are three ways in Javato use conditions in order to make choices among aternative
codeto execute: i f, ?: ,and swi t ch statements. Thei f statement has the following form:

i f(condition)

{
}

el se

{

}

The el se block can be omitted if there is nothing to do in the false case.

If thereis only a single statement to be executed in the true or false case, then the curly
brackets can be omitted. However leaving the curly brackets can often make the code clearer.

The ?: operator can aso be used to execute one of two aternative expressions, depending on
the value of a condition:

/] statenments to execute if condition is true

/] statenments to execute if condition is fal se

The Basics of Java 7

result = (condition) ? doSonething() : doSonethingEl se();

If condi tionistrue,thenresul t issetto the expression following the question mark,
otherwiser esul t isset to the expression following the colon. The ?: operator can shorten
some code, but make other code harder to understand. As arule of thumb, always choose the
form which results in the most readabl e code.

A swi t ch statement has the following form:

switch(primtiveVariable)

{

case val uel:
/] statements to execute if primtiveVariable equals val uel
br eak;

case val ue2:
/] statements to execute if primtiveVariable equals val ue2
br eak;

defaul t:
I/ statenments to execute if none of the above is true
br eak;

}
A few genera comments about the swi t ch statement:

e The br eak labels are important: If the br eak in the val uel case was omitted above, then
whenever val uel occurred, the statements for both val uel and val ue2 would be executed.

 Thedef aul t caseisexecuted when thevalueinpri m ti veVari abl e is something other
than one of the explicit cases.

Y ou should use polymorphism to reduce the need for swi t ch statements.

Loops

There are two main types of loopsin Java, f or and whi | e; their syntax isidentical to loopsin C
and C++. A whi | e loop has the following structure:

whi | e(condi ti on)
{

}
A f or loop has the following structure:

// statements to keep executing while condition is true

for(initializer; condition; incrementer)

{

}

Theinitializer is a simple statement that sets up some kind of initial condition for the loop —
often initializing a variable. The condition is a statement that returnsabool ean value, normally
testing the variableinitialized in the initializer; the condition is evaluated before every iteration
through the loop. The incrementer is a statement executed after every iteration through the loop,
typically updating the variable set in the initializer.

You can, in general, interchange awhi | e loop and af or loop. To turn awhi | e loop into a
f or loop, move theinitializer before thewhi | e statement, and ensure that the incrementer isthe
last statement executed in every iteration. The advantage of using af or loop isthat al the
information about controlling the loop is kept in one place; the disadvantage is that it can be
dlightly harder to read the code of af or loop.

Examples of loops can be found in the example code later in this chapter.

/1 statenments to keep executing while condition is true

The Basics of Java 8

Overall structure of a class

All the code of a Java program must be placed inside classes. Thisis an important difference from
C++, which allows some code to exist outside classes. Y ou put each Java classin afile of the same
name. An exception to thisis in environmentslike IBM Visud Age for Java which do not organize
code into files, but instead keep the code in arepository.

The overall structure of a class should look something like the following:

cl ass cl assnane
/1 decl arations of variables
/] declarations of constructors (discussed bel ow)

/1 declarations of other nethods with public ones first

}
The exact order of these elementsis a matter of style.

Constructors and the creation of objects

Constructors are procedures that are called whenever a new object is created. Each constructor has
the same name as the class, but can have different sets of arguments. The purpose of a constructor is
to initialize the instance variables of a newly created object and perform any other needed
initidization.

The following are two constructors that might be used in aclass Account . Thefirst setsthe
balance to a specific initial value, whereas the second, lacking a second argument, sets the
balance to zero.

public Account(String account Hol der, float initialBal ance)

{

t hi s. account Hol der = account Hol der;
bal ance = initial Bal ance;
opened = Cal endar. get | nstance();

}

public Account (String account Hol der)
{

t hi s. account Hol der = account Hol der;
bal ance = 0. 0;
opened = Cal endar. get | nstance();

}

Both of the above constructors initialize three instance variables. Thevaluet hi s represents
the current object. It is being used here to distinguish between the instance variable
account Hol der and each constructor’s argument of the same name.

Y ou use the new operator to create a new object. This operator sets aside memory for the
object and calls a constructor. The following are two illustrations of the use of new:

String account Hol der = “Tinf;

float initial Deposit = 100.0;

acctl new Account (account Hol der, initial Deposit);
acct2 = new Account (account Hol der);

The constructor chosen is the one that has the same argument types as the arguments that
follow the new operator. Therefore, when acct 1 is created, the first constructor (the one with a
string and a float argument) would be called, whereas acct 2 would be constructed using the
second constructor. A constructor may have no arguments at all.

A new object can be created by using the new operator in avariable declaration. An object is
then created whenever execution enters the particular block that contains that declaration, or, in
the case of an instance variable, when an instance is created. The following gives an example:

The Basics of Java 9

Account anAccount = new Account (hol der Nan®) ;

It isimportant to remember that a constructor of class Account iscalled in the above
statement. The particular constructor chaosen will depend on the class of hol der Nare.

Alternatively, the declaration of the variable can leaveit un-initialized —i.e. it isleft to be
initialized on alater line. A Java compiler should, however, warn you if your program can
execute code that accesses un-initialized variables.

Account anAccount;

anAccount = new Account (hol der Nane, initial Bal ance);

An instance variable that is declared with an object type, but that is not yet initialized, has the
primitivevaluenul | .

Arrays

An array variable in Java is declared using square brackets following the type. The following are
some examples:
int[] anlntArray = new int[25];

byte[] aByteArray; // not initialized
Account[] anAccount Array = new Account [numAccount s] ;

As these examples show, arrays can be composed both of primitive typeslikei nt and byt e,
and also of instances of classes, such as Account . The number of elementsin an array can be a
constant or avariable.

Arrays have a specia statusin Java; they are objects, but they are not instances of classes
which you can subclass or for which you can write your own code.

In order to access an element of an array, you use square brackets and specify an index. You
can also request the length of an array. For example, the following sums al the elements of an
i nt array:

int sun¥0;

for(int i=0; i<anlntArray.length; i++)

{

sum += anlntArray[i];

}

Y ou should generally minimize your use of arrays, and you should always avoid them if you
do not a-priori know the number of itemsit will contain. Unfortunately, programmers often hard-
code a maximum size, which makes programs inflexible and bug-prone.

The alternatives to arrays are the classes which we will discussin the next two sections:

St ri ngs, for collections of characters, and collection classes such as Vect or and
ArraylLi st for collections of arbitrary objects.

Arrays have the advantage of being more efficient than these specialized classes; however,
the specialized classes have wide variety of useful operations, and some of them have the ability
to grow as new objects are inserted. In addition, programs written using the specialized classes
are often easier to read than programs which uses arrays.

An important thing to remember about arrays (and the specialized collection classes) is that
they are zero-based. This means the first element is element 0. It also means that the highest
numbered element is one less than the length of the array.

Characters and Strings

In many programming languages, a character is an 8-bit byte encoded using ASCII. Unfortunately,
although ASCII was an excellent invention for the English-language applications of the 1950’s and
1960's, it is not capable of representing the wide variety of printed symbols used in other languages.

The Basics of Java 10

To make Java extendible to most of the written languages of the world, it uses a coding
scheme called Unicode instead of ASCII. Characters in Unicode are not restricted to one byte;
however the exact details of the representation of each character is normally not important to
programmers. All a programmer needs to know is that when he or she is working with characters,
they could be from an arbitrary character set. The basic ASCII characters remain a part of
Unicode, and programmers can still use the byt e datatype to work with real ASCII characters if
they truly need to do so. It is bad programming practice, however, to use bytes for textual data
which isto be exposed to the end user.

Strings in Java are collections of characters; the St r i ng class provides arich set of facilities
for manipulating such objects. Some facilities for dealing with strings are also built into Java at a
primitive level. In particular, you can define a string constant by placing it in double quotes, and
you can concatenate two strings by using the + symbol. The following are some simple examples
of string manipulations:

“Insert a variable (" + aVariable + “) between two constant strings”

Note that aVar i abl e above could contain anything. Any object can be converted into a
string using at oSt r i ng method. In the above examplethet oSt r i ng method would be
invoked on aVar i abl e to generate an instance of St r i ng. It is good practice to write your
ownt oSt ri ng method in every class; it should return a string that will help identify each
instance. The default implementation of t oSt r i ng outputs the name of the class followed by a
hexadecimal code that distinguishes one instance from another.

The following two statementsillustrate one of the many operations available to work with
strings in Java. Note that as with arrays, the first character in astring is at index 0. For the
subst ri ng operation, the first argument is the starting position, and the second argument is the
ending position +1; theresult isanew St r i ng with a sequence of characters from the original
string.

String sub = “submariner”.substring(0,3); // = “sub”

String marine = “submariner”.substring(3,9); // = “marine”

" Exercise

E2 Usethe Java documentation to search for the following information regarding the class
andStri ng.
a) What happensif you call thesubst r i ng operation with only one argument?
b) How do you remove trailing white space fromaSt ri ng?

Collection classes and their iterators

We have seen how you can use arrays to create fixed-size collection of objects or primitive data
items. We have also seen how St r i ngs provide collections of Char act er s. Javaaso providesa
variety of other classes for working with collections of objects. Only the most important ones are
shown bdow; you are invited to study the documentation to learn more about them.

e ArraylLi st: This allows you to build collections of objects that grow as more objects are
added. Important methodsincludeset , add andr enove.

* \Vector: Thisclassislike ArrayLi st, with some subtle differences that we will not discuss
here. Vect or has been around since Java was first released, whereas Ar r ayLi st isnewer.

e LinkedLi st: Another class that has many of the same functions as ArrayLi st and
Vect or, except that it is more efficient for certain operations, e.g. inserting an element in the
middle and less efficient for other operations, e.g. extracting an arbitrary element.

A common operation with collection classesis to do something with every member of the
collection. Javaprovidesaclasscalled | t er at or to do this. To create an iterator, you simply
usethe methods calledi t erat or orli stlterator foundinany collection class. Then you
can repeatedly call the method next to obtain successive elements. The method has Next

The Basics of Java 11

enables you to find out if there are any more elements. The following example counts the number
of empty stringsin a collection of strings. We will discussthe notation ‘(St ri ng) ’ in the next
section.

enpt yCount = O;

Iterator iter = aCollection.iterator();

whi | e(iter. hasNext())

{
if(((String)iter.next()).!ength()==0)
enpt yCount ++;
}

Iterators also have ar enove method, that allows you to selectively delete elements of the
underlying collection.

In older code (prior to Javaversion 1.2), you may see the use of Enuner at i on. This should
be avoided now since it is more cumbersome to use, yet provides similar functionality to
Iterator.

Casting

The block of code in the last subsection illustrated an important issue. The next operation of an
It erator declares that it returns an Cbj ect, the class that is considered to be the ultimate
superclass of all other classes. What this meansis that when next is executed, the object returned
can be of any Javaclass—it all depends on what was origindly put into the underlying collection.

However, if you put the result of next into avariable of type Obj ect , you could only
invoke those few operations defined in class Obj ect . So you have to use a mechanism called
casting. Casting works when you, as a programmer, know that the object in avariable (or the
return type of an expression) is actually a subclass of the declared type of that variable or
expression.

To cast avariable or expression you precede it with the name of the resulting class,
surrounded by parentheses, likethis: (St ri ng) i . next (). Thisstatement isabit like making
acontract of the following form: “I, the programmer, know that the next method, in this
particular case, isredly goingtoreturnaSt r i ng, even though next isdeclared to return type
Obj ect . So, trust me, compiler, and let me usethe result asif it wereaSt ri ng. | agreeto pay
the consequencesiif | am wrong: an error will occur at run time.” The type of error that occursis
theraising of aC assCast Except i on. We discuss exceptions below.

" Exercise

E3 Writethe necessary expressionsto do the following: Create an Ar r ayLi st of arbitrary
St ri ngs (which you can hard-code, even though this would be bad practice in a real
system). Thenusean | t er at or to find the sum of the lengths of the St r i ngs, as well
asthelongest St ri ng and theshortest St ri ng.

Exceptions

When something goes wrong in the execution of a program, such as an attempt to divide by zero,
Java throws an exception. Throwing an exception means that instead of executing the next line of
code, Javalooks for some code to handle the exception and executes that instead. Java progranmers
are responsible for anticipating things that can go wrong and writing exception handling code in
preparation. Thet r y-cat ch construct provides the basic capability for this:

The Basics of Java 12

try
{

result = nunmerator / denom nator;
val i dResult = true;

}
catch (Arithneti cException e)

{

}

Any division by zero that occurs when executing thet r y block will result in execution of the
cat ch block. Once either block completes, execution continues at the statement after the catch
block.

What happens if an exception isthrown in a statement that isnot in at r y block with an
appropriate cat ch statement? The answer isthat Javawill ook to seeif the caller of the current
method iswithin at r y block that has an appropriate cat ch block. It will continue to look at
callersright up to the main program, and will finally report an error if it has not been able to find
any suitable cat ch block.

If you are writing code in a class that could throw an exception, and you do not want to write
at ry-cat ch block, but want to rely on the caller of the method to catch the exception, then you
have to do something special: At the start of the method definition you have to declare that you
are not handling certain exceptions by listing them in the following manner:

i nt net hodThat MayDi vi deByZer o()
throws Arithmeti cException

val i dResult = fal se;

{

}

Java provides many types of built-in exceptions. Each is, in fact, a class. When an exception
israised, an instance of that classis created that contains information about the problem causing
the exception.

Y ou can also create your own exception classes representing things that can go wrong in the
computations your code performs. For example, in a banking application you might decide to
define an exception called Over dr af t Li mi t Except i on. You could then explicitly throw an
exception in code that might result in exceeding an overdraft limit. The following illustrates how
this might be done. Aswith any Java classes, each of the following classes should be in a separate
file.

First, here is the new exception class. (Thisisaso your first exposure to creating a subclass,
using the ext ends keyword; we will discussthisin more detail shortly).

/1 code for the nmethod that could throw the exception

cl ass OverdraftLimtException extends Exception

{
}

Now, here isthe class that uses the exception:

cl ass Account

{
MoneyAnount overdraftLimt;

MoneyAnount bal ance;
MoneyAnount debi t (MoneyAnount debi t Amount) throws OverdraftLimtException

i f(debit Amount > bal ance + overdraftLimt)
throw new OverdraftLimtException();
bal ance -= debi t Anount;
I/ perhaps do other stuff here
}
}

The Basics of Java 13

" Exercise
E4 Write try-catch blocks to handle the following situations. Y ou will need to refer to the
Java documentation to discover the gppropriate exception names to use.
a) You atempt to transformtheSt ri ng “1A” into ani nt.
b) You atempt to create an array of size-3.
C) You datempt to access an array at index 7 whereitslengthis 7.

Simple terminal 1/0

Most serious programs interact with the user using graphical user interfaces. Wewill give sometips
for how to do thisin Chapter 7.

Itisstill useful, however, to know how to read and write information from the console (e.g.
the DOS console or a Unix terminal). The following are examples of the basic statements you
need to use.

Java' s basic terminal output statement is rather simple and takes the following form,. Any
St ri ng can bean argument to Syst em out . pri ntl n, including strings constructed using
the concatenation operator + described earlier.

Systemout.println(“This line will be printed’);

Java's mechanism for inputting what the user types at the console is less elegant. Asthe
following code shows, you have to first create abyt e array of sufficient size. Y ou then call
Syst em i n. r ead, which waits for the user to hit a carriage return and then places what was
typed into the byte array. Finally you have to convert thisintoa St r i ng, trimming off any
whitespace that may have been unexpectedly added.

byte[] buffer = new byte[1024];
Systemin.read(buffer);
String thelnput = new String(buffer).trin();

If you wanted to interpret the input as something other than a string, you could write
statements like this:

float aFloat = Float.val ued (thelnput).floatVal ue();

We will leave it up to you to look up the necessary methods to convert to other data types.

Generalization and inheritance
To create asubdass in Java, you use the ext ends keyword, asin the following example:

public class MrtgageAccount extends Account

{
/1 body of the class

}

According to the above, class Mor t gageAccount isasubclass of Account . Any instance
variables or methods defined in Account (or its superclasses) are now aso implicitly present in
the new subclass —in other words they are inherited.

In Java, aclass can have only one superclass—thisis called single inheritance. Other
languages, such as C++ allow more than one parent. Multiple inheritance can result in more
complex systems, hence the designers of Java decided it was better to allow only single
inheritance.

Java does, however, provide a mechanism, interfaces, which provide the important benefits of
multiple inheritance without the drawbacks. We will discuss these shortly.

The Basics of Java 14

Abstract methods and abstract classes

To create an abstract method in Java, you simply mark it abst ract . You must not write any
executable statements in the body of the method; the body is simply omitted. The method serves as
a placeholder, indicating that subclasses must have concrete implementations.

Similarly, you declare a class to be abstract by specifying the abst r act keyword on the
first line when you declare the class.

Interfaces

Aninterface in Javais like a class except that it does not have any executable statements — it only
contains abstract methods and dass variables.

An interface differs from an ordinary abstract class in an important way: It cannot have any
concrete methods or instance variables, whereas an abstract class can.

The vaue of aninterfaceisthat it specifies a set of methods that a variety of different classes
are to implement polymorphically. The classes that implement the interface do not have to be
related to each other in any other way.

A classusesani npl enment s clause, asin the example below, to declare that it contains
methods for each of the operations specified by the interface. In Java, a class can implement more
than one interface, whereas it can only extend one superclass. As mentioned above, thisis quite
different from languages like C++.

Y ou can declare avariable to have an interface as its type. This means that, using the variable,
you can invoke any operation supported by the interface. Dynamic binding will occur so that the
correct method is run.

For example, the following code specifies that any class can implement the Oamnabl e
interface. Furthermore a class that implements Oanabl e must provide concrete implementations
for both of the operations. The code for the Ownabl e interface would be put in a separate file by
that name, just like aclass.

public interface Oanabl e

{
public abstract String get Omner Nane();

public abstract voi d set OmerNane(String nane);

}
Here are examples of how classes might specify that they implement this interface.

public class BankAccount inplenments Omnabl e
{

public String getOaner()
{

return account Hol der;

public void setOaner(String nane)
{

account Hol der = nang;

}

public class Pet extends Animal inplenents Oanabl e

{

public String getOaner()
{

return owner;

public void setOaner(String nane)
{

owner = nane;

The Basics of Java 15

}

The following shows how you could now declare a variable that can contain either a
Shape2Dor aPer son You can then ask for the image of whatever isin the object.

Dr awabl e aDr anwabl e(bj ect ;

aDr awabl e(oj ect . dr awi mage()

" Exercise
E5 Look in the Java documentation to discover the methods available in classes that
implement the following interfaces:
a) Conpar abl e
b) Col | ection
c) Shape
d) Runnabl e
e) d oneabl e
f) Iterator

E6 Java has an interface called Shape. This is implemented by a variety of classes in
different hierarchies. Study Shape and its implementing classes to determine how it
differs from the Shape2D hierarchy presented in Figure Error! Reference source not
found.. What are the advantages and disadvantages of the two approaches?

Packages and importing

A packagein Javais used to group together related classesinto asubsystem. Each packageisgiven
a name composed of a series of words separated by dots. For examplej ava. | ang is one of the
important packages of classesthat is part of standard Java.

All the classes which belong in one package have to be put into a directory with the same
name as the package. The components of a package name that come first correspond to higher-
level directories. For example if you created a package called
fi nance. banki ng. account s, you would put that in adirectory called account s, which
would bein adirectory called banki ng, which would bein adirectory called f i nance. A
further convention, not always adhered to, is to prepend to the package name the domain name of
the organization, with the components inverted. So, for exampleif ncgr awhi | | . comowned
the packagef i nance. banki ng. account s, then the full package name might be
com ntgrawhi | | . finance. banki ng. account s. This assures that each package name
isunique in the world.

A file containing a class should always declare the package to which it belongs using the
package keyword, thus:

package fi nance. banki ng. accounts;

If aclass wantsto use the facilities of another package, itsfile should contain ani npor t
statement, such as the following.

i nport finance. banki ng. accounts. *;

By importing a package, you are saying that all the code in that class file knows about the
classes in the imported package — in other words you can refer to the classesin the imported
package by name.

A package therefore defines what is often called a name space; the total name space of any
classfile includes the namesin the file's own package plus the namesin al imported packages.

The Basics of Java 16

It is possible for two classes to have the same name as long as the names do not clash —i.e.
the identically named classes are not in the same package — and their packages are never both
imported into the same file. Despite this rule, however, it isagood ideato try to avoid giving two
classes the same name, since somebody in the future might want to import both packages and
hence create a name clash. If you ever do encounter a name clash, you can resolve it by
qualifying the name of a class with the name of its package, for example, if there were two
Account classesin the packages you were importing, you could write an expression like this:

nybank. Account newAccount = new nyBank. Account (account Hol der) ;

" Exercise
E7 Java has many important packages that programmers use heavily. Study the contents of
the following packages, using the Java documentation.
a) java.l ang
b) java. uti |
C) java. nath
djava.io

Access control and scope: public, protected and private

By default, the methods and variablesin a class can be accessed by methodsin any classin the same
package. This default ruleisinsufficient in two cases, however:

¢ Sometimes you want to restrict access to variables or methods. If you know that many methods
access a given variable, then changing the variable s definition becomes difficult because you
may have to change al places where it is accessed. If you had restricted access to the variable
when you first developed the system, then it would later be easier to change the variable. Thisis
because it would be accessed from fewer places so it will be easier to find out where those places
are.

« Sometimes you want just the opposite You want to create a list of methods that are widdy
available for use by methods outside the current package.

When you define any method, instance variable or class variable, you can precede the
definition with the keywords publ i ¢, pr ot ect ed or pri vat e to control exactly what code
can have access to the method or variable. Table 3 showsthe effect of each of the keywords,
starting with the least restrictive access and moving to the most restrictive.

It is good practice to restrict access to methods, instance variables and class variables as much
as possible. Thisisin line with the concept of information hiding presented earlier: Y ou want the
details of the implementation of a class, class hierarchy or package to be hidden as much as
possible from outsiders. This makes code easier to understand and change, and also tends to make
designs more flexible. When we discuss higher level design in Chapter 9, we will see that
restricting access reduces what we will call coupling, which is the interconnection among various
components of a system.

Some simple rules for access control are as follows: Make all instance variables as private as
reasonably possible — almost never make them public. In addition, the only methods that should
be public are those that will definitely need to be called from outside the package.

The Basics of Java 17

Table3: Effect of the access control keywords

If you specify this keyword before the Then code in the following places can cdl the
definition of a method, instance variable or method, or read and write the varigble

classvariable

public Any code anywhere.

pr ot ect ed Only code in the same package as this class as well
as code in any subclasses, even if they are not in the
same package.

(nothing) Only code in the same package as this class. Thisis
the defaullt.

private Only codein this class.

Note that the keyword publ i ¢ isalso applied to the declaration of classes. Unlessaclassis
declared publ i c, it is not available outside its package.

The access control keywords described above help define the notion of scopein Java. In
general, the scope of avariable or method is the parts of the source code in which reference to the
variable or method can be made. The scope of an instance variable, instance method, class
variable or class method is defined by the publ i ¢, pri vat e and pr ot ect ed keywords.
Variables defined in blocks (defined by curly brackets‘{* and ‘}"), including methods, t r y-
cat ch clauses, etc. have the start and end of the block as their scope.

Threads and concurrency in Java

A Thr ead is sequence of executing statements that can be running, conceptually at least, at the
same time as another Thr ead. Several threads are said to execute concurrently.

Threads are supported by many operating systems and programming languages, and their
effects are visible in many application programs. For example, when you are using aword
processor, you may notice that at the same time as you are typing text, the system is recalculating
where to place the end of the pages. In a complex spreadsheet, at the same time as you are editing
cells, the program is calculating other cells that have been affected by earlier changes you made.

To create athread in Java, do the following:

1. Create a class to contain the code that will control the thread. This is made to implement the
interface Runnabl e. (It can also be make a subclass of Thr ead instead, but implementing
Runnabl e is by far the preferred approach.)

2. Write amethod called r un in your class. The r un method should normally take a reasonably
long time to execute — perhaps it waits for input in a loop. When the thread is started, this run
method executes, concurrently with any other thread in the system. When the run method ends,
the thread terminates. The run method acts like the ‘main program’ of thethread.

3. Create an instance of Thr ead (or your subclass of Thr ead) and invokethe st art operation
on thisinstance. If you implemented the interface Runnabl e, you have to pass an instance of
your classto the constructor of Thr ead, asis shown in the example below.

The third step above will differ dightly depending on what you did in step 1. If you
implemented the Runnabl e interface, then pass your instance to a new instance of Thr ead. If
you directly subclassed Thr ead, you can simply start your instance.

The following is a complete program that illustrates how threads work. The program starts
three concurrent threads, each of which prints out arecord of its progress. Since the threads are
running concurrently, the output from the different threads is interleaved.

Take note of the following lines of code:

* Linel ThisdassimplenentsRunnabl e.

e Line 18 Therun method is used; it contains aloop.

e Line26: Theloop contansacall tosl eep which delaysitsexecution, otherwise it might finish
its computation even before, any other threads have a chance to start.

The Basics of Java 18

e Lines 36-38: The three threads (instances of this class contained in instances of Thr ead) are
created. This is done in the mai n method, which is the method that executes first when you
execute a class.

» Lines40-42: Thethree threads are actualy started.

1 public class ThreadExanpl e i npl enents Runnabl e

2 {

3 private int counterNunber; // ldentifies the thread

4 private int counter; // How far the thread has executed
5 privateint limt; /1 Where counter will stop

6 private |ong del ay; /] Pause in execution of thread in mlisecs
7

8 // Constructor

9 private ThreadExanpl e(int countTo, int nunber, |ong del ay)
10 {

11 counter = O;

12 limt = countTo;

13 count er Nunber = nunber;

14 this.delay = del ay;

15 }

16

17 //The run nethod; when this finishes, the thread tem nates
18 public void run()

19 {

20 try

{
22 while (counter <= limt)
23 {
24 Systemout. println("Counter "
25 + counterNunber + " is now at " + counter++);
26 Thr ead. sl eep(del ay);
27 }

}
29 catch(l nterruptedException e) {}
30 }

32 // The main nmethod: Executed when the programis started
33 public static void main(String[] args)

34 {
35 /I Create 3 threads and run them
36 Thread firstThread = new Thread(new ThreadExanpl e(5, 1, 66));
37 Thread secondThread = new Thread(new Thr eadExanpl e(5, 2, 45));
38 Thread t hirdThread = new Thr ead(new Thr eadExanpl e(5, 3, 80));
39
40 firstThread. start();
41 secondThread. start();
42 thirdThread. start();
43
44}
Exercise
E8 Runthe Thr eadExanpl e class, whichis available on the book’s web site and observe
its behaviour

E9 If thereisany aspect of the code in the above example that you do not understand, then
look it up in the Java documentation.

Synchronization

In concurrent programs, a difficulty arises when two threads can both modify the same object. For
example, it would be a problem if one thread were trying to remove an element from a list at the
same time as another thread was accessing that el ement.

Java offers a special mechanism called synchronization to avoid such conflicts. By adding the
keyword synchr oni zed in front of the declaration of certain methods, you guarantee that only
one thread at atime can run any of the synchronized methods on a given object. When a

The Basics of Java 19

synchronized method isinvoked it obtains alock on the object; if another thread also invokes a
synchronized method on the same object then it will be put in a queue, waiting for the first object
to finish executing its synchronized method.

Y ou will see several examples of synchronization in the code discussed in the next chapter.

Concluding comments about Java

In the above overview we have covered the most important features of Java, but have only scratched
the surface in terms of the total number of classes and methods available. Y ou should now have
enough knowledge to work through the book, aslong as you are prepared to refer to the on-line Java
documentation. As we introduce certain specific topics, we will introduce more features of Java. In
particular:

e In Chapter 3, as we discuss the client-server architecture, we will discuss some of Java's
capabilities for communicating over the Internet.

e In Chapter 5, as we discuss class diagrams, we will show in detail how to implement such
diagrams.

* In Chapter 7, as we discuss user interfaces, we will give you some tips describing how to
implement agraphicd user interface in Java.

