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Abstract — Vehicular cloud computing can perform a broad 
set of on-demand applications and services, which makes it highly 
suitable for urban settings. Despite a wide range of benefits to 
various services and applications by vehicular clouds, there are 
several issues and challenges that need to be carefully addressed 
in the context of provisioning services. This paper proposes a 
cooperative distributed game model to handle service 
management in vehicular clouds. Under this model, service 
providers play a cooperative game to maximize their total utility 
taking into consideration their recourse availability, current load, 
and total payoff. The proposed game has been implemented and 
evaluated using simulations with scenarios of light and heavy 
weight services. The game demonstrates that a cooperative 
technique leads players to handle higher number of services 
when compared to a non-cooperative setting. Furthermore, we 
also show that the proposed game mimics the behaviour of an 
optimization-based baseline solution. Through various simulation 
scenarios, we show that the proposed scheme introduces more 
than 85% similarity to the optimal solution when a few number 
of players participate, and its similarity to the optimal solution is 
improved to 99% when the number of the players increases by 
only 50%.  

Keywords — Vehicular cloud, mobile clouds, game theory, 
cooperation model, service management. 

I. INTRODUCTION 

The emerging concept of vehicular cloud has been proposed in 
many recent works [1][2]. As vehicles get smarter with 
supplementary on-board gear, they are capable of handling 
more complex operations, and unlike other mobile devices, 
mobile vehicle devices can provide real-time functionality, 
location based services, provisioning services, and storage, 
with none of the drawbacks of traditional mobile devices. 
Combining vehicles’ resources, and qualifying them to 
provide cloud services to the public has enabled to connect 
vehicles and turn them into “vehicular” service providers [3]. 
Today, vehicles are expected to support enhanced 
communication systems, and provide more storage, computing 
resources and sensing services. However, the high mobility of 
such environments, and the early stages of development lead 
to increased complexity and numerous challenges. Some 
challenges are related to the technical aspects of development, 
while others involve adapting the technology to the 
surrounding environment and authorized parties. Cloud 
vehicles typically share computing and storage resources via a 
wireless network backbone [4]. Vehicular cloud has been seen 
as a viable technology for provisioning services. However, 

service management in vehicular clouds still an open issue. 
This requires mathematical modelling of the problem to 
guarantee efficient and fair services distribution across cloud 
providers. 

In our previous work, a QoE framework to provide several 
vehicular cloud services in a vehicular cloud at low price, with 
more privacy and minimal latency has been proposed [5][6]. 
The overall level of satisfaction of the provided services based 
rating measure to quantify the reputation of each service 
provider has also been implemented. QoE reputation value is 
dynamically calculated and presented to guide service 
requester with their selection. A great improvement to overall 
service charges, latency, and drivers’ privacy has been proven. 
A vehicular trusted third-party approach has been also adopted 
[7]. However, the result has also showed unbalance in the 
service distribution among potential service providers (game 
players). 

In this paper, we propose a multiagent observable 
cooperative decision theoretic approach to formulate the 
interaction among cloud service providers on the requested 
services by vehicle drivers. Cooperative games (the so called 
coalitional) are gaining considerable interest because of their 
contributions to such nature. For instance, the authors in [8] 
present a distributed game mode for cooperation among the 
roadside units in a vehicular network. The goal of our 
approach is to maximize the service provider’s social utility 
while meeting drivers QoE. We employ the QoE model 
presented in [6] and introduce the concept of Service 
Providers Social Welfare (SPSW) by combining drivers’ 
experience, efficiency of the service provision, and fairness 
among the game participants. Such solution guarantees best 
strategy for all participants leading to an optimum fair 
distribution of the service requests among service providers. 
The model has been evaluated using simulations and CPLEX 
optimizer and proves its feasibility. 

The main contributions of the paper are as follows: 1) An 
optimization model formulation for multiagent interaction 
game system, 2) Maximizing social utility of service providers 
for provision services in vehicular clouds, and incorporating 
fairness and efficiency with Quality of Experience (QoE) 
framework through a cooperative game model. Therefore, the 
building blocks of this paper are a QoE framework, game 
approach, social welfare function, and utility function. It is 
worthwhile noting that QoE in the proposed model denotes a 
function of user comfort. 



 

The rest of the paper is organized as follows. Section II 
covers the proposed system model including system 
architecture, game approach and optimization model. 
Performance evaluation presented and discussed in Section III. 
Finally, we conclude the paper and give future directions in 
Section IV. 

II. SYSTEM MODEL 

A) Overall System Architecture 
With this model, we seek a fair and efficient distribution of 
service requests among potential vehicular service providers 
who acquire such services. In this model, a vehicle driver can 
be a service provider and at the same time a service seeker. 
Presumably, the service seekers receive services analogous to 
best effort services in communications in terms of latency, 
service cost, and information privacy. QoE framework 
presented in [6] which denotes user comfort is associated with 
the proposed architecture, and it guarantees vehicle drivers 
with bounded latency, reduced service cost, and improved 
privacy. We used QoE reputation value of each system 
component to enable trusted third party to group the best 
driver/provider matching and bind them to each other. While 
this has brought huge benefits to the service seekers, the QoE 
framework is still missing the management of the service 
requests at the service provider’s side. In our previous work, 
we experienced some cases where some service providers are 
overloaded with service requests beyond their recourse 
capabilities while the resources of other providers are left 
underutilized. Accordingly, and in order to maximize overall 
social welfare of service providers, a Game Engine Service 
Management (GESM) module at the service provider’s side is 
needed. Figure 1 illustrates the developed system architecture. 
Three modules make up the architecture: Game Engine 
Service Management, service buyers, and service providers. 

Game Engine Service Management (GESM) acquires all 
service providers’ information including resources, available 
services, current involved user’s, service charges, computation 
capabilities, game participants, game events, and QoE 
reputation values for each service. The architecture overviews 
concurrent services over the network requested from the 
receivers (drivers) to the sender (service provider). There are 
two main challenges carried by service provision in the model: 
1) The interaction of multiple concurrent service providers to 
provide a set of services to a group of vehicle drivers. Such 
interaction can take different forms with many open 
challenges. One of most pressing issues in such model is the 
selfishness and interoperability. Each participant seeks his best 
interest without considering other participant’s welfare. 2) The 
cooperation among different service providers is still 
immature in current practice. Both of these issues are directly 
related to the optimal of sequential decision making under 
uncertainty which requires full state of information about the 
process or an action of this process. For instance: Do service 
providers prefer non-cooperative settings? What are the 
motivations to encourage different providers to participate in 
maximizing their social welfare? To model such problem, a 

multiagent modelling technique such as cooperative games is 
necessary.  
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Figure 1: Overall system architecture 

B) Service Providers Utility  
User comfort-based QoE in vehicular cloud service provision 
has not been considered in today’s literate besides our recent 
work that form a basis to the proposal in this paper. The 
majority of the studies tackle subjective criteria while user 
bias is mostly neglected. 

In the proposed model, game theoretic approaches have 
been chosen to manage service provider’s resources in order to 
provide efficiency and fairness at the same time. In such 
multiagent multiservice environment, selfishness is the 
common action which results in reducing all service providers’ 
welfare. On the contrary, game theory assesses how the 
efficiency of overall system degrades despite the selfish 
behaviour of the players, and provides series of events and 
actions to improve overall system welfare. The game is also 
capable of avoiding that by improving cooperation among its 
players, and capable of incentivizing noncooperative players 
to cooperate. 

An essential assumption is that all players are willing to 
cooperate and behave in altruistically manners as well as 
provide their response without common knowledge of the 
game outcomes or its players. This is to emphasize the concept 
of service provider’s social welfare. 

Given a system with a number of cloud providers and 
vehicle drivers, the potential participants can be clustered into 
sellers and buyers as shown in Figure 1. Sellers are capable of 
providing different types of services to different number of 
buyers (drivers). Each one of them has their own QoE 
reputation value for each type of different services, as follows, 
QoE = ܧܳ } , → ܤ ݀݊ܽ ܵ ௌ}. Letܧܳ  ℝ denote the sets of 
sellers and buyers, respectively, given that ܵ ܽ݊݀ ܤ  are the 
total number of sellers and buyers in the game. At some point 
in the game, derivatives of the sub-sets of ܵ ܽ݊݀ ܤ  are 
produced, namely, ܵᇱܽ݊݀ ܤ′ , which represent the group of 
sellers who possess the requested services by the buyers. Each 
seller, ܵᇱ , provides a number of services defined by the 
following set, ܴ = {1, 2, 3, … ,  is the total number ݎ where ,{ݎ
services. Each seller ݏ  ߳ ܵ  has a service ݎ௦

  available to 
provide to a buyer ܾ  ,who is actively seeking this service ܤ ߳ 

ݎ
. ܺ(݆) is the total number of services provided from seller i 

to buyer j. 



 

The QoE model adopted assumes that trusted third parties 
buy the services on behalf of the vehicle drivers and 
communication aspects are handled through them. Thus, 
trusted third parties time and resources considered within this 
model. A trusted third party’s communication cost, ்்ܥ , 
represents the cost associated as a compensation per use time. 

ܶ
(݆) is the total number of third parties used between seller i 

and buyer j to buy a service ݎ. 
In order to balance the load of the requested services from 

the buyers to the sellers and provide fairness in distrusting 
services among service providers, GESM module ensures that 
all service providers are equally loaded depending on their 
system capacity and resource availability. Overloading one 
service provider over the others will introduce negative impact 
on its QoE reputation value. Moreover, managing total load of 
services achieves fairness and satisfies the game objectives by 
maximizing service providers’ utilities while efficiently 
delivering requested services to their buyers. 

Here, the objective is to maximize the total utility of all 
service providers while being efficient and fair. Fairness is the 
guarantee that all participants receive fair treatment while they 
are engaged in the game. Thus, social welfare function is a 
weighted sum of system total utilities [15] considering the 
QoE for each provided service. 
Let ݑொா(݊) = ொாభݑൣ

భ + ொாమݑ

మ + ⋯ + ொாݑ

 ൧  denote the 

vector of summation of utilities. Thus, our constructed social 
welfare function is: 

 Φ(ݑ) =  ܺ(݆) ∗ log ൭ ொாݑ



ே

ୀଵ

൱൩ − ( ܶ
(݆)) (1) 

C) Optimization Model 
To formulate an optimization model that maximizes the total 
utility(Φ) and provide scalability, two functions are required, 
total cost function (ܥ) and load function (ܮ(݅)). Load function 
is expressed by the index of seller, i, while cost function 
depends on the load function, as follow: 

((݅)ܮ)ܥ  =  ܹ
  ൈ(2) (݅)ܮ 

where ܹ
 is the total number of services per seller i. GESM 

has all the information about each seller (݅), their available 
services, their total service sale, and their service cost (prices). 
This knowledge is leveraged during the game to achieve 
fairness and maintain efficiency. Thus, the total cost of service 
r sold from seller i to buyer j is: 

ܥ 
(݆) =  ܺ(݆)ൈܶ(݆)ൈ்்ܥ (3) 

The utility of seller (݅) is a function defined from the set of 
sellers, S to the set of buyers, B. The function parameters are 
the amount of data provided by the sellers in ܵᇱ to the buyers 
in ܤᇱ and the cost of trusted third parties. At this point, we can 
define our seller’s utility function ((ݔ)ݑ), as follows,  

(݅)ݑ  =  ( 

ௌᇱ

ୀଵ

 ܺ(݆) ൈ ܥ
(݆) ൈ (4) ( ((݅)ܮ)ܥ 

The ultimate goal of GESM is to distribute requested 
services among sub-group of sellers (ܵᇱ) in order to maximize 

the overall system utility. Thus, the optimization problem is 
defined by (5). 

(݅)ݑ) ݁ݖ݅݉݅ݔܽ݉ 

ௌᇱ

ୀଵ

) (5) 

This optimization includes three metrics: The utilities of the 
buyers (ܤ′) and sellers (ܵ′), and trusted third parties’ reliability 
cost (்்ܥ). A robust model has to ensure that service sellers 
are not overloaded during the optimization. To this end, the 
following constrains are applied: 

  ܺ(݆)  ݎ 

ௌ

ୀଵ

, ∀∈ ܵ′ (6) 

The first constraint in (6) ensures that a seller cannot be 
loaded more than its limit of service capacity. In the equation,  
 . is the maximum number of services that seller i can handleݎ
ܵᇱ  is the sub-set of ܵ , and the members of S’ possess the 
requested services by ܤᇱ. 

 ܺ(݆) = ሾ0, ,ሿݎ  ܺ(݆) ∈ Գ , ∀∈ ܵᇱ, ∀∈  (7) ′ܤ

The second constraint in (7) guarantees that services will be 
distributed fairly among sub-set of sellers ܵᇱ given that they 
have the services available, and the service buyer j cannot buy 
from seller i the maximum number of services offered until all 
sellers in ܵᇱ have equal utilities. 

D) Service Management Game Model  
So far, the system social welfare and an optimization model to 
maximize system utility have been presented; however, the 
game model still needs to be formulated between the system 
players. To this end, we have developed a cooperative game 
scheme between the potential players, more precisely, sub-set 
of the service sellers, ܵᇱ.  First, the types and roles of the 
players must be defined, as well as the possible interactions 
between them.  

We consider two main players Vehicular Driver and Service 
Provider {VDi and SPj} participating in the game, each of 
which is independent and has preferences that represent their 
best interests. The expected outcomes can be defined by the 
following set formulated in (8). 

 
௨௧௦ߗ = ܧܳ } ,  ௌ} (8)ܧܳ

The proposed cooperative game receives the buyers’ service 
request, finds the suitable service sellers, and shifts the service 
load among service sellers when needed. The selection 
procedure of the proper sellers and the afterward load shift 
perform according to the seller’s utility status. A payoff 
function is associated to each service seller and depending on 
their cooperation, the game decides on the fair distribution of 
the rewards (i.e. payoffs). Thus, the payoff of player ݅ ߳ ܵᇱis 
denoted by: ܱ

 =  The benefit of this game .ݎ for service (ݎ)ݑ
model that each seller is required to monitor their payoff 
function independently from other players’ payoff. GESM 
stores all players’ payoff private which also ensures player 
privacy. 

With the concept of player payoff, we can show the 
interactions between the players for specific or multiple 
outcomes. A player in the game has to make a decision (action) 
as the outcome is resulted in by this action. The final result of 



 

all interactions between the players is the latest outcome of the 
game result, and it is based on the finalized payoff function of 
the game engine. Each player has only two possible actions to 
consider {A, R}, where A stands for accept and R stands for 
reject to cooperate. To consider accept or reject the game offer, 
each player has to calculate their payoff value. In order to do 
so, each player has to know its own share load of the service 
request and the total cost for this share using (2).  

The game engine performs a number of interactions 
between players (i.e. ܵᇱ ) to solve the service distribution 
problem. The payoff function for cooperative players during 
the game is calculated based on their actions. A player’s action 
can be to reject but with potential other proposals for other 
games (i.e. service requests), those still receive some payoff 
for their future contributions. Each player is required to 
continuously report their resource availability, service 
availability, and current load to the game engine. Thus, game 
engine, has the sub-set of sellers and their available load, 
which will be used to coordinate the total payoff. The action 
of each player ݅ ߳ ܵᇱ  is presented as a service vector ܵ(݅) =
ሾܵଵ(݅), ܵଶ(݅), … , ܵ(݅)ሿ , where ܵ(݅) , is the services 
provided from ܵᇱ. So, the total payoff, ܲ, of each player can be 
formulated as in (9) 

 ܲ൫ܵ(݅), ܵ(−݅)൯ =  (9) (݅)ݑ− 
Where ܵ(݅) and ܵ(−݅) represent the action selected by player 
݅ ߳ ܵᇱ, and all other player’s actions other than ݅, respectively. 
The game engine leverages their centralized knowledge of 
players’ resources to maximize their payoff. As more players 
cooperate and involve in the game, the load will equally be 
distributed. Consequently, this will lead to a positive impact 
on their total payoff and system utility (ݑ(݅)). This procedure 
is repeated in different stages while the game engine receives 
players’ update about their resource availability. By applying 
the new information about ܵ(݅), ܵ(−݅), each player’s response 
can be calculated by maximizing ܲ . The service management 
selection procedure can be optimized by (10) and using 
Algorithm 1. 

III. PERFORMANCE EVALUATION 

A) Simulation Settings 
To evaluate the performance of the proposed service 
management game model, we used Network Simulator 3 (NS-
3) and CPLEX 9.0 optimizer to solve the problem. The 
purpose of evaluating the proposed model is to investigate the 
worthiness of using cooperative game model to manage 
service provision in vehicular cloud. We would like also to 
determine how the proposed algorithm affects service 
provider’s social welfare, and measure the level of complexity 
to calculate system payoff with the proposed QoE framework. 

The simulation employs the IEEE 802.11.p communication 
protocol. In the following set of simulations, each was 
repeated 10 times with a rang utility of 5 to 50 vehicles 
requesting services from a range of 5 to 40 service providers. 
We assign the number of services to each provider based on 
uniform distribution within the set {2, 4, 5} so that the 
providers are expected to provide them with limited amount 
resources. The sellers’ resources and level of capacity change 

depending on the number of services they can provide. On the 
other hand, the buyers request different types of services 
during the game. We introduce two types of provisioning 
services in two groups: Lightweight Services (LS): Gas price, 
Traffic conditions and Weather conditions, and Heavy 
Services (HS): Audio streaming and Video streaming. The 
service cost ( ܥ

(݆) ) varies from one service to another. 
Lightweight services are set to 0.5 to 1.0 cost/time unit 
whereas heavy services are worth 2.0-3.0 cost/unit time. Since 
we are using the user comfort-based QoE framework, the 
trusted third-party cost factor (்்ܥ) is set to 0.25 cost/unit 
time. 
,(݅)൫ܵܲ ൣ݁ݖ݅݉݅ݔܽ݉  ܵ(−݅)൯൧, ∀ܵ(݆) ∈ ܵ(݅) (10) 

Algorithm 1: Service management for player ݅ ∈ ܵ′ 
Input: Service providers set (ܵᇱ), vector of resources held by ܵᇱ, and 
vector of service request ܵ(݅). 
Output: ܵ(݅), ܵ(−݅) for every player in ܵᇱ. 
Begin 
1: Receive service requests set, ܴ, from service buyers. 
2: Extract ܵᇱ sub-set from ܵ. 
3: Calculate current payoff for each player ݅ ∈ ܵ′. 
4: loop: 
5: if (∑ ܱ

 > 0ே
ୀଵ ) then 

6:     let ݈ = ݈ + ൛ ܱ
ൟ; 

7: else 
݈     :8 = {∅}; 
9: end if 
10: Compare set of payoffs, ݈; 
11: Update ൫ܵ(݅), ܵ(−݅)൯ ∀݅ ∈  ;accordingly ,݈
12: if (ܵ(݅) == accept) then 
13:     Compute ݑ(݅) using (4); 
14:     Compute optimization of (12); 
15:     Update ൫ܵ(݅), ܵ(−݅)൯ ∀݅ ∈  ;݈
16: else       
17:      if (ܵ(݅) ==  then (ݐ݆ܿ݁݁ݎ
18:          Update ݈ set, accordingly; 
19:          Go to line 12;  
20:       end if 
21: end if 
22: end loop  

B) Simulation results  
In the first set of simulations, we compared the utility of each 
service provider under the proposed algorithm and 
optimization model (i.e. Optimal). Figure 2.a illustrates that 
the utility has a gap of ~7.5% of the proposed algorithm to the 
optimal solution within the first five groups only. However, 
the gap starts to be reduced and becomes negligible in the rest 
of the groups. In other words, the optimal model outperforms 
the proposed algorithm under a sparse network, and tends to 
introduce more of equal utilities when the node density in the 
network increases. This is due the fact the algorithm has less 
players cooperating at the beginning of the game while heavy 
load of service requests arrive for limited amount of resources. 
However, once ݈ = { ܱ

} starts to increase, it gives the game 
more resources which leads to increase their utilities as shown 
in groups 20 to 35. 

 
 



 

 

(a)          (b)                (c)              (d) 

Figure 2.a: Utility of different sellers under GESM and optimal. Figure 2.b: Number of services under different approaches.  
Figure 2.c: Average latency of different approaches. Figure 2.d: GESM number of game stages 

In the second set of simulations, we measure the number of 
services that each service provider handles under the proposed 
game model and the models presented in [6], namely an 
Interaction Game System with and without negotiation, 
MMIGS-NN and MMIGS-WN, respectively. Figure 2.b 
clearly shows that GESM approach outperforms the other two 
approaches at all network densities. The 95% confidence 
interval shown. In addition, GESM improved the number of 
the services that each service provider can handle. The 
algorithm perceives all the components of the system and 
utilizes provider’s recourses efficiently while fairly 
distributing the load among them leading to an improved 
overall system performance. In MMIGS approaches, players 
participate in the game non-cooperatively which explains the 
gap between the number of services handled at under all 
network densities. 

In the third set of simulations, we measured the average 
latency of game model and compared it to the previous 
approaches (i.e. MMIGS-NN, MMIGS-WN, and optimal 
model), as shown in Figure 2.c. The results demonstrate that 
the game with negotiation (MMIGS-WN) takes longer time 
comparing to the other models. These approaches include two 
layers of negotiations over the requested services, and this 
explains the cause behind such latency. GESM under the 
sparse node density in the network, appears to have similar 
latency compared to the other approaches. However, once the 
number of service sellers (i.e. game players) increases in the 
game the average time to find a suitable service provider 

increases. Indeed, the number of services is increased as well 
with the increase in the number of players. 

In the last set of the simulations, we tested the duration of 
the game to stabilize (converge) under various numbers of the 
game players, as shown in Figure 2.d. The results show that 
large number of stages with few number of the players, and 
the number of the stages starts to decrease once the number of 
the players increases. It is worthwhile noting that the game 
starts to converge in 4 stages when the number of the players 
is around 35. 

IV. CONCLUSION  

In this paper, we have proposed a game theoretical distributed 
model to manage fair provisioning services among service 
providers in a vehicular cloud network setting. The proposed 
game model maximizes participants total payoff. The game 
distributes the services among the best sellers considering 
their resource availability, current load, and total payoff. As a 
benchmark, an optimization model to maximize the total 
system utility has also been proposed. Through simulations, 
we have shown that the proposed game achieved very similar 
results to the optimized model in terms of utility (more than 85% 
of total utility achieved when few players participated, and 
increased to ≈99% when the number of the players increases 
by 50%.). In addition, the game clearly demonstrates that a 
cooperation technique enables the players to handle higher 
number of services when compared to a non-cooperative 
setting (i.e. 22% increase in terms of number of services). 
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