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Abstract — The increasing number of applications based on the 

Internet of Things (IoT), as well as advances in wireless 

communication, information and communication technology, and 

mobile cloud computing, has allowed mobile users to access a 

wider range of resources when mobile. As the use of vehicular 

cloud computing has become more popular due to its ability to 

improve driver and vehicle safety, researchers and industry have 

a growing interest in the design and development of vehicular 

networks for emerging applications. Vehicle drivers can now 

access a variety of on demand resources en route via vehicular 

network service providers. The adaptation of vehicular cloud 

services faces many challenges, including cost, privacy and 

latency. The contributions of this paper are as follows: First, we 

propose a game theory-based framework to manage on-demand 

service provision in a vehicular cloud. We present three different 

game approaches, each of which helps drivers minimize their 

service costs and latency, and maximize their privacy. Secondly, 

we propose a Quality-of-Experience (QoE) framework for service 

provision in a vehicular cloud for various types of users; a simple 

but effective model to determine driver preferences. Third, we 

propose using the Trusted Third Party (TTP) concept to 

represent drivers and service providers, and ensure fair game 

treatment. We develop and evaluate simulations of the proposed 

approaches under different network scenarios with respect to 

privacy, service cost and latency, by varying the vehicle density 

and driver preferences. The results show that the proposed 

approach outperforms conventional models, since the game 

theory system introduces a bounded latency of ≤ 3%, achieves 

service cost savings up to 65%, and preserves driver privacy by 

reducing revealed information by up to 47%. 
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I. INTRODUCTION 

Over the past two decades, development and introduction of 

cloud-based solutions and architectures has transformed the 

Information and Communication Technology (ICT) [1] field, 

and cloud and mobile cloud computing have been the main 

areas of study [2][3]. Cloud-based frameworks have motivated 

research communities and industry to explore the benefits of 

migrating to other cloud-inspired environments, such as 

vehicular clouds. 

Vehicular cloud computing has become a significant topic 

of research over the past few years, since cloud-inspired 

operation of vehicular networks can involve domains such as 

Intelligent Transport Systems (ITS), safety, surveillance 

systems and emergencies [4][5]. Vehicular cloud also has a 

wide-range of on-demand applications and services, including 

multimedia streaming, content sharing, traffic management, 

road safety and storage. Important related work on vehicular 

clouds is intended to design, evaluate and develop new 

solutions that provide services to drivers in case of 

emergencies, such as collisions, traffic jams and safety alarms 

[6]. Other objectives include making drivers more comfortable 

and enhancing access to information en-route. 

Typically, any smart vehicle can act as a mobile storage 

and/or a processing unit, thanks to the many available on-

board resources and services which provide an ideal 

environment for public service and safety. Although vehicular 

clouds have a broad range of benefits and advantages for 

various domains and applications, several obstacles need to be 

addressed before they can become widely adopted. From the 

standpoint of vehicle drivers, privacy, service cost and latency 

are the most crucial challenges to be addressed in such 

environments [7][8][9]. 

The security and privacy challenges inherent with 

vehicular cloud systems have been studied less closely than 

other issues. Besides the security of the communication 

medium, the main drawback with security and privacy is the 

lack of control over data stored and/or processed over virtual 

and distributed resources [10]. Service cost and latency are 

other concerns for drivers, since these affect each other in on-

demand service provisioning [11][12]. 

Due to vehicle mobility and the unpredicted topology of 

the vehicular network, it is very challenging to control the 

aforementioned three aspects [13] simultaneously. A vehicular 

network consists of several vehicles moving at higher speeds 

than in typical mobile cloud environments, which makes it 

very difficult for the driver and the service provider to manage 

the network connections. Frequent topology changes can 

cause extended delays, which means increased cost for drivers. 

The use of a reliable, well recognized Trusted Third Party 

(TTP) between drivers and service providers to handle the 

communications will resolve these potential aspects of the 

greater problem.  

An auction-driven, multi-objective provisioning 

framework, with the support of the existing trusted third party 

approach and the Quality-of-Experience (QoE) model, has 

been proposed to address these challenges [14]. Auction 

interactions require an n×n×n auction model, and the 

drawbacks of these models include delay and auction 



complexity. The delay has a significant impact on service 

charges, since drivers are charged by time used. 

In this paper, we propose using game theory concepts 

with a QoE-awareness system model, to provide drivers with 

provisioning services in a vehicular environment at low 

latency, minimum cost and minimal driver information 

revealed. QoE-awareness collects requirements and 

preferences, and defines a QoE value for every service 

provider, trusted third party and driver in each game. Our 

proposed framework is a Multiagent/Multiobjective 

Interaction Game System (MMIGS) for on-demand 

provisioning services in vehicular clouds. Through simulations, 

we evaluate the proposed framework in different network 

scenarios, with respect to driver privacy, service cost and 

latency. The results show that the proposed framework 

provides improvements over other conventional models in 

terms of these metrics. Service cost and privacy improved by 

65% and 47%, respectively. Though these improvements 

mean drivers will experience some extra delay, using QoE-

awareness has helped reduce such delays an average of 3%, 

compared to the total delay in other models. 

The balance of the paper is organized as follows. Section 

II summarizes the related work in this area. Section III 

provides an overview of the QoE-based framework. Section 

IV presents the game-based of the QoE framework. Section V 

and VI describe the proposed game system models and 

analysis of the outcomes, respectively. Section VII provides 

performance evaluation and simulation results. And Section 

VIII presents the conclusions and discusses future directions. 

II. RELATED WORK 

Vehicular clouds offer a wide range of benefits for various 

environments and applications, though many open issues and 

challenges remain unresolved. In this section, we review the 

main challenges and notable solutions.  

Security and privacy issues in vehicular communications 

have been explored by many academic researchers and by 

industry. Various solutions for these concerns have been 

proposed, including pseudonym identity, anomaly detection 

schemes, public or anonymous keys and digital signature 

verification, and have been widely investigated 

[15][16][17][18][19][20].  

In [15], the authors proposed a framework called personal 

data vaults, which was designed to control and protect the 

stream of users’ personal data. The use of this framework 

allows only the main owners access to their data, and though it 

is an individually controlled method for data repositories it 

does not guarantee users’ anonymity. One of the main 

objectives of privacy is to protect user identity, and sometimes 

hide it, yet there is no viable solution to address the anonymity 

issue in vehicular clouds. Researchers in [16] studied the 

importance of information collection in smart cities, and 

identified the privacy threats. They proposed a privacy-

enhancing architecture using an adaptive pseudonymization 

technique, to provide real-time awareness and enhance privacy 

security. 

Pseudonym identity [17][18][19][20] has been considered 

a solution to protecting user identities. In [17], the authors 

proposed a protocol based on pseudonymity to reduce the 

possibility of discovering the identity of drivers from their sent 

data. Such a protocol could be considered for communication 

between vehicles when they share resources and data en-route. 

A feasible protocol that enables resource and data sharing 

between vehicle drivers and cloud providers has not yet been 

developed. Similarly, the authors in [18][19] proposed a non-

pseudonym strategy based on Tamper Resistant Hardware 

(TRH) to avoid proliferation of vehicle identities. This 

approach has a negative impact on routing efficiency, and 

handling and discovering malicious vehicles trying to get the 

benefits of these protocols has not been addressed. Anomaly 

detection schemes can be considered for such problems 

[21][22]. 

Anomaly detection schemes can be used for data analysis, 

and to identify suspicious sources, monitor the normal 

behaviour of the network flow, and protect the vehicle 

network from potential attacks. The authors in [21] presented 

a detailed study of several anomaly detection schemes that 

could identify possible network intrusions. Anomaly detection 

can also be deployed to monitor vehicle network security, but 

continuous monitoring of network flow to identify suspicious 

sources could have a negative impact on latency, and lead to 

increased network overhead. 

Other studies assessed the benefits of using public key 

encryption with keyword search (PEKs), and searchable 

encryption public key techniques. Key certification in PEKs is 

a complex process [23] as the public key certification is 

frequently updated, which could lead to communications 

overhead. Such a framework is also potentially vulnerable to 

inside keyword guessing attacks (KGA). Searchable 

encryption public keys [24] propose using a dual-server PEKs 

framework to address the vulnerability. It is important to note 

that encryption/decryption processes should be considered 

carefully, on order to prevent computation overhead or 

potential delays.  

The authors in [25] classified the issues that emerged as a 

result of employing security and privacy in a vehicular cloud. 

In order to produce a system model for all vehicular 

technologies, integration of security/privacy features should be 

a part of the communication stack of any system platform.  

Transferring data from service providers to vehicles 

without excessive delay is an issue that needs special attention, 

because a reasonable cost for vehicular service requests and 

data must be ensured. Cost efficiency and bounded delay are 

among the major challenges impacting the adoption of 

vehicular clouds. Vehicular clouds are also a major concern 

with respect to the mobility issue. Unpredicted moving 

vehicles produce virtually countless mobility scenarios. With 

poor Internet connectivity these scenarios are likely, and 

require special attention in such an environment. 



Several researchers worked on cloud service pricing 

[26][27][28][29]. Some of these proposals should be revisited 

and tailored to vehicular clouds. To our knowledge, no one 

has considered the issue of cost efficiency in a vehicular cloud 

environment. 

In [26], the authors proposed efficient dynamic 

scheduling to enable energy savings and reduce delay. A 

pricing mechanism to optimize mobile users and service 

providers and reduce their total costs for both non-cooperative 

and cooperative scenarios was suggested in [27]. 

In [30], a message dissemination scheme for VANETs 

was proposed to provide high message delivery ratio and 

decreased delays. A directional greedy approach creates a 

group of candidate nodes that hold the message to ensure 

optimal reliability. The authors in [31] proposed a repetition-

based broadcast protocol for reliable broadcasting that 

guarantees a minimum number of broadcasts by signalling 

neighbouring nodes to transmit the same message at the same 

time. This scheme relies on cooperative diversity and a virtual 

antenna array. Similarly, in [32] the authors proposed a 

contention-based packet forwarding scheme for data 

dissemination in VANETs that introduces lower network 

overhead. This, in turn, helps decrease delays. 

The studies mentioned above prove that there are no 

collaborative works in process that jointly address all these 

challenges. Exploring the shortcomings of privacy and 

security is an integral aspect of this research. Provision service 

delay and service cost issues in vehicular clouds have been 

examined less comprehensively, even though they are as 

important as security and privacy challenges. Although drivers 

could have serious concerns about service pricing and latency, 

the state of the art does not offer any legitimate and available 

solutions for service-price matching. 

In this paper, we introduce a comprehensive framework 

supported by game theory concepts that meets most driver 

requirements, and addresses the identified challenges. 

III. QUALITY OF EXPERIENCE (QOE) FRAMEWORK 

Currently, QoE has been materialized and used with different 

research spaces, each of which introduces its own definition. 

For example, the International Telecommunication Union 

(ITU) defined QoE as, “the overall acceptability of an 

application or service, as perceived subjectively by the end-

user”[33]. It is also worth mentioning that QoE emerged as a 

broader concept than QoS. The authors in [34] defined QoE as 

a multi-disciplinary field available to practitioners to evaluate 

systems, services or applications independently, or during the 

design phase. For networking communities, there are several 

boundaries between QoS and QoE that are not clearly defined; 

the differences and commonalities between the two can be 

found in [34]. Our proposed QoE can be defined as vehicular 

experience for service provisioning, with the aim of providing 

the best rating for the best services, assuming that the QoS has 

been found satisfactory by drivers. This section explains the 

QoE framework to be used with the game approaches 

discussed in Section 4. 

Figure 1 presents the QoE framework under study [14]. 

The framework is comprised of three main participants: 

vehicle drivers, trusted third parties and service providers. The 

architecture employs a trusted third party between the drivers 

and the service providers to act on their behalf. The QoE 

framework is set up in a hierarchical mode, to provide 

scalability and reduce congestion overhead among the 

participants. Our game system, introduced in the next section, 

shows that trusted third parties are cluster-heads, while vehicle 

drivers and service providers are cluster-participants. For 

example, a group of drivers and service providers are 

connected to their cluster-head (i.e. TTP). The TTP receives a 

service request from a driver, processes it, and delivers it to 

the particular driver. Cluster participants can choose to join or 

leave at their convenience. This model is based on our former 

work in [14][35], in which we applied clustering but the 

implementation was more complicated. Thus, instead of 

dealing with two cluster-heads at different stages, we simply 

select one cluster head to handle all the communications at 

once. 

The trusted third parties in our architecture are well-

known commercial organizations that purchase services from 

service providers and sell them to vehicle drivers. The third 

party responsible for delivering QoS to its users is trusted and 

reliable. The responsibilities of a trusted third party include 

relevant communication aspects, finding the best-fit service 

request, negotiations the services, searching for the best price, 

filtering bad or impractical service requests, controlling 

misbehaviour by participants, and guaranteeing payment. 
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Figure 1: The QoE framework under study [14] 

QoE is a weighted function of service provision delay (i.e. 

latency), service price (i.e. cost) and information revealed (i.e. 

privacy), as defined in Eq. 1 [14], [36]. In the equation, D, P 

and I represent the delay, price and information revealed, 

respectively. As shown, the sum of the coefficients in the 

equation equals one. QoE components are obtained via 

feedback from previously provisioned vehicles in a vehicular 

cloud, and formulated according to a weighted combination of 

the three key factors. 

𝑄𝑜𝐸 = 𝛼. 𝐷 + 𝛽. 𝑃 + 𝛾. 𝐼   |  𝛼 + 𝛽 + 𝛾 = 1               (1) 



A driver who wants on-demand provisioning services has 

the option of joining a trusted third party. The drivers can do 

this randomly, or manually by assessing the available trusted 

third parties options. It is worth mentioning that each 

participant in this architecture has a QoE weight for every 

offered service, and the weight can be considered or refer to 

the participant’s QoS. Typically, a driver requests a service 

from a trusted third party that will negotiate the service on 

his/her behalf prior to delivering it. Upon provision of the 

service to the driver, the trusted third party charges the vehicle 

driver based on the amount of usage. Thus, service providers 

receive their payment indirectly from the trusted third party, 

not from the driver. In this way, service providers will not be 

able to acquire a driver’s identity or any other personal 

information. More importantly, when a QoE system completes 

a driver request, each participant provides recommendations 

based on their experience regarding the three QoE factors of 

delay, price and information revealed. In [1, 10] the 

recommendation is a numeric value based on user satisfaction, 

with ten representing the highest rank. Each party in the QoE 

framework has his own QoE reputation, which is the total 

average of recommendations received from other parties for 

each service provided by/to any party in the system. The 

recommendations are used to analyze and determine which 

service provider can offer the best price-delay-privacy 

combination, based on the driver’s preference and 

requirements. The drivers can adjust the coefficients of the 

QoE function (i.e. 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾), or simply select one or more 

interests over others in the QoE.  

Clearly, the QoE framework secures a driver’s personal 

information, but this is not a concern since the trusted third 

party deals with the service provider. Trusted third parties 

provide as little driver information as possible to service 

providers, and in some cases may not need to provide any 

information. Moreover, drivers can request services based on 

their preferences. For example, they could choose fair price 

but less delay, or lowest price with acceptable delay. Thus, the 

objectives of the service cost and latency will be satisfied by 

the QoE framework. 

IV. GAME-BASED OF THE QOE FRAMEWORK 

In our earlier work, we developed an auction-based, multi-

objective framework for service provision in vehicular clouds 

[14]. The multi-objective framework focuses on cost, latency 

and privacy, and it has shown promise since drivers are 

dynamically bound to the best fit available from a trusted third 

party. In addition, the trusted third parties can maximize their 

returns by selecting the best cluster of drivers. This solution 

can be applied and still be valid for a one level (two end) 

auction; that is, the buyer (driver) and the seller (trusted third 

party) at either end. Our one level (two end) auction has n×m 

participants, where n represents the number of drivers and m 

represents the trusted third parties. For example, at any time a 

number of drivers could be bidding on several services 

through different trusted third parties. 

In [14], the proposed auction includes three main entities 

(i.e. drivers, trusted third parties and service providers), and at 

some point the trusted third parties must play the roles of 

buyer and seller at the same time; buying from the service 

providers and selling to the drivers. Such an auction-based 

solution assumes that the trusted third parties will provide the 

drivers with the promised services, and ignore the second level 

interactions between the trusted third parties and the service 

providers. Moreover, some drivers will be unable to bind to 

any available trusted third party, if none are willing to bind 

with them.  

To address this issue and find the best cluster match (i.e. 

drivers with trusted third parties, and trusted third parties with 

service providers) for a single or multi-relationship auction, 

we ran a two-level (three end) auction with buyers (drivers 

and trusted third parties) and sellers (trusted third parties and 

service providers). These interactions require an n×m×r 

auction model, where n represents the number of drivers, m 

represents the number of trusted third parties and r represents 

the number of service providers. The drawbacks of this model 

are the delay, the auction complexity, and the negative impact 

that the delay has on the service charges, since the drivers are 

charged by time used. These types of solutions are not feasible, 

as they can only be adopted if the delay is monitored and 

evaluated correctly. Moreover, an n×m×r auction is very 

difficult to accomplish because the relationships can be 

different at each level, which means computational complexity 

and a need for high processing power. The outcomes can vary 

and often be unexpected. 

Related work manages such problems with multi-agent 

game theory systems [37][38][39]. A description of possible 

solutions using different game model approaches are presented 

in this section. 
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Figure 2: Game-based of the auction framework 

To prove our concept using game theory we developed 

three different games, as shown in Figure 2. These are: Game 



n: a naive game between drivers and service providers; Game i 

and j: a Multiagent/Multiobjectives Interaction Game System 

(MMIGS) among all system participants; and Game a: an 

auction game between the drivers and trusted third parties. 

A) Game Descriptions 

Game n is a naive simple game between two players: the 

drivers and the service providers. It does not consider latency, 

cost or privacy, and does not introduce any QoE awareness 

between the players. A driver plays the game with several 

service providers, and one of the providers wins the game and 

provides the driver with the requested service. 

Game i and j is a multiagent/multiobjective interaction 

game system with two possible levels of interaction, and 

negotiations between three main players: the drivers, trusted 

third parties and the service providers. This game ensures the 

driver will get the best price, minimal latency and enhanced 

privacy. In addition, the trusted third parties and the service 

providers play the game to maximize their returns; a win-win 

situation. MMIGS adopts the concept of the QoE awareness at 

each level of the game. 

Game a is a sightless game between drivers and trusted 

third parties. It does not involve service providers, or 

implement any QoE awareness between the players. Trusted 

third parties are appointed by drivers to ensure they get basic 

QoS requirements, such as latency and cost. This is analogous 

to a situation where two players gamble without knowledge of 

the possible outcomes. Some aspects of Game a are similar to 

the former auction-based framework we presented in [14]. 

B) Objectives 

The objectives of these proposed games are as follows: 1) to 

provide a comprehensive study of using the game model with 

different approaches; 2) to prove our concept of using the QoE 

framework with game-based; 3) to meet our proposed 

objectives for service provisioning in vehicular clouds; 4) to 

investigate the suitability of a game theory-based approach 

rather than an auction-based approach for our proposed QoE 

framework; and 5) to prove that using MMIGS is the best fit 

solution for service provisioning. 

V. SYSTEM MODEL 

By its nature, game theory introduces beneficial intermediate 

results for all players [40], which is why we chose this 

approach and integrated it with our abovementioned QoE 

framework. Integrating the game theory-based approach with 

our QoE framework guarantees mutual benefits for all 

participants, and it is a more efficient system than other 

existing models. The system ensures that drivers get 

satisfactory service, and services providers (i.e. trusted third 

party and service providers) receive adequate profit. The 

following are explanations of the different theoretic 

approaches used for the proposed games. 

A) “Game n” model 

Game n is played between two players who have previously 

shared common knowledge about each other (e.g. utility 

charges, reputation, expected delay) without QoE awareness. 

It assumes the players are engaged in the game simultaneously, 

as in our previously proposed Neutral mode in [14]. However, 

the Game n model is built on a theoretical game approach, 

which was not the case with the previously presented neutral 

mode. The QoE-based approach is not included in this model, 

as shown in Figure 3. 
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Figure 3: Game n approach 

Game n allows player 01 (i.e. a driver) to start the game, 

and they have all available information about player 02 (i.e. a 

service providers). Similarly, player 02 is given access to all 

information about player 01. For example, at some point VD1 

seeks services {𝑠1 𝑎𝑛𝑑 𝑠2} ∈ 𝒮  from service providers, 

without any conditions such as latency or privacy. The service 

providers accept or decline a request based on the information 

about VD1 and the nature of the request. The details of a 

driver’s request (e.g. time, type) play a role in the decision to 

accept or decline the request; if the service provider accepts it 

the game begins between them. 

The outcomes of Game n always favour player 02. Even 

if the players have common knowledge about each other and 

expectations of utilities and latency, player 02 can select in 

their best interest before approving a driver’s request. Thus, 

this model does not guarantee that player 02 decisions are 

mutually beneficial. In addition, player 01 has no control over 

their data, nor any guarantees about how the personal 

information will be used (i.e. absence of QoE). Moreover, the 

lack of QoE awareness between drivers and service providers 

means service providers can play in their best of interest only. 

The drivers have no information or knowledge about service 

providers’ quality of service (e.g. service latency, service cost), 

and there is no vehicular services feedback from prior drivers 

regarding the requested services. Nonetheless, service 

providers tend to offer their best service in order to protect 

their reputation. 

 



Table 1: Notations used in the proposed model 

Notation Description 

𝒂𝟏, … 𝒂𝒊, 𝒃𝟏, … 𝒃𝒊 Possible game outcomes 

𝑨, 𝑹 Game decision (Accept / Reject) 

𝑫 Delay measured in time units 

𝑰 Privacy measured in revealed information 
units 

𝑷 Price measured in currency units 

𝑸𝒐𝑬, 
 𝑽𝑫𝒊, 
 𝑺𝑷𝒋, 

 𝑻𝑻𝑷𝒏 

Quality of Experience, 
Vehicle Driver i, 
Service Provider j,  
Trusted Third Party n.  

𝒮, 𝒔𝒊 Set of services and service i 

𝒊 

 𝒋  
𝒏 

Interaction level of vehicle drivers,  
Interaction level of service providers,  
Interaction level of trusted third parties,  

𝜶, 𝜷, 𝜸 Quality of Experience coefficients factors 

B) MMIGS model 

The Multiagent/Multiobjective Interaction Game System 

(MMIGS) has two potential levels (i.e. i and j) of interaction 

between drivers (player 01), trusted third parties (player 02) 

and service providers (player 03). Both the QoE-based 

framework and the theoretic game approach are adopted (i.e. 

the Nash Equilibrium) to provide players’ experience 

throughout the game, and to introduce multi-objective services 

among multiple agents. 

Four main games (i_1, i_2, i( j_1) and i(j_2)) can be 

applied during the game. The participants’ strategy is to play 

their best response between each other during the game. Put 

simply, player 01 (drivers) aim to get the best services from 

trusted third parties and service providers, while players 02 

and 03 want adequate return when handling or providing 

services. Three main service objectives (i.e. latency, cost and 

privacy) are managed during the game, and are the building 

blocks of our QoE-based framework. 

1. MMIGS game i 

Game (i_1) begins when a driver initiates a service request to 

a specific trusted third party, and indicates their preferences 

about the requested service. This means that drivers must 

provide their best play options, since they know that the QoE-

based framework will select the player with the best available 

services, according to the preferences. The drivers’ QoE-based 

model offers the option to review the trusted third parties and 

decide which to consider, based on the player’s current 

interest. The MMIGS model implies that drivers and service 

providers will give the trusted third party their preference 

values (i.e. {D, P, I}) for each requested service, as stated in 

(1). 

Once the trusted third party has a driver’s requests, they 

run the game on the driver’s behalf. The trusted third party has 

access to the driver’s preferences, and plays its part of the 

game without disclosing any of the drivers’ information or 

interests. Trusted third parties have more QoE knowledge 

about service providers than individual drivers. The second 

part of the game (i_2) is initiated by the trusted third party, 

who provides the driver’s request to the service providers that 

can match them. Each service provider knows that this game 

has more than two parties and more than one service provider, 

which motivates them to play their best choices, not only the 

winning choice as in Game n. Service providers’ responses are 

rated after the services have been delivered to the driver, and 

the ratings could have a positive or negative impact on a 

provider’s overall QoE reputation. The trusted third party 

receives the service providers’ best offer (i.e. SPj {Dj, Pj, Ij}) 

for the driver’s requested services. The trusted third party then 

constructs a matrix of the service providers’ responses (SPj) to 

the driver’s original request.  

The trusted third party then examines the offers and 

compares them to the driver’s request, after which the trusted 

third party accepts the best offer and notifies all parties 

accordingly. The choice is based on the trusted third party 

acting in the best interest of all parties, not only for itself. 

Thus, the trusted third party’s best strategy is to find the best 

match for the driver’s request, select it, add their fee, and 

notify all parties of the outcome.  

The trusted third party’s duty is to find drivers the best 

services that match their preferences, and this is not 

necessarily straightforward. It becomes more complicated if 

none of the service providers have extended an offer that 

matches the driver’s request, which means more interactions 

between the multiagents is required during the game. 

2. MMIGS game i(j) 

MMIGS game i should be more resilient against unexpected 

situations, which requires more negotiation between game 

participants about available choices. More interaction between 

the parties ensures that all possible options are available to all 

players, to help them reach a more optimal game model. 

Though more communications typically leads to additional 

delays, reasonable extra delays can sometimes have a positive 

effect on the overall outcome of the game. MMIGS game i(j) 

uses the game i level, with an extension to provide more 

negotiation on the available choices.  

MMIGS game i(j) can only be activated if drivers and 

service providers are open to negotiations, re-visiting and 

amending the terms of their offers, and the trusted third party 

feels there is a good chance to start negotiations. 

The extension game i(j) of game i can be only possible if 

the 𝑆𝑃𝑗(𝒮) = ∑ {(𝐷𝑗
𝑠 , 𝑃𝑗

𝑠, 𝐼𝑗
𝑠)}

𝑛

𝑗=1
 matrix and 𝑉𝐷𝑖(𝒮) =

∑ {(𝐷𝑖
𝑠 , 𝑃𝑖

𝑠, 𝐼𝑖
𝑠)}

𝑛

𝑖=1
 are not considered a suitable match by the 

trusted third party, they are very close to each other, and none 

of the terms compromise others. For example, given that a 

driver is willing to tolerate some extra delay, and has more 

privacy information or less to pay, the trusted third party runs 

the closest options from the generated matrix on the driver. 

The driver studies the offers and decides to either accept one, 



or propose a new request with the amended values of the new 

offers. If the driver accepts one of the closest offers there is no 

need to notify the service providers, since one of the 

objectives is to reduce the latency. However, if the driver 

proposes a new game request (i.e. game i(j_1)) with valid 

enhancements of the initial preference values, the appointed 

trusted third party continues the game and passes this new 

request (i.e. game i(j_2)) to the group of service providers 

involved. Participants can interact with each other to help 

make the negotiations successful, and it is assumed that they 

will agree that any new proposed offers must have more 

persuasive compromise values than before.  

At this point, the trusted third party has received the 

amended offers that satisfy the driver’s new proposed offer 

from the service providers. Finally, the trusted third party 

passes the amended offers from the group of service providers 

to the vehicle driver. If the driver accepts them, an 

acknowledgment message is sent to the chosen service 

provider permitting delivery of the service.  

At the end of the game, and once the driver has received 

the service(s), all participants can rate both the services and 

the game. Drivers typically rate the service they received 

based on their level of satisfaction, while trusted third parties 

rate the drivers and the service providers, based on the 

interactions and the level of the promises made between them. 

Service providers can also rate their interaction with the 

trusted third parties during the game. 

3. MMIGS game i(j) scenario 

Figure 4 illustrates game i and game i(j) in detail. At the start, 

VD1 is seeking services {𝑠1 ∈ 𝒮}, and selects TTP1 to play the 

game on their behalf. VD1 choses TTP1 because it is the best 

match for the service and interests of VD1. Drivers can select 

any other available trusted third party, based on their QoE 

reputation. The QoE for the participants are then announced 

and are available for all parties on the cloud, which is why 

each party in our QoE-based framework wants to maintain 

their QoE reputation. In most cases, selecting the 

corresponding party in the QoE framework is based on the 

QoE reputation about a particular service. 
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Figure 4: An example scenario of the MMIGS game approach 

A one-to-one game (i_1) starts when TTP1 receives the 

VD1 request and all the related request information: 

QoE (VDi) = {Di, Pi, Ii} = {<5, 10, 3}                                    (2) 

TTP1 keeps client (e.g. VD1) information protected, and 

applies its previously found knowledge and experience to find 

the most suitable and available service providers (e.g. SP1, SP2, 

SP3) to contact about the VD1 service request. A one-to-many 

game (i_2) is initiated by a TTP1 request to the service 

providers with the appropriate QoE reputation to provide the 

services. The intention of TTP1 at this stage of the game is to 

release only the service type {s1} to the service providers, and 

hide the driver service preferences (e.g. {<5, 10, 3}). At this 

point, TTP1 has no information about offers from service 

providers for the service, so the best strategy is not to disclose 

the driver preferences to the service providers.  

The service providers know that there are other service 

providers in the game, so they will respond with their best 



offer. This keeps them in the game, and gives them a 

significantly better chance of winning than playing for their 

own benefit and being excluded from the game later. Thus, as 

in Figure 4, the three service providers have responded with 

the following offers: 

QoE (SPj) = {Dj, Pj, Ij} = { {<8, 20, 5}, {<4,12,1}, {<3,15,3} }

                  (3) 

Once TTP1 has all the service providers’ offers, it selects 

the most suitable ones and puts them and the VD1 preferences 

into a matrix to match and compare them, as shown in Figure 

5. If more than one service is requested by the drivers, 

match/compare matrices are built for each service. 

 Dij Pij Iij 

VD1 <5 10 3 

SP1 <8 20 5 

SP2 <4 12 1 

SP3 <3 15 3 

Figure 5: QoE (i,j) preference comparison 

TTP1 finds that SP2 and SP3 are proposing the most 

appropriate offers. Based on this, TTP1 determines its best 

option and responds back to VD1 with a new matrix, as shown 

in Figure 6. The matrix is based on the most suitable offers 

proposed by SP2 and SP3 that were amended to make them 

suitable for TTP1.  

QoE (TTPn) = {Dn, Pn, In} = { {<4.5, 14, 2}, {<4,17,4} }     (4) 

 Dn Pn In 

1 <4.5 14 2 

2 <4 17 4 

Figure 6: QoE (n) proposed offer to vehicle drivers’ 

One objective of trusted third parties is to spend more 

time and computational effort to protect drivers’ personal 

information, while getting them the best available offers and 

services from the service providers. Thus, an acceptable offer 

to the drivers has better, equal or QoE values that meet their 

requirements. The semi-final proposed game offer from TTP1 

to VD1 typically has the following priorities: 

{Dn, Pn, In} > {Di, Pi, Ii}   QoE (TTPn) > QoE (VDi)         (5) 

A typical game offer that can be considered by the vehicle 

drivers should meet the following: 

QoE= QoE (VDi) - QoE (TTPn) ≥ 0                                        (6) 

In this example, the QoE final offer shown in Figure 6, is 

not equal or less than what VD1 is expecting. However, it is 

close, and persuasive enough to be re-considered for 

negotiation. At this point, VD1 is not fully satisfied with the 

two offers because they cost more, even though they have less 

delay than specified, so, now the driver’s best strategy is to re-

negotiate the offers that have just been received. A new game 

(i(j_1)) with an amended offer is initiated by VD1 to TTP1, 

stating that the driver is willing to pay slightly more (10 to 12) 

and experience slightly higher delay (<5 to <6) to get better 

privacy (3 to 2) for the personal information revealed.  

TTP1 receives the new VD1 preferences, checks to make 

sure that VD1 has made reasonable amendments to the 

extended proposal, informs SP2 and SP3 that a new amended 

proposal has been made due to driver dissatisfaction, starts a 

new game session (i(j_2)) with SP2 and SP3, and passes the 

extended proposal directly to them. Thus far, TTP1 has 

proposed two main games (i.e. Game (i_2) and i(j_2)), as 

shown in Figure 4. The games are not similar, since they are 

fundamentally different in terms of strategy. As explained 

earlier, since TTP1 is not certain what it is negotiating against, 

its best approach for the first game (i_2) is to not disclose its 

driver’s preferences to the service providers. However, in the 

second game (i(j_2)), TTP1 reveals more of the driver’s 

preferences, to show the service providers that the driver is 

determined to get this service. Another reason for revealing 

more is to give the service providers additional background 

about what they should expect. Moreover, at game (i(j_2)), the 

drivers’ preferences are adjusted slightly, then passed to a 

small subset of the original service providers who have 

already responded with reasonable offers (SP2 and SP3). In our 

scenario, TTP1 shares its client’s preferences with only SP2 

and SP3, excluding SP1 since its offer was not reasonable. 

TTP1 then adjusts VD1’s preferences, and introduces them to 

SP2 and SP3 as follows. 

QoE (VDi_2) = {Di_2, Pi_2, Ii_2} = { <6, 9-10, 1-2 }                (7) 

SP2 and SP3 receive TTP1’s adjusted preferences, examine 

them, and then play their best strategies. Service providers can 

quit the negotiations for any reason, although it could affect 

their QoE reputation, depending on how often they quit games. 

In this example, SP2 is the most likely candidate since its 

choices are very close to VD1’s adjusted preferences, so its 

best play is to propose a new offer that fits the VD1 adjusted 

preferences. Accordingly, SP2 proposes a new offer ({<6, 11, 
1}) to TTP1, as shown in Figure 4. TTP1 receives the offer, 

then plays its best game option ({<6, 12, 2}) and matches its 

driver’s needs at the same time. The final offer is delivered to 

VD1 which is found to be a perfect fit, and is accepted.  

QoE= QoE (VDi) - QoE (TTPn) = 0                                       (8) 

C) “Game a” model  

Game a is a blind game between drivers and trusted third 

parties. Service providers are not involved, and there is no 

QoE awareness between the players. Game a begins when a 

driver requests to be bound to an available trusted third party; 

it is the driver’s responsibility to include any further 

information in the request. If a trusted third party accepts the 

request, the driver informs them of the service(s) they want. A 

blind request with no information about the service type 

always favours the driver, for two reasons: the driver can 



refuse the trusted third parties offer, or they can choose to quit 

the game at any time if they receive an offer from one trusted 

third party while another is still proposing. However, this 

could affect the willingness of the trusted third parties to 

accept blind requests. If a trusted third party chooses to accept, 

then the game is played between them and the driver, as 

shown in Figure 7. Trusted third parties are supposed to 

guarantee basic QoS for their drivers, such as low latency and 

optimal privacy. However, it is a blind game, since the trusted 

third parties have no idea of the service type or cost. Another 

drawback of this game is if a trusted third party receives offers 

from service providers about a requested service, proposes 

them to the driver and the driver does not accept them. Thus, 

both players have no knowledge of the outcome. A scenario of 

this approach is illustrated in Figure 7. 

VD1 sends a blind request to trusted third parties to 

inform to start a game. TTP1 and TTP2 accept the request, 

which triggers VD1 to send them the service type {𝒮x}. TTP1 

and TTP2 contact the service providers to get their offers for 

the service { 𝒮 x}. Two service providers can provide the 

service, and they make their offers to TTP2. Meanwhile, 

another provider (SP3) also makes an offer to TTP1. TTP2 

selects the best of the two offers received, adds their service 

fees, and proposes the final offer to VD1. If VD1 choses to 

accept the offer, they inform TPP2 and quit the game with 

TTP1. The driver can also wait to see the possible final offer 

from TTP1, compare it with the TTP2 offer, and select their 

preference. This scenario demonstrates that trusted third 

parties are more vulnerable in this game than drivers and 

service providers. 
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Figure 7: Game a approach 

VI. ANALYSIS OF OUTCOMES UNDER MMIGS 

In order to understand the mutliagent/multiobjective 

interaction game system, the types and roles of the players 

must be defined, as well as the possible interactions between 

them. In our proposed game system, we consider three main 

players {VDi, TTPn, and SPj}, each of which is independent 

and has preferences that represent their best interests. The 

expected outcomes can be defined by the following set: 

𝛺𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 = { 𝑄𝑜𝐸𝑉𝐷 , 𝑄𝑜𝐸𝑇𝑇𝑃 , 𝑄𝑜𝐸𝑆𝑃}                                (9) 

A set is made up of all possible outcomes of the game, 

and each outcome involves three different preferences 

(objectives) for each player. The set of these preferences is 

then defined (the preferences refer to the QoE factors in the 

QoE framework). 

𝛺preferences = {𝐷, 𝑃, 𝐼}                                                   (10) 

Every player in the game has their own QoE, as shown in 

the outcomes set (9), and each wants to keep their QoE in 

good standing (the higher the QoE value the better). Thus, the 

system experience preferences function can be defined as 

follows: 

𝑄𝑜𝐸: 𝛺outcomes (𝛺𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠) →  ℝ                                 (11) 

Our system has more than one possible outcome at a time 

for each preference. For example, if a and b are possible 

outcomes (e.g. a for delay, b for price) for QoEvd1, and 

QoEvd1(a) ≥  QoEvd1(b), then VD1 prefers outcome a over 

outcome b. Based on this, we can introduce a more general 

concept: if the possible outcomes for a player’s preference are 

a, b and c, and given 𝑎 ≥ b and 𝑏 ≥ c, then, 

𝑄𝑜𝐸(𝑎) ≥ QoE(b) 𝑎𝑛𝑑 𝑄𝑜𝐸(𝑏) ≥ QoE(c),  𝑄𝑜𝐸(𝑎) ≥
QoE(c)                                                      (12) 

With this concept of player preferences, we can show the 

interactions between our players for specific or multiple 

outcomes. A player in the game has to make a decision 

(action), and the outcome results from this action. The final 

result of all interactions between the players is the final 



outcome of the game result. More simply, we examine the 

beginning of a game (i_1) that two players start to achieve a 

possible outcome (a), and each player has only two possible 

actions to consider {A, R}, where A stands for accept and R 

stands for reject. Given that the set of actions for this outcome 

is 𝑄𝑜𝐸(𝑎) = {A, R}, then the final outcome can be determined 

with the following formula: 

𝑄𝑜𝐸 =  𝑄𝑜𝐸𝑉𝐷(𝑎) ×  𝑄𝑜𝐸𝑇𝑇𝑃(𝑎) ×  𝑄𝑜𝐸𝑆𝑃(𝑎)  →  𝛺𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 
 (13) 

To present the game more clearly, we show different 

actions in game i for one possible outcome (a), as formulated 

in Eq. 14: 

𝑄𝑜𝐸(𝑎) =  𝑄𝑜𝐸𝑉𝐷(𝑎) ×  𝑄𝑜𝐸𝑇𝑇𝑃(𝑎)                                   (14) 

Thus, four possible outcomes can occur for different 

combinations of players’ actions, as in the following: 

 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝐴) = 𝑎1 , 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝑅) = 𝑎2 , 

 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝐴) = 𝑎3 , 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝑅) = 𝑎4,         (15) 

The game can also be mapped onto the same outcome, as 

follows. Such an environment is unlikely in our system, since 

the outcome will remain the same regardless of the players’ 

actions. 

𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝐴) = 𝑎1, 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝑅) = 𝑎1 , 

𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝐴) = 𝑎1 , 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝑅) = 𝑎1 ,                (16) 

We can also consider a more sensitive environment, 

where the outcomes could be affected by the action of one of 

the players as in the following: 

𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝐴) = 𝑎1 , 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝐴, 𝑅) = 𝑎2 , 

𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝐴) = 𝑎1 , 𝑄𝑜𝐸𝑉𝐷|𝑇𝑇𝑃(𝑅, 𝑅) = 𝑎2 ,         (17) 

In this environment, it does not matter what the vehicle 

driver’s action is, since the outcome depends only on the 

action of the trusted third party. If a trusted third party choses 

to reject, as shown in Eq. 17, an a2 outcome will result, while 

if the trusted third party chooses to accept an a1 outcome will 

result. Our QoE game assumes that all players have influence 

in the game, thus all player selections affect the outcome. It 

becomes more interesting when we combine players’ 

preferences with their actions. If we pick the most generic 

environment, where players’ actions produce different 

outcomes as shown previously, and map it onto the players’ 

preferences, we can predict the best possible outcomes of the 

game based on the players’ selections, according to Example 1: 

𝑄𝑜𝐸𝑉𝐷(𝑎1) =  2 ,  𝑄𝑜𝐸𝑉𝐷(𝑎2) =  2 , 𝑄𝑜𝐸𝑉𝐷(𝑎3) =  1 ,  

𝑄𝑜𝐸𝑉𝐷(𝑎4) =  1 , 𝑄𝑜𝐸𝑇𝑇𝑃(𝑎1) =  2 ,  𝑄𝑜𝐸𝑇𝑇𝑃(𝑎2) =  1 ,  

𝑄𝑜𝐸𝑇𝑇𝑃(𝑎3) =  2 ,  𝑄𝑜𝐸𝑇𝑇𝑃(𝑎4) =  1 , 

Since we know that each possible outcome is mapped 

onto a different action: 

𝑄𝑜𝐸𝑉𝐷(𝐴, 𝐴) =  2 , 𝑄𝑜𝐸𝑉𝐷(𝐴, 𝑅) =  2 , 𝑄𝑜𝐸𝑉𝐷(𝑅, 𝐴) =  1 ,  

𝑄𝑜𝐸𝑉𝐷(𝑅, 𝑅) =  1 , 𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝐴) =  2 ,  𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝑅) =  1 ,  

𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝐴) =  2 , 𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝑅) =  1 , 

It is clear that the driver and the trusted third party action 

in this example means acceptance. The preference description 

is as the follows: 

𝑄𝑜𝐸𝑉𝐷(𝐴, 𝐴) ≥ 𝑄𝑜𝐸𝑉𝐷(𝐴, 𝑅) ≥ 𝑄𝑜𝐸𝑉𝐷(𝑅, 𝐴) ≥ 𝑄𝑜𝐸𝑉𝐷(𝑅, 𝑅) 

𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝐴) ≥ 𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝐴) ≥ 𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝑅)
≥ 𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝑅) 

Examining the different possible actions available to the 

driver and the trusted third party, raises the question: Which 

action should both chose to ensure best outcome? As 

explained earlier, the driver’s best strategy to achieve the best 

possible outcome would be to accept. The trusted third party’s 

best outcomes (i.e. a1 and a3) will be if vehicle driver accepts 

and they also accept, or if the driver rejects and they accept. 

However, the trusted third party preference description above 

means they accept over all other possible actions. Thus, in this 

example, it would be best if both players (VD and TTP) act 

rationally and chose the action that is mutually beneficial.   

To prove the concept of using game models, we construct 

a different Example 2 with new player preferences as follows: 

𝑄𝑜𝐸𝑉𝐷(𝐴, 𝐴) =  2 , 𝑄𝑜𝐸𝑉𝐷(𝐴, 𝑅) =  1 , 𝑄𝑜𝐸𝑉𝐷(𝑅, 𝐴) =  2 ,  

𝑄𝑜𝐸𝑉𝐷(𝑅, 𝑅) =  1 , 

𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝐴) =  1 , 𝑄𝑜𝐸𝑇𝑇𝑃(𝐴, 𝑅) =  1 , 𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝐴) =  2 ,

  𝑄𝑜𝐸𝑇𝑇𝑃(𝑅, 𝑅) =  3 , 

In Example 2, the trusted third party’s best outcome is to 

reject if the driver rejects, and the driver’s best outcome is to 

accept and reject if the trusted third party always accepts. 

However, the trusted third party’s second best strategy in this 

game is to accept if the driver rejects. In this selection of (R, 

A), both players get benefits and better outcomes.  

VII. PERFORMANCE EVALUATION 

A) Simulation settings 

The simulations for performance evaluation of the proposed 

schemes were performed using NS-2 [41]. The 

communication platform employs the Destination-Sequenced 

Distance-Vector Routing (DSDV) protocol, on IEEE 802.11.p 

communication stack with 1024 byte/packets. In the next set 

of simulations, each was repeated 10 times with a range of 5 to 

50 vehicles. For the QoE-awareness equation coefficient 

factors, the 𝑎, 𝛽 𝑎𝑛𝑑 𝛾 parameters are initially evaluated when 

equally weighted. In order to investigate the impact of the 

weighting on performance, we simulated random 

combinations against the game models, and these values can 

be adjusted based on the driver’s preferences. With the 

simulations, we intend to: 1) study all possible parameters of 

the game model with different approaches, 2) study the impact 

of employing the concept of QoE-awareness with gaming, 3) 

satisfy our proposed objectives for service provisioning in a  



Table 2: Simulation scenarios and corresponding settings 

Scenarios Vehicles TTPs SPs 𝒂, 𝜷 𝒂𝒏𝒅 𝜸 in 
normal mode 

𝒂, 𝜷 𝒂𝒏𝒅 𝜸 in Driver’s Comfort 
mode enforcement 

1 5 3 4 0.33, 0.33, 0.34 _ 

2 10 4 7 0.33, 0.33, 0.34 𝛽 = 20%, 𝑎 𝑎𝑛𝑑 γ = 𝑟𝑎𝑛𝑑𝑜𝑚 

3 15 6 8 0.33, 0.33, 0.34 𝛽 = 40%, 𝑎 𝑎𝑛𝑑 γ = 𝑟𝑎𝑛𝑑𝑜𝑚 

4 20 9 10 0.33, 0.33, 0.34 𝛽 = 60%, 𝑎 𝑎𝑛𝑑 γ = 𝑟𝑎𝑛𝑑𝑜𝑚 

5 25 10 14 0.33, 0.33, 0.34 𝛽 = 80%, 𝑎 𝑎𝑛𝑑 γ = 𝑟𝑎𝑛𝑑𝑜𝑚 

6 50 12 21 0.33, 0.33, 0.34 𝛽 = 100%, 𝑎 𝑎𝑛𝑑 γ = 𝑟𝑎𝑛𝑑𝑜𝑚 

vehicular cloud, 4) compare game theory-based and auction-

based service provisioning approaches in vehicular clouds, 

and 5) evaluate the performance of game theoretic service 

provisioning approaches and determine the method that best 

fits the vehicular cloud environment. To illustrate this, we 

simulated multiple scenarios with a random number of game 

participants, in order to assess the behaviour of the proposed 

approaches in different situations.   

To evaluate the impact of the QoE-awareness coefficient 

factors (𝛼, 𝛽, 𝑎𝑛𝑑 𝛾) on the average savings for the MMIGS-

WN model, we ran another set of simulations in which we 

diversified the weights of these factors (as shown in Table 2), 

and monitored the behaviour of the system. We studied the 

effect of the factors under these settings, while gradually 

increasing the network density from 10 to 50 vehicles in steps 

of five vehicles. In each step, the coefficient factor of the price 

(𝛽) is increased equally by 20%, and 𝛼 𝑎𝑛𝑑 𝛾 are randomly 

set in intervals of [0, 1 − 𝛽]. We also introduced a new mode 

we call the Driver’s Comfort mode, in which the MMIGS-WN 

game is played to provide services that match the drivers’ 

preferences. Thus, we evaluate the difference between user 

cost and privacy savings when the MMIGS-WN game is 

played with and without user preferences, denoting the former 

by cost and privacy and the latter by cost-comfort. The 

driver’s comfort in this mode is represented by the driver’s 

preferences at the beginning of each game. Table 2 presents 

these scenarios. 

B) Simulation results 

We have evaluated the different proposed approaches in terms 

of the following metrics: 

1. Delay is the end-to-end time before a driver receives the 

requested service from the service provider. This metric 

is used to compare the delay generated by game models 

and other conventional models.  

2. Price is the total that drivers are charged based on their 

usage, applied by the trusted third party and the service 

provider. A saving price parameter is evaluated with this 

metric, to represent how much drivers will save if they 

adopt one approach over another. 

3. Privacy is the amount of information revealed to the 

service provider. It represents the actual personal 

information a driver must provide to the service provider 

through the trusted third party to receive the service. The 

information required will vary for different services.  

4. MMIGS equilibrium is the average number of negotiation 

phases it takes the MMIGS i(j) approach to reach 

equilibrium among all participants. It is important to 

know the number of phases, as it is impractical for 

participants to engage in endless negotiations for a 

service.  

We categorized the proposed models by two groups, 

namely the QoE unaware (i.e. Game n, Game a and Neutral 

mode) method and the QoE aware (i.e. MMIGS and auction-

based) method, and conducted three types of evaluations and 

comparisons based on these methods. First, we analyzed how 

the proposed Game n and Game a models behave under the 

first three metrics (i.e. delay, price, and privacy), and 

compared them to the Neutral mode solution presented in [14]. 

Neutral mode is a simple model in which participants connect 

to the first available service provider without any QoE aspects. 

Secondly, another set of simulations was performed to explore 

the differences between the proposed game approaches 

MMIGS with no negotiation (MMIGS-NN) and MMIGS with 

negotiation (MMIGS-WN) under the same metrics. These 

models were also compared to the auction-based model 

solution in [14]. The auction-based QoE service provisioning 

model uses QoE-awareness, and manages a competition 

between trusted third parties and service providers to select 

auction participants that maximize their profit. And third, the 

last set of simulations investigated the impact of the MMIGS-

WN in terms of average system savings and game equilibrium.  

In the first group, we tested the average delay of the 

Game n and Game a models, and compared them to the 

Neutral mode with the delay randomly distributed, as shown 

in Figure 8. When the vehicles are sparse in the cloud network 

(i.e. 5 to 15 vehicles), Game n and Game a have delays similar 

to those of the neutral mode. As more vehicles enter the game 

the delay begins to increase, and is at its worst with a group of 

50 vehicles. Thus, the delay under Game a is expected to be 

highest, since the worst two stages of communication are 



among its participants. However, as shown in Figure 9, 

latency in Game a improves the service cost.  

Figure 9 compares the average service cost of Game n, 

Game a and the Neutral mode, distributed over 50 vehicles. 

The Neutral mode technique engages the first available nearby 

service provider to handle a driver service request. As service 

provider charges are unpredictable, a driver can find a service 

provider with lower charges without committing to them. 

However, Game n is a request to play a game while Game a is 

a blind game, which implies that a service provider who can 

make revenue might accept driver requests. A service provider 

should present a reasonable offer to the driver if they want to 

provide the service, otherwise the driver has no reason to play 

the game. This is the main reason why the total service cost 

under Game n and Game a is less than that under the Neutral 

mode. 

 

Figure 8: Game n delay 

 

Figure 9: Game n service cost 

The amount of released information with both modes is 

similar under a sparsely deployed vehicular network. As the 

vehicular network becomes denser the amount of revealed 

information increases, which makes the Neutral mode more 

beneficial than the game-based models, as shown in Figure 10. 

This is because the game models have more communication 

overhead than the Neutral mode, which has more information. 

Clearly, there is no reason for a driver to adopt the Game a or 

Game n model, since either could encumber them with 

additional delay and insignificant cost savings. Plus, there is 

no privacy guarantee due to the lack of QoE-awareness in 

these models. 

 

Figure 10: Game n privacy 

Figure 11 illustrates the total impact of QoE-awareness on 

average delay in every group of vehicles when it is integrated 

with different models. We observed that, under auction-based 

provisioning (i.e. AQoEP), there are lower average delays 

until the vehicular network has 50 vehicles. Due to the number 

of communications levels, both MMIGS-NN and MMIGS-

WN lead to longer delays than AQoEP. MMIGS-NN has two 

levels of communication (i.e. i_1 and i_2), while MMIGS-WN 

has a minimum of two levels of communication (i.e. i_1, i_2, 

j_1 and j_2). Once the network has 50 vehicles, MMIGS-NN 

and MMIGS-WN have almost the same delay, and they reduce 

the delay gap between them and AQoEP from 6.13ms to 

3.20ms (48.6%). This can be explained by the fact that 

MMIGS-WN appears to develop its experience over time, and 

compromises with a little delay in each group participant 

experience (~3%). Increasing the average delay also means 

more negotiations, which indicates that the participants are 

engaged in the game. Moreover, AQoEP conducts one level of 

communications while MMIGS conducts at least two levels; 

this can be considered a significant improvement.  

As shown in Figure 12, MMIGS-WN outperforms both 

the other models with respect to service cost. The main reason 

for this is the circumstances of the negotiations among the 

game participants, which is not relevant in the case of AQoEP. 
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The average service cost difference between the proposed 

MMIGS-WN and AQoEP is in the range of 50% in the first 

five scenarios, and approximately 65% in the last scenario. 

MMIGS-WN is also less costly than MMIGS-NN; up to 15% 

in a sparse vehicular network, and approximately 23% in a 

denser network. This means that the proposed game models 

achieve savings on the provision of services of up to 50%. 

Figure 13 shows the impact on the amount of revealed 

information when QoE-awareness is adopted with the game 

theory concept. MMIGS-WN again outperforms the other two 

models. AQoEP seems to be vulnerable with respect to driver 

privacy, so MMIGS-WN is a promising alternative when 

drivers are concerned about revealing their information. It 

improves driver privacy up to 47% compared to AQoEP, and 

19% compared to MMIGS-NN. These improvements in 

service cost and driver privacy are due to the following: 1) 

using game theory approaches among vehicular participants, 

2) adopting QoE-awareness with games, and 3) testing the 

feasibility of integrating a negotiation stage between game 

participants. 

The service cost savings with or without applying the 

Driver’s Comfort mode in the MMIGS-WN game are 

illustrated in Figure 14, where the average savings under the 

MMIGS-WN model are compared to when the MMIGS-WN 

game is played with prior knowledge of the driver’s comfort 

preferences. As the weight of 𝛽 increases, the average savings 

increase and the privacy savings decrease. With the Driver’s 

Comfort mode savings, there is always a gap in the 20% to 

40% range and the 80% to 100% range. The best average 

cost/privacy savings are achieved with service weight costs of 

60%. Under this weight setting, the average difference in 

savings between the MMIGS-WN model and the MMIGS-

WN model with Driver’s Comfort Mode is less than 5% of the 

total Driver’s Comfort savings.  

 

 

Figure 11: The impact of the QoE-aware models on service 

delay 

 

Figure 12: The impact of QoE-aware models on service 

cost 

In the final simulation set, we tested the average number 

of equilibrium stages required for the MMIGS-WN model to 

become stable. We wanted answers for two questions, namely 

‘How many stages are required for a game to reach 

equilibrium in the proposed scenarios?’ and ‘Does the number 

of participants have an impact on the number of stages?’ 

Figure 15 illustrates the equilibrium stages against the number 

of vehicles, and shows that the number of the vehicles does 

not affect the number of equilibrium stages, since the system 

can have the same number of stages (i.e. 3) with 50 vehicles or 

20 vehicles. 

 

Figure 13: The impact of the QoE-aware models on 

privacy 
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Figure 14: MMIGS-WN average percentage saving 

 

Figure 15: MMIGS-WN equilibrium 

VIII. CONCLUSION AND FUTURE DIRECTIONS 

In this paper, we proposed a multiagent/multiobjective 

interaction game system (MMIGS) for service provisioning in 

a vehicular cloud, based on a game theoretic approach and a 

Quality of Experience (QoE) framework. MMIGS balances 

the overall game, while enhancing drivers’ service costs and 

preserving their privacy. The proposed game system differs 

from other conventional models, as it allows drivers to 

prioritize their preferences. It also takes QoE-awareness into 

account, which enables drivers to negotiate the terms of their 

preferences. Our extensive simulations show that the proposed 

game model with negotiations (i.e. MMIGS-WN), 

incorporated with QoE awareness and a trusted third party 

(TTP), efficiently mitigates communication latency by a 

bounded percentage of 3%. In addition, MMIGS-WN with 

QoE-awareness and TTP involvement achieves reduced 

service costs of 65%, and preserves driver privacy (i.e. 

information revealed) by 47%. We also analyzed the 

performance of this game model in scenarios where the 

number of vehicles and the weighting factors varied, and the 

results showed that significant savings can be achieved under 

various weighted combinations of driver preferences. Finally, 

we calculated the total number of stages required for the game 

to reach equilibrium, and determined that the number of 

vehicles does not affect the number of equilibrium stages.  

We are currently extending the proposed game model for 

use with mobile vehicles, as this paper assumed a network of 

fixed/parked vehicles. Furthermore, we will incorporate 

“sensing as a service” with the vehicular cloud, and introduce 

trustworthiness into the proposed framework as suggested in 

related work [42]. Finally, we will apply other metrics to 

quantify driver privacy, and integrate additional methods with 

the proposed framework to hide sensitive data such as drivers’ 

mobility patterns. We will also prevent service providers 

learning driver identities, by cloaking regions to avoid 

revealing location information. 
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