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 Abstract – This paper deals with disparity estimation and the 

reconstruction of intermediate views from stereoscopic 

images. Using block-wise maximum likelihood (ML) disparity 

estimation, it was found that the Laplacian model 

outperformed the Cauchy and Gaussian models in terms of 

disparity compensation errors and the number of 

correspondence matches. The disparity values in occluded 

regions were then determined using both object-based and 

reliability-based interpolation. Finally, an adaptive technique 

was used to interpolate the intermediate views. One 

distinguishing characteristic of this algorithm is that the left 

and right-eye images were projected onto the plane of the 

intermediate view to be reconstructed. This resulted in two 

projected images. The intermediate view was created using a 

weighted average of these two projected images with the 

weights based on the quality of the corresponding areas of the 

projected images. Subjective examination of the reconstructed 

images indicate that they have high image quality and good 

stable depth when viewed stereoscopically. An objective 

evaluation with the test image sequence "Flower Garden" 

shows that the proposed algorithm can achieve a PSNR gain of 

around 1dB, when compared to a reference algorithm. 
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I. INTRODUCTION 

Three-dimensional television (3-D TV) systems may be the 

next major rung in the evolution of television [1][2].  

Compared to standard television systems, 3-D TV systems 

have the potential of providing television viewers with an 

enhanced impression of depth and a greater sense of 

presence.   

With 3-D TV, it is intuitive to record and distribute 3-D 

signals as two separate video streams. One stream 

consisting of images captured or created with a camera 

viewpoint that is intended for the left eye and the other 

stream with a viewpoint intended for the right eye.  

However, by restricting the left and right eyes to two fixed 

camera viewpoints, spatial distortion and sense of presence 

can be compromised. The stereoscopic view may be 

inconsistent with the viewer’s change in viewpoint [3]. 

Furthermore, stereoscopic visualization may cause visual 

discomfort due to the large difference in horizontal 

disparity between the two streams of images with differing 

viewpoints [4]. To enable viewer-dependent changes in 

viewpoint and to reduce disparity between images obtained 
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from two fixed camera viewpoints, an algorithm for 

intermediate view reconstruction is needed. In this vein, we 

developed an algorithm with several distinguishing 

features. 

The reconstruction of intermediate views can be 

achieved by interpolating between the left and right-eye 

images based on knowledge of the depth information 

contained in the scene.  Although it is not easy, the depth 

information may be obtained by estimating the disparity 

between the left and right-eye images [5]. A general 

approach to disparity estimation and to obtaining disparity 

maps from the left and right eye images involves locating 

corresponding points by measuring intensity differences 

between two images [6]-[10].    

A popular method for disparity estimation based on the 

above-mentioned approach is maximum likelihood (ML) 

disparity estimation. It may be thought of as a special case 

of maximum a-posteriori (MAP) disparity estimation with a 

constant a-priori model. A statistical model is required to 

measure how well one pixel in an image with a given 

disparity value matches another pixel in the other image.  

Normally, a Gaussian model is used in ML disparity 

estimation [6]-[11]. However, Sebe et al studied three 

statistical models, Cauchy, Gaussian and Laplacian, and 

showed that the Cauchy model was the best statistical 

model for pixel-wise ML disparity estimation [12].  We also 

found that the Gaussian model did not perform as well as 

the Laplacian model when we compared the Laplacian 

model and the Gaussian model [13].  Furthermore, in that 

study we also found that block-wise ML disparity 

estimation was more reliable than pixel-wise ML disparity 

estimation.   

For this particular study, to select a suitable statistical 

model for block-wise ML disparity estimation, we repeated 

our previous assessment of statistical models and then 

extended our analysis to include the Cauchy model. Since 

intermediate view reconstruction requires dense highly 

accurate disparity maps, we assessed the models in terms of 

disparity compensation errors and the number of 

correspondence matches.  This assessment along with the 

final selection of a model for our algorithm for disparity 

estimation and intermediate view reconstruction is 

described in Section II of this paper.

Dealing with occluded areas is another challenge in 

intermediate view reconstruction. Due to the difference in 

viewpoints of the left and right-eye images, some areas are 

occluded. Therefore, some pixels in one image will have no 

correspondence to any pixel in the other image. The 

disparity values in occluded areas cannot be found from the 

left and right-eye images. To determine the depth in 

occluded areas, a simple method is to assume that all pixels 

within a rectangular block have the same disparity values 

[10]. There exist more complex methods that involve 

extracting objects from the images and performing object-

based linear interpolation [14][15]. However, with most of 

these methods, the disparity values obtained for pixels in 

occluded areas are based on estimation and, unfortunately, 

estimated disparities are not always accurate. To alleviate 

this problem, we surmised that the accuracy of disparity 

estimates be measured for disparity values within occluded 
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areas.  In Section III we introduce a measure of reliability 

for disparity estimation and use this measure in conjunction 

with object segmentation for determining disparity values 

in occluded areas.  

     The critical last step in intermediate view reconstruction 

is the generation of a new intermediate view using a 

disparity map. An intermediate view can be linearly 

interpolated from the left and right-eye images [16][17], or 

it may be created by nonlinear interpolation [14][15][18]. 

The aforementioned methods use different weighting 

factors based on the spatial position of the pixel to be 

interpolated; the method presented in [16] works well for 

computer graphics while that in [14] is most suitable for 

images with simple scene content. In the present study, we 

choose weighting factors that vary with the disparity 

compensation error because the quality of the reconstructed 

intermediate view depends on the accuracy of the disparity 

estimates. Our algorithm for intermediate view 

reconstruction is described in Section IV. 

Experimental results and performance evaluation of our 

algorithm for disparity estimation and intermediate view 

reconstruction are presented in Section V. Conclusions are 

drawn and outlined in the last section.  

 

II. STATISTICAL MODELS FOR BLOCK-WISE ML DISPARITY 

ESTIMATION 

In the case of the parallel stereo camera configuration, 

given a pixel p1 of coordinates (x1, y1) in the first image and 

its corresponding pixel p2 of coordinates (x2, y2) in the 

second image, where both pixels originate from projections 

of the same object point in the 3D world, disparity is 

defined as a difference of the horizontal coordinates x2 - x1 

[20].  The goal of disparity estimation is to find the value of 

, so that the intensity difference  )(ˆ pd

))ˆ()()( pppp (drslsw −−=         (1) 

between the left-eye image point (sl) and the displaced 

right-eye image point (sr) is minimized. In the case of a 

general camera configuration, epipolar geometry is required 

to find the disparity value [20][21].  

 A block-wise maximum likelihood (ML) disparity 

estimation is defined as: 

{ }),|()(ˆ
,, dssfmaxd BrBl

d

vv p =      ,        (2) 

where ),|( ,, dssf BrBl
vv  is a joint probability density that 

measures how well a block Brs ,
v  in the right-eye image with 

disparity d(p) matches the block Bls ,
v  in the left-eye image 

and is referred to as the likelihood term. For block-wise ML 

disparity estimation, a statistical model is required for the 

likelihood term ),|( ,, dssf BrBl
vv .  

Given a statistical model of an intensity difference 

signal, a block-wise ML disparity estimator can be deduced 

from (2). The deduced block-wise ML disparity estimator 

based on a statistical model can be represented as: 

{ } ,))(1()()(ˆ
mo

d
ccmin d ⋅−+⋅= ppp  δδ                          (3) 

where co is the occlusion cost and cm is the matching cost. 

(See Appendix A for details.)  The costs, co and cm, depend 

on the statistical model used. 
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      In selecting a model for our algorithm to determine the 

best intensity difference signal w(p), the performance of 

three commonly used statistical models, namely, Cauchy, 

Gaussian and Laplacian distribution, were compared.  Let 

 be the total number of pixels within the block B(p) 

surrounding the pixel point p. In the case of the Cauchy 

model, 
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In case of the Gaussian model, 
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In the case of the Laplacian model, 

( ))2(1ln)( wowo fc σσ ⋅⋅=                                              (6a) 

2/

))(()(1

)( )(

w

B
mrml

B
wm

m

dssN
c

σ
σ

∑
∈

−−⋅
= pp

ppp
.                    (6b) 

To implement these block-wise ML disparity estimators, a 

dynamic programming strategy similar to that in [7] and a 

hierarchical structure with flexible block sizes presented in 

[22] were exploited. In this paper, unless specifically noted, 

an image pyramid with three resolution levels was used for 

disparity estimation with full-pixel precision. Window sizes 

of 21×21, 11×11 and 5×5 pixels were used in the 

hierarchical estimation, from the lowest resolution to the 

highest resolution. After the disparity map was estimated 

using the block-wise ML estimator, a bi-directional 

consistency check was performed in order to detect 

mismatched estimates of disparity [22]. Pixels associated 

with mismatched disparities were considered as part of the 

occluded areas.  
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Fig. 1. Comparison of the Cauchy, the Gaussian and the 
Laplacian models that were used in block-wise ML 
disparity estimation, for image pairs "Tulips", "Meal", and 
"Flower Garden". 
 

To compare the statistical models and because the true 

disparity maps are unknown, we used the PSNR of the 

disparity-compensation error to evaluate the accuracy of 



disparity estimation. The disparity-compensation error was 

calculated based on luminance intensity differences within 

matching regions between the original right-eye image and 

the disparity-compensated right-eye image that was 

obtained from the left-eye image and its estimated disparity 

map. The matching region is used to stand for the regions 

in which the correspondence between the original left-eye 

and the original right-eye images are determined using the 

method of disparity estimation, and is measured by the 

matching ratio r   

%100×=
numberpixelimagetotal

pixelsingcorrespondofnumber
r .    

Two stereoscopic image sequences, "Meal" and 

"Tulips", and one monoscopic image sequence "Flower 

Garden", which can be considered a "stereoscopic" image 

sequence due to multiple views of the same static scene 

from camera translation, were used as test stereoscopic 

image pairs. For the image pair from the "Flower Garden" 

sequence, we chose one frame for the left-eye image and 

the next frame for the right-eye image.  All images used 

had a spatial resolution of 720× 480 pixels.  

The disparity estimates of a block-wise ML estimator 

depend on the value of the estimator parameter, a or σw, 

according to (4), (5) and (6). Given different values of the 

estimator parameter, each ML estimator can yield a 

performance comparison of PSNR against the matching 

ratio.  A small value of the estimator parameter, a or σw, 

provides high accuracy of disparity estimates but a lower 

matching ratio. Fig. 1 shows that the PSNR value decreases 

as the matching ratio goes up for each estimator. This 

suggests that large intensity differences due to different 

viewpoints have to be allowed if a higher matching ratio is 

desired.  A balance between the amount of correspondence 

matches and accuracy in estimation can be made by 

appropriate selection of the estimator parameter.  

Fig. 1 shows that, at the same matching ratio, the block-

wise ML disparity estimator using the Laplacian model 

(ML-Laplacian) outperforms both those using the Gaussian 

(ML-Gaussian) and Cauchy (ML-Cauchy) models.  We also 

compared these three models using stereo image pairs from 

the well-known video sequences "Aqua" and "Tunnel", and 

the same results were obtained.  Therefore, the findings 

show that the Laplacian model performed the best among 

the three models tested.  

The conclusion from our experimental results is 

different from that of Sebe [12] who found that the Cauchy 

model was the best among those tested.  However, that 

study was based on pixel-wise ML disparity estimation. The 

difference between these findings can be explained as 

follows: for the block-wise ML-Cauchy estimator, the 

matching cost cm is defined as the sum of the logarithms of 

intensity differences (see (4b)). That is similar to the 

estimation metric, Lorentzian function, used in [23] except 

for a constant that depends on the value of the estimator 

parameter a. The logarithmic function reduces the relative 

contribution of large intensity differences to a sum. Large 

intensity differences usually indicate a mismatch between 

two blocks. Using  (4b), the ability to distinguish two 

different blocks matched to the reference block is reduced 
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when compared with using  (5b) or  (6b). Therefore, the 

block-wise ML-Cauchy estimator is less effective than the 

block-wise ML-Laplacian estimator.  

Based on our experimental results, we used the block-

wise ML-Laplacian disparity estimator in the proposed 

intermediate view reconstruction algorithm. 

III.  DISPARITY INTERPOLATION FOR OCCLUDED AREAS 

The algorithm to deal with occluded regions consisted 

of three steps: image object segmentation, calculation of the 

reliability for the disparity estimates, and object-based and 

reliability-based disparity interpolation.  For the algorithm 

it was assumed that an image consists of objects and that 

each object has smooth disparity values.  Therefore, the 

first step was to segment the image into objects and to 

locate object boundaries. This step was completed using the 

watershed technique described in detail in [19]. The 

following subsections describe the other two steps in detail. 

A. Reliability measure of disparity estimates 

Noise in the original left and right-eye images can lead 

to disparity estimates that are not accurate, especially in the 

occluded areas around object boundaries.  Therefore, a 

measure of the reliability of disparity estimates is required 

for the disparity values in occluded areas.  Several methods 

for measuring the reliability of disparity estimates have 

been proposed before. Kanade et al [24] suggested a 

statistical model of disparity distribution within a window 

that takes into account disparity variation as well as image 

intensity variation. Izquierdo [25] used a uniqueness 

constraint together with an analysis of the curvature of the 

correlation surface to assess the reliability of disparity 

estimates. As a reliability measure, Fusiello et al [26] used 

the variance of disparity estimates obtained with nine 

asymmetric windows. Murino et al [27] exploited this 

reliability measure for improving disparity estimates via a 

Markov random map model.  Here we put forward another 

reliability measure.  

The measure that we propose is based on the a 

posteriori probability of disparity estimate d, given images 

Bls ,
v  and Brs ,

v , in a block B denoted by ),|( ,, BrBl ssdf vv  [28].  

From the Bayesian theorem, we have: 

( ) ( ) ( )
( )BrBl

BrBrBl
BrBl ssf

sdfsdsf
ssdf

,,

,,,
,, |

|,|
,| vv

vvv
vv

= .                      (7) 

Replace )|( ,, BrBl ssf vv  by constant c1 since it is not a 

function of d. ),|( ,, BrBl sdsf vv  is the likelihood term that 

measures how well the left-eye image Bls ,
v can be described 

by the disparity estimate d and the right-eye image Brs ,
v . 

The intensity difference for one pixel position pm within a 

block B(p)  

))(()())(( pppp dssde mrmlm −−=  

is then modeled with the Laplacian model based on our 

findings as outlined in Section II and ),|( ,, BrBl sdsf vv  can be 

described as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅= ∑

)(
,, ))((2exp

2
1),|(

p
p

B
m

ww
BrBl desdsf

σσ
vv .         (8) 

)|( ,Brsdf v  in (7) is the a priori probability of the disparity 

estimate d. The disparity map was assumed to be a 

realization of a Gibbs random map with an energy function 
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that imposed a local smoothness constraint on the variation 

of disparity estimates. This constraint assigns a smaller 

probability to disparity values that are significantly 

different from its neighboring disparity values. Similar to 

that used in [29], the a priori probability )|( ,Brsdf v  is 

expressed as: 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−⋅= ∑
Λ∈i

iBr ddcsdf 2
22,

1exp)/(
dσ

v ,                  (9) 

where the disparity, d, is independent of the image signal, 

Brs ,
v . In (9),  is the variance of the difference d-d2

dσ i of 

disparity estimates, which is calculated from the estimated 

disparity map as described in Section II. To reduce the 

computation load, we only compared the disparity value at 

pixel position p with neighboring values located in the 

horizontal row and the vertical column through its position. 

Thus,  consists of spatial positions in the horizontal row 

and the vertical column through the pixel position p within 

a block B(p). 

Λ

Let c denote the value of the product of c1 and c2 and let 

D be the set of all possible values for d of full-pixel 

precision. Inserting (8) and (9) into (7), we get the value of 

the constant c from ∑
∈

=
Dζ

ζ 1),|( rl ssf , 

( )∑ ∑ ∑
∈ Λ∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−

=

D p d
dp

ζ
ζ

σ
ζ

σ )(

2
2
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2
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1

B i
ime

c                (10) 

From (7)-(9), the reliability of the disparity estimate d, 

denoted by r(d), is measured by: 

 
(a) 

 
(b) 

  
(c) 

Fig. 2. Disparity reliability measurements. (a) Enlarged 
segment of the original left-eye image; (b) enlarged 
segment of the estimated disparity map with a matching 
ratio of 85%.  The black regions represent occluded areas; 
(c) enlarged segment of a reliability map of the disparity 
map. Dark areas mean poor estimates with low reliability.  
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where the constant c is defined as in (10). 

Fig. 2 shows the enlarged segments of an estimated 

disparity map of full-pixel precision. Its reliability map for 

the stereoscopic image "Aqua" uses a block size, B(p), of 

7×7 pixels and a set  of 13 pixels in the horizontal row 

and the vertical column through the pixel position p and 

within B(p). Fig. 2(a) shows an enlarged segment of the 

original left-eye image. Fig. 2(b) shows an enlarged 

segment of the disparity map that was estimated using a 

block-wise ML-Laplacian disparity estimator with a 

matching ratio of 85%. The estimated disparity values lie in 

the interval from –31 pixels to 8 pixels. In Fig. 2(b), black 

areas are the occluded areas where the disparity values have 

to be determined. Fig. 2(c) shows an enlarged segment of 

the reliability map that was obtained using  (11). The 

standard deviation σ

Λ

d of disparity difference, which was 

calculated from the estimated disparity map, is 0.27.  In the 

reliability map, the dark areas mean poor estimates with 

low reliability.  In Fig. 2(a), the two circled areas represent 

holes in the rock of the "Aqua" scene.  These two holes 

should have a different depth value than the face of the 

rock. However, the ML-Laplacian disparity estimator 

assigned the same disparity values to these two holes as the 

surrounding areas, as shown in Fig. 2(b). From the 

reliability map in Fig. 2(c), it can be seen that the disparity 

estimates of points in these holes have low reliability. This 

demonstrates that the proposed reliability measure is 

effective. 

B. Object-based and reliability-based disparity 

interpolation 

     With the information on object boundaries and a set of 

reliability measures of disparity estimates, a combined 

object-based and reliability-based interpolator (Fig. 3) is 

proposed for determining the disparity values in occluded 

areas. 

 

 
 
Fig. 3.  Object-based and reliability-based disparity 
interpolation.  
 

 
(a) 
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(b) 

 
Fig. 4. Disparity interpolation for occluded areas. (a) 
Enlarged segment after image segmentation, (b) enlarged 
segment of disparity map after interpolation for occluded 
areas. 
 

Let p be the position of a pixel in an occluded area and 

d(p) the disparity value to be calculated (see the white 

regions in Fig. 3). We draw a circle of radius l, centered on 

pixel position p. The radius l of this circle is increased until 

the circle touches one or more pixels of the non-occluded 

area (the gray regions in Fig. 3) that belong to the same 

object as does the occluded pixel position p. These pixels 

represent the closest pixels in the same object as p with 

available disparity estimates. Let pi denote the positions of 

these closest pixels for i = 1, 2, …, N, d(pi) their disparity 

estimates, and r(d(pi)) the reliabilities of these disparity 

estimates. The object-based and reliability-based 

interpolator is then defined as: 

( )
( )

∑

∑

=

=
⋅

= N

i
i

N

i
ii

r

dr
d

1

1

)(

)()(

i

ii

p

pp
p .    (12) 

      Fig. 4 shows the result with the stereoscopic image 

"Aqua" using enlarged segments for better illustration. 

Fig. 4(a) shows the segmentation result using the algorithm 

presented in [19]. The estimated disparity map is shown in 

Fig. 2(b). The black areas represent occluded areas. Using 

the segmentation result of Fig. 4(a) and the reliability 

measures of Fig. 2(c), disparity values in the occluded areas 

are calculated using the interpolator defined in (12). Fig. 

4(b) shows the disparity map after this calculation. Again, 

the luminance level in this figure represents the magnitude 

of the disparity values. A lower luminance level represents 

a smaller disparity value, which means an object is far from 

the camera. A high luminance level represents a large 

disparity value, which means an object is closer to the 

camera. Compared with Fig. 2(b), disparity values in the 

occluded areas have been successfully determined because 

there are now no black regions. 

IV. ADAPTIVE INTERMEDIATE VIEW RECONSTRUCTION 

The intermediate view reconstruction was carried out by 

image projection based on disparity estimates and by 

adaptive combination of the projected images.  

A. Image projection based on disparity map 

Let dl(p) denote the disparity map that is estimated by 

mapping the left-eye image sl(p) to the right-eye image sr(p) 

using the block-wise ML-Laplacian estimator, and sα(p) the 

intermediate view to be reconstructed. The disparity values 

for the occluded areas were already obtained using the 

object-based and reliability-based interpolator described in 

Section III. Hence, a disparity value is associated with 

every pixel of the left-eye image. Assume that the distance 

 9



between the left and right-eye images is 1, and the distance 

from the left-eye image to the intermediate view sα(p) is α 

with 0 < α < 1.  

The intermediate view was obtained by projecting the 

left-eye image sl(p) based on the disparity dl(p) to the plane 

of the intermediate view.  A pixel at position p in the left-

eye image is projected to position p-α·dl(p) in the projected 

image. Let sα,l(p) denote this projected image, then sα,l(p-

α·dl(p))=sl(p). Two special situations require additional 

processing in this projection: multiple projections and 

holes. 

From the disparity map there may be two or more pixels 

of the left-eye image projected to the same point in sα,l(p). 

In this case, the pixel that belongs to an object that is closer 

to the camera should be retained because such an object 

may cover pixels of objects that are farther from the 

camera.  In comparison to other evaluation methods, such 

as [30], that considers reference images as connected 

topological meshes to create a back-to-front order, in this 

paper we adopt a simpler method to cope with this problem. 

It is known that objects closer to the camera have larger 

disparities than those farther from the camera in the case of 

the parallel stereo camera configuration. Therefore, the 

projection was performed from far to near, i.e., from pixels 

associated with small disparity values to those with large 

disparity values. 

After all pixels of the left-eye image have been 

projected, some pixels in sα,l(p) may still not have any 

projection. The areas formed by these pixels are referred to 

as holes in this paper. The pixels in a hole are newly 

exposed areas and have no correspondence in the left-eye 

image. The values for these pixels have to be determined 

from the right-eye image. To this end, another disparity 

map, denoted by dr(p), is estimated by mapping the right-

eye image sr(p) to the left-eye image sl(p). Each disparity 

value in this map is associated with a pixel in the right-eye 

image.  The holes in sα,l(p)  are then filled with the 

projection of the right-eye image based on the disparity 

map dr(p). That is to say, the pixels in the holes are 

identical to the pixels projected from the right-eye image. 

Let Ro denote all holes in sα,l(p) which can be described as: 
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     Alternatively, we can get another projected image 

s1-α,r(p) by exchanging s1, d1, and α with sr, dr, and 1-α, 

respectively, in (13a) and (13b).  

Note: The algorithm proposed above is valid only for 

stereoscopic image pairs captured or created 

stereoscopically with a parallel configuration.  Otherwise, 

the stereoscopic image pair has to be rectified, such as with 

a pre-warping technique as proposed in [31]. 

B. Adaptive combination of projected images 

 
The final reconstructed intermediate view sα(p) is an 

adaptive combination of the two projected images sα,l(p)  
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and s1-α,r(p). These projected images are usually different 

from one another because sα,l(p) mainly comes from the 

left-eye image, while s1-α,r(p) comes from the right-eye 

image. The difference is also because the multiple 

projections and holes of sα,l(p) are different from those of 

s1-α,r(p). One of the projected images usually has better 

quality in some areas, while the other is better in other 

areas. Therefore, an intermediate view of high quality can 

be obtained by properly combining these two projected 

images. 

The adaptive combination is a weighted average: 

( ) ( ) ( ) ( )[ ] ( )pp,p p,p rl sλss ,1, 1 ααα ααλ −⋅−+⋅=     (14) 

where λ(p,α) is a weighting factor which is related to the 

local quality of the projected images and the distance α 

between the left-eye image and the intermediate view. In 

one case, if α is close to 0, the intermediate view should be 

very similar to the left-eye image. Since sα,l(p) mainly 

comes from the left-eye image, λ(p,α) should be close to 1 

and sα(p)≈sα,l(p). Otherwise, λ(p,α) should be close to 0 if α 

is close to 1. In the other case, if the quality of sα,l(p) is 

higher than s1-α,r(p) at position p, then λ(p) should be larger 

than 0.5. Otherwise, λ(p,α) should be smaller than 0.5. 

The local quality of sα,l(p) is measured using the 

disparity compensation errors: 
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=
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 if,

,

,
,

α

α
α      (15) 

 

The relationship between p and q is defined in (13a).  A 

small eα,l(p) indicates where the left-eye image matches 

well with the right-eye image. Hence, the quality of sα,l(p) 

should be high at position p if eα,l(p) is small. Let e1-α,r(p) 

denote the disparity compensation error associated with 

s1-α,r(p). This error can be obtained by exchanging sl and dl 

with sr and dr  in (15).   

From the above discussion, the weighting factor λ(p,α) 

is then defined as: 

  

( ) ( ) ( )[ ]
( ) ( ) ( )pp

p
 p,

rl

r

eeA
eA

,1,

,1

1
1

αα

α

αα
α

αλ
−

−

⋅−+⋅+

+⋅−
=      (16) 

 

where A is a predetermined constant with A > 0. This 

constant can reduce the impact of small disparity 

compensation errors on λ(p,α). Small disparity 

compensation errors are normally caused by random noise 

in the original (left and right-eye) images, rather than 

incorrect disparity estimates. In our experiments, we set 

A=2. 

V. EXPERIMENTAL RESULTS 

The proposed algorithm was compared with two other 

algorithms.  The first algorithm is the Hybrid algorithm.  

The main difference between the Hybrid algorithm and the 

proposed algorithm is how the disparity map is estimated. 

In the reference Hybrid algorithm, correspondence between 

the left and right-eye images is established using a block-

based and object-based matching technique similar to the 

algorithm presented in [32] that has been successfully used 

in frame rate conversion [33]. With this algorithm, 
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disparity-per-pixel (disparity map) can be obtained.  After 

that, the intermediate view is reconstructed by an adaptive 

combination similar to that presented in this paper. The 

other algorithm that was used for comparison is the one 

described in [34] and referred to as NO-Reli in the 

following statement. The main difference between NO-Reli 

and the proposed algorithm is that NO-Reli does not use a 

reliability measure of disparity estimates in the 

determination of the disparity values in occluded areas. The 

reason for choosing these two algorithms for comparison 

was that in both algorithms disparity is estimated in a 

block-wise manner. In the following experimental results, 

the parameter, σw, for block-wise ML disparity estimation 

was set to 3.24. 

A. Objective evaluation 

For objective comparison, the test image sequence 

"Flower Garden" was used. "Flower Garden" can be 

considered a "stereoscopic" image sequence due to multiple 

views of a static scene with camera translation. This 

provides “ground truth” intermediate views for numerical 

performance evaluation using a PSNR metric. For testing, 

we chose two image pairs and their “ground truth” center 

images (i.e., intermediate frames) as shown in Table 1. Fig. 

5 shows the left-eye images of each of the two image pairs.  

It should be noted that "Flower Garden" is of the interlaced 

format. Therefore, the intermediate view at position α=0.5 

was reconstructed field wise and compared to the “ground 

truth” image.  Table 2 shows the comparison results, in 

terms of PSNR of the error signals between the 

reconstructed view and the “ground truth” image at position 

α=0.5. 

Table 1. Two image pairs and their “ground truth” center 
images from image sequence Flower Garden. 
 Left-eye 

image 
(frame #) 

Right-eye 
image 

(frame #) 

“Ground 
truth” image 

(frame #) 
Image Pair A 3 1 2 
Image Pair B 232 230 231 

 

 

 
Fig. 5. Left-eye image of Image Pair A (top image) and 
Image Pair B (bottom image). 

 
 

It can be seen that the proposed algorithm outperforms 

the Hybrid and the NO-Reli algorithm in terms of PSNR. 

For Image Pair A, the PSNR gains were, 0.95 dB and 0.02 

dB, respectively. For Image Pair B they were 11dB and 

0.02dB. For Image Pair B, the Hybrid algorithm 

determined that the estimated disparity map was not reliable 

and therefore copied the left-eye image as the intermediate 
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view to be reconstructed. This resulted in a lower PSNR 

value. 

 

Table 2. PSNR comparison results for the intermediate view 
reconstructed at position α=0.5. 

 Hybrid 
(dB) 

NO-Reli 
(dB) 

Proposed 
(dB) 

Image Pair A 28.2486 29.1811 29.2014 
Image Pair B 15.8132 27.1442 27.1683 

 
Table 3. PSNR comparison results for intermediate 

views reconstructed at position α=0.5 by image projection 
based on disparity map and by adaptive combination. 

 image sα,l 
(dB) 

image s1-α,r 
(dB) 

image sα 
(dB) 

Image Pair A 24.4187 29.5505 29.2014 
Image Pair B 24.1653 23.9767 27.1683 

 

We also compared the quality of the reconstructed 

intermediate images. These reconstructed images were 

created by image projection based on disparity maps and 

adaptive combination. The images sα,l and s1-α,r are 

reconstructed by image projection based on disparity maps 

which mainly use the left-eye image as defined in (13b) and 

the right-eye image. The image sα is an adaptive 

combination of both images as defined in (14). Table 3 

shows the PSNR values of these three reconstructed images 

compared to the “ground truth” center image. For the Image 

Pair A, the block ML disparity estimator achieved a high 

matching ratio of around 84%. The high PSNR difference 

between the images sα,l and s1-α,r mainly stems from the 

different quality on the right side of the images; where the 

disparity values are estimated for the right-eye image while 

they are recovered for the left-eye image by the object-

based and reliability-based disparity interpolator as 

presented in Section III. Fig. 5 shows that the luminance 

texture on the right side is discontinuous and has a vertical 

black bar instead of the texture of flowers and houses. This 

texture discontinuity led to a reduction in image quality due 

to inaccuracies in the disparity values in generating image 

sα,l. Even so, the adaptively combined image sα still had a 

higher quality than the image sα,l (a PSNR gain of 4.8dB), 

and a similar quality to image s1-α,r (a PSNR difference less 

than 0.4dB). For the Image Pair B, the block ML disparity 

estimator provided a matching ratio of only 53%. The 

remaining disparity values were recovered by the object-

based and reliability-based disparity interpolation. For this 

lower matching ratio, both images, sα,l and s1-α,r, had similar 

quality with a PSNR value of 24dB. However, the 

adaptively combined image sα had a higher quality with a 

PSNR gain of 3dB.  These comparisons show that the use 

of adaptive combination proposed in this paper can create 

an intermediate view of better quality than produced by 

image projection based on disparity maps using either the 

left or right-eye image. 

As stated in Section II, we could increase the value of 

the estimator parameter σw to improve the matching ratio. 

However, tests with different natural stereoscopic 

sequences showed that, given the estimator parameter, 

matching ratios depend on scene content. Additionally, 

when the scene depth changes, it is difficult to predict 

which image, sα,l or s1-α,r, has better quality. Thus, the 

proposed technique of adaptive combination is simple and 

practical for generating intermediate views of high quality.   
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B. Subjective evaluation 

For subjective comparison, the results with the test 

image sequence "Tulips" were used. Fig.6 shows the 

disparity map corresponding to the left-eye view of 

“Tulips”. The block ML disparity estimator provided a 

matching ratio of around 88%. The remaining disparity 

values were recovered by object-based and reliability-based 

disparity interpolation. The range of the estimated disparity 

values lies in the interval from –27 pixels to +10 pixels. It 

should be noted that there are some estimation errors at the 

left of the person. Fig.7 shows the results of intermediate 

view reconstruction with five images using enlarged 

segments for clear illustration. From top to bottom, these 

images are the original left-eye image, the intermediate 

views reconstructed at position α=0.25, 0.5, and 0.75, and 

the original right-eye image. From these images, it can be 

seen that the proposed algorithm reconstructs image details 

well, producing “sharp” images. Overall, the quality of the 

reconstructed images is excellent. 

 

 
Fig. 6. Estimated disparity map (top image) corresponding 
to the left-eye view of the stereoscopic video sequence 
"Tulips" (bottom image). 
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Fig. 7. Enlarged segments of intermediate views 
reconstructed from an image pair of stereoscopic video 
sequence "Tulips".  From top to bottom, the images are left-
eye image, intermediate views at position α=0.25, 0.5, 0.75, 
and right-eye image. 
 

 
(a)                                           (b) 

 
(c)                                           (d) 

Fig. 8. Enlarged segments of Tulips and its intermediate 
views reconstructed at position α=0.5. (a) Original left-eye 
image, (b) original right-eye image, (c) result of the Hybrid 
algorithm, (d) result of the proposed algorithm. 

Note the position of the cameramen on the right side of 

Fig. 7. It changes gradually in the horizontal direction from 

the top image to the bottom image.  This indicates that the 

depth of this person in the reconstructed stereoscopic view 

changes smoothly and in a consistent manner. A 

stereoscopic sequence created with the reconstructed 

intermediate view and the left or right-eye original image 

sequence exhibits very clean and stable depth. 

  
(a)                                               (b) 

Fig. 9. Intermediate views reconstructed at position α=0.5 
for an enlarged region of "Tulips".  (a) Result based on NO-
Reli, (b) result based on the proposed algorithm. 
 

The difference in subjective quality between the 

proposed algorithm and the Hybrid algorithm can be 

observed by comparing the images in Fig. 8.   It shows an 

enlarged segment of “Tulips”. We can see the legs of the 

cameraman and the arm of another person.  Fig. 8(a) and 

Fig. 8(b) are the segments from the original left and right-

eye images, respectively. Fig. 8(c) is the segment of the 

intermediate view that was reconstructed using the Hybrid 

algorithm. Fig. 8(d) was reconstructed using the proposed 

algorithm. It can be seen that the Hybrid algorithm 

introduced some texture artifacts between the cameraman’s 

legs and the arm of the other person, while the proposed 
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algorithm strongly reduced these texture artifacts and 

produced an intermediate view of higher quality. 

Fig. 9 shows differences in the reconstructed views 

based on the proposed algorithm and the NO-Reli 

algorithm.  Fig. 9(a) shows an enlarged segment of the 

result produced by the NO-Reli algorithm, and Fig. 9(b) is 

an enlarged segment of the result by the proposed 

algorithm. Texture artifacts can be observed along the 

boundary of the woman's face in Fig. 9(a), and are 

noticeably less visible in 9(b).  The artifacts are due to the 

fact that the NO-Reli algorithm does not use a measure of 

reliability for disparity estimates, so the impact of 

inaccurate estimates is significant.  

The objective evaluation in the previous subsection 

shows that the proposed algorithm achieves similar quality 

with the NO-Reli algorithm in terms of PSNR. However, the 

subjective evaluation presented in this subsection indicates 

that the quality of the intermediate views can be quite 

different and the proposed algorithm outperforms the NO-

Reli algorithm.  

VI. CONCLUSIONS 

In this paper, an algorithm for disparity estimation and 

intermediate view reconstruction for stereoscopic imagery 

was presented. Based on objective criteria, the Laplacian 

model was selected over the Cauchy and Gaussian models 

for block-wise maximum likelihood disparity estimation.  

We note that this choice of model is different from that of 

Sebe [12] for pixel-wise maximum likelihood disparity 

estimation.  

The introduction of a reliability measure of disparity 

estimation combined with object segmentation reduced the 

impact of inaccurate disparity estimates on the quality of 

the reconstructed view in occluded areas.  

Furthermore, the introduction of an adaptive technique 

for reconstructing intermediate views whereby the 

intermediate view is a weighted average of the two 

projected images from the left and right-eye views, with 

weights based on the local quality of the projected image, 

contributed to a favorable performance of the proposed 

algorithm when compared to a reference Hybrid algorithm.  

An objective evaluation with the test sequence “Flower 

Garden” showed that the proposed algorithm could achieve 

a PSNR gain of around 1dB compared to the reference 

Hybrid algorithm.   

We conclude that the introduction of a reliability 

measure for disparity estimation as well as the use of 

projection errors to determine the weights for view 

interpolation are practical and useful.  This conclusion is 

supported by subjective evaluation with a stereoscopic test 

sequence, "Tulips", showing that the proposed algorithm 

reconstructs intermediate views of high quality with very 

clean and stable depth when viewed stereoscopically.  
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Appendix A: Block-Wise ML Disparity Estimation 

 

For block-wise ML disparity estimation, neighboring 

pixel points surrounding the pixel point p are taken into 

account. Let B(p) be a block centered at the pixel position p 

in the left-eye image,  the total number of pixels within 

the block B(p), and 

BN

Bls ,
v  and Brs ,

v  denote a set of pixel 

intensity levels in the left and right-eye images, 

respectively. d(p) is the disparity value for the block B(p). It 

is assumed that additive noise signal intensity w(pm)  

))ˆ()()( pppp (drslsw mmm −−=                                 (A-1) 

at any pixel point pm within the block B(p) is independent 

of its neighboring noise signal intensity. The likelihood 

function ),|( ,, dssf BrBl
vv  for block-wise ML estimation is 

then defined as: 

( )∏
∈

=
)(

,, )(),(|)((),|(
pp

ppp
B

mrmlBrBl
m

dssfdssf vv .        (A-2) 

where  is a likelihood function 

that describes how well the right-eye image pixel s

))(,)(|)(( ppp dssf mrml

r(pm) 

with the disparity d(p) matches the left-eye image pixel 

sl(pm). For a correspondence pixel, 

can be expressed as  ))(,)(|)(( ppp dssf mrml

))(())(,)(|)(( mmrml wfdssf pppp = ,    (A-3) 

according to (A-1). In the case of occlusion, the left-eye 

image intensity sl(pm) is independent of the right-eye image 

intensity sr(pm) and also of the disparity . The 

likelihood function  for an occluded 

point can then be simplified as: 

)( pd

))(,)(|)(( ppp dssf mrml

))(())(,)(|)(( mlmrml sfdssf pppp = .                              (A-4) 
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Furthermore, if it is assumed that the probability 

distribution function f(sl(pm)) is a constant and under the 

consideration that intensity values of image pixel points lie 

in the interval [0, 255], f(sl(pm)) is then equal to: 

256
1))(( == oml fsf p ,                                               (A-5) 

which is the same as that proposed in [8]. Considering 

correspondence and occlusion cases, the likelihood function 

can be written as: 

( ) )(1)( ))(())(,)(|)(( pp pppp δδ −= momrml wffdssf          (A-6)                                                    

 with an indicator variable )( pδ  that is defined as  
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Maximizing the likelihood function results 

in the block-wise ML estimator: 

),|( ,, dssf BrBl
vv
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To simplify the optimization,  (A-8) is modified as 

{ } ( ){ }),|(ln),|( ,,,, dssfmindssfmax BrBl
d

BrBl
d
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−→   .     (A-9) 

To model noise signal w(pm), three statistical models 

f(w(pm)), namely, the Cauchy model with a parameter a 
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the Gaussian model with a variance σw
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and the Laplacian model with a variance σw
 2
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were studied in this paper because they are the commonly 

used models in the literature. They were also examined in 

[12]. A block-wise ML disparity estimator can then be 

deduced from (A-8)~(A-12) by inserting each f(w(pm)) into 

(A-6), (A-2) and then into (A-9). The deduced block-wise 

ML disparity estimator, based on different models, can be 

represented as 

{ } ,))(1()()(ˆ
mo

d
ccmin d ⋅−+⋅= ppp  δδ                   (A-13) 

where co is the occlusion cost and cm is the matching cost. 

The costs, co and cm, depend on the statistical model used 

(see (4), (5) and (6)). 
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