Next: About this document
Up: Boolean layer cakes
Previous: Outlook
References
- 1
- M. E. Adams, Ph. Dwinger and J. Schmid,
Maximal sublattices of finite distributive
lattices,
preprint, 1995
- 2
- M. E. Adams, R. Freese, J. B. Nation and J. Schmid,
Maximal sublattices and Frattini sublattices of
bounded lattices,
preprint, 1995
- 3
- M. Aigner,
Lexicographic matching in Boolean algebras,
J. Comb. Theory Series B 14 (1973), 187 - 194
- 4
- G. Birkhoff,
Lattice Theory,
Amer. Math. Soc. Colloq. Publ. Vol. 25, Providence,
R. I., 1967
- 5
- G. R. Brightwell, H. A. Kierstead, A. V. Kostochka and
W. T. Trotter,
The dimension of suborders of Boolean lattices,
Order 11 (1994), 127 - 134
- 6
- G. R. Brightwell, H. J. Prömel and A. Steger,
The average number of linear extensions of a
partial order,
J. Comb. Theory Ser. A 73 (1996), 193 - 206
- 7
- G. Burosh and J. Laborde,
Einbettungen von Graphen in den n-Würfel,
in: K. Wagner and H. Bodendiek (eds.),
Graphentheorie III, BI Wissenschaftsverlag, 1992,
73 - 94
- 8
- Betty Crocker,
Cookbook, 21
printing,
Golden Press, New York, 1974, p. 92 and p. 125
- 9
- I. J. Dejter,
Hamilton cycles and quotients of bipartite
graphs, in:
Y. Alavi et al. (eds.), Proc. Vth Imternat. Conf.
Theory Appl. Graphs, Wiley, New York, 1985, 189 - 199
- 10
- I. J. Dejter,W. Cedeño and V. Jauregui,
A note on Frucht diagrams, Boolean graphs and
Hamilton cycles,
Discrete Math. 114 (1993), 131 - 135
- 11
- I. J. Dejter, J. Córdova and J. Quintana,
Two Hamilton cycles in bipartite reflective
Kneser graphs,
Discrete Math. 72 (1988), 63 - 70
- 12
- D. Z. Djokovič,
Distance preserving subgraphs of hypercubes,
J. Comb. Theory Ser. B 14 (1973), 263 - 267
- 13
- D. Duffus, P. Hanlon and R. Roth,
Matchings and Hamiltonian cycles in some families
of symmetric graphs,
Emory University Technical Report, 1986
- 14
- D. Duffus, H. A. Kierstead and H. S. Snevily,
An explicit 1-factorization in
the middle of the Boolean lattice,
J. Comb. Theory Series A 65 (1994), 334 - 342
- 15
- D. Duffus, V. Rödl, B. Sands and R. Woodrow,
Enumeration of order-preserving maps,
Order 9 (1992), 15 - 29
- 16
- D. Duffus, B. Sands and P. Winkler,
Maximal chains and antichains in Boolean
lattices,
SIAM J. Discrete Math. 3 (1990), 197 - 205
- 17
- D. Duffus, B. Sands and R. Woodrow,
Lexicographic matchings cannot form Hamiltonian
cycles,
Order 5 (1988), 149 - 161
- 18
- B. Dushnik,
Concerning a certain set of arrangements,
Proc. Amer. Math. Soc. 1 (1950), 788 - 796
- 19
- B. Dushnik and E. W. Miller,
Partially ordered sets,
Amer. J. Math. 63 (1941), 600 - 610
- 20
- J. D. Farley,
The number of order presrving maps between fences
and crowns,
Order 12 (1995), 5 - 44
- 21
- Z. Füredi,
The order dimension of two levels of the Boolean
lattice,
Order 11 (1994), 15 - 28
- 22
- Z. Füredi, P. Hajnal, V. Rödl and W. T. Trotter,
Interval orders and shift graphs, in:
A. Hajnal and V. Sos (eds.), Sets, graphs
and numbers, Proc. Colloq. Math. Soc. Janos Bolyai,
vol. 60, Budapest, Hungary, 1991, 297 - 313
- 23
- Z. Füredi and J. Kahn,
On the dimensions of ordered sets of bounded
degree,
Order 3 (1986), 17 - 20
- 24
- Z. Füredi and K. Reuter,
The jump number of suborders of the power set
order,
Order 6 (1989), 101 - 103
- 25
- G. Gierz,
Level sets in finite distributive lattices of
breadth 3,
Discrete Math. 132 (1994), 51 - 63
- 26
- G. Gierz and F. Hergert,
The bandwidth problem for distributive lattices of
breadth 3,
Discrete Math. 88 (1991), 157 - 177
- 27
- G. Havas and M. Ward,
Lattices with sublattices of a given order,
J. Comb. Theory 7 (1969), 281 - 282
- 28
- I. Havel,
Semipaths in directed cubes, in: M. Fiedler
(ed.), Graphs and other combimatorial topics,
Teubner, Leipzig, 1983, 101 - 108
- 29
- I. Havel and J. Movárek,
B-valuations of graphs,
Czech. Math. Journal 22 (1972), 338 - 351
- 30
- F. Harary, J. P. Hayes and H.-J. Wu,
A survey of the theory of hypercube graphs,
Comput. Math. Appl. 15 (1988), 277 - 289
- 31
- J. Hashimoto,
Ideal theory for lattices,
Math. Japon. 2 (1952), 149 - 186
- 32
- G. H. Hurlbert, A. V. Kostochka and L. A. Talysheva,
The dimension of interior levels of the Boolean
lattice,
Order 11 (1994), 29 - 40
- 33
- H. A. Kierstead,
On the order dimension of 1-sets versus
k-sets,
J. Comb. Theory Ser. A 73 (1996), 219 - 228
- 34
- H. A. Kierstead and W. T. Trotter,
Explicit matchings in the middle levels of the
Boolean lattice,
Order 5 (1988), 163 -171
- 35
- D. J. Kleitman and B. L. Rothschild,
Asymptotic enumeration of partial orders on a
finite set,
Trans. Amer. Math. Soc. 205 (1975), 205 - 220
- 36
- A. D. Korshunov,
on the number of monotone Boolean functions,
Probl. Kibern. 38 (1981), 5 - 108 (in Russian)
- 37
- D. W. Krumme, K. N. Venkataraman and G. Cybenko,
Hypercube embedding is NP-complete, in:
M. T. Heath (ed.), Proc.
Conf. on
Hypercube Multiprocessors, SIAM, Philadelphia, 1986,
148 - 157
- 38
- L. Lippert,
Automorphismen Boole'scher Schichtenkuchen,
Masters Thesis, University of Bern, in preparation
- 39
- W.-P. Liu, I. Rival and N. Zaguja,
Automorphisms, isotone self-maps and cycle-free
orders,
Discrete Math. 144 (1995), 59 - 66
- 40
- W.-P. Liu and H. Wan,
Automorphisms and isotone self-maps of ordered
sets with top and bottom,
Order 10 (1993), 105 - 110
- 41
- Z. Lonc,
Partitions of large Boolean lattices,
Discrete Math. 131 (1994), 173 - 181
- 42
- J. Mitas and K. Reuter,
Cover-preserving embeddings of bipartite orders
into Boolean lattices,
Theor. Comput. Sci., to appear
- 43
- J. Mitas and K. Reuter,
Subgraphs of hypercubes and subdiagrams of Boolean
lattices,
preprint, December 1995
- 44
- M. Nüssli,
Maximale Unterverbände Boole'scher
Schichtenkuchen,
Master's Thesis, University of Bern, 1996 (unpublished)
- 45
- I. Rival and A. Rutkowski,
Does almost every isotone self-map have a fixed
point?, in:
Extremal problems for finite sets, Bolyai Soc.
Math. Studies 3 (Visegrad, Hungary, 1991), 413 -
422
- 46
- J. Spencer,
Mimimal scrambling sets of simple orders,
Acta Math. Acad. Sci. Hung. 22 (1971), 349 - 353
- 47
- W. T.Trotter,
Some combinatorial problems for permutations,
Congressus Numerantium 19 (1978), 179 - 191
- 48
- W. T. Trotter,
Combinatorics and partially ordered sets:
Dimension theory,
John Hopkins Univ. Press, Baltimore and London, 1992
- 49
- M. Wild,
Cover-preserving order embeddings into Boolean
lattices,
Order 9 (1992), 209 - 232
- 50
- N. Zaguia,
Isotone maps: Enumeration and structure, in:
N. W. Sauer, R. E. Woodrow and B. Sands (eds.),
Finite and infinite combinatorics in sets and
logic, NATO ASI Series, Series C: Math. and Phys.
Sci. Vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, 421
- 430
Jürg Schmid