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Abstract

A group of identical mobile agents moving asynchronously among the nodes of an anonymous
network have to gather together in a single node of the graph. This problem known as the (asyn-
chronous anonymous multi-agent) rendezvous problem has been studied extensively but only for
networks that are safe or fault-free. In this paper, we consider the case when some of the edges in
the network are dangerous or faulty such that any agent travelling along one of these links would
be destroyed. The objective is to minimize the number of agents that are destroyed and achieve
rendezvous of all the surviving agents. We determine under what conditions this is possible and
present algorithms for achieving rendezvous in such cases. Our algorithms are for arbitrary net-
works with an arbitrary number of dangerous channels; thus our model is a generalization of the
case where all the dangerous channels lead to single node, called the Black Hole. We do not assume
prior knowledge of the network topology; In fact, we show that knowledge of only a “tight” bound
on the network size is sufficient for solving the problem, whenever it is solvable.

1 Introduction

1.1 The Problem

Consider a networked environment, modelled as a simple connected graph, in which operate a set
of mobile computational entities, called agents or robots. A central problem in such systems is the
so called rendezvous (or gathering) problem which requires the agents to meet together in a single
node of the network. This problem has been extensively studied in the literature (see, for example,
[1, 3, 10, 15, 17, 19, 23]) under a variety of models with different assumptions on the identity of the
network nodes and/or of the agents (anonymous or distinct labels), the existence of timing bounds on
the agents’ actions (synchronous or asynchronous), the intercommunication mechanisms (whiteboards
or pebbles/tokens), the amount and type of memory, etc. In spite of their widely different models,
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the existing studies on the rendezvous problems share the common assumption that the environment
where the agents operate is safe.

Unlike previous studies on the rendezvous problem, we consider the case when the environment
where the rendezvous must take place, is not safe. In our model, some of the edges in the graph are
harmful for the agents; specifically, any agent that attempts to traverse any such an edge (from either
direction) simply disappears, without leaving any trace. The location of the unsafe links are initially
unknown to the agents; we only assume that the unsafe links do not disconnect the network. Notice
that if all the edges incident to a node u are unsafe, then node u can never be reached by any agent and
is equivalent to a black hole, i.e., a node that destroys any incoming agent (e.g., [7, 8, 11, 12, 13, 18]).
In other words, the black hole model is just a specific case of the model considered in this paper.

We investigate the problem in a very weak (and thus computationally difficult) setting: the network
nodes do not have distinct identities (i.e., the network is anonymous), the agents are identical, and
their actions (computations and movements) take a finite but otherwise unpredictable amount of time.

The only previous result for rendezvous in faulty networks was in the case of the ring network
containing two unsafe links leading to a single node—the black hole [13]. Our investigations is thus
a generalization of these studies to networks of arbitrary topology that contain faults at arbitrary
locations.

1.2 Our Results

In this paper we provide a full characterization of the rendezvous problem of asynchronous anonymous
agents in anonymous networks with unsafe links. Precisely, we present the following results in this
paper:

• We first show that, if there are τ unsafe links in the network and k agents, then it is not possible,
in general, for k′ agents to rendezvous if k′ > k − τ .

• We then prove that the rendezvous of k − τ agents is deterministically possible only when the
network is covering minimal. Even in this case, rendezvous is not possible if the agents do not
know the size of the network or at least a tight upper bound. In fact, we prove that a loose
upper bound n ≤ Bn ≤ 2n is not sufficient.

• We then show that this result is tight. In fact, we present an algorithm, RDV that requires only
the knowledge of a tight upper bound B on the number of nodes n, such that n ≤ B < 2n. This
algorithm allows rendezvous of k− τ agents in networks where such a rendezvous is possible; the
rendezvous occurs with explicit termination for each surviving agent.

• The total number of moves made by the agents during the execution of algorithm RDV is
O(m(m + k)) where m is the number of edges in G. We prove that this cost is optimal; in fact,
we show that solving rendezvous of k − τ agents in networks where it is solvable, requires at
least Ω(m(m + k)) moves, even when the network topology is known a priori.

• Finally we show that, there exists no effective algorithm for maximal rendezvous, i.e. there does
not exist an algorithm that when executed on any arbitrary network achieves the rendezvous of
as many agents as deterministically possible on that network.

In the particular case of a single black hole in the network, our results imply that we can rendezvous
k − dBH agents where dBH is the degree of the black-hole (provided that the black hole is not a
cut-vertex). If there are r < n/2 black holes and the rest of network is still connected, then we can
rendezvous k − τ agents where τ is the number of edges which have a safe node on one end and a
black-hole on the other end.
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1.3 Related Work

The problem of Rendezvous has been extensively studied mostly using randomized methods (see [1]
for a survey). Among deterministic solutions to rendezvous, Yu and Yung [23] and Dessmark et
al. [10] presented algorithms for agents with distinct labels. In the anonymous setting, the problem
has been studied under different models (synchronous or asynchronous), using either whiteboards [3]
or, pebbles/tokens [19]. Some of the recent studies have focussed on minimizing the memory required
by the agents for rendezvous([15, 17]).

Most of these solutions are designed for anonymous graphs (i.e. graphs where nodes do not have
distinct identities) which present the most challenging (i.e. computationally difficult) situations. The
issue of computability in anonymous graphs, have been studied by many authors including Angluin [2],
Yamashita and Kameda [22], Mazurkiewicz [20], Sakamoto [21], and Boldi and Vigna [4]. Most of these
studies have concentrated on the problem of symmetry-breaking or leader election which is in fact,
closely related (and sometimes equivalent [6]) to the rendezvous problem for mobile agents. However,
all the above results are restricted to safe or fault-free networks.

Recently attention has focused on designing mobile agent protocols for networks which are faulty,
in particular, where there is a black hole, that is a harmful network site that destroys any visiting
agent. The research on such networks have concentrated on locating the black hole. In asynchronous
systems, this has been studied under two different methods—using whiteboards [11, 12] or using tokens
[14] to mark edges. The objective here is minimizing the number of agents that fall into the black hole
and the number of moves. In the case of synchronous agents, the objective is to minimize the time
taken by the surviving agents to locate the black hole [8, 18]. The general case of multiple black holes
has been considered only by Cooper et al. [7]. All these problems assume that the team of agents start
from the same node, i.e. they are co-located. When the agents start from distinct nodes, it is very
difficult to gather the agents while avoiding the black hole nodes. This has been studied earlier only
in the case of ring networks containing a single black hole, by Dobrev et al. [13], where the authors
give solutions to rendezvous and near-gathering assuming the knowledge of topology and the size of
the network.

2 The Model and Definitions

2.1 The Model

The environment is modelled by the tuple (G, ξ, p, λ, η) where G is an undirected connected graph, ξ
is a set of agents and p specifies the initial placement of the agents in the graph G (i.e. ∀A ∈ ξ, p(A) =
v : v ∈ V (G) ). The number of nodes is denoted by n = |V (G)| and the number of agents is denoted
by k = |ξ|. The agents can move from one node to its adjacent node by traversing the edge connecting
them. The edges incident to a node v are locally oriented i.e. they are labelled as 1, 2, . . . , d(v), where
d(v) is the degree of node v. Notice that each edge e = (u, v) has two labels, one for the link or
port at node u and another for the link at node v. The edge labelling of the graph G is specified by
λ = {λv : v ∈ V }, where for each vertex u, λu : {(u, v) ∈ E : v ∈ V } → {1, 2, 3, . . . , d(u)} defines the
labelling on its incident edges. For any edge (u, v) we use λ(u, v) to denote the pair (λu(u, v), λv(u, v)).

The function η : E(G) → {0, 1} denotes which edges are safe/faulty. An edge e ∈ E(G) is safe if
η(e) = 1 and faulty otherwise. The faults are permanent, so any edge that is faulty at the start of
the algorithm remains so until the end and no new faulty edge appears during the execution of the
algorithm.

The node from where an agent A starts the algorithm (i.e. the initial location) is called the
homebase of agent A. The agents are all identical (i.e. they do not have distinct names or labels) and
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they execute the same algorithm. An agent may enter the system at any time and at any location, and
on entry, an agent immediately starts its individual execution of the algorithm. The system is totally
asynchronous, such that every action performed by an agent takes a finite but otherwise unpredictable
amount of time. As in previous papers on the subject, we assume that the agents communicate by
reading and writing information on public whiteboards locally available at the nodes of the network.
Thus, each node v ∈ G has a whiteboard (which is a shared region of its memory) and any agent
visiting node v can read or write to the whiteboard. Access to the whiteboard is restricted by fair
mutual exclusion, so that, at most one agent can access the whiteboard of a node at the same time,
and any requesting agent will be granted access within finite time. An agent that is granted access to
the whiteboard at node v, is allowed to complete its activity at that node before relinquishing access
to the whiteboard (i.e. access control is non preemptive).

Note that it is not necessary for two agents A and B traversing the same edge e = (u, v) of the
graph, to arrive at node v in the same order in which they left node u. However, using the whiteboards
at the nodes, it is easy to implement a first-in first-out (FIFO) strategy such that agents traversing an
edge can be assumed to have reached their destination in order (i.e. an agent cannot overtake another
while traversing an edge). For the rest of this paper, we shall assume this FIFO property; this will
simplify the description of our algorithms.

2.2 Directed Graphs and Coverings

In this section, we present some definitions and results related to directed graphs and their coverings,
which we use to characterize those network where rendezvous is possible. A directed graph(digraph)
D = (V (D), A(D), sD, tD) possibly having parallel arcs and self-loops, is defined by a set V (D) of
vertices, a set A(D) of arcs and by two maps sD and tD that assign to each arc two elements of V (D) :
a source and a target (in general, the subscripts will be omitted). if a is an arc, the arc a is said to
be going out of s(a) and coming into t(a). We say that s(a) is a predecessor of t(a) and that t(a) is
a successor of s(a). A path between two vertices u and v in G is a sequence of arcs a1, a2, . . . ap such
that s(a1) = u,∀1 ≤ i ≤ p − 1, t(ai) = s(ai+1) and t(ap) = v. A digraph D is strongly connected
if for all vertices u, v ∈ V (D), there exists a path between u and v. A symmetric digraph D is a
digraph endowed with a symmetry, that is, an involution Sym : A(D) → A(D) such that for every
a ∈ A(D), s(a) = t(Sym(a)). A bidirectional network can be represented by a strongly connected
symmetric digraph, where each edge of the network is represented by a pair of symmetric arcs. In this
paper, we consider digraphs where the vertices and the arcs are labelled with labels from a recursive
label set L and such digraphs will be denoted by (D, µD), where µD: V (D)∪A(D) → L is the labelling
function. In general, the label on an arc a would be a pair (x, y) and the labelling µD should satisfy
the property that if µD(a) = (x, y) then µD(Sym(a)) = (y, x), for every arc a ∈ D.

A self-loop in the digraph D is an arc a, such that s(a) = t(a). A self loop is called symmetric
if Sym(a) = a and otherwise it is asymmetric. Notice that for a symmetric self-loop a, µD(a) is of
the form (x, x) but for asymmetric self-loop a′, µD(a′) is of the form (x′, y′) with x′ 6= y′. A pair of
parallel arcs are two arcs a and a′, such that s(a) = s(a′) and t(a) = t(a′).

A digraph homomorphism γ between the digraph D and the digraph D′ is a mapping γ:V (D) ∪
A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of D and a is an arc such that u = s(a) and
v = t(a) then γ(u) = s(γ(a)) and γ(v) = t(γ(a)). A homomorphism from (D, µD) to (D′, µ′D) is a
digraph homomorphism from D to D′ which preserves the labelling, i.e., such that µ′D(γ(x)) = µD(x)
for every x ∈ V (D) ∪A(D).

We now define the notion of graph coverings, borrowing the terminology of Boldi and Vigna[5]. A
covering projection is a homomorphism ϕ from D to D′ satisfying the following: (i) For each arc a′ of
A(D′) and for each vertex v of V (D) such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D)
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such that t(a) = v and ϕ(a) = a′. (ii) For each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v and ϕ(a) = a′.

The fibre over a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices of D (resp. the set
ϕ−1(a′) of arcs of D).

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ and D′ is
called the base of ϕ. A symmetric digraph D is a symmetric covering of a symmetric digraph D′ via
a homomorphism ϕ if D is a covering of D′ via ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). A
digraph D is symmetric-covering-minimal if there does not exist any graph D′ not isomorphic to D
such that D is a symmetric covering of D′.

The notions of coverings extend to labelled digraphs in an obvious way: the homomorphisms must
preserve the labelling. Given a labelled symmetric digraph (H,µH), the minimum base of (H,µH) is
defined to be the labelled digraph (D, µD) such that (i) (H,µH) is a symmetric covering of (D, µD)
and (ii) (D,µD) is symmetric covering minimal.

The following results on digraph coverings were proved in [5].

Property 2.1 Given two non-empty strongly connected digraphs D, D′, each covering projection ϕ
from D to D′ is surjective; moreover, all the fibres have the same cardinality. This cardinality is called
the number of sheets of the covering.

Property 2.2 If the digraph (H, µH) is a covering of (D,µD) via ϕ, then any execution of an algo-
rithm P on (D,µD) can be lifted up to an execution on (H,µH), such that at the end of the execution,
for any v ∈ V (H), v would be in the same state as ϕ(v).

2.3 Definitions and Properties

Given any deterministic (distributed) algorithm P and a network (G, ξ, p, λ, η), the order in which
the various actions are performed by the agents defines an execution of the algorithm on the network
(G, ξ, p, λ, η). We define the synchronous execution of an algorithm P to be the particular execution
where all agents start executing at exactly the same time and every action taken by any agent takes
exactly one unit of time.

We define the extended-view of the network (G, ξ, p, λ, η) as the labelled digraph (H, µH) such that,
H consists of two disjoint vertex sets V1 and V2 and a set of arcs A as defined below:

• V1 = V (G);

• µH(v) = |{A ∈ ξ : p(A) = v}|, ∀v ∈ V1;

• For every safe edge e = (u, v) ∈ E(G), there are two arcs a1, a2 ∈ A such that s(a1) = t(a2) = u,
s(a2) = t(a1) = v, and µH(a1) = (λu(e), λv(e)), µH(a2) = (λv(e), λu(e)).

• For every faulty edge e = (u, v), there are vertices u′ and v′ ∈ V2 with µH(u′) = µH(v′) = −1
and arcs (u, u′), (u′, u), (v, v′) and (v′, v) ∈ A with labels (λe(u), 0), (0, λe(u)), (λe(v), 0), and
(0, λe(u)) respectively;

Here, the vertices in V1 represent the (safe) nodes of the network and the vertices in V2 represent
(imaginary) Black-Holes. The label on a safe vertex v denotes the number of agents that started
from the corresponding node, whereas the label on a black-hole vertex is always −1. Intuitively, the
extended-view can be thought of as a canonical representation of the network.

The following results follow from the definition of the extended-view of a network and the Proper-
ties 2.1 and 2.2.

5



Lemma 2.1 For any deterministic algorithm P, a synchronous execution of P on the network (G, ξ,
p, λ, η) is equivalent to a synchronous execution of algorithm P on the extended-view (H,µH), such
that the final state of any node in G is exactly same as the state of the corresponding vertex in H.

Lemma 2.2 If the extended view of two networks have same minimum-base (D, µD) then all nodes in
the two networks which belong to the pre-image of a vertex v ∈ D would always be in the same state,
during a synchronous execution of any algorithm P.

In the following, whenever the extended-view of a network is symmetric-covering minimal, we shall
say the network is minimal.

3 Impossibility Results

In this section, we determine some necessary conditions for solution to the rendezvous problem.
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Figure 1: A network where n = k = 4r and there are r faulty edges (not shown in the figure)

Lemma 3.1 In a network containing τ dangerous links and k dispersed agents, τ agents may die
while executing any algorithm for rendezvous. Thus, it is not always possible to rendezvous more than
k − τ agents even if the network topology is known to the agents.

Proof : Consider a network of size 4 · r, r ≥ 1 as shown in Figure 1 (here r = 3). Each node of the
network contains one agent initially. Suppose there are r faulty edges (i.e. τ = 2r) in the network but
the location of the faulty edges is unknown to the agents (thus an adversary can decide which edges
are faulty). Suppose all the agents wake-up at the same time; Since all these agents are in the same
state initially, they would take the same action. So, either each agent would traverse the incident edge
labelled 1 or each agent would traverse the edge labelled 2 (They cannot just wait because then we
would have a deadlock!). In the first case, we assume all the faulty edges are labelled (1, 1); and in
the second case, we assume the faulty edges are labelled (2, 2). Thus in both cases, at least τ agents
would die.

Lemma 3.2 It is impossible to rendezvous k − τ agents in a network whose extended-view is not
symmetric-covering minimal.

Proof : Assuming the contrary, suppose k − τ agents are able to gather at a node v of the network,
using an algorithm P. Thus, in the equivalent execution of the algorithm on the extended-view (H,µH),
k − τ agents must have gathered at the corresponding node v′. Let (D, µD) be the minimum-base of
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(H, µH). Due to property 2.1, there must be q vertices in H which map to each vertex u ∈ D, where
q = |H|/|D|. Notice that q ≥ 2, because (H,µH) is not covering-minimal. If node v′ maps to node u,
then all the q − 1 other nodes that map to u, must also contain k − τ agents at the end of algorithm
P. However this is impossible because there are only k − τ surviving agents, due to Lemma 3.1.

Lemma 3.3 It is possible to solve rendezvous of (k−τ) agents in any network that is covering minimal
if the agents know only an upper bound B on the number of nodes n such that n ≤ B < 2n.

In the next section, we present an algorithm that achieves this. But first we show that the
knowledge of a “tight” upper bound as is necessary for solving the rendezvous of (k − τ) agents.

Observation 3.1 A faulty edge can not be distinguished from a slow edge, i.e. one which the agents
take a long time to traverse.

G 1

G 1

G 2

G 2

(a)

(b) (c)

Figure 2: The network in (a) cannot be distinguished from the networks in (b) and (c) due the slow
edges (marked by arrows)

Lemma 3.4 It is impossible to solve rendezvous (with termination detection) of k − τ agents even
in minimal networks if the agents know only an upper bound B on the number of nodes n such that
n ≤ B ≤ 2n.

Proof : Consider the networks shown in Figure 2, where G1 and G2 are (distinct) arbitrary graphs,
each of size r > 1. Each black node contains a single agent initially. The dotted lines represent faulty
edges and the edges marked by arrows (in the first network, Figure 2(a)) are slow edges. Notice that
all three networks are minimal. The size of the first network is 2r + 8, whereas the networks in (b)
and (c) have size r + 4 each. So we can use a upper bound B = 2r + 8 for all three networks (this
bound satisfies the constraint n ≤ B ≤ 2n). However, if the only prior knowledge available to the
agents is the value of the bound B = 2r + 8, then the agents can not distinguish between the three
networks. In networks (b) and (c), the rendezvous of only two agents is possible, so in network (a)
too, the algorithm would terminate after rendezvous of only two agents even though (k − τ) = 8 for
the network (a).

The algorithm presented in this paper works only for networks which are minimal. We say that
an algorithm P is an universally effective algorithm for rendezvous of w > 1 agents if, when executed
on any network where rendezvous of w agents is possible, algorithm P always succeeds in achieving
rendezvous within a finite time. We have the following negative result on the existence of such an
algorithm.
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Figure 3: The networks in (a) and (b) have same topology but differ in the location of faulty edges
(shown by dashed lines). (c) The minimum base for the network in (a).

Lemma 3.5 There does not exist any universally effective algorithm for rendezvous of 1 < w ≤ k
agents even if the network topology is known a-priori to the agents.

Proof : Consider the two networks shown in Figure 3(a) and (b). Each network has the same topology
and there are three faulty edges in each (but their locations are different). There are k = 12 agents in
each network (their homebases are the dark nodes in the figure). In the network of Figure 3(b) there
are two edges (marked by arrows) which are very slow. Since slow edges edges can not be distinguished
from faulty edges, the agents would not be able to determine whether they are in the first network or
the second. Thus any rendezvous algorithm P (that terminates within a finite time) must achieve the
same result in both networks. Notice that the first network has an extended view which is not minimal
(the minimum base is shown in Figure 3(c)). Since algorithm P must fail to achieve rendezvous of
(k − τ) = 6 agents in the first network, it must also fail in the second one. However it is possible to
solve rendezvous of (k − τ) = 6 agents in the second network. Thus algorithm P is not universally
effective.

4 Solution Protocol

In this section we present an algorithm for solving Rendezvous in faulty networks, using the knowledge
of only an upper bound B on the network size, such that n ≤ B < 2n. As shown in the previous
section, there is no effective algorithm for Rendezvous in faulty networks. Our algorithm always works
for any network whose extended-view is covering minimal, achieving the rendezvous of the maximum
number of agents possible (i.e. k− τ agents). We first show the following lower bound on the number
of moves required to be made by any algorithm that achieves the same.

Theorem 4.1 For solving rendezvous of (k− τ) agents in an arbitrary network (G, ξ, p, λ, η) without
any knowledge other than the size of the network, the agents need to make at least Ω(m(m+k)) moves
in total.
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u vi i

Figure 4: The graph G’ with 2n+2 nodes and 4m+2n edges. The dashed lines represent in-edges/out-
edges (some of them may be faulty).

Proof : Given any graph G with n vertices and m edges, we can construct a family of networks each
having 2n + 2 vertices and 4m + 2n edges, such that any algorithm that solves rendezvous in this
family of networks would perform Ω(m2) moves in at least one of these networks.

Consider the graph G′ in Figure 4 consisting of two stars centered at nodes u and v each of which
has n neighbors, corresponding to the n vertices of the graph G. Suppose the vertices in G are labelled
1 to n; for each i ∈ [1, n], there are nodes ui and vi that are neighbors of u and v respectively. For
each edge (i, j) ∈ E(G), there are edges (ui, uj), (vi, vj), (ui, vj), (vi, uj) in G′. We call the edges
(ui, uj), (vi, vj) as in-edges and the edges (ui, vj), (vi, uj) as out-edges. (Intuitively, in-edges connect
vertices in the same star, while out-edges connect vertices in two distinct stars. The edges incident to
u and v, in G′ are called star-edges. Thus, there are 2m in-edges, 2m out-edges and 2n star-edges in
G′).

Notice that it is possible to assign an edge-labelling λ to the graph G′ in such a way such that
the labelled graph (G′, λ) covers a graph (H,λ) of size n + 1, where nodes u and v are mapped to
the same vertex and for each i ∈ [1, n], ui and vi are mapped to the same vertex. We can define
ξ, p, η in such a way that there is one agent in every node and all the edges are safe. In this network
N = (G′, ξ, p, λ, η), the agents cannot distinguish between in-edges and the out-edges.

Now, consider a family F of networks, each similar to N but having an odd number of edges as
faulty, in such a way that it does not disconnect the network. Notice that each of these networks is
covering-minimal (since the location of the unsafe edges would break the symmetry between the left
and right parts of the network) and thus it is possible to solve rendezvous of k − τ agents for each
network in F . Suppose P be an algorithm that solves rendezvous of k−τ agents in each network in the
family. Consider a network N ′ ∈ F where for each pair (i, j) either both (ui, uj) and (vi, vj) or both
(ui, vj) and (vi, uj) are faulty; except for one pair (x, y) where the three edges (ux, uy), (ux, vy), (vx, uy)
are safe and only edge (vx, vy) is faulty. Consider an execution of an algorithm P on this network,
controlled by an adversary. During this execution the following happens: all the in-edges and out-
edges (except the unsafe ones) are very slow, i.e. any agents traversing these edges are blocked by the
adversary. At this stage of the execution, the symmetry between the two parts is still maintained and
thus, the in-edges are indistinguishable from the out-edges. Suppose the adversary unblocks the edges
one by one, (while maintaining the symmetry between the two parts until the very end i.e., as soon
as an edge is unblocked the corresponding symmetric edge must be unblocked immediately).
CLAIM: Whenever one edge is unblocked, all the safe and unblocked edges (except the star-edges)
must be traversed by some agent!!
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Suppose some edge e is not traversed, this could be the only out-edge that is slow and all the
other out-edges could be unsafe (note that such a network belongs to the family). Thus, the algorithm
would not achieve rendezvous for this network because the agents in the left and right parts remain
separated.

Due to the above claim, all the in-edges and the out-edges except the ones that are blocked must
be traversed every time one pair of edges is unblocked. There are originally 2m + 1 blocked edges and
2m− 1 unsafe ones among the in-edges and out-edges. So, the total number of edge-traversals made
during the algorithm is Ω(m2).

A similar argument can be used to show that the number of moves made by the algorithm must
be Ω(m.k). In this case, we consider the family of networks with same G′, λ, η and having k = 4p + 1
agents. Initially there are p agents in each star and the rest of the agents appear one by one, such
that every time an agent appears, all the (safe) in-edges and out-edges must be traversed.

4.1 The Algorithm for Rendezvous

We can ensure that no more than one agent dies while traversing the same link, using the cautious
walk technique as in [13]. At each node, all the incident edges are considered to be unexplored in the
beginning. Whenever an agent A at a node u has to traverse an unexplored edge e = (u, v), agent A
first marks link λu(e) as “Being Explored” and if it is able to reach the other end v successfully, it
immediately returns to node u and re-marks the link λu(e) as “safe”. During the algorithm we follow
the rule that no agent ever traverses a link that is marked “Being Explored”. This ensures no more
than τ agents may die during the algorithm.

We now briefly describe our algorithm for rendezvous (Algorithm RDV). We present only an
oversimplified version of the algorithm without the minor technical details. The complete pseudo-code
for the algorithm can be found in the appendix.

At any stage of the algorithm, there are teams of agents, each team possessing a territory which
is a connected acyclic subgraph of G (disjoint from other territories). Each team of agents tries to
expand its territory until it spans a majority of the nodes. Once a team is able to acquire more than
half the nodes of the network, it wins and agents from all other teams join the winning team to achieve
rendezvous.

Initially each territory consists of only the starting node(homebase) of an agent (all agents that
start from that node are in this team). Note that if an agent on start-up, finds that its homebase has
already been acquired by some other team, it simply joins this team. The algorithm proceeds in a
series of exploring and competing rounds. In an exploring round, the team of agents try to expand
its territory by exploring new edges and acquiring new nodes. On the other hand, in the competing
round a team tries to defeat another team and conquering their territory. The competition between
two teams occurs by comparison using the tuple (j, Code) where j is the round number and Code is
an encoding of the territory(and its immediate neighborhood).

The territory of each team is a rooted tree and the information stored in the root defines the status
of the agents in the team (e.g. whether they are in an exploring round or competing round). Every
other node in the tree stores a pointer to its parent in the tree. The status of the root can either
INIT-EXPLORE, INIT-COMPETE, COMPETE, LOST, or END.

Only one agent in a team can be competing state (this is called the active agent and all others are
passive). When a team is in exploring round, the active agent initiates the exploration and thereafter
every agent may participate in the exploration. Each agent explores one unexplored edge and if it
succeeds in reaching the other side, it reports this to the root of the tree and the tree is updated
accordingly. If the edge connects to a node that is already explored (by another agent or the same
agent) then it is marked as tree edge (T-edge) and the new node becomes part of the tree. Otherwise
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it is marked as non-tree edge (NT-edge).
In the algorithm below, T refers to the tree representing the territory to which the agent belongs.

The root of T is denoted by r and Root Status(T ) is the status of the root as written on the whiteboard
of r (A copy of T is also stored on the whiteboard). A node u is called a neighbor of the tree T if there
is a NT-edge between u and some node in T . An agent can be in state active, passive or finished. The
following actions are taken by an agent A:

Algorithm RDV

< T , rNum > := Initialize;
While (Status(A) 6= finished ) {

Case(Status(A) is active and Root Status(T) is INIT-EXPLORE) {
If (|T | > B/2) terminate;
InitExplore;
If (Root Status(T) = LOST ) become passive and exit Case;
Set Root Status(T) to EXPLORE and become Passive;

}
Case( Status(A) is passive ) {

While(Root Status(T) /∈ { EXPLORE, INIT-EXPLORE, END } )
Sleep until woken up;

If(Root Status(T) is END) become finished and exit;
Explore an unexplored edge and go back to r to update T ;
If(Root Status(T) is EXPLORE) // i.e. no active agents

become active and set Root Status(T) to INIT-COMPETE
}
Case(Status(A) is active and Root Status(T) is INIT-COMPETE) {

do{ TOLD := T ;
InitCompete(rNum);
If (Root Status(T) = LOST ) become passive and exit Case;
Result = Compete(rNum); rNum := rNum + 1;

}While( TOLD 6= T );
If(Root Status(T) 6= LOST) Root Status(T):= INIT-EXPLORE;

}
}

PROCEDURE Initialize: If the homebase of the agent is already part of a tree, then the agent joins
this team in passive state. Otherwise, it initializes the tree with only the homebase node and then
starts the algorithm in active state with rNum = 1.

PROCEDURE InitExplore: The agent initiates a new exploring round by traversing T writing “EX-
PLORE” on every node and waking up as many agents as needed for exploration (more precisely, it
wakes-up x agents where x is the number of unexplored edges currently incident to T , unless less than
x agents are available in T—in which case it wakes-up everyone).

PROCEDURE InitCompete(j): The agent initiates the competing round j by traversing T , writing
(COMPETE, j) on each node also assigning labels to the nodes in T . Next, it reads the labels written
on the neighboring nodes and constructs an encoding of T and its neighbors, called CODE (this is
used for comparisons). Finally it writes the CODE on every node in T .

PROCEDURE Compete(j): During this procedure, agent A competes with each node u that is neigh-
bor of T , until it wins or loses. If u is marked END, agent A terminates after writing END on every
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node of T , waking up any sleeping agents and merging with the tree containing u. Else, if u is in a
bigger competing round or in the same competing round with a larger Code, then agent A loses (i.e.
it becomes passive and goes back to its root to sleep). Otherwise if u is in exploring round or in a
smaller competing round or same round but has smaller Code, then Invade(u) is invoked to determine
if the result of the competition is win or loss.

PROCEDURE Invade(u): The agent attempts to acquire the tree containing node u. The agent fol-
lows the father-links from u to reach the current root ru of u. At node ru it uses the usual comparison
criteria and if ru is bigger or equal, then it loses (i.e. it becomes passive and goes back to its root to
sleep). Otherwise it wins and it acquires the Tree rooted at ru, by reversing the father-links in the
path from ru to v where v is the node in the agent’s territory from where it started the Invade procedure.

PROCEDURE terminate: The agent writes END on all nodes in T and then writes Root Status(T)=END
at the root of T ; The agent now becomes finished and locally terminates.

4.2 Analysis of the Algorithm

Theorem 4.2 Algorithm RDV correctly solves Rendezvous for k − τ agents in any network whose
extended view is symmetric-covering minimal.

This result follows from the following lemmas:

Lemma 4.1 During the algorithm RDV, the following holds: (i) Each territory is a Tree. (ii) The
territories are disjoint. (iii) There is at most one active agent in each territory.

Proof : (i) Initially each territory is a tree by construction; addition of a new edge does not create
cycles because only tree edges are added. When two trees are merged, one is bigger than other and
the active agent of the bigger tree performs the merging by changing the father-links and updating the
root. Note that there can not be two active agents in a territory. Thus the merged territory is a tree.
(ii) Each tree is a rooted tree and every node contains a pointer to its parent in the tree. Thus, a node
cannot belong to two trees. (iii) Initially an agent becomes active only when it successfully constructs
T and writes it at the root node. Due to the mutual exclusion property of the whiteboards, there
is only one active agent initially in the tree (all other agents in the same tree must start in passive
state). A passive agent can become active only when there are no active agents in the tree.

Lemma 4.2 There is no deadlock in the algorithm RDV.

Proof : Notice that as long as there is some active agent, the algorithm progresses. In each tree T ,
there is at least one active agent unless root-status is EXPLORE. Suppose the root-status of every
tree is EXPLORE, then each agent is currently exploring some unexplored edge. There are only τ
faulty links in the network and k > τ , so at least one of the exploring agents must return safely from
the exploration. This agent now becomes active.

Lemma 4.3 (i) If the network is minimal, then exactly one node has Root Status = END. (ii) When
one node has Root Status = END, every alive agent in G eventually joins this tree. (iii) (k-τ) agents
eventually become finished and reach the node having Root Status=“END”.

Proof : (i) First notice that due to the constraint on the bound B, only one Tree T can have a size
greater than B/2. Due to Lemma 4.1, the trees are disjoint and each has a unique root. Thus, at
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most one node may have Root Status=END. We now show that at least one node eventually reaches
Root Status=END.

A team of agents in tree T stops expanding its Tree only when either Root Status(T)=END or, all
the trees neighboring T have the same CODE and round number. In the later case, the team starts
an exploring round. Notice that there must exist a Tree T which has some non-faulty edges incident
to it that are either unexplored or being explored (otherwise the network is either disconnected or,
not minimal). So one of these edges would be added to T . Thus the size of T would keep increasing
until it contains more than B/2 nodes and Root Status(T) = END.
(ii) Every agent either dies or reaches a node labelled “END”. All nodes that are labelled END are
part of the same tree.
(iii) Due to the use of cautious walk, at most τ agents may die. Thus each of the surviving agent
eventually reaches a node v labelled END and goes to the root of this tree which is the node having
Root Status=END.
We now analyze the cost of algorithm RDV. We first count the number of competing rounds and
exploring rounds performed during the algorithm.

Lemma 4.4 There are O(m + k) competing rounds. The number of exploring rounds is at most the
number of competing rounds.

Proof : A new competing round is started whenever T is expanded, i.e. the new territory T contains
one more edge or one more agent than the previous territory TOLD. Thus there can be at most (m+k)
competing rounds. After every exploring round completes, there is at least one competing round. So,
the number of exploring rounds can not be more than the number of competing rounds.

Lemma 4.5 The agents make at most O(n(m + k)) moves in the all the exploring rounds combined.

Proof : The Procedure InitExplore() makes |T | moves in a tree T . Only one agent (the active
one) in every tree executes this procedure. So, this accounts for O(n) moves per exploring round and
O(n(m+k)) moves in total. Other than that, every passive agent that is woken up makes O(n) moves
to go to an unexplored edge, explore it and report it to the root. Since each unexplored edge will
be explored once (or at most twice), this cost can be counted per newly explored edge. Thus, this
accounts for O(n.m) moves.

Lemma 4.6 The agents make at most O(m(m + k)) moves in all the competing rounds combined.

Proof : Only the active agent in a tree participates in the competing round. During procedure
InitCompete every edge in G is traversed a constant number of times; this accounts for O(m) moves
per round. Similarly O(m) moves are made per round during procedure Compete, for the comparisons
with each neighbor. Each execution of Invade() takes O(n) moves, because only tree-edges are traversed
and no edge is traversed twice. Whenever an agent execute Invade(), it either wins or loses. A losing
agent never competes again, so the total contribution from losing agents is O(k.n). Edges traversed
by the wining agents are disjoint, so this accounts for O(n) moves per round.
Due to the above lemmas and Theorem 4.1, we have the following result:

Theorem 4.3 The moves complexity of algorithm RDV is O(m(m + k)). Thus algorithm RDV is
optimal.
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5 Conclusions

We considered the problem of rendezvous of mobile agent in a faulty network and showed that it is
possible to rendezvous at most (k − τ) in any connected network containing k dispersed agents and τ
unsafe links (i.e. τ/2 faulty edges). We determined the condition under which this is possible and gave
an algorithm for solving the problem under this condition. The algorithm we presented is optimal in
terms of the total number of moves made by the agents and requires no prior information about the
network topology (except the size). Moreover, we showed that it is impossible to have an effective
algorithm for rendezvous, one that always achieves the rendezvous of as many agents as possible in
any given network.

Notice that the only information needed by our algorithm is a tight upper bound on the number
of nodes in the network. We assumed that the faulty links do not disconnect the network. In the case
of a disconnected network, we can still rendezvous the agents in a connected component if we know
a good bound on its size. For example, if the component contains a majority of the nodes (i.e. more
than half of them), then original network size can be used as the bound. In this case, τ is equal to the
number of outgoing edges from the component and we can rendezvous k′ − τ agents where k′ agents
are initially located in this component.

In the particular case of a single black hole in the network, we can rendezvous k − dBH agents
where dBH is the degree of the black-hole (provided that the black hole is not a cut-vertex). If there
are r < n/2 black holes and the rest of network is still connected, then we can rendezvous k− τ agents
where τ is the number of edges which have a safe node on one end and a black-hole on the other end.
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APPENDIX

Procedure initExplore(T, na)
count := 0;
// traverse territory T and do the following:

foreach v ∈ T do
status(v) := explore ;
sla := |{ agents in sleeping at v}| ;
wake up max(na− count, sla) agents sleeping at v ;
count := count + max(na− count, sla) ;

goToRoot ;
return(count + 1);

Procedure explore
(v, p) := next-edge(T(r)) ;
// returns a vertex v ∈ T(r) and the port-number p of an unexplored edge incident to v after

marking it as being explored in T(r); Here, r is the root-node.

go to node v ;
port-status(v)[p] := being explored ;
leave v through port p to arrive in a vertex u trough port q ;
if in-a-tree(u) then

leave u through port q ;
port-status(v)[p] := NT ;
goToRootToReport ;
update T by marking (v, p) as NT ;

else
in-a-tree(u) := true ;
AgentCount(u) := 0 ;
father(u) := q ;
port-status(v)[q] := T ;
foreach p ∈ [1, deg(u)] where p 6= q do

port-status(u)[p] := unexplored ;

status(u) := explore ;
leave u through port q ;
port-status(v)[p] := T ;
root-status(v) := ⊥ ;
goToRootToReport ;
update T(r) by adding u and marking (v, p) and (u, q) as T and marking the other ports of u as
unexplored;
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Algorithm 3: rdv
initialize ;
while mystatus 6= finished do

case root-status(v) = init-explore and mystatus = active
need := |{(u, p) | u ∈ T and port-status(u)[p] = unexplored}| ;
exploringAgents(v) := 0 ;
available(v) := initExplore(T(v), need− 1) ;
mystatus = passive ;

case root-status(v) = init-explore and mystatus = passive
if there exists an unexplored edge incident to a vertex of T(v) then

exploringAgents(v) := exploringAgents(v) + 1 ;
if exploringAgents(v) = available(v) then root-status(v) := explore ;
explore ;
if root-status(v) = init-explore then

wait until root-status(v) 6= init-explore ;

if root-status(v) = explore then
root-status(v) := init-compete ;
round(v) := round(v) + 1 ;
mystatus := active ;

else if root-status(v) = end then
mystatus := finished ;

else
sleep ;

else if |T(v)| > B/2 then
root-status(v) := end ;
foreach v ∈ T(v) do

status(v) := end ;
wake up all sleeping agents ;

mystatus := finished ;
else

sleep ;

case root-status(v) = init-compete and mystatus = active
TOLD := T(v) ;
code := initCompete(TOLD, round(v));
if root-status(v) 6= lost then

root-status(v) := compete ;
mystatus := active ;

case root-status(v) = compete and mystatus = active
result := compete(round(v), code, TOLD) ;
if result = finished and root-status(v) 6= lost then

mystatus := finished ;
else if result = winner then

update T(v) ; // Add the newly acquired territory to T.

if root-status(v) 6= lost then
root-status(v) := init-compete ;
round(v) := round(v) + 1 ;

else if result = equal and root-status(v) 6= lost then
if T(v) 6= TOLD then

root-status(v) := init-compete ;
round(v) := round(v) + 1 ;

else
root-status(v) := init-explore ;

else
wait until root-status(v) = lost;

case root-status(v) = lost and mystatus = active
root-status(r) := grab ;
sleep ;
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Procedure goToRoot

// enables an agent located at a node v to go to the root of the tree currently containing v.
if father(v) 6= 0 then

leave v through port father(v) ;
goToRoot ;

Procedure goToRootToInvade

// enables an agent located at a node v to go to the root of the tree currently containing v when

it wants to acquire this tree.

if wait-status(v) = yes then
wait until wait-status = no ;

wait-status(v) := yes ;
if father(v) 6= 0 then

leave v through port father(v) ;
goToRootToInvade ;

Procedure goToRootToReport

// enables an agent located at a node v to go to the root of the tree currently containing v when

it wants to report that an edge is safe.

if wait-status(v) = yes then
wait until wait-status = no ;

if father(v) 6= 0 then
leave v through port father(v) ;
goToRootToReport ;

Procedure goToRootForEnding(u)

// enable an agent located at a node v to go to the root of the tree currently containing v when

it knows that the state of one of the neighbor of the node u is end.

if wait-status(v) = yes then
go to u and for each w on the path leading to u, wait-status(w) := no ;
goToRoot ;

else
wait-status(v) := yes ;
if father(v) 6= 0 then

leave v through port father(v) ;
goToRootForEnding(u) ;

iii



Procedure initCompete(T, j)
count := 1 ;
// traverse territory T and do the following

foreach v ∈ T do
round(v) := j ;
status(v) := init-compete ;
Label(v) := count ;
count := count + 1 ;

goToRoot ;
if root-status(r) = lost then return(⊥) ;
// traverse territory T and do the following

foreach v ∈ T do
N(v) := ∅ ;
foreach port p at v do

if port-status(v)[p] = unexplored then
N(v) := N(v) ∪ {(p,−1,⊥,⊥,⊥)}

else if port-status(v)[p] = being explored then
N(v) := N(v) ∪ {(p, 0,⊥,⊥,⊥)}

else
leave v through port p to reach a node u through port q ;
N(v) := N(v) ∪ {(p, q, Label(u), AgentCount(u), round(u))}

code[Label(v)] := (AgentCount(v), father(v), N(v)) ; ;

// code encodes information about every node v ∈ T and its neighborhood.

goToRoot ;
if root-status(r) = lost then return(⊥) ;
// traverse territory T and do the following

foreach v ∈ T do
code(v) := code ;
status(v) := compete ;

goToRoot ;
return(code) ;

Procedure flipEdge(q)
if father(v) 6= 0 then

p := father(v) ;
father(v) := q ;
wait-status := no ;
leave v through port p to reach a node u through port q ;
flipEdge(q) ;

else
wait-status := no ;
father(v) := q ;
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Procedure compete(j,code,T)

// traverse territory T and do the following.

foreach v ∈ T do
foreach p ∈ [1, deg(v)] with port-status(v)[p] = NT do

leave v through port p to reach a node u through port q ;
if status(u) = compete and round(u) = j and code(u) = code then

go to v ;
else if status(u) = end then

go to v ;
goToRootForEnding(v) ;
Ending(v, p);
return (finished) ;

else if status(u) = compete and (round(u) > j or (round(u) = j and code(u) > code)) then
go to v ;
goToRoot ;
return (loser) ;

else
goToRootToInvade; // The root reached must be active(not GRAB/LOST).

// In the following r denotes the root of the tree containing u
if root-status(r) = init-explore then

wait until root-status(r) 6= init-explore

if root-status(r) = end then
go to v and for each w on the path leading to v, wait-status(w) := no ;
goToRootForEnding(v) ;
Ending(v, p);
return (finished) ;

else if root-status(r) = compete and (round(r) > j or (round(r) = j and code(r) ≥ code)) then
go to v and for each w on the path leading to v, wait-status(w) := no ;
goToRoot ;
return (loser) ;

else
if root-status(r) 6= explore then

root-status(r) := lost ;
round(r) := j ;
wait until root-status(r) = grab ;

else
root-status(r) := grab ;

go to u ;
flipEdge (q) ;
root-status(r) := ⊥ ;
goToRoot ;
return (winner) ;

return(equal) ;
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Procedure initialize
if in-a-tree(v) then

AgentCount(v) := AgentCount(v) + 1 ;
goToRoot ;
update T(r) ;
if root-status(v) = init-explore then

wait until root-status(v) 6= init-explore ;

if root-status(v) = explore then
root-status(v) := init-compete ;
mystatus := active ;

else if root-status(v) = end then
mystatus := finished ;

else
sleep ;

else
in-a-tree(v) := true ;
AgentCount(v) := 1 ;
father(v) := 0 ;
foreach p ∈ [1, deg(v)] where p 6= q do

port-status(v)[p] := unexplored ;

T(v) := {v} ;
status(v) := explore ;
root-status(v) := init-explore ;
round(v) := 0 ;
Label(v) := 0 ;
mystatus := active ;

Procedure sleep
mystatus := passive ;
wait until being woken up by another agent ;
goToRoot ;
if root-status(v) = end then

mystatus := finished ;
else if root-status(v) /∈ {init-explore, explore} then

sleep ;

Procedure Ending(vstart, p)

// Let r be the current node ( must be a root node ).

if root-status(r) 6= lost then
wait-status(r) := yes ;
root-status(r) := grab ;
// traverse territory T and do the following.

foreach w ∈ T do
status(w) := end ;
wake up all sleeping agents ;

go to vstart ;
flipEdge (p) ;
root-status(r) := ⊥ ;
wait-status := no ;
goToRoot ;
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