
Ring exploration by a team of asynchronous

oblivious robots

Paola Flocchini ∗ David Ilcinkas † Andrzej Pelc †

Nicola Santoro ‡

Abstract

We consider the problem of exploring an anonymous unoriented ring by a team
of identical, oblivious, mobile robots. Robots start from different nodes of the ring
and they operate in Look-Compute-Move cycles. At the end, every node must be
visited by at least one robot, and all robots must stop. In one cycle, a robot takes
a snapshot of the current configuration (Look), makes a decision to stay idle or
to move to one of its adjacent nodes (Compute), and in the latter case makes an
instantaneous move to this neighbor (Move). Cycles are performed asynchronously
for each robot.

We show that the minimum number ρ(n) of robots that can explore a ring of size
n is O(log n) and that ρ(n) = Ω(log n) for arbitrarily large n. On one hand we give
an algorithm that explores the ring starting from any initial configuration, provided
that n and k are co-prime, and we show that in this case k is O(log n). On the other
hand we show that when O(log n) agents are necessary. Notice that, when k and n

are not co-prime the problem is unsolvable (i.e., there are initial configurations for
which the exploration cannot be done).

Finally, we study and characterize the exploration problem for the line where we
describe an algorithm that performs the exploration from an arbitrary configuration
for all values of k for which the exploration is possible.

Keywords: mobile robot, ring, line, exploration

∗SITE, University of Ottawa, Ottawa, ON K1N 6N5, Canada. E-mail: flocchin@site.uottawa.ca
†Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7,

Canada. E-mail: ilcinkas@lri.fr, pelc@uqo.ca.
‡School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

E-mail: santoro@scs.carleton.ca

1



1 Introduction

1.1 Framework

Mobile entities (robots), initially located at different nodes of the ring, have to explore
it, by collectively visiting all nodes of the ring. At the end, every node must be visited
by at least one robot and all robots must stop. We study the exploration problem in a
very weak scenario, which, while simple to describe, makes coordination of robots’ actions
particularly hard, as robots cannot communicate directly but have to make decisions about
their moves only by observing the environment. Moreover, they operate asynchronously
and do not have memory of past observations.

Consider an unoriented anonymous ring of stations (nodes). Neither nodes nor links of
the ring have any labels. Initially, some nodes of the ring are occupied by robots and
there is at most one robot in each node. Robots operate in Look-Compute-Move cycles.
In one cycle, a robot takes a snapshot of the current configuration (Look), then, based on
the perceived configuration, makes a decision to stay idle or to move to one of its adjacent
nodes (Compute), and in the latter case makes an instantaneous move to this neighbor
(Move). Cycles are performed asynchronously for each robot. This means that the time
between Look, Compute, and Move operations is finite but unbounded, and is decided
by the adversary for each action of each robot. The only constraint is that moves are
instantaneous, and hence any robot performing a Look operation sees all other robots at
nodes of the ring and not on edges, while performing a move. However a robot R may
perform a Look operation at some time t, perceiving robots at some nodes, then Compute
a target neighbor at some time t′ > t, and Move to this neighbor at some later time t′′ > t′

in which some robots are in different nodes from those previously perceived by R because
in the meantime they performed their Move operations. Hence robots may move based on
significantly outdated perceptions, which adds to the difficulty of exploration. It should
be stressed that robots are memoryless (oblivious), i.e., they do not have any memory of
past observations. Thus the target node (which is either the current position of the robot
or one of its neighbors) is decided by the robot during a Compute operation solely on the
basis of the location of other robots perceived in the previous Look operation. Robots are
anonymous and execute the same deterministic algorithm. They cannot leave any marks
at visited nodes, nor send any messages to other robots.

This very weak scenario, introduced in [21] and similar to that considered in [1, 3, 11,
12, 19, 23, 24], is justified by the fact that robots may be very small, cheap and mass-
produced devices. Adding distinct labels, memory, or communication capabilities would
make such robots larger and more expensive, which is not desirable. Thus it is interesting
to consider such a scenario from the point of view of applications. On the theoretical side,
this weak scenario increases the difficulty of collective exploration by making the problem
of coordinating actions of robots particularly hard, and thus provides an interesting insight
to the general problem of organizing collective actions of mobile entities in a distributed

2



environment.

An important and well studied capability is the multiplicity detection [19, 21, 24]. This
is the ability of the robots to perceive, during the Look operation, if there is one or more
robots in a given location. In our case, it is easy to see that without this capability,
exploration is always impossible. Indeed, there must be a configuration in which robots
stop. If the initial configuration occupied precisely these nodes, only with one robot per
node, there would be no way to perceive any difference from the stopping configuration,
and thus robots would stop immediately, without exploring any node. Thus we assume
the capability of multiplicity detection in our further considerations. It should be stressed
that, during a Look operation, a robot can only tell if at some node there are no robots,
there is one robot, or there are more than one robots: a robot does not see a difference
between a node occupied by a or b robots, for distinct a, b > 1.

1.2 Related Work

Algorithms for graph exploration by mobile robots (robots) have been intensly studied
in recent literature. Several scenarios have been considered. Most of the research is
concerned with the case of a single robot exploring the graph. In [2, 8, 14] the robot
explores strongly connected directed graphs and it can move only in the direction from
head to tail of an edge, not vice-versa. In particular, [14] investigates the minimum time
of exploration of directed graphs, and [2] gives improved algorithms for this problem in
terms of the deficiency of the graph (i.e., the minimum number of edges to be added to
make the graph Eulerian). Many papers, e.g., [15, 16, 17, 22] study the scenario where
the explored graph is undirected and the robot can traverse edges in both directions. In
[15] the authors investigate the problem of how the availability of a map influences the
efficiency of exploration. In [22] it is shown that a graph with n nodes and e edges can
be explored in time e + O(n). In some papers, additional restrictions on the moves of the
robot are imposed. It is assumed that the robot has either a restricted tank [6, 9], forcing
it to periodically return to the base for refueling, or that it is tethered, i.e., attached to
the base by a rope or cable of restricted length [17].

Exploration of anonymous graphs presents different difficulties. In this case it is impossi-
ble to explore arbitrary graphs by a single robot if no marking of nodes is allowed. Hence
the scenario adopted in [7, 8] allows the use of pebbles which the robot can drop on nodes
to recognize already visited ones, and then remove them and drop in other places. The
authors concentrate attention on the minimum number of pebbles allowing efficient ex-
ploration and mapping of arbitrary directed n-node graphs. (In the case of undirected
graphs, one pebble suffices for efficient exploration.) In [8] the authors compare explo-
ration power of one robot to that of two cooperating robots with a constant number of
pebbles. In [7] it is shown that one pebble is enough if the robot knows an upper bound
on the size of the graph, and Θ(log log n) pebbles are necessary and sufficient otherwise.

In all the above papers, except [8], exploration is performed by a single robot. Exploration

3



by many robots has been investigated mostly in the context when moves of the robots
are centrally coordinated. In [18], approximation algorithms are given for the collective
exploration problem in arbitrary graphs. In [4, 5] the authors construct approximation
algorithms for the collective exploration problem in weighted trees. On the other hand,
in [20] the authors study the problem of distributed collective exploration of trees of
unknown topology. However, the robots performing exploration have memory and can
directly communicate with each other.

To the best of our knowledge, the very weak assumption of asynchronous identical robots
that cannot send any messages and communicate with the environment only by observing
it, has not been previously used in the context of graph exploration. It has been used,
however, to study another problem, that of gathering robots in one location. Most of
the research in this area concerned the case of robots moving freely in the plane [1, 3,
10, 11, 12, 13, 19, 23, 24, 26]. The scenario was further precised in various ways. In
[10] it was assumed that robots have memory, while in [1, 3, 11, 12, 13, 19, 23, 24, 26]
robots were oblivious, i.e., it was assumed that they do not have any memory of past
observations. Oblivious robots operate in Look-Compute-Move cycles, similar to those
described in our scenario. The differences are in the amount of synchrony assumed in
the execution of the cycles. In [3, 26] cycles were executed synchronously in rounds by
all active robots, and the adversary could only decide which robots are active in a given
cycle. In [10, 11, 12, 13, 19, 23, 24, 26] they were executed asynchronously: the adversary
could interleave operations arbitrarily, stop robots during the move, and schedule Look
operations of some robots while others were moving.

Our scenario has been recently introduced in [21] to study the gathering problem in the
ring. This scenario is very similar to the asynchronous model used in [19, 24]. The only
difference with respect to [19, 24] is in the execution of Move operations. This has been
adapted to the context of graphs: moves of the robots are executed instantaneously from
a node to its neighbor, and hence robots always see other robots at nodes. All possibilities
of the adversary concerning interleaving operations performed by various robots are the
same as in the model from [19, 24], and the characteristics of the robots (anonymity,
obliviousness, multiplicity detection) are also the same.

1.3 Our results

We consider the problem of exploring an anonymous ring of size n by k oblivious anony-
mous asynchronous robots scattered in the ring: within finite time and regardless of the
initial placement of the robots, each node must have been visited by a robot and the
robots must be in a configuration from which no further move by any robot is allowed.
We study this problem and characterize the conditions for its solvability.

We first prove that this problem is unsolvable if k|n. We the prove that this condition
is tight. In fact, we show that, whenever gcd(n, k) = 1, the robots can explore the
ring terminating within finite time. The proof is constructive: we present a terminating

4



exploration protocol and prove its correctness.

We then consider the minimum number ρ(n) of robots that can explore a ring of size n. We
prove that ρ(n) is O(logn) and that ρ(n) = Ω(log n) for arbitrarily large n. More precisely,
there exists a constant c such that, for arbitrarily large n, we have ρ(n) ≥ c log n.)

As an application of our main ideas in a simpler context, we also characterize sizes of
teams of robots capable of exploring a line of length n.

2 Terminology and preliminaries

In a ring of n nodes, initially, some nodes are occupied by robots and there is at most
one robot in each node. The number of robots is denoted by k. Two robots are called
neighboring, if at least one of the two segments of the ring between them does not contain
any robots. A segment of the ring between two neighboring robots is called free if there
is no robot in this segment. If more than one robots are in a node, we say that they form
a tower. In the following, clockwise/counterclockwise directions are introduced only for
the purpose of definition, robots do not have this notion, as the ring is not required to be
oriented.

During the exploration robots move, and at any time they occupy some nodes of the ring,
forming a configuration. In an anonymous unoriented ring of size n, a configuration is
defined for various possible starting nodes. In fact, let u be an arbitrary node occupied
by at least one robot, then a configuration with respect to u is denoted by a pair of
sequences ((a1, . . . , ar), (ar, . . . , a1)), where the integers ai ai for i < r, denote the distance
(number of links) between neighbouring agents in clockwise direction. Notice that ai = 0
means that two agents are located on the same node (i.e., there is a tower). In a line a
configuration is defined in the same way, except that clockwise is replaced with left/right
direction, distance a1 corresponds to the distance from the left border to the first agent
and ar the distance from the last agent to the right border.

It should be clear that in a ring different choices of the starting node give rise to different
pairs of sequences. Respective sequences in these pairs are cyclic shifts of each other and
correspond to the same positioning of robots. Whenever we do not specify the starting
point of a configuration, we consider the lexicographically minimum shift σmin of all cyclic
shifts of the configurations.

Consider a configuration C = (a1, . . . , ar) without towers. C is called periodic if the
sequence (a1, . . . , ar) is a concatenation of at least two copies of a subsequence p.

Since the ring is unoriented and the robots cannot distinguish between a configuration and
its symmetric image, the view of a robot R from a node v is the the pair of configurations
starting from v; the View of R is the set of its view from every node. the view of a robot
from a node v is the the pair of configurations starting from v; the view For example,

5



consider a 9-node ring with nodes v1, . . . , v9 where there is a robot at each of v1 and v2 ,
and two robots (i.e. forming a tower) at node v4; then the view from node x1 is the set
{(1, 2, 0, 6), (6, 0, 2, 1)}.

A configuration without multiplicities is called rigid if the views of all robots are distinct.

We say that exploration of a n-node ring is possible with k robots, if there exists an
algorithm which, starting from any configuration of k robots without towers, explores the
entire ring and brings all robots to a configuration in which they all remain idle. We say
that, in such a configuration, the robots have reached a terminal state.

In the case of the line, the terminology is similar except that we talk about left/right
instead of clockwise/counterclockwise.

Obviously, if n = k, the exploration is already accomplished, hence we always assume
that n > k.

3 Exploration of a ring

3.1 Basic restriction

Lemma 3.1 Let k < n. If k|n then exploration of a n nodes ring with k is not possible.

Proof: By contradiction, let P be a generic solution protocol. Choose as initial config-
uration an equidistant placement of the k robots in the ring (it exists since k|n). Thus,
initially the states of all robots are identical, say σ(0). Clearly this state is not a terminal
state otherwise, since k < n, P would terminate without exploring the ring contradicting
the correctness of P . Consider now an adversary that uses a synchronous scheduler and a
consistent orientation of the ring. Then, at each time step t, the states of all robots con-
tinue to be identical, say σ(t), and furthermore they are indistinguishable from those of
previous steps; i.e., σ(t) = σ(0) for all t. Hence the the robots will never enter a terminal
state, contradicting the fact that P leads within finite time all robots to a configuration
in which they all remain idle. �

Hence, in the following we will consider the case when gcd(n, k) = 1.

3.2 Ring Exploration

In this section we present an algorithm that allows k ≥ 10 robots to explore n-node ring
whenever gcd(n, k) = 1.

First of all notice that when gcd(n, k) = 1 any configuration of the robots is aperiodic.
Let σmin(t) denote the lexicographically minimum string at time t.

6



Property 3.1 If σmin(t) is symmetric there are two occurrences of σmin(t) in σ, at time
t and they are in opposite direction. If σmin(t) is not symmetric, it is unique.

W W'

L1: 1,1,1,4,1,3,2,1,1,4 (clockwise)
L2: 1,1,1,4,1,3,2,1,1,4 (counterclockwise)

A B

C

Figure 1: A symmetric configuration. There are two occurrences of the lex-min string, one clock-wise
starting from W , the other counter-clock-wise starting from W ′.

The idea of the algorithm is the following. When a robot observes a configuration σ =
(a1, . . . , ar) that does not contain towers, it identifies the smallest lexicographic string
σmin among all the cyclic shifts of σ. There could be a unique occurrence of such a string
(if the agent are asymmetrically placed) or two occurrences (if there is a symmetry axis).
Each string identifies a leader and the idea is for the agents to appropriately move towards
the unique leader (or one of the two leaders) so to form a single group of consecutive agents
or two such groups. When such consecutive configurations are reached, one or two towers
will be formed inside each group. The creation of the towers indicate the beginning of
the actual exploration. At this point the extremal agent of each group moves to explore
the free part between the groups until precise final configurations are reached. Final
configurations contain one or two groups of consecutive agents with a tower, plus two
agents in the middle of each interval of free agents (either next to each other, if the
interval has an even number of nodes; or forming a tower, if it has an odd number of
nodes).

7



Algorithm Ring Exploration for agent a

Case configuration of:

final
done

consecutive or 2-consecutive or some-towers
Form Tower

consecutive-with-tower(s) or exploring
If I am-the-explorer

move to exploration direction (* start or continue exploring *)
other

Make consecutive

For a robot a, I-am-the-explorer is true iff there is a group with a tower, a is isolated
and has not reached the “middle” of the free segment.

Notice that the “middle” can always be identified since we are assuming that there are
enough agents to unambiguously form two groups with a tower each.

form tower

If I belong to consecutive-group x1 . . . xk

If k is odd and I am on xk+1

2

move to a neighbour to form a tower.
If k is even and I am on xk

2

− 1

move to xk
2

− 2

If k is even and I am on xk
2

+ 1

move to xk
2

+ 2

If there are two occurrences of the minimum string, an agent a observes its position in
both strings with respect to the leaders. Let L1(a) be the closest of the two leaders; for
example, in Figure 3.2, L1(A) = W ′, while L1(B) = L1(C) = W .

8



Make Consecutive

Compute the lexicographically minimum string σmin.
If σmin is asymmetric

identify unique leader L
Let σmin starting from L identify the right direction
If I am the closest agent to L with an empty left neighbour x

move to x
If σmin is symmetric

Identify my-leader L1(a)
Let σmin starting from L1(a) identify the left-right direction
If among all the a′ s.t. L1(a

′) = L1(a), I am the closest to L1(a)
with an empty left neighbour x

move to x

Possible Configurations.

- consecutive: a group of k consecutive robots;
- 2-consecutive: two groups of k

2
consecutive robots; k must be even, and the groups are

separated by two free segments of different length (because the configuration cannot be
periodic).
- consecutive-with -tower: an almost consecutive configuration, except that in the middle
there are either two consecutive empty nodes next to two towers (k is even) or a central
empty node with a tower in one of its neighbours (k is odd).
- 2- consecutive-with tower: an almost 2-consecutive configuration, except that in the
middle of each group there are either two consecutive empty nodes next to two towers (k
is even), or a central empty node with a tower in one of its neighbours (k is odd).
- exploring: an almost 2-consecutive-with -tower configuration, except that two robots are
isolated in the two free segments (they are exploring), or one is isolated and the other is
still part of the group.
- 2-exploring: same as exploring but with 2 pairs of robots exploring the two free segments.
- Final: a consecutive-with -tower configuration with two robots in the middle of the free
segment (either forming a tower, if the segment has an odd number of nodes, or next
to each other otherwise), or a 2-consecutive-with -tower configuration with two pairs of
robots in the middle of the two segments (each of them either forming a tower, if the
corresponding segment has an odd number of nodes, or next to each other otherwise.

3.3 Correctness and Complexity

Let us now prove the correctness of algorithm Ring Exploration and analyze its com-
plexity.

9



Property 3.2 At any point in time in the execution of Ring Exploration, at most
two robots are allowed to move following an observation.

Lemma 3.2 Let a and b be the two agents that, in the execution of Ring Exploration,
could potentially become active observing a configuration at time t. Let agent a move at
time t′ > t on the basis of the observation of σmin(t), the minimum string σmin(t′ + 1)
immediately after the movement of a is smaller than σmin(t).

Proof:

- Let a = b. This means that there is a unique leader L and the configuration is asymmetric
at time t. Let σmin(t) = (1q, s2, . . . sm), (where with 1q, q ≥ 0 we denote q occurrences of
distance one). After agent a moves, the new configuration starting from L has one of the
the following forms: σ(t′ + 1) = (1q+1, s2 − 1, . . . , . . . , sm) (if robot a joins the group of
consecutive robots following L), or σ(t′ + 1) = (1q, s2 − 1, s3 + 1, . . . , sm) (otherwise). In
both cases, σmin(t′ + 1) = σ(t′ + 1) < σmin(t).

- Let a 6= b. This means that the configuration is symmetric and thus there are two
occurrences of σmin(t) = (1q, s2, . . . sm), let us call σ(min,a)(t) the one starting from L(a)
and σ(min,b)(t) the one starting from the other leader L(b) (this is the case, for example,
of Figure 1 where a is in A and b is in B) . By definition of the algorithm only a and b
can become active. After a moves at time t′, we have various cases:
1) in the meantime there has been a single movement by b: in this case the new configura-
tions from L(a) and L(b) immediately after a’s movement are still symmetric of the form:
σ(min,a)(t

′ + 1) = σ(min,b)(t
′ + 1) = (s1, . . . , si − 1, si+1 + 1, . . . , sw + 1, sw+1 − 1, . . . , sm) =

σmin(t′ + 1), which is clearly smaller than σmin(t).
2) in the meantime there have been several movements: by definition of the algorithm the
movements can be performed (either by b only or by different robots after b) only in the
direction of the leader of b (for example, in Figure 1 robot b could move 3 times and then
robot c in C could start moving). Moreover, a single robot (besides a) can be active at a
time. Let us assume first that all the movements (say f movements) have been performed
by b to get closer to its leader. The new strings seen from L(a) and from L(b) are:
σa(t

′ + 1) = (s1, . . . si − 1, si+1 + 1, si+2, . . . , sx + f, sx+1 − f, . . . , sm), and
σb(t

′ + 1) = (s1, . . . si − f, si+1 + f, si+2, . . . sx + 1, sx+1 − 1, . . . , sm). Clearly σb(t
′ + 1) <

σa(t
′ + 1). Moreover, σmin(t′ + 1) = σb(t

′ + 1) < σmin(t).

If some other robots c has moved after b, it means that b has joined the consecutive group
of its leader and c has started to get closer as well, the new minimum string is even
smaller. Further movements by other robots keep decreasing the string. �

Lemma 3.3 In the execution of Ring Exploration, within finite time, a consecutive
or 2-consecutive configuration is reached.

10



Proof: It follows from the fact that, by Lemma 3.2, the lexicographically minimum
string decreases at each movement until, by definition of movements, a consecutive or
2-consecutive configuration is reached. �

Theorem 3.1 For any n > k ≥ 10, Algorithm Ring Exploration performs exploration
of a n-node ring by any team of k robots, if gcd(n, k) = 1.

Proof:

In each consecutive block a tower is unambiguously formed. From now on all robots know
that the exploration is started. If the consecutive configuration is one, there are two
robots that can move. By the algorithm, the robots move until they meet in the middle
of the free segment (either next to each other, if the number of nodes in the segment in
even, or forming a tower if it is odd). Notice that this is unambiguously recognized as
a final configuration because in no other moment there has been a group with a tower
on one side of the line and a pair of robots or a tower in the middle of the free segment.
If there are two consecutive configurations, two pairs of robots can move and the same
argument works in the two free segments. �

3.4 Size of the minimum team

In this section we show that the minimum number of robots that can explore a ring
regardless of their initial position is logarithmic in n. More precisely, we have the following
result.

Theorem 3.2 The minimum number ρ(n) of robots that can explore a n-node ring has
the following properties:

1. ρ(n) ∈ O(logn);

2. there exists a constant c such that, for arbitrarily large n, we have ρ(n) ≥ c log n.

Proof: Let pj denote the j-th prime, and let pj# denote pj-primorial, that is

pj# = Πj
i=1 pi (1)

An important property of the primorial is the following [25]:

Property 3.3 limj→∞ (pj#)
1

pj = e.

11



We will now prove each part of the theorem separately.

Part 1.
Let f(n) be the smallest integer coprime with n. By definition gcd(n, f(n)) = 1; thus, by
Theorem 3.1, exploration is possible with f(n) agents. Hence, ρ(n) ≤ f(n).

Observe that f(pj#) = pj+1; furthermore, if pj−1# < n ≤ pj#, then f(n) = f(pj#). Let
f(n) = f(pj#) for some integer j.

By definition of primorial we have

pj+1 =
pj+1#

pj#

By Property 3.3 it follows that, for large enough j, pj+1 ≈ epj+1−pj , that is, pj+1 ≈
pj + loge pj+1; thus, by Property 3.3, pj ∈ O(log pj#). In other words,

ρ(n) ≤ f(n) = f(pj#) = pj+1 ∈ O(log pj#) = O(log n),

completing the proof of Part 1.

Part 2.
The proof of Part 2 is carried out through a series of properties. Let x ∈ R+. We
denote by ps(x) the largest prime not greater than x, and by ij(x) the integer such that

p
ij
j ≤ x < p

ij+1
j .

Property 3.4 i1(x) ≥ i2(x) ≥ i3(x) ≥ . . . ≥ is(x)(x)

Proof: By contradiction, let ij(x) ≥ ij+1(x). Then, p
ij(x)+1
j ≤ p

ij+1(x)
j ; however p

ij+1(x)
j+1 <

p
ij(x)+1
j by definition, a contradiction. �

Define now
x& = Π

s(x)
j=1 p

ij(x)
j (2)

It is easy to verify the following:

Property 3.5 For all integers i ≤ x, i|x&

As a consequence, the smallest i that does not divide x& must be greater than x.

The notion of primorial can be extended to the reals in a natural way. For x ∈ R+, we
define x-primorial, denoted by x#, as follows:

12



x# = Π
s(x)
j=1 pj (3)

Note that by definition
x# = ps(x)# (4)

From definitions 2 and 3, we have

Property 3.6 x& = Π
⌈log x⌉
j=1 x

1

j #

We thus have the following

Property 3.7 There exists a constant c such that for every x ∈ R+ we have logc(x&) ≤
∑⌈log x⌉

j=1 x
1

j

Proof: By Property 3.3 it follows that there exists a constant c such that (p#)
1

p ≤ c for
any prime p. That is, for any prime p we have p# ≤ cp. Thus for every x ∈ R+ we have

x# = ps(x)# ≤ cps(x) ≤ cx.

Hence, by Property 3.6, we have

logc(x&) =
∑⌈log x⌉

j=1 logc(x
1

j #) ≤
∑⌈log x⌉

j=1 x
1

j

�

Property 3.8
∑⌈log x⌉

j=1 x
1

j ≤ 2x

Proof:
∑⌈log x⌉

j=1 x
1

j = x +
∑⌈log x⌉

j=2 x
1

j ≤ x + x
1

2 (⌈log x⌉ − 1) ≤ 2x �

Summarizing, by Lemma 3.1, for exploration to be possible, it must be gcd(k, n) = 1. Let
n = j& for some integer j; by Property 3.5, the smallest k that does not divide n = j&
must be greater than j. However, by Properties 3.7 and 3.8, it follows that

j ≥ 1
2
logc(j&) = 1

2
logc n

completing the proof of Part 2 of Theorem 3.2. �

It should be noted that for some specific values of n, the number ρ(n) is constant. For
example, if n is prime, then ρ(n) = 5.

13



4 Exploration of the line

In this section we characterize sizes of teams of robots capable of exploring a line of length
n.

Theorem 4.1 Consider k robots in a n-node line, where n > k. Exploration of a n-node
line by k < n robots is possible, if and only if, k = 4 and n is odd, or k = 3, or k ≥ 5.

4.1 Exploration with 3 or k ≥ 5 Robots

We first present an algorithm to explore a line when k = 3 or k ≥ 5. The idea of the
algorithm is to have the k robots occupy k consecutive locations at one extreme of the line
(if k is odd) or k

2
consecutive locations on both sides of the line (if k is even). When one

of these configurations occur, the second robot of each group moves on the first creating
a tower. This indicates the beginning of the actual exploration: now the extremal robots
move along the line. The algorithm terminates when the exploring robot reaches the other
end of the line (k odd), or two exploring robots are next to each other in the middle of
the line (k even, n even), or when they form a tower in the middle of the line (k even, n
odd).

consecutive: (1k−1, n − k + 1) • · · · •
︸ ︷︷ ︸

k

◦ · · · ◦
︸ ︷︷ ︸

n−k

2-consecutive: (1
k

2
−1, n − k, 1

k

2
−1) • · · · •

︸ ︷︷ ︸
k

2

◦ · · · ◦
︸ ︷︷ ︸

n−k

• · · · •
︸ ︷︷ ︸

k

2

consecutive-with -tower: (0, 2, 1k−2, n − k + 1) N ◦ • · · · •
︸ ︷︷ ︸

k−2

◦ · · · ◦
︸ ︷︷ ︸

n−k

2- consecutive-with tower:

(0, 2, 1
k

2
−3, n − k + 1, 1

k

2
−3, 0, 2) N ◦ • · · · •

︸ ︷︷ ︸
k

2
−2

◦ · · · ◦
︸ ︷︷ ︸

n−k

• · · · •
︸ ︷︷ ︸

k

2
−2

◦N

exploring (0, 2, 1k−4, j, n − j − k + 1) N ◦ • · · · •
︸ ︷︷ ︸

k−3

◦ · · · ◦
︸ ︷︷ ︸

j

• ◦ · · · ◦
︸ ︷︷ ︸

n−j−k

2-exploring (0, 2, 1k−4, j, i, n − i − j − k + 1) N ◦ • · · · •
︸ ︷︷ ︸

k

2
−3

◦ · · · ◦
︸ ︷︷ ︸

j

• ◦ · · · ◦
︸ ︷︷ ︸

i

• ◦ · · · ◦
︸ ︷︷ ︸

n−i−j−k

• · · · •
︸ ︷︷ ︸

k

2
−3

◦N

Final: (k odd) (0, 2, k − 3, n− k + 1)(n) N ◦ •, · · · •
︸ ︷︷ ︸

k−3

◦ · · · ◦
︸ ︷︷ ︸

n−k

•

(k even, n even) N ◦ • · · · •
︸ ︷︷ ︸

k

2
−3

◦ · · · ◦
︸ ︷︷ ︸

n− k

2
/2

• • ◦ · · · ◦
︸ ︷︷ ︸

n−k

2
/2

, • · · · •
︸ ︷︷ ︸

k

2
−2

◦N

(k even, n odd) N ◦ • · · · •
︸ ︷︷ ︸

k

2
−3

◦ · · · ◦
︸ ︷︷ ︸

n− k

2
−1/2

N ◦ · · · ◦
︸ ︷︷ ︸

n−k

2
−1/2

• · · · •
︸ ︷︷ ︸

k

2
−2

◦N

14



Algorithm Line Exploration for robot a.

If final
done

If consecutive or 2-consecutive
form tower

If consecutive(s)-with-tower(s), exploring, 2- exploring
If I-am-the-explorer

“MyRight” is the direction from the tower in my group
move to “MyRight”

If other
Make-Consecutive (* create consecutive or 2-consecutive *)

Given a line Ln = x1 . . . xn, let h1 be the number of robots in [x1 . . . x⌊n
2
⌋] and h2 the

number of robots in [x⌈n
2
⌉ . . . xn]

Make-Consecutive

If k odd
If n is odd, h1 = h2, and I am a robot on xn+1

2

move anywhere
If h1 6= h2

let left-right be the direction from min{h1, h2} to max{h1, h2}
If my right neighbour y is empty

move to y
If k even

Divide half-half (* k
2

robots in h1 and k
2

in h2 *)
If my neighbour x towards the closest border is empty

move to x

I-am-the-explorer : If I am the extremal of my consecutive group or I am isolated.

form tower

If consecutive (in x1 . . . xk)
If I am on x2

move to x1

If k is even and I am on xk − 1
move to xk

15



Lemma 4.1 In the execution of Line Exploration, in finite time, a consecutive or
2-consecutive configuration is reached.

Proof: If k is odd, a left-right direction of the line is determined (from the half of the
line containing less robots to the half containing more). Notice that, if the line has an
odd number of nodes, and the central node is initially occupied by a robot, this robot is
the first that moves (arbitrarily) from there. Once the direction is identified any robot
with a right empty neighbour moves (i.e., towards the half that contains more robots),
thus maintaining a consistent left-right direction. Eventually none of the robots can move
and a consecutive configuration is reached. If k is even, the robots first divide themselves
evenly among the two halves of the line and follow the same procedure, each half towards
their closest borders, clearly reaching a 2-consecutive configuration. �

Lemma 4.2 In the execution of Line Exploration, from a consecutive or 2-consecutive
configuration the line is correctly explored if k = 3, or k ≥ 5.

Proof: In each consecutive block a tower is unambiguously formed. From now on all
robots know that the exploration is started. If the consecutive configuration is one (i.e k
is odd), there is a unique robot that can move (k ≥ 3 guarantees that there is one). By
the algorithm, the robots moves until it reaches the other side of the line. Notice that this
is unambiguously recognized as a final configuration because in no other moment there
has been a tower on one side of the line and a single robot on the other extremity. If there
are two consecutive configurations (i.e., k is even), two robots can move until they form
a tower in the middle of the line (if it has an odd number of nodes), or they stop next to
each other. Two such robots are guaranteed to exist because when k is even, k ≥ 6

Also these configurations are unambiguously recognized as final because in no other mo-
ment there have been two towers on the two extremities and a pair of robot (or a tower)
in the center of the line. �

4.2 Exploration of the line when k = 4 and n is odd

Let k = 4 and n odd. In this case, the following algorithm would explore the line. First
the 4 robots place themselves so to have two on one side of the central node, and two on
the other side. Now the two robots closer to the central node form a tower there. At this
point the other two robots move towards the respective extremities.

4.3 Impossibility of Line Exploration

To prove that exploration of the line is impossible for k < 3 and k = 4 with n even, we use
the following meta-property, which is a general property that holds for the exploration of
any graph, not just the line.

16



Property 4.1 Let P be a correct exploration protocol. Then, in any execution of P , the
robots can never be in the same non terminal configuration C in two different moments:
t and t′ > t.

Proof: It follows from the fact that the robots are oblivious, so, if they are in the same
configuration the adversary can make them perform exactly the same actions.

Consider an execution E and consider the first time t′ when a configuration C, which
already occurred at time t, re-occurs. Let (C1, . . . , Cs) be the sequence of configurations
of E up to time t′ and let Ci = Cs = C for some i < s. Consider now another execution E ′

whose first s configurations coincide with the first s of E (C1, . . . , Ci, Ci+1, . . . , Cs). Since
Ci = Cs the adversary can now make the robot behave exactly has in the sequence of
configurations (Ci+1 . . . Cs) (i.e., Cs+x = Ci+x) creating a periodic sequence. Thus, during
execution E ′ it is impossible that the robots enter a configuration in which all of them
decides to remain idle.

�

Lemma 4.3 If k = 1 the exploration of the line is impossible.

Proof: Let P be any correct algorithm. Let the single robot r be located in an arbitrary
node xi of the line [x1, . . . xn]. Without loss of generality, let r move following algorithm P
in the direction of x1 (the notion of direction is used only for clarity of description, it not
known to the robots). Notice that, in any correct algorithm, robot r cannot reverse its
direction during its walk, otherwise it would create a configuration that occurred in the
past and, by Property 4.1 the algorithm wouldn’t be correct. So, r will necessarily reach
node x1. At this point, however, the only possible movement of r creates a configuration
that already occurred and by Property 4.1 the algorithm cannot be correct correct. �

Lemma 4.4 If k = 2 the exploration of the line is impossible.

Proof: If k = 2 there are initial configurations from which it is impossible to explore
the line. Consider, for example a configuration C where the two robots r1 and r2 are
symmetrically placed each at distance d from their closest borders. There are several
situations to consider:
1) let robot r1 move towards its closest border. In this case, the adversary makes also
robot r2 move towards its closest border. From this moment on the adversary keeps
making them move simultaneously. Notice that they have to keep moving in the same
direction otherwise they would end up in a configuration that already occurred in the
past and by Property 4.1 the line would not be explored. Thus they reach the borders.
At this point the only possible move would make tham return to a previous configuration
and by Property 4.1 the line is not explored.

17



2) let robot r1 move towards the center of the line. In this case, the adversary makes also
robot r2 move towards the center of the line; moreover, from this moment it keeps making
them move simultaneously. Following the same reasoning as above, r1 and r2 will keep
moving in the same direction otherwise they will not explore the line by Property 4.1. Let
the line contain an even number of nodes. In this case r1 and r2 will eventually be next to
each other and at the next movement they will necessarily form a configuration already
formed in the past (remember that the robots are undistinguishable) and by Property 4.1
the line would not be explored. Let the line contain an odd number of nodes. In this case
r1 and r2 will eventually form a tower in the central node. At the next movement, the
adversary will split the tower and the robots will form a configuration already formed in
the past (by Lemma 4.1 the line would not be explored). �

Lemma 4.5 If k = 4 and n is even the exploration of the line is impossible.

Proof: The argument is similar to the one of Lemma 4.4, where the initial configura-
tion for which there exist no correct exploration algorithms is when the four robots are
consecutively placed in the center of the line. �

Acknowledgment This work was done during the stay of David Ilcinkas at the Re-
search Chair in Distributed Computing at the Université du Québec en Outaouais and
at the University of Ottawa, as a postdoctoral fellow. Andrzej Pelc was partially sup-
ported by the Research Chair in Distributed Computing at the Université du Québec en
Outaouais, Paola Flocchini was partially supported by the University Research Chair of
the University of Ottawa. This work was supported in part by the Natural Sciences and
Engineering Research Council under Discovery grants.

References

[1] N. Agmon, D. Peleg: Fault-Tolerant Gathering Algorithms for Autonomous Mobile
Robots. SIAM J. Comput. 36(1): 56-82 (2006).

[2] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal on
Computing 29 (2000), 1164-1188.

[3] H. Ando, Y. Oasa, I. Suzuki, M. Yamashita: Distributed Memoryless Point Conver-
gence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans. on Robotics
and Automation 15(5): 818-828 (1999).

18



[4] I. Averbakh and O. Berman, A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree, Discr. Appl. Mathematics 68 (1996), 17-32.

[5] I. Averbakh and O. Berman, (p − 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective, Discr. Appl. Mathematics 75
(1997), 201-216.

[6] B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a
mobile robot, Proc. 8th Conf. on Comput. Learning Theory (1995), 321-328.

[7] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a
pebble: Exploring and mapping directed graphs, Proc. 30th Ann. Symp. on Theory
of Computing (STOC 1998), 269-278.

[8] M.A. Bender and D. Slonim, The power of team exploration: Two robots can learn
unlabeled directed graphs, Proc. 35th Ann. Symp. on Foundations of Computer Sci-
ence (FOCS 1994), 75-85.

[9] M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment,
Machine Learning 18 (1995), 231-254.

[10] M. Cieliebak, Gathering Non-oblivious Mobile Robots, Proc. 6th Latin American
Symposium on Theoretical Informatics (LATIN 2004): 577-588.

[11] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Solving the Robots Gathering
Problem, Proc. 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2003), LNCS 2719: 1181-1196.

[12] R. Cohen, D. Peleg, Robot Convergence via Center-of-Gravity Algorithms, Proc. 11th
International Colloquium on Structural Information and Communication Complexity
(SIROCCO 2004), LNCS 3104: 79-88.

[13] J. Czyzowicz, L. Gasieniec, A. Pelc, Gathering few fat mobile robots in the
plane, Proc. 10th International Conference on Principles of Distributed Systems
(OPODIS’2006), LNCS 4288, 744-753.

[14] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph
Theory 32 (1999), 265-297.

[15] A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Proc. 10th
European Symposium on Algorithms (ESA 2002), LNCS 2461, 374-386.

[16] K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree exploration with little memory,
Proc. 13th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 588-
597.

19



[17] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph explo-
ration, Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001),
807-814.

[18] G. N. Frederickson, M. S. Hecht and C. E. Kim, Approximation algorithms for some
routing problems. SIAM J. on Computing 7 (1978), 178-193.

[19] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer: Gathering of Asynchronous
Robots with Limited Visibility. Theoretical Computer Science 337(1-3): 147-168
(2005).

[20] P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc, Collective tree exploration, Proc.
Latin American Theoretical Informatics (LATIN’2004), LNCS 2976, 141-151.

[21] R. Klasing, E. Markou, A. Pelc, Gathering asynchronous oblivious mobile robots in a
ring, Proc. 17th International Symposium on Algorithms and Computation (ISAAC
2006).

[22] P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms
33 (1999), 281-295.

[23] G. Prencipe: CORDA: Distributed Coordination of a Set of Autonomous Mobile
Robots. Proc. ERSADS 2001: 185-190.

[24] G. Prencipe: On the Feasibility of Gathering by Autonomous Mobile Robots. Proc.
12th International Colloquium on Structural Information and Communication Com-
plexity (SIROCCO 2005), LNCS 3499: 246-261.

[25] S.M. Ruiz: A Result on Prime Numbers. Math. Gaz. 81 (1997), 269.

[26] I. Suzuki, M. Yamashita: Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. SIAM J. Comput. 28(4): 1347-1363 (1999).

20


