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1 Introduction

In the paper by Monma, Munson, and Pulleyblank [4], we saw that for every
metric cost function, ¢ and every n > 3, there is a minimum cost 2-edge-
connected spanning subgraph, G, of K, with respect to ¢ which has the
following properties:

1. G is 2-vertex-connected
2. (G is edge-minmally 2-edge-connected
3. Every vertex of GG has degree 2 or degree 3

4. Removing any pair of edges leaves a bridge in one of the resulting
components

We will use M to denote the set of all the graphs which have the above
properties.

Furthermore, the authors showed that for any graph, G € M, there is
a metric cost function, ¢, for which G is the unique minimum cost 2-edge-
connected subgraph of K, with respect to c. In this paper, I want to show
how to construct all the graphs in M.
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2 Ear Decompositions

Consider constructing a graph, G = Hy, as follows. Start with a cycle, Hy.
Let R; be a non-trivial (possibly closed) path for each 1 < ¢ < k. Then
for each 1 < ¢ < k construct H; = H;_; U R; where H;_; and R; have
exactly the endpoints of R; in common. Such a construction is called an ear
decomposition of G and the Ry, ..., R, are called ears. For the purposes of
this paper, we will call Hy,..., Hg, as defined above, the subgraphs of the
ear decomposition of G. This definition of an ear decomposition leads to the
following well-known theorem.

Theorem 1. G is 2-edge-connected if and only if G has an ear decomposition.

Now, every graph is M is 2-edge connected so they all have ear decom-
positions. We can use this ear decomposition construction to build all the
graphs in M. For now we will explore the properties of these ear decomposi-
tons.

Lemma 2. Let G € M have an ear decomposition with subgraphs Hy, ..., Hy,
and ears Ry, ..., Rg. Let R; where 1 <1i <k be a {u,v}-path. Then

1. w and v have degree two in H; 1 and degree three in H;,
2. u# v, and

3. R; contains at least two edges.

Proof. Since Hy C Hy C --- C Hy_1 C H, = G, every vertex of H;_; must
have degree two or three. Furthermore, since u and v have degree two or
three in GG, they must have degree two in H;_; and degree three in H;. Now,
since u and v have degree two in H;_; and degree three in H; it must be
that u # v (otherwise u = v would have degree four in H;). Lastly, suppose
for a contradiction that R; consists of a single edge uv. Since H;_; has an
ear decomposition, it is 2-edge-connected. Thus there are two edge-disjoint
{u,v}-paths in H; ;. Since H; 1 C G, these two edge-disjoint {u,v}-paths
are in GG as well. Furthermore, neither of these paths contain the edge uv.
Hence G' — uv is 2-edge connected which contradicts the edge-minimality of
G. Therefore R; must contain at least two edges. O



Lemma 3. If G € M then any ear of an ear decomposition of G must
contain at least three edges.

Proof. Let G have an ear decomposition with subgraphs Hy, ..., Hj and ears
Rq,..., R;. We know from Lemma 2 that every ear must contain at least
two edges. Suppose for a contradiction, that there is some 1 < j < k such
that R; has exactly two edges, say uw and wov.

If w has degree two in GG then G also has an ear decomposition with ears
',..., R}, and subgraphs H, ..., H; where

R; for1<i<j—1

R,/L = R’i—l—l fOI']SZSk—].
R; fori =k
and
H; for1<i<j—1
H! = Hiyy—w forj<i<k-1
G fori =k

This new ear decomposition follows from the old by simply adding the ear
R; at the end of the construction. Since w has degree two in G we know that
w will not later be used as the endpoint of a later ear in our old ear decom-
position. Hence, moving this ear to be the final addition in our construction
will still yield G.

Now, G — {uw,wv} has exactly two components, namely the isolated
vertex wand Hj,_,. However, Hj _, itself has an ear decomposition (with ears
Yy..., R, and subgraphs H{,..., H, ;) and hence is 2-edge-connected.
Therefore neither of the components of G — uw, wv contains a bridge which

contradicts the fact that G € M. Thus w cannot have degree two in G.

If w has degree three in GG then there is an ear, R;, where j+1 <[ < k and
R; has w as one of its endpoints. Furthermore, note that this is the only ear
which has w as an endpoint. Again we have an alternative ear decomposition
of G with ears R,..., R and subgraphs Hy,..., H; where

R; for1 <i<j-—1

Ri—l—l fOl"]SZSl—2
R, = RyU{uw} fori=1-1

{wv} for i =1

R; forl+1<i<k



and

H; for1<i<j—1
Hiy—w forj<i<I[—2
H—-—vw fori=101-1

H; forl <i<k

H =

However, this new ear decomposition has an ear which is a path of length
one. By Lemma 2, G cannot have an ear decomposition with such an ear.
Thus we have a contradiction and so w cannot have degree three in G.

Unfortunately, w must have degree two or three in G since G € M and
hence R; cannot be a path of length two. Therefore, every ear must have
length at least three. O

Theorem 4. Let G be a 2-edge-connected graph and let Hy, ..., Hy be the
subgraphs in an ear decomposition of G. G € M if and only if Hy, ..., Hy €
M.

Proof. Since G = Hy, it H, € M then G € M. Hence we have proved the
reverse direction of the theorem.

Now suppose G € M. For each 0 < i < k, H; C G. Hence since
every vertex of G has degree two or three, the same is true of H; for each
0 <7 < k. Now, consider a 2-edge-connected graph which has a cut vertex,
v. In any such graph, v must have degree at least four. Thus since H; is
2-edge-connected and every vertex of H; has degree two or three for each
0 <17 < k, H; cannot have any cut-vertex and so H; is 2-vertex-connected
for each 0 <37 < k.

Suppose, for a contradiction, that for some 0 < 5 < k that H; is not edge-
minimally 2-edge-connected. Hence H; contains an edge uv and two edge-
disjoint {u, v}-paths, neither of which contain the edge uv. Since H; C G, G
also has these paths along with the edge uv. Thus G —wuw is 2-edge-connected
which contradicts the fact that G is edge-minimally 2-edge connected. There-
fore, for each 0 <17 < k, H; is edge-miniamlly 2-edge connected.

Suppose, for a contradiction, that H; ¢ M for some 0 < j < k and
furthermore, let j be the maximum such index. Clearly j # 0 since any cycle
is in M and j # k since G € M. From the arguments above, we see that
if H; ¢ M then there must be two edges, uv and wz, of H; such that no
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Figure 1: The first configuration

Figure 2: The second configuration

component of H;—{uv, wz} contains a bridge, that is the components of H;—
{uv,wzx} are either isolated vertices or are 2-edge-connected. Furthermore,
since H; is 2-edge-connected, there are at most two components.

Now, by the maximality of j, H;41 € M. Thus, one of the components of
Hj 1 — {uv,wx} contains a bridge, call it e. Since H;; is 2-edge-connected,
the only possible configurations, up to relabelling u, v, w, or x, are shown in
Figure 1, Figure 2, and Figure 3. Here the large circles are the node sets of
the components of H;1 — {uv, wx, e}.

Notice that in the second and third configurations, since e is an edge of
Rji1, it we remove R, from H;; to get H; then we see that wv is a bridge
of H;. This contradicts the fact that H; is 2-edge-connected. Thus, we must
have the first configuration as shown in Figure 1. Furthermore, since uv and
wz are edges of H; and e is an edge of R;i; then H;;; must have, up to
relabelling the vertices, the structure shown in Figure 4 and where V; and
V5 as shown are the node sets of the two components of H; — {uv, wz} and
R;41 is a {y, z}-path.



Figure 3: The third configuration

Figure 4: The structure of H; 4



Now since the components of H; —{uv, wz} are bridgeless, H;[V}] is either
a single vertex or is 2-edge-connected. If H;[V;] is not a single vertex, consider
adding a new vertex, ¢, and the edges yt and wt to H;[V;]. Since this new
graph is obtained by adding an ear to a 2-edge-connected graph, it must be 2-
edge-connected. Thus there are two edge-disjoint {u,t}-paths. By removing
t from our new graph, we see that there is a {u, y}-path and a {u, w}-path in
H;[V1] which are edge-disjoint. By symmetry, we get the similar result that
if H;[V5] is not a single vertex then it contains a {v, z}-path and a {v,z}-
path which are edge-disjoint. Hence the union of the {u,w}-path, the edge
wzx and the {z,v}-path gives a {u,v}-path in H;,y. Also, the union of the
{u, y}-path, the path R;,;, and the {z, v}-path gives a {u,v}-path in H;,.
If V4| = 1 or |V5] = 1 then we can replace the appropriate path above with an
empty path. Furthermore, these two {u,v}-paths in H;;, are edge-disjoint
and neither contains the edge uv. Hence H;i; —wuv is 2-edge-connected which
contradicts the fact that H;; is edge-minimally 2-edge-connected.

Hence no such j can exist and therefore H; € M for every 0 < i < k. [0

3 Necklaces and Beads

Let G € M then we know that G is edge-minimally 2-edge-connected. Hence
if e is an edge of G then G —e is connected but must have at least one bridge.
Let f be any bridge of G —e. Then G — {e, f} is not connected and has
exactly two components. Since G € M, one of these components must have
a bridge, call it g. Thus we can partition the vertices of GG into three sets,
Vi, Vo, and V3 where G[V1], G[V5], and G[V3] are connected and G has the
structure as shown in Figure 5.

If G[V1] contains a bridge, say h, then since G is 2-edge-connected we
must have that h is also a bridge of G — e. Conversely, if G — e has a bridge,
h, whose endpoints are both in V; then h is also a bridge of G[V4]. If such
an edge h exists then the structure of G is as shown in Figure 6.

By continuing this process until we have found all the bridges of G' — e,
we create a partition, Vi, ..., Vi, of the vertices of G such that

e |6(V;)] =2 foreach 1 <i <Kk,



Figure 5: The structure of GG

Figure 6: Another bridge



e is the unique edge with an endpoint in V; and the other in V,

e there is a unique edge with an endpoint in V; and the other in V;; for
each 1 <i <k — 1 and these are exactly the bridges of G — ¢,

e any remaining edge of GG has both its endpoints in V; for some 1 < i < k,
and

o for ecach 1 <i <k, either G[V;] is an isolated vertex or G[V] is 2-edge-
connected.

Such a partition of the vertices of G is called a necklace and the parts
Vi,..., Vi are called beads. Our partition is considered to be circular (that
is V] follows V). For the purposes of this paper, we will call any edge which
has its endpoints in different (adjacent) beads an inter-bead edge. Notice
that if we remove any inter-bead edge from this necklace and find all the
resulting bridges, we get the same necklace. Thus an inter-bead edge is in
a unique necklace. Furthermore, the minimum cuts of G which contain an
inter-edge bead of a necklace are exactly those which are induced by the
union of consecutive beads of the necklace. For instance, in the previous
example, any minimum cut containing e is of the form 6(V; UV, U---UVj)
where j is some integer in {1,...,k — 1}. All of the above properties are
well-known attributes of the necklaces of a graph with a minimum cut of size
2. Lemma 5 discusses the properties of the necklaces that are specific to the
graphs in M.

Lemma 5. If G € M then every necklace of G contains at least three beads
and every edge of G is an inter-bead edge in a unique necklace.

Proof. Since G is edge-minimally 2-edge-connected, each edge of GG is in some
minimum cut. Hence each edge of GG is an inter-bead edge in some necklace
of GG. As noted above, each inter-bead edge is in a unique necklace. Hence,
each edge of (G is an inter-bead edge in a unique necklace.

Secondly, as noted in the previous example, f and g are distinct bridges
of G — e. Since our choice of e was arbitrary and e, f, and g are inter-bead
edges of the resulting necklace, there must be at least three beads in the
necklace. O

We can say even more about the necklaces of the graphs in M.

9



Theorem 6. If G € M and (Vi,...,Vy) is a necklace of G then for each
1 <i < k either G[V;] is an isolated vertex or G[V;] € M.

Proof. Since we can arbitrarily choose which bead is labelled Vi, relabelling
if necessary, it is enough to prove that the theorem holds true for G[V;].

If G[V1] is an isolated vertex then the result follows. Otherwise, as noted
above, G[V1] is 2-edge-connected. Since G[Vi] C G and every vertex has
degree two or three, every vertex of G[Vi] must have degree at most three.
Since G[V4] is 2-edge-connected, every vertex must have degree at least two.
Now any cut vertex of a 2-edge-connected graph must have degree at least
four, so G[Vi] cannot contain any cut vertices. Hence G[V]] is 2-vertex-
connected.

Suppose that G[V1] is not edge-minimally 2-edge-connected. Then there
is an edge uv of G[V4] such that G[Vi] — uv is 2-edge-connected. Hence there
are two edge-disjoint {u, v}-paths in G[V}], neither of which contain the edge
uv. However, these two paths exist in G' so G — uv is also 2-edge-connected,
contradicting the fact that G is edge-minimally 2-edge-connected. Therefore,
G[V41] is edge-minimally 2-edge-connected.

Now consider any two edges, e and f of G[V;].
Case 1: G[V1] — {e, f} is connected.

Since G[V;] is edge-minimally 2-edge-connected, there exists and edge, g,
of G[V4] such that G[V1] — {e, g} is not connected. Hence G[Vi] —{e, f, g} is
not connected and hence g is a bridge of G[Vi] — {e, f}.

Case 2: G[V1] — {e, f} is not connected.

Assume that both of the components of G[Vi] — {e, f} are bridgeless.
Hence each component is either an isolated vertex or is 2-edge-connected.
There are only two possible configurations for how these components can
interact with the rest of G as depicted in Figure 7 and Figure 8.

Since the components of G[Vi] — {e, f} in Figure 7 are bridgeless (and
hence each component is either an isolated vertex or is 2-edge-connected),
notice then that the two components of G — {e, f} are also bridgeless. This
contradicts the fact that G € M.

As for Figure 8, since the components of G[Vi]—{e, f} are bridgeless (and
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Figure 8: G — {e, f} is connected
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hence each component is either an isolated vertex or is 2-edge-connected),
we have that both G — e or G — f is 2-edge-connected. This contradicts the
edge-minimality of G.

Therefore, in both cases, one of the components of G[V;]—{e, f} contains
a bridge. Thus G[V}] € M.

0

We can say more about the necklaces of a graph from M and how they
interact with the ear decompositions. This gives us a way of building M
recursively.

Before we begin the next theorem, I want to introduce a new definition
regarding necklaces. If we take any necklace with k£ > 3 beads and we identify
all the vertices contained in each bead then we get a new graph, C', which
is a cycle with k vertices. Each of the vertices in C' corresponds to a unique
bead. For the purposes of this paper, the distance between two beads is the
distance between their corresponding vertices in C. Alternatively, it is the
minimum number of inter-bead edges on a path whose endpoints are in the
respective beads.

Theorem 7. Let H € M and let uw and v be two distinct vertices of H, each
of degree 2. Let R be a new path of length at least 3 and let G be the graph
obtained by identifying the distinct endpoints of R with vertices u and v in
H. Then G € M if and only if, for any necklace of H, either u and v are
in the same bead or the distance between the bead containing u and the bead
containing v is at least 3.

Proof. Suppose that, for some necklace (Vi,..., Vi) of H that u and v are
contained in beads which are a distance 1 apart. Without loss of generality,
we may assume that v € Vi and v € V5. Let e be the inter-bead edge between
Vi and V5. Consider the structure of G — e as depicted in Figure 9. Since
each of H[V1], ..., H[V,] are either an isolated vertex or are 2-edge-connected
and R is a path from a vertex in V; to a vertex in V5, we have that G — e is
2-edge-connected. Thus G is not edge-minimally 2-edge-connected and hence
G ¢ M. Therefore, if G € M then there cannot be any necklace of H where
u and v are contained in beads which are a distance 1 apart.
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Figure 9: Beads which are a distance 1 apart

Suppose that, for some necklace (Vi,...,V;) of H that u and v are con-
tained in beads which are a distance 2 apart. Without loss of generality, we
may assume that v € V; and v € V3. Let e and f be the inter-bead edges be-
tween V7 and V5 and between V5 and V3 respectively. Consider the structure
of G —{e, f} as depicted in Figure 10. Since each of H[V4],..., H[V}] are ei-
ther an isolated vertex or are 2-edge-connected and R is a path from a vertex
in V] to a vertex in V3, we have that G — V5 is 2-edge-connected and G[V53)]
is either an isolated vertex or is 2-edge-connected. Hence G — {e, f} has two
components, neither of which contains a bridge. Thus G ¢ M. Therefore, if
G € M then there cannot be any necklace of H where u and v are contained
in beads which are a distance 2 apart.

We can conclude that if G € M then for every necklace of H either u
and v are in the same bead or the distance between the beads containing u
and v is at least 3.

Now, let H € M and R be as described above. Let u and v be two
vertices of degree two of H such that for every necklace either u and v are in
the same bead or u and v are in beads which are a distance at least 3 apart.
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Figure 10: Beads which are a distance 2 apart

Let G be the graph resulting from adding R as an ear to H at u and v.

Clearly, every vertex of G' has degree 2 or 3. Futhermore, since GG has an
ear decomposition, it is 2-edge-connected. Since G has maximum degree 3
and is 2-edge-connected, it is also 2-vertex-connected.

Now, let e be any edge of GG. If e is an edge of R then the remaining
edges of R (there are at least two of them since R has at least three edges)
are bridges in G — e. If e is an edge of H, consider the unique necklace of
H which has e as an inter-bead edge. If u and v are in the same bead of
this necklace, then all the inter-bead edges in this necklace, other than e, are
bridges of G — e. Since the necklace has at least three beads, there must be
at least two such bridges. If v and v are in beads which are a distance at
least three apart then consider any {u,v}-path of H which contains e. The
inter-bead edges of any such path are unique, and there must be at least
three of them. Furthermore, any one of these edges, apart from e, is a bridge
in G —e. Hence, in all cases, G — e has a bridge and thus G is edge-minimally
2-edge-connected.
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Let e and f be any two edge of G. If either or both of these edges is in R
then the remaining edges (there is at least 1) or R are bridges in G — {e, f}.
Hence G — {e, f} contains a bridge. If e and f are edges of H then consider
the unique necklace of G which has e as an inter-bead edge. If f is not an
inter-bead edge of this necklace then, by the same reasoning which proves
that G is edge-minimally 2-edge-connected, G —{e, f} contains a bridge. If e
and f are inter-bead edges of the same necklace of H, and v and v are in the
same bead, then all the remaining inter-bead edges apart from e and f (there
must be at least 1) are bridges of G — {e, f}. If e and f are inter-bead edges
of the same necklace of H, and uw and v are in beads which are a distance
at least 3 apart, then consider any {u,v}-path of H which contains e. The
inter-bead edges of any such path are unique, and there must be at least
three of them. Furthermore, each of these edges, apart from e and f, is a
bridge of G — {e, f}. Hence in all cases, G — {e, f} contains a bridge.

Therefore G € M.
]

Notice that Theorem 7 tells us exactly how to recursively construct M.
We simply start with all the cycles and successively add ears in the manner
proscribed in Theorem 7 to build larger graphs of M. Since we rely on the
necklaces to decide whether or not adding a certain ear will yield a graph in
M it would be nice to have a way to find the necklaces of the new graphs
which are created.

Proposition 8. Let H € M and let R be a path of length at least 3. Let u
and v be vertices of H of degree 2 such that in every necklace of H either u
and v are in the same bead or u and v are in beads which are a distance at
least 3 apart. Let G be the graph obtained by adding R to H by identifying
the endpoints of R with u and v respectively. Then the necklaces of G can be
obtained from the necklaces of H as follows. Let (Vi,..., Vi) be a necklace
of H and let W be the set of internal vertices of R. If uw and v are in the
same bead of the necklace, say Vi, then (Vi,.... Vi1, ViU W, Viiq,..., Vi)
is a necklace of G. If u and v are in distinct beads, say V; and V; where
1<i<y < k then both (Vi, ey Vi1, V;‘UV;‘_HU' . -UV}_1UV}UI/V, V}—Hv ey V}C)
and (V;‘_H,...,‘/}_1,‘/}UV}+1U'"U%U%U"'U‘/;‘_lu‘/iUI/V,V}_H,...,V}C)
are necklaces of G. As well, if rq,...,rs are the individual internal vertices
of R, ordered as we follow R from u to v, and V s the set of vertices of H
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Figure 11: uw and v are in distinct beads

then (r1,...,75, V) is also a necklace of G. Furthermore, these are the only
necklaces of G.

Proof. Suppose u and v are in the same bead, V;, of the necklace. Let e be
any inter-bead edge of the necklace. Since H[Vj| is 2-edge-connected, so is
G[V;UW]. Hence G —e has the same bridges as H—e and so (V1,...,V;_1, ;U
W, Viiq1, ..., Vi) is a necklace of G.

Now suppose u and v are in distinct beads, say V; and V; where 1 <i <
J < k. Then the structure of GG, as it relates to R and the necklace, is as
shown in Figure 11.

Now let e be any edge which is an inter-bead edge between two consecutive
beads among V;, Viyq,..., V1, V. We can see that G[V; UV, U--- UV, U
ViU Vi1 UV, UW] is 2-edge-connected. Hence the bridges of G — e are
exactly the edges (apart from e itself) between two consecutive beads among
V;, V;—l-lv ey V}_l, V} Hence (V;_,_l, ‘/i+2, ey ‘/}_2, V}_l, V} U V}—l—l y---u Vk U
Viu--- V1 UV;UW) is the necklace of G which has e as an inter-bead edge.

If e is an edge which is an inter-bead edge between two consecutive beads
among V;, Vi1, ..., Vi, Vi, ..., Vie1, Vi then notice that G[V; U Vi3 U--- U
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Vi—1 UV; UW] is 2-edge-connected so the bridges of G — e are exactly the
inter-bead edges (apart from e itself) between two consecutive beads among
Vja Vj—l-l? cre Vk7 ‘/17 S ‘/;—17 ‘/;, Thus (‘/17 ceey ‘/;2—27 ‘/;—17 ‘/;U‘/H—lu ' 'U‘/}—lu
V;UW, Vi1, Viga, ..., Vi) is the necklace of G which has e as an inter-bead
edge.

Now let e be an edge of R. Since H is 2-edge-connected, V' is contained in
some bead of the necklace of G containing e as an inter-bead edge. Further-
more, every edge of R (apart from e) is a bridge of G — e. Thus the necklace
of G which has e as an inter-bead edge is exactly (ry,...,7s V).

We have considered all the edges of G and we know that every edge of G
is in a unique necklace of G. Thus we have exhaustively considered all the
necklaces of G. O

4 Min-cut Cacti

A cactus is a connected graph such that every edge is in a unique cycle.
We allow parallel edges and we consider a pair of parallel edges to be a
(degenerate) cycle. Cacti have certain very nice properties relevent to 2-edge-
connected graphs. Let G be a cactus and let e be any edge of G. Firstly,
since e is in a cycle, G is 2-edge-connected. Secondly, since e is in a unique
cycle, G is edge-minimally 2-edge-connected and the bridges of G — e are
exactly the remaining edges in the cycle containing e. Hence the minimum
cuts of a cactus are very easy to find and consist of any two edges of the
same cycle.

While cacti on their own are interesting, Dinits, Karzanov, and Lomonosov [1]
showed that a cactus can efficiently store information about the minimum
cuts in a graph. The minimum cuts of the cactus correspond exactly to the
minimum cuts of the original graph. Although, there is not always a unique
min-cut cactus for every graph, there are a series of simple operations which
can be applied to the a cactus to get the unique canonical cactus. Finding
the canonical cactus is helpful since the cycles in a canonical min-cut cactus
correspond exactly to the necklaces in the original graph.

A min-cut cactus of G has nodes which are labelled by (possibly empty)
disjoint subsets of the vertices of G. Furthermore, every vertex of G must
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appear in exactly one node of the cactus. Let e and f be two edges of a cycle
of the cactus. Then, by removing e and f from the cactus, we get exactly
two components. Let U and U be the union of all the subsets of vertices
contained in all the nodes of the first and second components respectively.
Then 6(U) = 6(U) is a minimum cut of G. If we have the canonical min-
cut cactus of G (which we denote H(G)) and we remove all the edges in
a cycle of ‘H(G) then, for each of the resulting components, the union of
all the vertices contained in the nodes of the component is a bead in the
corresponding necklace.

For any G € M we can use H(G) to compactly store all the information
about the necklaces of G. Furthermore, the canonical min-cut cacti of the
graphs of M have certain useful properties described below.

Proposition 9. If G € M then H(G) has no pair of parallel edges.

Proof. A pair of parallel edges in H(G) corresponds to a necklace of G with
exactly two beads. However, since G € M, every necklace of G has at least
three beads. Therefore H(G) has no pair of parallel edges. O

Proposition 10. If G € M then every node of H(G) contains a nonempty
subset of vertices of G.

Proof. Every edge of H(G) is contained in a unique cycle and thus every
node is the intersection of edge-disjoint cycles. Hence every node has even
degree.

Suppose, for a contradiction, that a is a node of H(G) which contains no
vertices of (.

If a has degree 2, with neighbours b and ¢, then we can remove the node
a and add the edge bc without changing the information that the cactus is
telling us about the minimum cuts of G. However, this is one of the operations
used to construct the canonical min-cut cactus of G, contradicting the fact
the H(G) is the canonical min-cut cactus of G.

If @ has degree at least 4, then let Uy, ..., U; be the vertex sets contained
in the nodes of each of the components of H(G) — a respectively. Then §(U;)
is a minimum cut of G for each 1 < ¢ < [. Furthermore, since Uy, ..., U, is
a partition of the vertices of G, we can relabel these subsets (if necessary)
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so that (Uy,...,U;) is a min-cut circular partition of G. Hence, there is
a necklace of GG such that each of the subsets Uj,...,U; is the union of
consecutive beads of this necklace. Thus there is a cycle of H(G) which
corresponds to this necklace. On this cycle, there is an edge between a node
containing vertices from U; and a node containing vertices from U;. But
then these nodes would not be in different components of H(G) — a which is
a contradiction. O

Proposition 11. If G € H(G) then there is a bijection between the edges
of G and the edges of H(G). Furthermore, if ab is an edge of H(G) then
there exist vertices u and v, contained in a and b respectively, such that ab
corresponds to uv under the bijection.

Proof. As noted before, there is a 1 to 1 correspondance between the cycles of
H(G) and the necklaces of G. Further notice that every edge of G is an inter-
bead edge in a unique necklace and every edge of H((G) is in a unique cycle.
If we remove a cycle of H(G), the components of the resulting graph tell
us exactly the beads of the corresponding necklace, as well as their circular
ordering. Hence there is an obvious bijection between the inter-bead edges
in a necklace of G and the edges of a cycle of H(G). Since every edge of G
is an inter-bead edge in a unique necklace and every edge of H(G) is in a
unique cycle, we can extend our bijection to all edges of G and all edges of

H(G).

Now suppose that ab is an edge of H(G) in cycle C' and the edge of G
corresponding to ab is uv where u is contained in some node of the component
of H(G) — C containing a and v is contained in some node of the component
of H(G) — C containing b. Let uv be an inter-bead edge in the necklace
(W1, ..., Wg). Then uv is contained in exactly k—1 (the number of inter-bead
edges apart from uv) minimum cuts of G. These minimum cuts correspond
exactly to the minimum cuts of H(G) obtained by removing ab along with
another edge of C'. There are exactly £ — 1 such cuts too. Let u € W; and
suppose u is not contained in a. Let o’ be the node of H(G) which contains
u. Now the component of H(G) — C' which contains both a and o/, call it A,
is itself a cactus. Furthermore, since no pair of nodes in a cactus can have
three edge-disjoint paths between them, every pair of nodes in a cactus are
separated by some minimum cut. Thus there is a cut in A which separates
a and a'. Let b’ be the node of H(G) which contains v. Since a is the only
node of H(G) which is adjacent to nodes outside of A, this minimum cut
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separates a’ and b’, but not ¢ and b. Hence we have a corresponding cut of
G which contains the edge uv but does not correspond to any cut obtained
by removing a bridge of G — uv which is a contradiction. Therefore, u must
be contained in a and (by symmetry) v must be contained in b. O

Proposition 12. Let G € M and a a node of H(G). If a contains two
distinct vertices, u and v, then u and v each have degree 3 in GG. Furthermore,
there exist three internally-vertez-disjoint {u, v}-paths in G and the length of
every {u,v}-path in G is at least 3.

Proof. If w and v are in the same node of H(G) then there is no minimum
cut of G that separates u from v. Hence there are 3 internally-edge-disjoint
{u,v}-paths in G. Thus u and v must have degree 3. Furthermore, since
every vertex of G has degree at most 3, the paths must be internally-vetex-
disjoint. From Proposition 11 we know that any {u, v}-path in G corresponds
to a (closed) path in H(G) containing the node a. However, the cycles of
H(G) have length at least 3 and therefore any {u,v}-path in G must also
have length at least 3. 0

Corollary 13. If G € H(G) and a is a node of H(G) containing more than
one vertex of G then a must contain an even number of vertices of G and
the number of cycles of H(G) which contain a is divisible by 3.

Proof. Since, by Proposition 12 the vertices contained in G form a stable set
and all have degree 3 in (&, the degree of a must be divisible by 3. However,
a is the intersection of otherwise node-disjoint cycles. Hence a must have
even degree. Thus the degree of a is divisible by 6 so the number of cycles
of H(G) containing a is divisible by 3. Furthermore, since the total degree
of all the vertices contained in a is even and all these vertices have degree 3
in GG, there must be an even number of them. O

Proposition 14. Let G € M, let v be a vertex of G and let a be the node
of H(G) containing v. The following are equivalent:

e v has degree 2 in G,
e v is the only vertexr contained in a, and

e a has degree 2 in H(G).
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Proof. Suppose that v is a vertex of G of degree 2. Then §({v}) is a minimum
cut of G and this minimum cut separates {v} from all other vertices of G.
Hence, there cannot be any other vertex of G' contained in a.

Suppose that v is the only vertex contained in a. From Proposition 11
we see that, since a only contains v, a must have the same degree as v. Thus
the degree of a is either 2 or 3. However, every node in a cactus is the
intersection of otherwise node-disjoint cycles and hence every node has even
degree. Therefore, a has degree 2 in H(G).

Suppose that a has degree 2 in ‘H(G). By Proposition 12 we know that
the vertices contained in a must form a stable set in G and hence the sum of
the degrees of the vertices contained in a must be 2. However, each vertex
of G has degree at least 2. Thus a contains a single vertex, namely v, and v
must have degree 2. O

Now we have a good sense what the min-cut cacti of graphs in M look
like. We can use Theorem 7 to tell us how to properly construct new graphs
in M by using the min-cut cactus.

Theorem 15. Let H € M and let u and v be two vertices of H of degree
2. Let R be a path of length at least 3 and let G be the graph obtained by
wdentifying the endpoints of R with u and v respectively. Let a and b be the
nodes in H(H) containing u and v respectively and let P be a shortest {a,b}-
path in H(H). Then G € M if and only if P does not intersect any cycle of
H(H) in exactly one or exactly two edges.

Proof. Suppose that P intersects some cycle of H(H) in exactly one or ex-
actly two edges. Then this cycle corresponds to a necklace of H where the

beads containing u and v are a bead distance of one or two apart. Hence, by
Theorem 7, G ¢ M.

Suppose G ¢ M. Then, by Theorem 7, there must be a necklace of H
where the beads containing u and v are a bead distance of one or two apart.
Let C' be the cycle of H(H) corresponding to this necklace. Then the distinct
components of H(H) — C containing nodes a and b are either incident to the
same edge of C, or there is a subpath of C' of length two joining these two
components. Hence P N C' is either one or two. (
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Now we can use the min-cut cactus of a graph in M to build larger graphs
in M. All that remains is to update the min-cut cactus. Let G € M, let P
be a path in H(G) and let a be a node of P. For the purposes of this paper,
we will say that a is a transition node of P if a is the intersection of two
distinct cycles of H(G), say C; and Cy, such that C1NP # () and CoN P # ().

Theorem 16. Let H € M and let uw and v be two vertices of H of degree 2.
Let R be a path of length at least 3 and internal vertices r1, ..., ry (ordered as
we encounter them travelling from one endpoint of R to the other). Let G be
the graph obtained by identifying the endpoints of R with u and v respectively.
Let a and b be the nodes in H(H) containing v and v respectively and let P
be a shortest {a,b}-path in H(H). If G € M then H(G) is obtained from
H(H) by identifying all the transition nodes of P, along with the nodes a
and b, to a single node, c, and adding a cycle of length k4 1 incident only to
c. The nodes, apart from c, of this cycle are labelled {r1}, ..., {ri} (in that
order).

Proof. Consider a necklace (Vi,...,V}) of H and let C' be the corresponding
cycle of H(H).

If v and v are in the same bead, say V;, of the necklace then PN C =
(). Thus C remains unchanged by the addition of R apart from the nodes
corresponding to the vertices of R are added to the component of H(H)
containing the vertices of V.

If u and v are in different beads, say V; and V; where 1 <1 < j </, then
PN C # (). Hence there must be exactly two transition nodes, say ' and b’
of P, on C such that o’ and " are in the components of H(H) — C' containing
a and b respectively. The beads V; and Vj correspond to these components
and by identifying a’ and b’ to a single node, we get two cycles which exactly
describe the necklaces of H(G) obtained as described in Proposition 8.

Lastly, adding the cycle corresponds to the necklace (V,ry,...,r), where
V' is the set of vertices of H, as outlined in Proposition 8.

Thus, the min-cut cactus constructed in this theorem does in fact describe
all the necklaces of G' and therefore it is H(G). O
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5 Constructing the Graphs of M with at most
n Vertices

In this section, we will gather together all the information we know about
constructing the graphs of M and use an algorithm, designed by Brendan
McKay [3] to actually generate all the graphs of M with at most n vertices.
For the purposes of this paper, let o(G) denote the number of vertices of
the graph GG and we say that C is a leaf cycle of a cactus if C' has a single
node of degree greater than two. Let C; denote the cycle of length j. For
any n > 3, calling the procedures scan(C3, Cs, n), scan(Cy, Cy, n), ...,
scan(Cy,_1, Cp_1, n), and scan(C,, Cy, n) will generate all the graphs of M
with at most n vertices.

procedure scan(G, H(G), n)
output G
if o(G) <n —2 then
Initialize £ = ()
for each pair, {u, v} of vertices of G of degree 2 do
Let a and b be the nodes of H(G) containing u and v respectively
Construct a shortest {a,b}-path, P, in H(G)
if P does not intersect any cycle of H(G) in exactly 1 or 2 edges then
Identify the transition nodes of P along with a and b to a node d
to obtain a cactus H’
Let [ be the length of the smallest leaf cycle of H'
Let k = min(l,n — o(G) + 1)
for : =3 to k do

Construct G’ by adding an ear of length 7 to G with endpoints v and v
Construct H(G") by adding a cycle, C’, of length ¢ to H' incident only to d

Construct the canonicalization, ¢(G’), of G’
if ¢(G") ¢ L then
if i <[ then
Add $(G") to £
scan(G', H(G"), n)
if 7 =1 then

Let C be the leaf cycle of H(G") of length [ such that ¢(C') has the

smallest lablelled node
if there exists an automorphism of G’ mapping C' to C’ then
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Add ¢(G") to £
scan(G', H(G"), n)

6 Bounding the Number of Edges of Graphs
in M

In this section, we will prove an upper bound on the number of edges of a
graph G € M. However, before we proceed to this theorem, we need to
consider the structure of the canonical min-cut cactus H(G). The following
lemma summarizes some of the important attributes, that we had previously

noted, about H(G).

Lemma 17. If G € M then H(G) is a cactus with no tree-edges and such
that every node which has degree more than 2 is the intersection of 3k cycles
for some integer k > 1.

Due to the tree-like nature of a cactus, any cactus with the properties de-
scribed in Lemma 17 can be constructed recursively in the following manner.
Let H be a single cycle and apply a sequence of the following operations to
H to obtain H(G).

O1 Choose a node, a, of H which has degree 2 and add two new cycles to
H which are mutually node-disjoint except at a.

02 Choose a node, a, of H which has degree more than 2 and add three
new cycles to H which are mutually node-disjoint except at a.

We can use these way of constructing the min-cut cactus to find an upper
bound on the number of edges of G.

Theorem 18. If G € M has n vertices and m edges then m < gn.
Proof. In such a construction of H(G), let Iy be the length of the initial cycle
and let [; be the number of edges added to the cactus at iteration ¢ > 1. If

operation O1 is performed at iteration ¢, then the number of edges of the
cactus is increased by [; and the number of nodes of degree 2 is increased by
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[; — 3. If operation O2 is performed then the number of edges of the cactus
is also increased by [; and the number of nodes of degree 2 is increased by
[;— 3. Thus, in either case, if we perform a sequence of r operations to obtain
H(G) then H(G) has lo+ 11 + ...+ 1, edges and I+ 1; + ...+, — 3r nodes
of degree 2.

Now G and H(G) have the same number of edges (according to Propo-
sition 11) and the same number of vertices/nodes of degree 2 (according
to Proposition 14). Thus G has m = lo + l; + ... + [, edges and G has
lo+11+...4 1. —3r =m — 3r vertices of degree 2. Hence G has n — m + 3r
vertices of degree 3. Thus, by summing up the degrees of all the vertices of
G we get

2m = 2(m—3r)+3(n—m+3r)

2m = 2m—6r+3n—3m+ 9r
3m = 3n+3r
m = n-+r.

Returning to the cactus H(G), notice that we start with a cycle of length
at least 3 and so [y > 3. At iteration 7, if we apply operation O1 then we add
two cycles (each of length at least 3) and hence [; > 6. If we apply operation
02 then we add three cycles (each of length at least 3) and hence [; > 9. In
either case, [; > 6 for all > 1 and so

m=Ilg+l+...+1. >3+ 6.

Thus m > 6r and so r < %m. Since we discovered above that m = n+r, we
have that

m < n+-m
6

-m < n

0

In fact, we can easily construct a family of cacti whose members have the
following properties
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1. There are no tree-edges,
2. Every cycle has length 3, and

3. Every node has either degree 2 or degree 6.

Furthermore, the limit of the ratio of the number of edges over the number of
nodes of the members of the family is exactly g. Thus the bound described
in Theorem 18 is tight.

7 The Linear Programming Relaxation and

M

Theorem 19. Let G € M have n vertices. Assign nonnegative edge-costs,
d, to the edges of G such that for any necklace of G with inter-bead edges
e1,€s...,e, we have that for each 1 <1 <k,

k
/
E Ce;-
j=1

Let ¢ be the metric completion on K,, = (V, E) of ¢. Then G is an optimal
solution to the following linear program.

Co, <

N | —

/
€

minimize cx
subject to z(6(S)) > 2 forallpCSCV
Te > 0 forallee K

Furthermore, if all of the edge-costs are strictly positive and for every necklace
described above we have that for any edge e;

1
/ /
Ce; < 5 Z Ce;
j=1
then G 1s the unique optimal integer solution to the linear program.

Proof. Let x be an optimal solution to the above linear program. If there is
an edge, e € E, which is not an edge of G such that z. > 0 then we find a
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path, P, in G between the endpoints of e of minimum cost. Since the cost of
this path is c., we can define a new solution to the linear program

xy+az. if feP
T’ = 0 if f=e
Ty otherwise

where ct’ = cx. By continuing in this fashion, we may assume that the
support graph of 2’ is a subgraph of G.

Consider a necklace of G with inter-bead edges eq,es, ..., . Suppose,
for a contradiction, that the total (weighted) cost of the inter-bead edges
relative to the edge-weights of 2’ is strictly less than the total costs of the
inter-bead edges. That is, suppose

/ / /
Ce1 T, T CeyTe, + ...+ CepTe, < Ce + Cey + ... Cey.-

Then there must be an inter-bead edge, say e;, such that z,, < 1. However,
since 2'(6(5)) > 2 for all ) € S C V it must be that x, + z, > 2 for all
2<i<k.

Cer Ty + Ceypy + ...+ cekx’ek < CeyFCept i Cep
Car@y +Cey(2—ap )+ FCe,(2— L) < Cop+Coyt...Cop
CoTy +Cey(L—ap )+ ...+, (1 -2, ) < co
Cr(l =g )+ ...+, (1—a) < co(l—2)
Cog FoviFCep, < Cey
Cop +Cop+ .ot Cep < 2¢e
Lk
5 Zcei < Ce
i=1

However, this contradicts the fact that c., < %Zle Ce; by our definition
of c. Therefore,

/ / /
CerTey F Cey e, oo+ Cep T, > Cep F Coy + o Ceye

However, every edge of GG is an inter-bead edge in a unique necklace and
so we can add up the weighted costs of the edges of GG using the necklaces.
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Let E(G) be the set of edges of G and let N(G) be the set of necklaces of G.
For any Q € N(G) let IB(Q) denote the set of inter-bead edges of Q.

S = Y OY

eeE(Q) QEN(G) ecIB(Q)

2. 2

QEN(G) ecIB(Q)

- Y.

ecE(GQ)

v

Thus for any optimal solution, z, of the linear program, cx > »_ . B(G) Ce-
But G is a feasible solution to the linear program. Therefore GG is an optimal
solution to the linear program. This proves the first part of the theorem.

Now suppose that for every edge e; in any necklace of GG that
1 E
0<c, < EZC’%.
j=1

Let z be any optimal integer solution to the linear program. Again we
reroute x through G to obtain an integer solution x’ which is still optimal. If
x is not the characteristic vector of G then consider the last edge we reroute
through G via a path P. For any internal node, v of P, we must have at
least two units of flow on the edges incident to v (since in our rerouting, the
intermediate graphs are also 2-edge-connected). When we reroute one unit
of flow through v then there must be at least four units of flow on the edges
incident to v. However, since G € M, every vertex of G has degree 2 or 3.
Thus there is an edge e, incident to v such that z/, > 2.

On the other hand, the cost of every edge is positive and so the support
multigraph of 2’ is edge-minimal and hence z/, = 2. Furthermore, if ) is the
necklace of G where e € IB((Q) then one of the inter-bead edges of ) has
an z’-value of 0 and the rest have z’-values of 2 (otherwise we could reduce
some values and hence reduce the overall cost of an optimal solution). Let
f € IB(Q) such that 2/, = 0. From the above work, since cz’ is an optimal
solution it must be that the weighted cost of the necklace () is the same with
respect to 2’ as it is in G. That is
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/

Cgy Cq
g€lB(Q) g€lB(Q)
Z 2cg = Z Cq

geIB(Q\{f} gelB(Q)
Z Cg = Cf
geIBQ\{f}

Z cg = 2cy
geIB(Q)
cr = % Z Cq
geIB(Q)

However,

Cf<% Z Cqg

geIB(Q)

and so we have a contradiction. Thus z is the characteristic vector of G and
so (G is the unique optimal integer solution. O

Corollary 20. Let G € M and let d be the canonical distance function of
G. Then G 1s an optimal solution to the linear program

minimaize dx
subject to x(6(S)) > 2 forallDCSCV
Te > 0 forallee E

and furthermore, it is the unique integer optimal solution.

8 Constructing Min-cut Cacti of Graphs with
a Min-cut of Size 2

In our construction of the graphs of M, we end up constructing the min-
cut cacti of each of these graphs. By using these ideas, we can develop an
algorithm for constructing the min-cut catci of a more general class of graphs,
namely those graphs with a min-cut of size 2.
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Input: A graph G with a min-cut of size 2
Output: The canonical min-cut cactus, H(G) of G

Find an ear decomposition, Hy, ..., H; of G with ears Ry,..., R
Initialize X = H,
fori=0tok—1do
Let R;+1 be a path with vertices labelled u, [, ...,[;,v
Let a and b be the nodes of X containing the labels u and v respectively
Find the transition nodes, ws,...,w, in a shortest {a, b}-path in X
Identify the nodes a, b, wy,...,w; in X and call the new node z
Label z with the union of the labels in a, b, w1, ..., w;
Add a cycle of length ¢ + 1 to X incident only to z
Label the new nodes of this new cycle with the single labels {4, ...,
Remove any loops in X
Output X

Lemma 21. At the end of each iteration of the above algorithm, X is a
cactus.

Proof. Since Hy is a cycle, clearly X is initially a cactus. Suppose X is a
cactus at the end of iteration ¢ for some 0 < ¢ < k—2. For clarity, we will let
X; and X;;1 be X at the end of iteration ¢ and ¢ + 1 respectively. Let zy be
any edge of X;,1. If xy is in the new cycle added in the i+ 1st iteration, then
clearly xy is in a unique cycle. Otherwise, xy is not a new edge which was
added to X in iteration 14 1. Hence xy is an edge of X;. Since Xj is a cactus,
let C' be the unique cycle containing xy. Thinking generally about cycles, if
we identify some of the nodes of a cycle, we get a collection of edge-disjoint
cycles and loops all incident to the new node. Since we remove loops in every
iteration and xy is in a cycle of Xj, it must also be in a cycle of X, ;.

Suppose, for a contradiction that zy is on two cycles C and C5 of X ;.
Let z be the new node of X;,; obtained by identifying nodes of X;. If z is
not on either of these two cycles then they are also cycles of X; and hence zy
is on two distinct cycles of X; which contradicts the fact that X; is a cactus.
Thus, suppose z is a node of C;. Since C; and C5 differ, let () be a maximal
subpath of C; whose internal nodes are distinct from the nodes of C. By
taking the union of C'j and (), we are guaranteed that X;,.; has a subgraph,
Y, as shown in Figure 12 which contains the node z.
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Figure 12: The subgraph Y

Notice that Y contains two cycles which share edges and hence Y cannot
be a subgraph of X;. Hence, Y must result from the identification of nodes
21, 2o, and z3 from one of the three subgraphs of X; shown in Figure 13.

Since we are identifying the nodes 21, 2o, and z3, these are transition nodes
(or also a or b) on a shortest {a,b}-path in X;. Although there are many
{a, b}-paths in X;, since X; is a cactus, the cycles which intersect an {a, b}-
path are the same regardless of what path is chosen. Hence the shortest path
corresponds to a unique chain of edge-disjoint cycles of X; and any node that
lies on two cycles is a transition node of the path. Thus, for all the scenarios
depicted in Figure 13, d must be a transition node of P. However, d is not
identified with the other nodes to obtain z and so we have a contradiction.
Therefore, every edge of X;,; is in a unique cycle.

Hence, in order to show that X, is a cactus, we simply need to show that
X1 is connected. This follows trivially from the fact that X; is a cactus,
and hence connected and neither of the operations of identifying nodes nor
removing loops will disconnect the graph. Therefore, X;; is connected and
is hence a cactus. The result then follows by induction. O
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Figure 13: 3 possible subgraphs of X;

Theorem 22. At the end of iteration i of the above algorithm, X is the
canonical min-cut cactus of H; 1.

Proof. A cycle is its own canonical min-cut cactus, so we have correctly
initialized X. Suppose that X is the canonical min-cut cactus of H; at the
end of iteration i — 1 (where we take the convention that iteration -1 is the
initialization X = Hy. Let X,;_; denote X at the end of iteration i — 1 and
let X; denote X at the end of iteration 7. Notice that if e is an edge in some
min-cut of H;;; then e is an inter-bead edge of some necklace of H; ;. Thus
we can apply the proof of Proposition 8 to show that the necklaces of H; 4
are obtained from the necklaces of H; as follows.

If (Vi,...,V)) is a necklace of H;, W is the set of internal vertices of
Rii1, u € V., and v € Vg, then (V4,...,V,_,V, UV, U...UV,_ UV U
WVS-F].)"')W) and (W+1,W+2,...,V9_1,V9UV9+1U...UWU%U%U...U
V. U W) are both necklaces (provided they have more than one bead) are
necklaces of H;yq. If W # 0 then (Vi UVLU... UV}, 1y, 1o,...,1,) is also a
necklace of H; ;. Furthermore, these are the only necklaces of H;..

In our algorithm, we create exactly these necklaces in the min-cut cactus
by identifying a, b, and the transition nodes of P. Removing loops is simply
the process of disregarding necklaces that have a single bead. The min-cut
cactus is automatically canonical since every node contains some label. Thus,
at the end of iteration i, X; is the canonical min-cut cactus of H;, ;. O

Now that we know that the algorithm is correct, we would like to know
its running time.
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Lemma 23. Let G be a graph with n vertices and let H(G) be a min-cut
cactus of G. If H(G) has no empty nodes then H(G) has at most n nodes
and at most 2n — 2 edges.

Proof. Let n’ and m’ be the number of nodes and edges respectively of H(G).

Since H(G) has no empty nodes, every node must be labelled by one or
more vertices of G. Now, every vertex of G appears as a label in exactly one
node of H(G) so trivially we have that n’ < n.

Since H(G) is a cactus, it an edge-minimal 2-edge-connected graph. Thus
in any ear decomposition of H(G), every ear contains at least two edges.
Let Lo be the length of the cycle beginning the ear decomposition and let
Ly,...,L, be the lengths of the subsequent ears added. Thus m’ = Ly +
Li+...4Lyand n' = Lo+ (L1 — 1)+ ...+ (L, — 1). Hence m' = n’ + p.
However, the beginning cycle must contain at least 2 nodes and every ear
adds at least one node so p < n’ — 2. Therefore m' <n'+ (n' —2) =2n' — 2
and so m' < 2n — 2. O

Lemma 24. If G' is a graph with n vertices and a min-cut of size 2 then
every iteration of the algorithm can be completed in O(n) time.

Proof. The only processes in an iteration which require any significant amount
of time to complete are

e finding the transition nodes,
e identifying a set of nodes, and

e removing loops from the cactus.

Identifying a set of nodes just requires us examine each of the edges in
the cactus and if one the endpoints of the edge is a, b, or a transition node
then we replace it with z. If we notice that we replaced both endpoints with
z then we created a loop and we can remove it right away. Thus we just need
to scan the edges one by one. Since there are O(n) edges in the cactus, we
can complete both the identifying of nodes step and the removing of loops
step in O(n) time.
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Hence, it just remains to show that we can find the transition nodes in
O(n) time.

Suppose that at the beginning of iteration ¢ where 0 < ¢ < k — 1 we
had a rooted spanning tree, T, of the canonical min-cut cactus of H;, call it
H(H;). Let r be the root node and let all the edges of T' be oriented towards
r. Suppose further, that the arcs of T" are coloured so that two arcs of T" are
the same same colour if and only if they belong to the same cycle of H(H;).
Now T has O(n) arcs since it is an oriented subgraph of H(H;) and so we can
construct the unique (a,r)-dipath in 7" in O(n) time. Similarily we will find
the unique (b, r)-dipath in 7. Comparing these two dipaths to find their first
common node, call it ¢, can also be accomplished in O(n) time. By taking
the union of the (a, ¢)-subdipath and the (b, ¢)-subdipath, we have found the
unique undirected {a, b}-path in T'. Hence we have also found an {a, b}-path
in H(H;). As we noticed before, the transition nodes of any {a, b}-path in
H(H;) are the same. Thus, we can simply follow the (a,c)-subdipath and
note whenever the colour of the arcs changes. If two consecutive arcs have
different colour then we can conclude that the incident node is a transition
node. By repeating this process for the (b, c)-subdipath, we can find the
remaining transition nodes. Therefore, given this coloured rooted spanning
tree of H(H;), we can find the transition nodes in O(n) time.

Fortunately, if such a coloured rooted spanning tree exists for H(H;)
then, as we find the transition nodes, we can modify 7" to find an appropriate
coloured rooted spanning tree exists for H(H;,1). Let x and y be consecutive
transition nodes (counting a and b as transition nodes) along the subdipaths
of T used to find the transition nodes. Since we have found a (z,y)-dipath
in 7', when z and y are identified, the cycle containing = and y in ‘H(H;)
becomes two in H(H;+1). Hence, we colour the (z,y)-dipath with a new
colour. Furthermore, we remove the first arc of this (x,y)-dipath in T' so
that when we identify = and y we do not get a dicycle in the resulting rooted
tree. Lastly we add the new nodes labelled [y, ..., to the tree along with
the arcs lyla,...,l;—1l4,l;z. Then we have an appropriately coloured rooted
spanning tree for H(H;1). Thus we can appropriately modify the tree at
every iteration so it just remains to show that we can start with a tree for
H(Hy) and the result follows by induction. However, H(H,) is a cycle so
we can just choose a Hamiltonian dipath as our initial 7" with all its arcs
coloured the same colour since all the edges of H(Hj) are in the same cycle.

34



Therefore, the above-mentionned tree does exist for every iteration and it
can be updated during our finding of the transition nodes and hence finding
the transition nodes in each iteration requires O(n) time. Therefore, each
iteration of the algorithm takes O(n) time. O

Theorem 25. Let G be a graph with n vertices and m edges. If G has a
min-cut of size 2 then the running time of the algorithm is O(mn).

Proof. The ears in any ear decomposition of G along with the beginning
cycle Hy partition the edges of G. Thus any ear decomposition of G' contains
fewer then m ears. Hence the algorithm executes fewer then m iterations.
By Lemma 24 each iteration takes time O(n) and so all the iterations take
time O(mn). The only other work done in the execution of the algorithm is
finding an ear decomposition of G. We can find an ear decomposition of GG in
O(m) time. Therefore, the total running time of the algorithm is O(mn). O

Theorem 25 tells us that given a graph with n vertices, m edges, and a
min-cut of size 2 we can construct its canonical min-cut cactus in O(mn)
time. This is a strict improvement on the current best algorithm, due to
Fleischer [2], which can construct a min-cut cactus for an arbitrary graph on
n vertices and m edges in O(mn log("%)) time.

Corollary 26. If G € M has n vertices then we can find the canonical
min-cut cactus of G in O(n?) time.

Proof. According to Theorem 18, G has O(n) edges. Hence by Theorem 25
we can find the canonical min-cut cactus in O(n?) time. O
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