Distributed Assessment of Risks Tool

(DART)

System and Software Architecture Description
(SSAD v3.0)

2/18/2002
Team 15

Michael Klug – Project Manager
Chris Patel – Development Integrator
Pallavi Raghavan – Developer
Lucy Wong – Developer
Antonia Yeung – System Engineer
[This page is intentionally left blank]

Table of Contents

vVersion Control

1
Introduction
1
1.1
Purpose of the System and Software Architecture Description


 Document



1
1.2
Standards and Conventions
1
1.3
References



1
1.4
Change Summary


2
2
Architectural Analysis
3
2.1
Component Model


3
2.2
Behavior Model



8
2.3
Enterprise Classification Model
27
3
System Design
29
3.1
Architectural Views


29
3.2
Object Static Structure Model
33
3.3
Interaction Model


44
3.4
Implementation Class Model
59
3.5
Configuration Model

61
Common Definition Language
64
5.  Appendices
65
A. Reference



65
B. Vendor documents


67


Version Control

	Date
	Author
	Changes
	Version

	10/15/01
	Pallavi Raghavan
	Initial Draft
	0.1

	10/23/01
	Pallavi Raghavan
	Major Diagram Changes
	0.2

	10/27/01
	Pallavi Raghavan
	Minor Textual Changes
	0.2.1

	10/29/01
	Pallavi Raghavan
	Diagram Changes and Minor 

Textual Updates
	0.2.2

	11/4/01
	Pallavi Raghavan
	Updated for baseline LCO ARB
	1.0

	11/12/01
	Pallavi Raghavan
	Adding new component diagram and use cases 
	1.1

	11/13/01
	Lucy Wong
	Added section 3.2 to doc.
	1.1.1

	11/20/01
	Pallavi Raghavan
	Adding new sections to document for LCA 
	1.2

	11/26/01 
	Lucy Wong and Antonia Yeung
	Added objects and Interaction Model
	1.3

	11/27/01
	Pallavi Raghavan
	Added sequence diagrams and minor fixes
	1.4

	11/29/01
	Pallavi Raghavan
	Corrected issues from Fagan Review
	1.5



	12/05/01
	Pallavi Raghavan
	Updates per LCA ARB.  Baselined.
	2.0

	1/28/02
	Pallavi Raghavan
	Updates for RLCA
	2.1

	2/4/02
	Michael J. Klug
	Added “Change Summary” Section.
	2.2

	2/6/02
	Pallavi Raghavan
	Updates for RLCA
	2.3

	2/8/02
	Pallavi Raghavan
	Updates for RLCA
	2.4

	2/10/02
	Michael J. Klug
	Modifications to “Change Summary” to make sure other documents affected is clear.
	2.5

	2/12/02
	Michael J. Klug
	Updates per IV&V review.
	2.6

	2/18/02
	Pallavi Raghavan
	Baselined for RLCA
	3.0


List of Figures

2Table 1 - Change Summary


3Figure 1 - DART Component Model


4Figure 2 - DART User Interface State Diagram


5Figure 3 - DART Data Repository State Diagram


6Figure 4 - System Processing State Diagram


7Figure 5 - DART Administrative Interface State Diagram


8Figure 6 - DART Login/Logout Use Cases


11Figure 7 - DART Administrator Use Cases


13Figure 8 - DART Setup Use Cases


22Figure 9 - DART Voting Use Cases


24Figure 10 - DART Viewing Data Use Cases


27Figure 11 - DART Enterprise Model


28Figure 12 - DART Behavior Classification Model


30Figure 13 - DART System Topology


30Figure 14 - Components in View Layer


30Figure 15 - Components in Control Layer


31Figure 16 - Components in Persistance Layer


31Figure 17 - DART System Deployment


31Figure 18 - DART Node Configuration


31Figure 19 - Component Configuration for the CSE Server


32Figure 20 - Classes  for the User Interface Component


33Figure 21 - Classes for  the Administrator Interface Component


43Figure 22 - Interface Object-Static Structure Model


44Figure 23 - Administrative Interface Object-Static Structure Model


44Figure 24 - Create a Project


45Figure 25 - Import CVS File


45Figure 26 - Vote on Risks


46Figure 27 - View Top N Summary


46Figure 28 - View Risk History Chart


46Figure 29 - Close Vote


47Figure 30 - Export CSV File


49Figure 31 - CSV File Algorithm


51Figure 32 - Export CSV File Algorithm


53Figure 33 - Close Voting Algorithm


59Figure 34 - Implementation Class Model for the User Interface Component


60Figure 35 - Implementation Class Model for the Data Repository Component


60Figure 36 - Implementation Class Model for the Administrative Interface Component


61Figure 37 - Documents and Source File Configuration


62Figure 38 – Contents of the Documentation Directory


62Figure 39- Contents of the Webapps Directory


63Figure 38- Contents of the Servlet Directory





1 Introduction

1.1 Purpose of the System and Software Architecture Description Document

The System Software Architecture Document (SSAD) takes the requirements from the SSRD for DART (Distributed Assessment of Risks Tool) and converts them into a realizable system. This system must be constructed within the constraints placed on it by the CS 577 development environment.  The SSAD also gives detailed information about Architectural Analysis and System Design.
The intended audience for this document consists of domain experts for the system analysis and implementers for system design. This includes all of the members from team 15 who are the developers, and Paul Sitko, Barry Boehm, and Dan Port who are the clients as well as domain experts.  The proposed system should ultimately satisfy the needs of all the stakeholders involved in the project. 

1.2 Standards and Conventions

1. UML is the modeling language used to visually depict the Architectural Analysis and Design of our proposed system. There are certain areas where UML provides no specifications on how to diagram a particular case, and for these issues we followed instructions given in class as “work-around” to this problem.
1.3 References

· Operational Concept Description v. 3.0
· System and Software Requirements Definition v. 3.0
· Rational Unified Process Guide v. 2001A.04.00
· MBASE Guidelines version 2.3.6c
· B.W. Boehm, “Software Risk Management: Principles and Practices”, IEEE, January 1991, pp.32-41.

· “The Unified Modeling Language User Guide”,  G. Booch, J. Rumbauch, I. Jacobson, Addison Wesley 1999

· USC Center for Software Engineering - URL: http://sunset.usc.edu
· EPG Web Resources – URL: http://sunset.usc.edu/research/MBASE/EPG
· Easy WinWin Negotiation Results

· Easy WinWin Sessions:  09/25/01, 09/27/01

· Client Meetings:  09/21/01, 09/25/01, 09/27/01, 10/22/01, 10/31/01, 11/12/01, 11/14/01, 11/30/01, 12/03/01, 01/24/02, 02/14/02
· Team Meetings:
09/18/01, 09/21/01, 09/23/01, 09/25/01, 09/27/01, 09/30/01, 10/03/01, 10/07/01, 10/11/01, 10/14/01, 10/18/01, 10/21/01, 10/25/01, 10/28/01, 10/30/01, 11/04/01, 11/08/01, 11/11/01, 11/12/01, 11/15/01, 11/18/01, 11/27/01, 11/29/01, 12/02/01, 12/03/01, 01/10/02, 01/17/02, 01/24/02, 01/27/02, 01/31/02, 02/07/02, 02/10/02, 02/14/02, 02/17/02577 Guidelines: A “complete citation” for CS577 should include the title of the document (in suitable bibliographic form), and with the explicit URL for the document. [This information is requested so that future researchers can find the cited document from an on-line archive.]
1.4 Change Summary

Provide complete citations to all documents, meetings and external tools referenced or used in the preparation of this document .

There were mostly minor diagram changes made to this document. These were done in order to ensure data integrity and improve the level of accuracy in this document.
	
	
	Sections Affected

	Change Description
	Rationale
	Here
	Elsewhere

	Add legal id & password to use cases.
	Required for successful login
	· Section 2.2
	· None

	Changed some relation names in the Enterprise Classification Model.
	Required for accuracy
	· Section 2.3

· Section 3.1.5, logical class model
	· None

	Changed general Use-Cases to match OCD 4.3.
	Required for data integrity
	· Section 2.3
	· None

	Added deployment diagrams.
	Required for LCA
	· Section 3.1
	· None

	Removed Unix workstations and Macs from delpoyment scheme.
	We do not support Netscape browsers and Unix machines. We will not conduct additional testing on Mac’s.
	· Section 3.1
	· None

	Added operations to Logical Class Model.
	Required for MBASE guidelines
	· Section 3.1.5

· Section 3.3
	· None

	Added visibility indicators and classification of objects for the Object-Static Structure Model.
	Required for MBASE guidelines
	· Section 3.2
	· None

	Moved interaction diagrams to beginning of section 3.3.  Added operations for the diagrams. Added users objects.
	Required for MBASE guidelines
	· Section 3.3

· Section 3.2
	· None

	Changed structure of Implmentation Class Model. Added operations and attributes
	Required for MBASE guidelines
	· Section 3.4
	· None

	Changed structure of Configuration Class Model.
	Required for MBASE guidelines
	· Section 3.5
	· None


Table 1 - Change Summary
2 Architectural Analysis

This section will provide detailed representations of the system through diagrams such as the Component, Behavior and Enterprise Models. 

Several different architectures were discussed and ruled out as infeasible before we concluded that a web architecture was a good choice. One such architecture was to use MS Excel as a COTS product to perform all of the core capabilities. We decided against it because of scalability issues. Another architecture that was discussed involved developing a system that used a floppy disk to store all persistent data. Again, that was declared infeasible because of scalability, security and the fact that not all of the proposed system capabilities (OCD section 4.3) and various requirements for the system (SSRD section 3.0) were met. As a result, the web architecture proved to be the best choice.
2.1 Component Model

Component Specification Template:


Identifier - Unique identifier used for traceability (e.g., COM-xx)


Defining quality -



Name -


Attributes - Use Attribute Specification template for non-trivial attributes (be sure to reference the Attribute Specification is used)



a) ...



b) ...



c) ...



...


Behaviors - Use Behavior Specification template for non-trivial behaviors and/or UML Use Cases (You may also reference behaviors in the Behavior Model to avoid redundancy)


a) ...



b) ...



c) ...



...


Relationships - Use Relationship Specification template for non-trivial relationships. Use a UML Component (class with "component" stereotype relationship) diagram


a) ...



b) ...



c) ...



...


Roles - Describes how one component views another component through a relationship. Indicate roles in a UML diagram



...



a) role name, relationship or role diagram



b) role name, relationship or role diagram



...


State Groups - You may use State transition diagrams. 



a) StateGoupName1  {State11, State12, …}



b) StateGoupName2  {State21, State22, …}


...


Constraints - 


Dependencies -



Candidate Key - combination of attributes uniquely identifying a component or an object


Cardinality -


Others -  

Relates to - Reference corresponding Entities from the Entity Model

Advice:

· Start with a single fundamental component you know must be part of the system and fill out a specification template for it.

· Take a component it has a relationship to, and do the same.

· Repeat this until no more components are found

· You will often need to draw upon the "possible components" list when detailing components relationships

This model identifies the various components in the architecture and their associations with other components as related to the proposed entities in OCD (4.5.2). The system components include the
DART User Interface, Administrator Interface, Server and Data Repository.
[image: image1.emf]DART User Interface

<<Component>>

DART Administrative Interface 

<<Component>>

DART Server

<<Component>>

DART Data Repository

<<Component>>


Figure 1 - DART Component Model
	Identifier
	COM-01

	Defining Quality
	The DART’s web-based user interface for all stakeholders.

	Name
	User Interface

	Attributes
	a) url 

	Behaviors
	a) Refer to Behavior Model ( SSAD 2.2 ) ​: login,  viewing, voting and setup use cases

	Relationships
	a) DART Server (see Figure 1)

	Roles
	a) Display voting options

b) Display all risk  information 

c) Display  general project  information

c) Send request to the DART Server Component
d) Receive results from the DART Server Component

	State Groups
	Refer to Figure 2

	Constraints
	n/a

	Relates To
	OCD 4.5.2 PE-01, PE-04, PE-05, PE-07


[image: image2.emf]Project 

Selected

Modify 

Configuration

View Data

Vote On 

Risk

edit another

vote again

view another

Finish with 

Tasks

Main 

Page

vote

modify

finished

modify

vote

finished

modify

vote

view

logout

select another

view

view

finished

login


Figure 2 - DART User Interface State Diagram
	Identifier
	COM-02

	Defining Quality
	A repository that stores all user privileges, risk, stakeholder and project information for a team.

	Name
	DART Data Repository 

	Attributes
	a) server name
b) user name

c) password

d) DB name

	Behaviors
	a) Inputs data from queries into appropriate tables

b) Returns data from tables when queried

	Relationships
	a) DART Server (see Figure 1)

	Roles
	a) Store all data accurately

b) Concurrency control manager (locking access to data when it is being modified)

c) Retains all risk, stakeholder and history information entered from the GUI and CSV files
d) Retains user privilege and authentication information

e) Crash Recovery

	State Groups
	Refer to Figure3

	Constraints
	n/a

	Relates To
	OCD 4.5.2 ,PE-02, PE-03


[image: image3.emf]Wait For 

Command

Write Data

Retrieve 

Data

request data

update

return data

return status


Figure 3 - DART Data Repository State Diagram
	Identifier
	COM-03

	Defining Quality
	Back end system  processing for DART that is performed on one of CSE’s web servers 

	Name
	DART Server

	Attributes
	a) web archive file location
b) web server location

c) servlet container location

d) server name
e) user name

f) password

	Behaviors
	a) Uses http protocol communicate with web browser to obtain and send information to and from GUI

b) Copies imported CSV files into a local directory

c) Utilizes compilers/interpreters 

	Relationships
	a) DART User Interface (see Figure 1)
b) DART Administrator Interface (see Figure 1)
c) DART Data Repository (see Figure 4)

	Roles
	a) Administers all communication between the GUI and the Data Repository
b) Stores soft copies of imported CSV files

c) Retains all of the source files associated with the DART system

	State Groups
	Refer to Figure 6

	Constraints
	n/a

	Relates To
	OCD 4.5.2 PE-02, PE-04, PE-05, PE-07


[image: image4.emf]Wait for Request

Process 

Request

pass request to repository

send result to interface


Figure 4 - System Processing State Diagram
	Identifier
	COM-04

	Defining Quality
	DART’s web-based user interface for system administration

	Name
	Administrative Interface

	Attributes
	a) url
b) username

c) password

	Behaviors
	a) Refer to Behavior Model ( SSAD 2.2 ) ​: admin project setup use cases

	Relationships
	a) DART Server (see Figure 1)

	Roles
	a) Monitors the creation and destruction of new projects
b) Establishes one manager at least for each project



	State Groups
	Refer to Figure 2

	Constraints
	n/a

	Relates To
	OCD 4.5.2 PE-01, PE-06, PE-07


[image: image5.emf]Logged In

login

Create/Delete 

Projects

edit project

exit

edit again


Figure 5 - DART Administrative Interface State Diagram


2.2 Behavior Model

The OCD details the Capabilities with Operational Scenarios using Early Prototype Screen dumps and scenario Use Cases. These are inadequate for clearly defining what precisely the system capabilities are to the point they can be designed (i.e. specify the precise sequence of operations or functions that implement the capability). The purpose of the behavior model is to define precisely what is involved in a system capability.

· [Consistent with the Organization Activity Model]

· [Consistent with Capabilities (OCD 4.3)]

· Start with the list of Capabilities (OCD 4.3)

· Refine into sub-responsibilities, and then, eventually into behaviors

· The productive questions in the additional guidelines (OCD 4.3) are useful

· Avoid system operations (i.e., behaviors that operate directly on a piece of data or supply data, such as an Event Notification)

· Label system policies (with <policy>) and the respective algorithms (with <algorithm>), i.e., specifically created behaviors to carry out those policies

· Label significant system events (with <event>)

· For non-trivial behaviors, provide a Behavior Specification using the Behavior Specification Template such as the following:

Behavior Specification Template:


Trigger - 


Preconditions - 


Postconditions - 


Inputs (with constraints and dependencies) - 


Outputs -


Exceptions -


Use Case Diagram and/or Scenario-  


Relates to - Reference corresponding Capability (OCD 4.3)


Type: {<event>, <policy>, <algorithm>}

Using an outline form makes it easier to identify boundaries of control (i.e., the point at which a behavior requires interaction with users or other elements outside the system). The following is a suggested format:

Capability 1

System Sub-Responsibility 1


System Behavior 1 <event>

System Sub-Responsibility 2 <policy>


System Sub-Sub-Responsibility 1 <policy>


System Behavior 1 <algorithm>


System Behavior 2

…

Capability 2

System Sub-Responsibility 1


System Behavior 1

System Sub-Responsibility 2


System Sub-Sub-Responsibility 1


System Behavior 1 <event>


System Behavior 2

…

The use case diagrams and descriptions below will demonstrate the various behaviors between actors and the system in the model. This corresponds with the system capabilities from the OCD Section 4.3.

2.2.1 System Login 


The login use cases correspond to OCD   System Capabilities
[image: image6.emf]Login

Logout

User

System Administrator


Figure 6 - DART Login/Logout Use Cases
	Identifier
	UC-1

	Use-Case Name
	Login

	Abstract
	No

	Purpose
	The user can provide a valid login and password to enter into the system.

	Actors
	User

	Importance
	Primary 

	Requirements
	R24, R31

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA 

	Pre-conditions
	User must be at the login screen.

	Post-conditions
	User is logged into system after providing a legal password and username.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action

	Seq. #
	Actor Actions
	System Response

	1.
	User enters a login and password
	

	2
	User selects a project
	

	3
	
	Verifies that the login exists for project

	4
	
	Verifies that password matches

	5
	
	Creates a new session id

	6
	
	User name is saved for that session

	7
	
	Web Interface redirects user to the main  list page

	8
	User can start using the tool
	


Alternate Course of Action: Admin Login

	Seq. #
	Actor Actions
	System Response

	1.
	User enters a login and password
	

	2
	User selects a project and admin bo
	

	3
	
	Verifies that the login exists

	4
	
	Verifies that password matches

	5
	
	Creates a new session id

	6
	
	User name is saved for that session

	7
	
	Web Interface redirects user to the admin project modify page

	8
	User can start using the tool
	


Alternate Course of Action: Bad Login Information
	Seq. #
	Actor Actions
	System Response

	1.
	User enters a login and password
	

	2
	
	Finds login or password or both invalid

	3
	
	Web Interface sends error message back to user

	4
	User re-logins in with correct information
	


	Identifier
	UC-2

	Use-Case Name
	Logout

	Abstract
	No

	Purpose
	The user logouts of a session of using the DART tool.

	Actors
	User

	Importance
	Primary 

	Requirements
	R24

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA 

	Pre-conditions
	User must be logged into the tool and click logout.

	Post-conditions
	User is logged out of the system.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action

	Seq. #
	Actor Actions
	System Response

	1.
	User clicks logout button
	

	2
	
	Ends  the session 

	3
	
	Redirects user to login page

	4
	User can re-login
	


Alternate Course of Action: Browser Closed Without Logging Out
	Seq. #
	Actor Actions
	System Response

	1.
	User closes browser
	

	2
	
	Session id times out, user is logged out


2.2.2 Administrator Project Setup 

[image: image7.emf]Create Project

System Administrator

Delete Project


Figure 7 - DART Administrator Use Cases
	Identifier
	UC-3

	Use-Case Name
	Create Project

	Abstract
	No

	Purpose
	The admin can create a project.

	Actors
	System Administrator

	Importance
	Primary 

	Requirements
	R27, R31

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA 

	Pre-conditions
	Admin must select create project option, enter project name and project manager in project config screen.

	Post-conditions
	Data is sent to the data repository.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-05,SC-06


Typical Course of Action: Create Project
	Seq. #
	Actor Actions
	System Response

	1.
	Enters project name
	

	2
	Enters manager for project
	

	3
	Selects create project
	

	4
	
	Creates project in Data Repository

	5
	
	Displays project created message


	Identifier
	UC-4

	Use-Case Name
	Delete Project

	Abstract
	No

	Purpose
	The admin can modify delete a project..

	Actors
	System Administrator

	Importance
	Primary 

	Requirements
	R27, R31

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA 

	Pre-conditions
	Admin must select delete project option, enter project name project config screen.

	Post-conditions
	Project is deleted.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-05,SC-06


Typical Course of Action: Delete a Project
	Seq. #
	Actor Actions
	System Response

	1.
	Selects project to delete
	

	2
	Clicks on delete project
	

	3
	
	Deletes project in Data Repository

	4
	
	Displays project deleted message


2.2.3 Manager Setup Project Configuration
[image: image8.emf]Import CSV File

Mitigation Plan Modifications

Close Voting

Edit Stakeholder

Add Risk

Delete Risk

Modify Risk

Add Stakeholder

Manager

Delete Stakeholder


Figure 8 - DART Setup Use Cases
Common Pitfall:

· Including Behaviors that do not reference Capabilities, Project Goals nor Levels of Service

RUP GL:  SSAD 2.2 – Behavior Model

Create a Use–Case Model that the capabilities required of system by other systems, devices, and people.

· Create one or more Use–Case Diagrams that show

· The other systems, devices, and people that interact with the system (“actors”)

· The capabilities of the system which provide measurable value to one or more actors (“use–case”)

· The relations among the actors and use–cases

· A non–directional association between each actor and use–case that it participates in.

· A generalization relation from any specialized actor to the more general actor that is specializes(e.g. “DB Administrator” to “DB User”)

· A generalization relation from any specialized use–case to the more general use–case that is specializes (e.g. “Setup TCP/IP Connection” to “Set Up Network Connection”)

· A include relation from any use–case requires another use–case.

· A extend relation from any use–case adds to the behavior of another use–case under special conditions.

· Describe each actor and use–case.

· The description of each use–case should list the requirements related to use–case (may be a list of requirement numbers or links to requirement description).

· The description of each use–case should list the risks related to use–case (may be a list of risk numbers or links to risk description).

For LCO, the use–case description for high–risk, architecturally significant, or particularly complex use–case should include detailed courses of actions with exception and alternate courses of action identified; the descriptions for other use–cases need only include a high–level overview of the behavior.  

For LCA, all high–risk and architecturally significant use–cases should be designed using one or more Sequence Diagrams (see section 3.3 Interaction Model).

For IOC, all use–cases should be designed using one or more Sequence Diagrams.






[image: image9.wmf]
 




577a GL:  SSAD 2.2 – System Requirements

Describe each use–case using the following form.

	Identifier
	UC-5

	Use-Case Name
	Add a Stakeholder

	Abstract
	No

	Purpose
	The manager can make modifications to the list of stakeholders.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R31

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	Modifications are made to stakeholder list for the project.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Add a Stakeholder
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects add a stakeholder
	

	2
	Manager enters stakeholders name
	

	3
	Manager enters stakeholders password
	

	4
	Manager enters stakeholders authority level
	

	5
	
	Stakeholder is added to the Data Repository

	6
	
	Display message that action has been completed


	Identifier
	UC-6

	Use-Case Name
	Detele a Stakeholder

	Abstract
	No

	Purpose
	The manager can delete stakeholders.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R31

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	The stakeholder is removed from the data repository

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Delete a Stakeholder
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects delete a stakeholder
	

	2
	Manager selects a stakeholder
	

	3
	
	Stakeholder is deleted from the Data Repository

	4
	
	Display message that action has been completed


Exceptional Course of Action: Delete a Manager
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects delete a stakeholder
	

	2
	Manager selects a stakeholder who is a manager
	

	3
	
	Make sure that there  is more than one manager for the project

	4
	
	Display a warning message

	5
	User clicks okay to warning
	

	6
	
	Update in Data Repository

	7
	
	Display message that action has been completed


	Identifier
	UC-7

	Use-Case Name
	Edit a Stakeholder

	Abstract
	No

	Purpose
	The manager can edit stakeholder information.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R31

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	The stakeholder information is edited in data repository.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Modify a Stakeholder
	Seq. #
	Actor Actions
	System Response

	1
	Manager selects modify a stakeholder
	

	2
	Manager selects a stakeholder
	

	3
	Manager enters modification
	

	4
	
	Stakeholder is modified the Data Repository

	5
	
	Display message that action has been completed


	Identifier
	UC-8

	Use-Case Name
	Add a Risk

	Abstract
	No

	Purpose
	The manager can add a risk.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R3, R32, R7, R23

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	The risk is added to the project.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Add a Risk
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects add a risk
	

	2
	Manager enters risk name
	

	3
	Enters data in notes field if needed
	

	4
	Enters data in description field if needed
	

	5
	
	Risk is added to the Data Repository

	6
	
	Display message that action has been completed


	Identifier
	UC-9

	Use-Case Name
	Delete a Risk

	Abstract
	No

	Purpose
	The manager can delete a risk.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R3, R32,  R7, R23

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	The risk is deleted from the project.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Delete a Risk
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects delete a risk
	

	2
	Manager selects a risk
	

	3
	
	Risk is deleted from the Data Repository

	4
	
	Display message that action has been completed


	Identifier
	UC-10

	Use-Case Name
	Edit a Risk

	Abstract
	No

	Purpose
	The manager can modify information in the risk list.

	Actors
	Manager

	Importance
	Primary 

	Requirements
	R3, R32, R7, R23

	High–Risk?
	No

	Architecturally Significant?
	 No

	Development Status
	RLCA

	Pre-conditions
	Manager must be logged in, using the setup interface and authenticated as a manager.

	Post-conditions
	Modifications are made to the risk list for the project.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Edit a Risk
	Seq. #
	Actor Actions
	System Response

	1
	Manager selects edit a risk
	

	2
	Manager selects a risk
	

	3
	Modifies data in notes field if needed
	

	4
	Modifies data in description field if needed
	

	5
	
	Risk is modified in the Data Repository

	6
	
	Display message that action has been completed


	Identifier
	UC-11

	Use-Case Name
	Import CSV File

	Abstract
	No

	Purpose
	The manager can import a CSV file  from their client machine

	Actors
	Manager

	Importance
	Primary

	Requirements
	R47

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA

	Pre-conditions
	The manager must have a CSV file formatted in the manner specified in CSV template/user documentation.

	Post-conditions
	The CSV file is copied onto the web server and its contents into the Data Repository.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-03


Typical Course of Action: Import CSV File
	Seq. #
	Actor Actions
	System Response

	1.
	Manager selects CSV option
	

	2
	Manager enters filename
	

	3
	
	Issue a warning

	4
	User clicks okay
	

	5
	
	CSV file is added to the Data Repository

	6
	
	Display message that action has been completed


	Identifier
	UC-12

	Use-Case Name
	Modify Mitigation Plan

	Abstract
	No

	Purpose
	The manager can edit or add a mitigation plan for each risk for the current assessment period.

	Actors
	Manager

	Importance
	Primary

	Requirements
	R3

	High–Risk?
	No

	Architecturally Significant?
	No

	Development Status
	RLCA

	Pre-conditions
	The manager must be in the edit risks screen and authenticated as a manager.

	Post-conditions
	The mitigation plan is added to the Data Repository.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Modify Mitigation Plan
	Seq. #
	Actor Actions
	System Response

	1.
	Manager  selects edit option for risks
	

	2
	Manager updates the mitigation plan
	

	3
	
	Mitigation plan is added to the Data Repository

	4
	
	Display message that action has been completed


	Identifier
	UC-13

	Use-Case Name
	Close Voting

	Abstract
	No

	Purpose
	The manager can close the voting for an assessment period

	Actors
	Manager

	Importance
	Primary

	Requirements
	R43, R8, R33

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA

	Pre-conditions
	The user is in the setup screen, authenticated as a manager and selects close vote

	Post-conditions
	The current assessment period is closed and time stamped.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Close Voting
	Seq. #
	Actor Actions
	System Response

	1.
	The manager selects the close vote option
	

	2
	The manager enters the current date
	

	3
	The manager presses the close button
	

	4
	
	The system averages the votes and calculate the RE value for each risk

	5
	
	The  RE value and the risk are recorded in the history

	6
	
	Display message saying action completed


2.2.4 Voting Use Cases

[image: image10.emf]Votes On Risk

User


Figure 9 - DART Voting Use Cases
	Identifier
	UC-14

	Use-Case Name
	Votes On Risk

	Abstract
	No

	Purpose
	The user can vote on one or more risks for the current assessment period.

	Actors
	Stakeholder

	Importance
	Primary

	Requirements
	R7, R43, R5, R23

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA

	Pre-conditions
	User must be using voting interface and user must be authenticated as a stakeholder for the project.

	Post-conditions
	Vote is cast for a particular risk.

	Includes
	NA

	Extension Points
	N/A

	OCD System Capabilities
	SC-01


Typical Course of Action: Votes On Risks
	Seq. #
	Actor Actions
	System Response

	1
	Selects  risk
	

	2
	
	Display any existing values

	3
	Enters a P(UO) value
	

	4
	Enters a L(UO) value
	

	5
	Enters a rationale if needed 
	

	6
	
	Voting data is added to the Data Repository

	7
	
	Display message that action has been completed


Alternate Course of Action: Cancel Vote
	Seq. #
	Actor Actions
	System Response

	1.
	User selects stakeholder name
	

	2
	
	Redirects to voting page

	3
	Selects  risk
	

	4
	
	Display any existing values

	5
	Enters a P(UO) value
	

	6
	Enters a L(UO) value
	

	7
	Enters a rationale if needed
	

	8
	Votes are cancelled
	

	9
	
	All voting forms are reset


2.2.5 View Risk Information 

[image: image11.emf]View Risk History Chart

View All Risks List

Export CSV File

User


Figure 10 - DART Viewing Data Use Cases
	Identifier
	UC-15

	Use-Case Name
	Export CSV File

	Abstract
	No

	Purpose
	The can export  a CSV file to their client machine

	Actors
	Manager

	Importance
	Primary

	Requirements
	R17

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA 

	Pre-conditions
	The user must be in the viewing screen and select export CSV option.

	Post-conditions
	The CSV file is ready for the client to download on to his/her machine.

	Includes
	N/A

	Extension Points
	N/A

	OCD System Capabilities
	SC-03


Typical Course of Action: Export CSV File
	Seq. #
	Actor Actions
	System Response

	1.
	User selects CSV option
	

	2
	User clicks on download
	

	3
	
	Creates CSV file and stores file on server

	4
	
	Display message that action has been completed

	5
	User clicks save to disk option
	

	6
	
	CSV file save to disk


	Identifier
	UC-16

	Use-Case Name
	View the Risk History Chart

	Abstract
	No

	Purpose
	The user can view a Risk Chart report.

	Actors
	User

	Importance
	Primary 

	Requirements
	R4, R14, R16

	High–Risk?
	Yes

	Architecturally Significant?
	Yes 

	Development Status
	RLCA

	Pre-conditions
	User must choose a risk and select view its history.

	Post-conditions
	Risk Chart is displayed for all project risks.

	Includes
	NA

	Extension Points
	N/A

	OCD System Capabilities
	SC-04


Typical Course of Action: View Risk History Chart
	Seq. #
	Actor Actions
	System Response

	1
	User selects chart history option
	

	2
	
	Chart displays risk history for all risks


	Identifier
	UC-17

	Use-Case Name
	View All Risk List

	Abstract
	No

	Purpose
	The user can view a sorted list of all risks.

	Actors
	User

	Importance
	Primary 

	Requirements
	R4,R12, R13, R11, R49, R42, R19

	High–Risk?
	Yes

	Architecturally Significant?
	Yes

	Development Status
	RLCA 

	Pre-conditions
	User is utilizing the viewing interface and selects view all risks.

	Post-conditions
	All risk are displayed sorted by RE.

	Includes
	NA

	Extension Points
	N/A

	OCD System Capabilities
	SC-02


Typical Course of Action: View All Risks List
	Seq. #
	Actor Actions
	System Response

	1
	User selects view all risks
	

	2
	
	Displays all risks sorted by RE value


Alternate Course of Action: View Top N List
	Seq. #
	Actor Actions
	System Response

	1.
	User selects view Top N List  option
	

	2
	
	Display default Top 10 list

	3
	User enter N
	

	4
	User enters submit
	

	5
	
	Displays top N risk list


For LCO, the following fields of use–case description should be filed out for all use–cases: Name, Purpose, Actors, Importance, Requirements, Development Status, Pre–conditions, Post–conditions, and Includes.

For LCA, Typical, Alternate, and Exceptional Courses of Actions should be described for high–risk, architecturally significant, or particularly complex use–case.  Fill–in the Includes & Extension Points fields if the courses of actions specify the inclusion of other use–cases or extension point, respectively.

For IOC, use–cases descriptions should be completely filed out for all use–cases.

2.3 Enterprise Classification Model

This section provides a complete model of the system domain that shows the interrelationships among the constituents of different components.

2.3.1 Object Classifications

The diagram below shows the classification hierarchy of the components given in the Component Model (SSAD 2.1). Here the classes and their relations that will be used to build the DART System are graphically represented. The objects that are instances of these classes are represented in section 3.2 of this document.
[image: image12.emf]Administrator

DART Administrative 

Interface 

<<Component>>

acts for >

DART User Interface

<<Component>>

User

acts for>

ViewTopNSummaryPage

<<boundary>>

Model

<<entity>>

ChartAllProgessPage

<<boundary>>

ListAllPage

<<boundary>>

VotingInfo

<<entity>>

P : int

L : int

rationale : String

riskId : String

stakeholderId : String

1

1..*

1

1..*

v data in

invokes >

1

1..*

1

1..*

1

1..*

1

1..*

VotingPage

<<boundary>>

1..*

1

1..*

1

 represents >

StakeholderInfo

<<entity>>

name : String

password : String

role : String

1

0..*

1

0..*

data in >

RiskInfo

<<entity>>

riskName : String

riskDescrip : String

0..* 0..*

^data in

EditStakeHolderPage

<<boundary>>

1..*

1

1..*

1

modifies ^

EditRisksPage

<<boundary>>

1..* 1..*

modifies ^

AdminModifyProjectPage

<<boundary>>

projectInfo : String

User Manager 

<<entity>>

ProjectSetupPage

<<boundary>>

projectId : int

1

1

accesses ^

1

1

accesses ^

ProjectsListPage

<<boundary>>

1

1

links to v

AuthenticationManager

<<entity>>

1

1

invokes v

1

1

populates v

ImportCSVPage

<<boundary>>

1

1

links to ^

ProjectsMainPage

<<boundary>>

projectId : int

myStakeholderinfo : stakeholderInfo

1

1

accesses^

1

1

< starts

1

1

invokes v

CSVManager

<<entity>>

1

1

invokes v

1

1

invokes ^

DataManager

<<entity>>

1 1

inputs >

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

V data in

v data in


Figure 11 - DART Enterprise Model
2.3.2 Behavior Classifications

This section shows the classification hierarchy of the behaviors in the Behavior Model through use case diagrams. These diagrams reference section 2.2 of this document.

[image: image13.emf]Create Project

Manage Risk Descriptions

Distributed Voting

Vote on Risk

View Risk Data

View Risk History Chart

View All Risks List

Export CSV

Manage Session

Login

Logout

Mitigation Plan Modifications

Manage Project

Import CSV File

Close Vote

Add Risk

Delete Risk

Edit Risk

Add a Stakeholder

Delete a Stakeholder

Edit a Stakeholder

Delete Project


Figure 12 - DART Behavior Classification Model
3 System Design

· Describe how the system will be implemented in software using specific technology solutions that meet System Requirements, Project Requirements, Level of Service Requirements, etc.

· In particular, in this section, you should handle:

· Non-trivial roles and states

· Bi-directional relationships

· Multi-way relationships

· Global and relational attributes

· Complex dependencies and other constraints

· You also decompose Components into software-level objects and support technologies (database, web-servers, etc…)

· You propose direct implementation considerations, such as the use of databases, web-servers, hardware, critical algorithms, operation sequence, significant events, GUI’s, etc.

3.1 Architectural Views

Architectural Views provide high level design information about the proposed system such as a system topology, a logical view or a deployment arrangement.

Architectural Views provide the high-level design information about the proposed system.  The different architectural views project different perspectives of the proposed system and identify Logical Components, System Topology and structure and Deployment and Physical Arrangement of the proposed system.  The diagrams used to describe system architecture (SSAD 3.1.1, 3.1.4, 3.1.5) are generally elaborations of diagrams from the System Analysis (OCD 4 and SSAD 2.) and requirements (SSRD 2., 3., 4.) that add design details necessary for providing a “blueprint” for implementation and critical support for maintenance and evolution of the proposed system.  For this purpose it is important to offer multiple perspectives on how the system is built (will be built) at a level of abstraction that indicates how the primary relationships between the components (from the component model in SSAD 2.1) will be realized as software without regard to detailed implementation details such as particular algorithms, configuration parameters, and so forth.  It is common to introduce new implementation specific items (e.g. objects) that facilitate in realizing components and their relationships.  The diagrams serve as an intermediary mapping between the high-level view of the system as components and the low-level view as code.  The former view being to general to actually implement and the latter too detailed to see the overall picture (i.e. “loosing the forest for the trees”).  Below is a synopsis of Architectural Views:

· What are they?  Describe how system components are mapped into low-level architecture

· Why?  Help identify what objects are needed by grouping components into technology representation “clusters” discovers straightforward implementations

· Identifies “gaps” (often due to communication between components) for which particular system objects must be created to fill (i.e., no direct relevance to domain, only makes components “work” in software)

· It is critical that the Architectural Views be consistent with the System Block Diagram (SSRD 3.1)

· Help discover straightforward implementations and design patterns. Often a simple object + mechanism (or framework) suffice to realize a component in software. Architectural views help rapidly recognize and make use of common object + mechanism design patterns.

3.1.1 System Topology 

The system topology (Figure 13) describes layered architecture that will be used in the production environment. The View Layer in the model contains the User Interface and Administrator Interface components (Fig. 14) and the Control Layer contains the Server component (Fig. 15). The Persistence Layer allows the front-end of the DART system (the user interfaces and most of the Server component) to function without having any specific knowledge of Persistence Layer details. As a result, the Persistence Layer, which contains the Data Repository component (Fig. 16), can be changed at any time with out affecting front-end component functionality.
3.1.2 Component Implementation Design Model

The major components of the system include the User Interface, Administrator Interface, the Server and the Data Repository components.  The User Interface and Administrator Interface will be designed and implemented through the use of web browsers, Java Server Pages, HTML pages and Java Servlet technology. 

COTS Components

DCOM 1 - Server Component

The Server and Data Repository will require the use of COTS components. Details about the DART Server can be found in the SSAD 2.1.1 under COM-03. The implementation details for this component are as follows. The component will be implemented using a UNIX server running the latest version of the Solaris OS.  A java interpreter/compiler, like Tomcat Servlet Container v. 4.0, will be installed on the workstation, as well as Apache Web Server v. 1.3.
DCOM2 – Data Repository

Again, please refer to SSAD 2.1.1, COM-02 for the Data Repository component details. In addition to the information given in SSAD 2.1.1, the implementation details are as follows. The Data Repository will be implemented using a MySQL Database v 3.23. To allow for communication to occur between the web server and the MySQL Database, JDBC will be used. In order to use this database connectivity language a special driver/file called “mm.mysql-2.0.4-bin.jar” must be copied to a directory on the web server and the location of the file must be added to the systems’ $PATH variable. This file will provide for the appropriate mappings between the server and database.

[image: image14.emf]Persistance

<<layer>>

Control

<<layer>>

View

<<layer>>


Figure 13 - DART System Topology


[image: image15.emf]View Layer

DART User Interface

<<Component>>

DART Administrative Interface 

<<Component>>


Figure 14 - Components in View Layer
[image: image16.emf]Control 

Layer

DART Server

<<Component>>


Figure 15 - Components in Control Layer
[image: image17.emf]Persistance 

Layer

DART Data Repository Class

<<Component>>


Figure 16 - Components in Persistance Layer
· Describe how the components will be implemented.

· Define their interfaces.

· Describe COTS products that will be used to implement components, and how they are configured. 

· Identify development technologies (including database tables, Java, XML/HTML, HTTP servers, API’s, class libraries, design patterns) to be used.

· Describe preliminary allocation of known objects and classes at LCO & LCA and finalized allocation of objects and classes at IOC.  (See sections 3.1.5 Logical Class Model and 3.2 Object-Structure Model)

·  Although this is most critical for components that will not be directly built within the project (such as with COTS), it is important to specify the technologies that the components will be implemented in. This should be done concisely without adding unnecessary details, particular for common technologies (e.g. Java, Oracle). Group the components by the technologies that will be used to implement them and then specify the needed details of the implementation technologies (e.g. Java JDK 1.3, Oracle 8i). If the specifications for the technology already exist elsewhere in your models, such as in the requirements, them refer to them rather than repeat. 

· Add components, classes, and objects to needed to make the system realizable in software (i.e., pure software components which do not directly map to entities in the domain) using the selected technologies and COTS products. At LCO and LCA, the focus should be on external agents, interfaces, and supporting technology elements (e.g. special files).

· Fill out the following specification template for each component that will be implemented using pre-existing technology
Design Component Implementation Specification Template:

Identifier - Unique identifier used for traceability (e.g., DCOM-xx)

Defining Quality - 

Name -

Attributes -

Assigned Behaviors -

Relationships (aggregation, association, interface, observer, etc.) -

State Groups -

Possible Roles -

Constraints -
Implementation (Kind Of Object) - e.g., application, server, existing subsystem, COTS package

Special Emphasis: COTS Integration

· Consider thoroughly how COTS products may be used to implement the system. 

· Since Components are often a simple object + mechanism, many COTS products have been developed to handle common situations (patterns) reducing complex , tedious, repetitive, or unnecessary implementation details 

· The Component model (SSAD 2.1) helps you identify and analyze architectural patterns for your system independent of technology implementation details e.g. information self service, distributed services

· The design views (SSAD 3.1) help you identify design patterns e.g. publish and subscribe, client-server

· COTS often exist to implement, partially implement, or assist in implementing design patterns!

· Warning: You must carefully and explicitly account for trade-offs for identifying and integrating COTS into you system

· See the MBASE COTS Integration Supplement for further guidance
RUP GL:  SSAD 3.1.2 – Component‑Implementation Design Model

Refine the Component Model created in 2.1 Component Model.  Add any additional components that are needed to make the system realizable in software.  For each Component, determine whether it will be implemented by reusing a COTS product or project code.  For components that are to be implemented by more specific kinds of components (e.g. a JAVA Bean), replace the generic <<component>> stereotype on both the classifier representing and the package that represent the Component with a more specific stereotype, e.g. EJBEntity.  (If you use a more specific stereotype that is not defined in a standard profile, you will need to define the stereotype.)

For each Component in the Component Model, create one or more Static–Structure Diagrams that show component and the interfaces (sets of related operations) of that Component that are used by clients of the Component.  Each interface should be represented by a classifier with the stereotype <<interface>> and labeled with the name of role played by the client with the extensions “ Services” (e.g. “Administrator Services”) or the with the kind of services provided (e.g. “Security Services” or “File Management”).  The connect Component to its interfaces with a Realize relation drawn from the component to each interfaces.  Interfaces that are specializations of other interfaces should be connected by a Generalization relation drawn from the more specific interface to the more general interface.

For each Component in the Component Model create Object–Structure, Logical Class, and Implementation Class models as described in sections 3.2 Object-Structure Model, 3.1.5 Logical Class Model, 3.4 Implementation Class Model.

If the component is going to be implemented by a reusing COTS product, describe any configuration settings as in the MBASE COTS Integration Supplement.

At LCO, a Component–Implementation Design Model that consists of an Object–Structure and Logical–Class models which show objects and classes have been allocated to the Component should be created for all Components defined the section 2.1 Component Model.
At LCA, a Component–Implementation Design Model that consists of complete Object–Structure, Logical–Class, and Implementation–Class models for each high–risk or architecturally–significant Component defined in the Component Model.  Component–Implementation Design Model that consists of an Object–Structure and Logical–Class models should be created for all other identified Components.
At IOC, a Component–Implementation Design Model that consists of complete Object–Structure, Logical–Class, and Implementation–Class models for all Components defined in the Component Model.

3.1.3 Framework and Protocol Specifications

· The architecture describes the interactions of the system components and how the component interactions support the system activities.  The interactions take place with the help of various mechanisms and frameworks.  These frameworks are often picked off-the-shelf and are industry standards.  This section should describe the specific frameworks to be used and the nature of interactions among the logical components (SSAD 2.1) and design components (SSAD 3.2) in order to support all the behaviors of the system as described in SSAD 2.2

· Protocols and services are typically independent of the domain and their choice depends upon the various requirements of the system, most notably Level of Service Requirements (SSRD 5).

· Examples of frameworks include CORBA Services and Facilities, Java JDK, TCP/IP and various network protocols as well as security and audit mechanisms.

None at this time.
3.1.4 System Deployment View

The system will use a client /server, web-based architecture. The server component is given as the “UNIX server”. MySQL or the data repository component can be located/installed on the same server as the DART system or it can be installed on separate server. The diagrams below, assume that the DART server and the database server are on the same machine. The basic configuration is given in Figure 16 and the specific node configuration (with the types of machines involved) is given in Figure 17. The remaining two components, the interfaces, will be located on each client machine. The specific configuration for the CSE Server is given in Figure 19.
· The System Deployment View concerns itself with the physical software/hardware/network module organization

· Identify the specific kinds of hardware required, such as PCs, mainframes and RAID disks, and identify where the custom built and COTS products would be installed.

· Assign components to deployed hardware and software 

· if known, includes OS, mechanisms, and frameworks 

· Splits system into physical groups

· very common that components that communicate across physical groups will require “glue” objects

[image: image18.emf]DART Server

<<Component>>

Client Machine

<<node>>

1

0..*

+server

1

+client

0..*

network

<<communicate>>


Figure 17 - DART System Deployment
[image: image19.emf]CSE Server: UNIX 

Workstation

Local/User 

Station: PC

Remote/User 

Station: PC

LAN WAN


Figure 18 - DART Node Configuration
[image: image20.emf]:DART Data Repository

<<component>>

:DART Server

<<component>>


Figure 19 - Component Configuration for the CSE Server
Common Pitfalls:

· Inconsistency with the System Block Diagram (OCD 3.1.1)

· Omitting System Components introduced in SSAD 2.1

· Not indicating the placement of components identified in SSAD 3.1.1 on specific hardware devices.

RUP GL:  SSAD 3.1.4 – System Deployment Model

Create an UML Deployment diagram that shows the hardware nodes, their connections, and the Components that reside on each node.

If your tool does not fully support the notation of the UML Deployment Diagram, then use UML Static–Structure and Collaboration Diagrams.

1. Create a Package named “Deployment Model”.

2. Create a UML Static–Structure Diagram within the “Deployment Model” package that shows the node types represented as classifiers with the stereotype <<node>> and the connections as associations with the stereotype <<connector>> (or with a more specific stereotype such as <<LAN>> or <<internet>>).  The name of the association should name the connector (e.g. “Office Lan”).  
3. Create an UML Object Diagram (a UML Static–Structure Diagram with instances and no classifiers) within the “Deployment Model” package that shows the node instances represented as classifiers with the stereotype <<node>> and a label of the form “instance_name : node_classifier_name” or “: node_classifier_name”.  
4. For each node instance that has software on it, create a sub–Package of the “Deployment Model” package with the stereotype <<node>> and a label of the form “instance_name : node_classifier_name Node” or “: node_classifier_name Node”.
5. In each node package, create an UML Object Diagram that shows the Component instances that reside on that node and the Component instances that the resident Components use.  Each Component instance is represented as a classifier with the stereotype <<component>> and a label of the form “instance_name : component_classifier_name” or “: component_classifier_name”.  if the instance resides on this node, then the instance_name should be the simple name of the Component; otherwise, the qualified name of the Component.  Each component_classifier_name is the name of a Component in the Component Model (see SSAD section 2.1).  For each Component, show the following.
a. The interfaces of the Component that that have been identified.  (At LCA all component interfaces should be identified.)
b. For each interface of the Component, a Realize relation from the Component to the interface.
c. For each Component used, a Uses relations to the interfaces of the used Component if its interfaces have been identified, or to the used Component if its interfaces have not been identified.
6. If any components move from one node to another, create a sub–Package of the “Deployment Model” package named “Component Migrations”.  For each Component that moves, create an UML Object Diagram that shows a Component instance for each node instance that the Component resides on, and a “becomes” relation (i.e., a Dependency relation with the stereotype <<becomes>>) between sequential instances of the Component on different nodes.
At LCO, a System Deployment Model is created to show the expected hardware and preliminary allocation of all Components identified in the 2.1 Component Model.

At LCA, the System Deployment Model shows the hardware that will be used, the final allocation of high–risk or architecturally–significant Components, and the preliminary allocation of all other Components.

At IOC, the System Deployment Model shows the hardware that will be used and the final allocation of all Components identified in the Component Model.





[image: image21.wmf]
 







[image: image22.wmf]
 




3.1.5 Logical Class Model

This model takes the classes from the Enterprise Classification Model and seperates them into classes for a specific component. These are the classes for the high risk components only, the User Interface and Administrative Interface.
3.1.5.1 DART User Interface
[image: image23.emf]DART User Interface

<<Component>>

User

acts for>

ViewTopNSummaryPage

<<jsp>>

start()

ChartAllProgessPage

<<jsp>>

start()

getColor()

Model

<<servlet>>

closeVote()

adjustAssess()

calculateRE()

calcNumHits()

ListAllPage

<<jsp>>

start()

VotingInfo

<<entity>>

P : int

L : int

rationale : String

riskId : String

stakeholderId : String

1

1..*

1

1..*

v data in

1

1..*

1

1..*

V data in

invokes >

1

1..*

1

1..*

v data in

VotingPage

<<jsp>>

start()

1..*

1

1..*

1

 represents >

StakeholderInfo

<<entity>>

name : String

password : String

role : String

1

0..*

1

0..*

data in >

RiskInfo

<<entity>>

riskName : String

riskDescrip : String

0..* 0..*

^data in

EditStakeHolderPage

<<jsp>>

1..*

1

1..*

1

modifies ^

EditRisksPage

<<jsp>>

1..* 1..*

modifies ^

User Manager 

<<entity>>

setUser()

getUser()

setAccess()

getAccess()

setProject()

getProject()

getSessionID()

void setSessionID()

logout()

ProjectSetupPage

<<jsp>>

displayErrorMessage()

1

1

1

1

accesses ^

1

1

1

1

accesses ^

ProjectsListPage

<<jsp>>

AuthenticationManager

<<servlet>>

validate()

validateSetup()

1

1

1

1

invokes v

1

1

1

1

populates v

ImportCSVPage

<<jsp>>

start()

errorMessage()

confirmation()

1

1

1

1

links to ^

ProjectsMainPage

<<jsp>>

start()

1

1

1

1

accesses^

1

1

1

1

< starts

1

1

1

1

invokes v

DataManager

<<servlet>>

CSVFileManager

<<entity>>

export()

databaseToCSV()

csvToDatabase()

import()

1

1

1

1

invokes v

1

1

1

1

invokes ^

inputs >


Figure 20 - Classes  for the User Interface Component
3.1.5.2 DART Administrative User Interface

[image: image24.emf]Administrator

DART Administrative Interface

<<Component>>

acts for >

AdminModifyProjectPage

<<jsp>>

AdminModifyProjectPage.start()

AuthenticationManager

<<servlet>>

validate()

validateSetup()

ProjectsListPage

<<jsp>>

errorMessage()

1

1

1

1

links to v 1

1

1

1

invokes v


Figure 21 - Classes for  the Administrator Interface Component
The Logical Class Model identifies the top-level development units for the system. 

· This view describes the dependencies among development units and identifies the self developed software and the software being reused.

· The Logical Class Model concerns itself with the logical software/hardware/network module organization within the development environment, taking into account derived requirements related to ease of development, software management, reuse, and constraints imposed by programming languages and development tools. 

· Should be consistent with system block diagrams in the System Definition (SSRD 3.1)

· Assigns components to system block diagram or other logical system group

· conceptual understanding and completeness

· ensures consistency, completeness, accessibility, and necessity of system parts and relationships to outside (system boundaries)

· may introduce specific technology choices (some may exist from block diagram or requirements)

Common Pitfalls:

· Inconsistency with the System Topology  (SSAD 3.1.1)

· Not clearly demarcating the components being developed in the system against those being reused off the shelf.

RUP GL:  SSAD 3.1.5 – Logical Class Model

In each Component Package created for the Component Model (see RUP Guidelines in section 2.1 Component Model), create one or more UML Static–Structure Diagrams to show the classes that are allocated to the Component (“UML Class Diagram”), and classes that are needed from other components, and their relations.  If there are a large number of classes in the component, it may be helpful to organize the classes into subpackages or sub–Components.

At LCO, create this model for a Component if classes are allocated to the Component.
At LCA, this model should be complete for architecturally–significant or high–risk Components.
At IOC, this model should be complete for all Components in this build.





[image: image25.wmf]
 







3.2 Object Static Structure Model

· The Object Model is a refinement of the Component Model (SSAD 2.1)

· Specify objects to be built in the system using suggested Object Specification template.

· Object interaction diagrams may be used in the Operations Model. They are helpful in determining which operations are assigned to this object, and reference them as needed

· When detailing the design, include specifications for:

· DB tables

· file structures

· HTML templates (dynamic generation)

· runtime environment

· COTS interface parameters

· Utility libraries

You may want to specify detailed information for non-trivial objects. This might include (on a risk driven basis) the following:

Object Specification Template:

           Identifier - Unique identifier used for traceability (e.g., OBJ-xx)


Defining quality -



Name -


Variables - {public, private, protected}



Specify for each whether it's: 

Global (shared attribute by all instances)

Instance (attribute specific to a particular instance)



a) ...



b) ...



c) ...


Object Interactions - 



Operations - List operations and determine accessibility {public, private, protected}


a) ...



b) ...



c) ...



...

Outlets - interface relationships (references, pointers, etc.) to objects and components. 



a) ...



b) ...



c) ...



...


States -



Use state transition diagrams



...


Constraints -


Component Membership -



Which component from the Component Model (SSAD 2.1) does it belong to? 



or 



Which component from the Component Model (SSAD 2.1) participates in its implementation?


Implementation - (kind of object)



e.g., Java object, API, HTML page, Database table

The Object Model is a refinement of the Component Model (SSAD 2.1)

· Specify objects to be built in the system using suggested Object Specification template.

· Object interaction diagrams may be used in the Operations Model. They are helpful in determining which operations are assigned to this object, and reference them as needed

· When detailing the design, include specifications for:

· DB tables

· file structures

· HTML templates (dynamic generation)

· runtime environment

· COTS interface parameters

· Utility libraries

You may want to specify detailed information for non-trivial objects. This might include (on a risk driven basis) the following:

Object Specification Template:

           Identifier - Unique identifier used for traceability (e.g., OBJ-xx)


Defining quality -



Name -


Variables - {public, private, protected}



Specify for each whether it's: 

Global (shared attribute by all instances)

Instance (attribute specific to a particular instance)



a) ...



b) ...



c) ...


Object Interactions - 



Operations - List operations and determine accessibility {public, private, protected}


a) ...



b) ...



c) ...



...

Outlets - interface relationships (references, pointers, etc.) to objects and components. 



a) ...



b) ...



c) ...



...


States -



Use state transition diagrams



...


Constraints -


Component Membership -



Which component from the Component Model (SSAD 2.1) does it belong to? 



or 



Which component from the Component Model (SSAD 2.1) participates in its implementation?


Implementation - (kind of object)



e.g., Java object, API, HTML page, Database table

In this section, the components defined in the SSAD 2.1 and SSAD 3.1.1 are broken down into objects.  The attributes in the objects ant the implementation languages are included in the object specification.

3.2.1 UserManager

Identifier:
OBJ-1

Defining quality:
This object contains all of the pertinent user information
Name:
UserManager

Variables:


· Instance: 
private: userName: String

private: accessLevel: Int

private: project: String
private:projectId:Int
private: sessionID

Object Interactions:
public: setUser(username)


public: String getUser()


private: setAccess(accessLevel)


public: int getAccess()


public: void setProject(project, projectId)


public: String getProject()


public: int getSessionID()


private: void setSessionID()

public: void logout()
Outlets:


NA

Constraints:

NA

Component Membership:  COM-1
Implementation:

Java Object

3.2.2 ProjectsListPage

Identifier:
OBJ-2

Defining quality:
This page provides a project list for the user to select.  

Name:
ProjectsListPage

Variables:


· Instance: 
private: project: String

Object Interactions:
public errorMessage()

Public login()
Outlets:
myUserManager.setProject(project, projectId)


myUserManager.setUser(username)


myAuthenticationManager.validate(username, password)


theProjectMainMenuPage.start(project)

Constraints:
concurrency.

user must have access to the selected project

Component Membership:  COM-1
Implementation:
Java Server Page

3.2.3 ProjectMainPage

Identifier:
OBJ-3

Defining quality:
This page displays the description of the project, list of current stakeholders and available tool functions  

Name:


ProjectMainPage

Variables:


· Instance: 
private: projectInfo: String

private: myStakeholderInfo: stakeholderInfo
Object Interactions:
public start (project)

getCSV()
Outlets:
ProjectSetupPage.start()


RiskAssessmentPage.start()


ViewTopNSummaryPage.start()


CVSFileManager.export()

myDataManager.getInfo(“Project Info”)


myDataManager.getInfo(“Stakeholder List”)

myUserManager.logout()
Constraints:

concurrency
Component Membership:  COM-1
Implementation:
Java Server Page

3.2.4 ProjectSetupPage

Identifier:
OBJ-4

Defining quality:
This page provides for modify and a managing the project’s risk items and stakeholders 

Name:


ProjectSetupPage

Variables:


· Instance: 
private: projectInfo: String
Object Interactions:
public displayErrorMessage()
Outlets:
myAuthenticationManager.validateSetup()


myDataManager.getInfo(“Project Info”)


myDataManager.update(projectInfo,“UpdateProject”)


ImportCSV.start()


EditRiskPage.start()


EditStakeHolderPage.start()


mySortFunction.sort(10);

myModel.closeVotes();


myUserManager.logout()
Constraints:

concurrency



user must have manager priviledges.
Component Membership:  COM-1
Implementation:
Java Server Page

3.2.5 ImportCSVPage

Identifier:
OBJ-5

Defining quality:
This page provides an interface for user to import a CVS file into the project database   

Name:
ImportCSVPage

Variables:


· Instance: 
private: filename: String

Object Interactions:
public void start()


public void errorMessage()


public void confirmation()

Outlets:
CVSFileManager.import(filename)

SetupPage.start()
myUserManager.logout()
Constraints:

concurrency



User must have manager priviledges.



File must in the proper format.

Component Membership:  COM-1
Implementation:
Java Server Page

3.2.6 EditRisksPage

Identifier:

OBJ-6

Defining quality:
This page allows the user modify the project risk items and update the mitigation plans associated with the risk item.   

Name:
EditRiskPage

Variables:


· Instance: 
private: myRiskInfo: riskInfo

private: myMitigationInfo: mitigationInfo
Object Interactions:


Outlets:


myDataManager.update (myRiskInfo, “Add Risk”)
myDataManager.update (myRiskInfo, “Edit Risk”)

myDataManager.update (myRiskInfo, “Delete Risk”)

myDataManager.update (myMitigationInfo, “Update Mitigation”)


mySetupPage.start()

myUserManager.logout()
Constraints:

concurreny



user must have manager priviledges.
Component Membership:  COM-1
Implementation:
Java Server Page

3.2.7 EditStakeHolderPage

Identifier:
OBJ-7

Defining quality:
This page allows user and modify the project stakeholder list.   

Name:
EditStakeHolderPage

Variables:


· Instance: 
private: myStakeholderInfo: stakeholderInfo
Object Interactions:
public void start ()


public void errorMessage()

Outlets:


myDataManager.update (myStakeholderInfo, “AddStakeholder”)




myDataManager.update (myStakeholderInfo, “EditStakeholder”)




myDataManager.update (myStakeholderInfo, “DeleteStakeholder”)




mySetupPage.start()



myUserManager.logout()
Constraints:

concurrency



User must have manager priviledges.
Component Membership:  COM-1
Implementation:
Java Server Page

3.2.8 ViewTopNSummaryPage

Identifier:
OBJ-8

Defining quality:
This gives the Top N Risks for a given project.   

Name:
ViewTopNSummaryPage
Variables:


· Instance: 
private: N: Int 


private: myRiskInfo : riskInfo [ ]
Object Interactions:
public void start()

public void display()
Outlets:
myIndividualRiskHistory.startNewFrame (myRiskInfo[ ])

mySort.performSort(N);


myListAllPage.start()


myChartAllProgressPage.start()


myUserManager.logout()


Constraints:

concurrency

By default the maximum N is 10 or the number of risk items in the project, which ever is less 

Component Membership:  COM-1
Implementation:
Java Server Page

3.2.9 ListAllPage

Identifier:
OBJ-9

Defining quality:
This page list all the project risk by the risk exposure, the last assessment period’s RE, the last – 1 assessment period’s RE, the mitigation plans and the date the mitigation plan was updated.   

Name:
ProjectMainPage

Variables:


· Instance: 
private: myRiskInfo : riskInfo [ ]
Object Interactions:
none

public void start ()

Outlets:
mySort.sort(“all”);



myChartAllProgressPage.start()





myViewTopNSummaryPage.start()



myUserManager.logout()
Constraints: 
concurrency

Component Membership:  COM-1
Implementation:
Java Server Page

3.2.10 ChartAllProgressPage

Identifier:

OBJ-10

Defining quality:
This page generates a tabular chart of the progress of the all risks in the project by using a  “stop light chart” with 5 color scales to indicate the risk severity which corresponds to the calculated RE values.

Name:
ChartAllProgressPage

Variables:


· Instance: 
private: myRiskInfo : riskInfo [ ]
Object Interactions:
public start()


private Int getColor(int RE)

Outlets:
myDataManager.submitQuery (myRiskInfo[ ], assessmentDate, “Risk Exposure”)




myDataManager.submitQuery (myRiskInfo[ ], ,“Risk List”)




myViewTopNSummaryPage.start()




myListAllPage.start()


myIndividualRiskHistory.startNewFrame (myRiskInfo[ ])

myUserManager.logout()
Constraints: 
concurrency

Component Membership:  COM-1
Implementation:
Java Server Page

3.2.11 AuthenticationManager

Identifier:
OBJ-11
Defining quality:
This object checks if the user has access to pages further down in system hierarchy   

Name:
AuthenticationManager

Variables:


· Instance: 
NA

Object Interactions:
boolean validate (username, password)


boolean validateSetup (myUserManager.getAccessLevel)
Outlets:


NA

Constraints:

None
Component Membership: COM-1





Implementation:
Java Object

3.2.12 DataManager

Identifier:
OBJ-12
Defining quality:
This object opens and closes the project database, it retrieves and retrieves the project risk data.

Name:
DataManager

Variables:


· Instance: 
private: databasename: String

Object Interactions:
public void close ()

public String getDatabase (String project)


public boolean validate(String username, String password)


public Resultset submitQuery (myRiskInfo,, string action)

public import (myUserManager.project)

public FileStream export (myUserManager.project)

public Resultset submitQuery (String action)


public void getInfo ();

pubic void setInfo();


puclib void moveToHistory();

public Resultset update (Resultset item, String action)

public connect()

public copy()

public create()
Outlets:


NA

Constraints:

Performs actions on the a single project database 

Component Membership:  COM-1



Implementation:
Java Object


3.2.13 CSVFileManager

Identifier:
OBJ-13
Defining quality:
This object converts a CSV file to and from the database format. 

Name:
CSVFileManager

Variables:


· Instance: 

Object Interactions:
public String export ()

public Boolean import (String filename)

public databaseToCSV(RiskHistoryInfo[], VoteInfo[], RiskInfo[])

public csvtoDatabase(filename);

public void import(projectId, filename) 
Outlets:
myDataManager.import (myUserManager.project) 

myDataManager.export(myUserManager.project)
Constraints:

Data must be in the proper format before importing to the database

Component Membership:  COM-1



Implementation:
Java Object

3.2.14 SortingFunction

Identifier:
OBJ-14
Defining quality:
This object uses merge sort to reorder a list of items

Name:
Sorting Function
Variables:


· Instance: 
private: N_value: int
Object Interactions:
public String[ ] sort (N_value)


public String[ ] sort(“all”)
Outlets:
myDataManager.submitQuery(myUserManager.project) 

Constraints:

none
Component Membership:  COM-1



Implementation:
Java Object


3.2.15 RiskTable

Identifier:
OBJ-15
Defining quality:
This object is a relational table with values pertaining to a project risk

Name:
RiskTable

Variables:


· Instance: 
private: id: int


private: name: String


private: descrip: String


private:projectid:int
Object Interactions:
None

Outlets:
None 

Constraints:

None

Component Membership: COM-2



Implementation:
Database Table
3.2.16 VotesTable

Identifier:
OBJ-16
Defining quality:
This object is a relational table with values pertaining to a project risk

Name:
VotesTable

Variables:


· Instance: 
private: userid: String


private: PUO: int


private: LUO: int


private: rationale: String


private: riskId: int


private: assessDate: int


private: projectId: int

Object Interactions:
None

Outlets:
None 

Constraints:

None

Component Membership: COM-2



Implementation:
Database Table

3.2.17 StakeholderTable

Identifier:
OBJ-17
Defining quality:
This object is a relational table with values pertaining to a project risk

Name:
StakeholderTable
Variables:


· Instance: 
private: userid: String


private: password: String


private: accessLevel:String


private: projectId: List
Object Interactions:
None

Outlets:
None 

Constraints:

None

Component Membership: COM-2



Implementation:
Database Table

3.2.18 ProjectTable

Identifier:
OBJ-18
Defining quality:
This object is a relational table with values pertaining to a project risk

Name:
ProjectTable
Variables:


· Instance: 
private: name: String

private: id: int

private: lastAssessDate: date


private: descrip: String


private: lastAssessDateLess1: date
Object Interactions:
None

Outlets:
None 

Constraints:

None

Component Membership: COM-2



Implementation:
Database Table

3.2.19 AdminModifyProjectPage

Identifier:
OBJ-19
Defining quality:
This is the page that allows the admin to modify the project info
Name:
AdminModifyProjectPage

Variables:


· Instance: 
private : projectInfo: String
Object Interactions:
AdminModifyProjectPage.start()



Private editProject();
Outlets:

myDataManager(projectInfo, “Add Project”)


myDataManager(projectInfo, “Delete Project”)
myUserManager.logout()
Constraints: 
concurrency

Component Membership:  COM-4


Implementation:
Java Server Page

3.2.20 VotingPage

Identifier:
OBJ-20
Defining quality:
This page provides a voting page of project risk items    

Name:
VotingPage

Variables:


· Instance: 
private: myVotesInfo: voteInfo[ ] 

Private myRiskInfo  :riskInfo[ ]
Object Interactions:
public void start()

public vote()
Outlets:
mySort.performSort(N)



myDataManager.update(votingInfo[ ], “Update Votes”);

myUserManager.logout()
Constraints:

concurrency 

Component Membership:
COM-1
Implementation:
Java Server Page

3.2.21 RiskInfo

Identifier:
OBJ-21
Defining quality:
Stores risk information    

Name:
RiskInfo

Variables:


· Instance: 
private: riskName: String



private: riskDescription: String


private: id: Int



private: hits: Int



private: projectId: Int
Constraints:

Only stores one risk at a time 

Component Membership:
COM-1
Implementation:
Java Object

3.2.22 StakeholderInfo

Identifier:
OBJ-22
Defining quality:
Stores stakeholder information    

Name:
StakeholderInfo

Variables:


· Instance: 
private: name: String



private: password: String



private: role:String

Constraints:

Only stores one stakeholder’s information 

Component Membership:
COM-1
Implementation:
Java Object

3.2.23 VoteInfo

Identifier:
OBJ-23
Defining quality:
Stores vote information    

Name:
VotingInfo

Variables:


· Instance: 
private: P: int



private: L: int



private: Rationale: String



private: riskid: String



private: stakeholderId: String


private: prjectId: Int
Constraints:

Only stores one vote at a time 

Component Membership:
COM-1
Implementation:
Java Object

3.2.24 MitigationInfo

Identifier:
OBJ-24
Defining quality:
Stores mitigation information    

Name:
MitigationInfo
Variables:


· Instance: 
private: riskId: Int


private: mitigation: String



private: mitigationDate: Date



private: assessmentDate: Date

Constraints:
Only stores one mitigation at a time 

Component Membership:
COM-1
Implementation:
Java Object

3.2.25 RiskAssessmentInfo

Identifier:
OBJ-25
Defining quality:
Stores risk assessment information    

Name:
RiskAssessmentInfo

Variables:


· Instance: 
private: riskName: String



private: riskDescription: String



private: P(UO): int



private: L(UO): int



private: RE : int



private: Nhits: int

Constraints:

Only stores one risk at a time 

Component Membership:
COM-1
Implementation:
Java Object

3.2.26 Model
Identifier:
OBJ-26
Defining quality:
Stores risk assessment information    

Name:
Model
Variables:
none

Object Interactions:
private closeVote();


private adjustAssess();


private calculateRE();


private calcNumHits();
Outlets:
myDataManager.moveToHistory();
Constraints: 
concurrency

Component Membership:
COM-1
Implementation:
Java Object

3.2.27 RiskHistoryTable

Identifier:
OBJ-27
Defining quality:
This object is a relational table with values pertaining to a project risk

Name:
RiskTable

Variables:


Instance: 
private:id:int


private: notes: String


private: RE: int


private: hits: int


private: assessDate: date


private: mitigationPlan: String


private: mitigationDate: date


private: projectId: int

private:  avgPUO: int


private: avgLUO: int
Object Interactions:
None

Outlets:
None 

Constraints:

None

Component Membership:  COM-2



Implementation:
Database Table
3.2.28 RiskHistoryInfo
Identifier:
OBJ-28
Defining quality:
Stores mitigation information    

Name:
RiskHistoryInfo
Variables:


· Instance: 
private: riskid: String

private: notes: String

private: RE:Int



private: mitigationPlan: String



private: mitigation date: Date



private: assessment date: Date


private: projectID: Int
Constraints:
Only stores one mitigation at a time 

Component Membership:
COM-1
Implementation:
Java Object

[image: image26.emf] Interface : DART 

User Interface

DataManager

SortFuction ProjectMainPage

ProjectListPage

Import 

CSVPage

VotingPage

ViewTopNSummary

ChartAllRisks

Model

 : Users (Project 

Manager/Stakeholders)

AuthenticationManager

CSVManager

ProjectSetupPage

L

P

P

P

P

L

L

L

P

L

P

P

P

P

L

P

L


Figure 22 - Interface Object-Static Structure Model
[image: image27.emf]DART 

AdministrativeInterface

ProjectListPage

DataManager

AdminModifyProjectPage

 : Admin

Authentication 

Manager

L

L

L

L


Figure 23 - Administrative Interface Object-Static Structure Model
Common Pitfalls:

· Including Objects that do not reference Components

· Omitting Objects Specification Templates

· Not including the Implementation for (or kind of) a given object, especially during the detailed design

· Including operations in Operation Model that are not assigned to Objects in the Object Model

RUP GL:  SSAD 3.2 – Object–Structure Model

In each Component Package created for the Component Model (see RUP Guidelines in section 2.1 Component Model), create one or more UML Collaboration Diagrams to show the objects are allocated to the Component, objects from other components that are communicated with, and their relations (called links).  Each object should be associated with a class defined in the Logical Class Model (see section 3.1.5 Logical Class Model) or the Implementation Class Model (3.4 Implementation Class Model) depending on the current process anchor point (see below). The name of the associated class should in the label of the icon unless doing improves readability and does not increase risk.  Each link in the Collaboration diagram should be labeled with the name of a relation (association or dependency) in the class model that connects the classes of the objects, and a label should be attached to each end of the link that indications the association role played by the object at that end of the link.

At LCO, create this model for a Component if objects are allocated to the Component.  The classes of the objects must be defined in the Logical Class Model.
At LCA, this model should be complete for architecturally–significant or high–risk Components.  For architecturally–significant or high–risk Components, this model should include any language– or database specific objects that are needed to implement the Component.  The classes of the objects must be defined in the Implementation Class Model if it exists (see RUP Guidelines in section 3.4 Implementation Class Model).
At IOC, this model should be complete for all Components in this build that are not implemented.  This model should include any language– or database specific objects that are needed to implement the Component.  The classes of the objects must be defined in the Implementation Class Model if it exists (see RUP Guidelines in section 3.4 Implementation Class Model).





[image: image28.wmf]
 







3.3 Interaction Model

[image: image29.emf]:ProjectListPage

:Authentication 

Manager

:AdminModifyProjectPage :DataManager

:System 

Administrator

login()

editProject()

setInfo()

admin logins in

validate()

validate admin

AdminModifyPage.start()

start admin page

admin names project

add project info to DB

login


Figure 24 - Create a Project
[image: image30.emf]:ProjectSetupPage

:ImportCSVPage :CSVManager :DataManager

:User

ImportCSVPage.start

CSVFileManager.import()

correct = import()

dataManager.import()

select import CSV file

get CSV file

check if input correct

add csv data to DB

select import


Figure 25 - Import CVS File
[image: image31.emf]:ProjectMainPage :VotingPage :DataManager :User

VotingPage.start()

vote()

DataManager.update()

select vote on risks

cast votes

clicks on submit

select voting


Figure 26 - Vote on Risks
[image: image32.emf]:ProjectMainPage

:ViewTopNSu

mmaryPage

:SortingFuncti

on

:Data 

Manager

:User

ViewTopNSummaryPage.start()

SortingFunction.performSort()

RiskHistoryInfo = DataManager.getInfo()

view top N risks

sort N

get Assessment Info

ViewTopNSummaryPage.display()

select top N page


Figure 27 - View Top N Summary
[image: image33.emf]:ProjectMainPage

:ViewTopNSu

mmary

:ChartAllRisks

Page

:User

viewTopNSummary.start

ChartAllProgress.start

select view top N

select view risks

select chart risks


Figure 28 - View Risk History Chart
[image: image34.emf]:ProjectSetupPage :Model :DataManager :User

close votes

ModelManager.closeVotes()

moveToHistory()

move to history

select close votes


Figure 29 - Close Vote
[image: image35.emf]:ProjectMainPage

:CSVManager :DataManager

:User

CSVmanager.export()

RiskHistoryInfo := Datamanager.export()

getCSV()

databaseToCSV(RiskHistoryInfo)

Click On Export

Gets Info

Creates File

Clicks Download

select export option


Figure 30 - Export CSV File
· The Interaction Model should be a refinement of the Behavior Model (SSAD 2.2)

· Operations are the specific sequences of computation and messaging that realize System Requirements (SSRD 3.2) according to the behaviors specified in SSAD 2.2. Operations are performed by objects and when the objects are implemented, the System Requirements should by design be satisfied. 

· The model integration chain (for faithfulness) is System Operations realize the System Capability Requirements (SSRD 3.2) and implement the System Behaviors (SSAD 2.2). In turn these realize and define the System Capabilities (OCD 4.3) respectively which in turn support the Domain Activities (OCD 3.3, 4.5.1). 
· Create operations by refining behaviors from the Behavior Model (SSAD 2.2) to “leaf” behaviors (operations)
· Augment behavior model with critical operations needed to carry out

· Events (<event>) imply operations are needed to respond to this event (often you will need to add operations that perform “notification” that this particular event has occurred.

· Use sequence diagram to detail order of messages and operations

· non-critical operations (such as notifications)

· assign operations to objects

· Try to use existing objects, minimize messages that go outside an object

· Take care when introducing new objects to handle ops – remember elegance!!

· Algorithms (<algorithm>) imply that you will need to detail a sequence of operations that perform the particular algorithm indicated

· Haphazard introduction of objects to handle operations: only create new objects as absolutely needed

· Not tying operations to System Behaviors and Capabilities

· Including operations that do not references Behaviors, System Requirements or Level of Service Requirements

· Including operations in the Operations Model that are not assigned to objects in the Object Model
· Not covering all the behaviors from the Behavior Model (SSAD 2.2)
· Not covering all the System Requirements from SSRD 3.2

RUP GL:  SSAD 3.3 – Interaction Model

For each Use–Case defined in section 2.2 Behavior Model, create a UML Collaboration Diagram that shows the objects that work together to implement the Use–Case and the relations among the objects.  Create a UML Sequence Diagram, based on the UML Collaboration diagram that shows the sequence of messages, and the operation performed in response to each message.
At LCO, optionally create an interaction model for each use–case that is high–risk or architecturally significant.
At LCA, an interaction model should be created for each use–case that is high–risk or architecturally significant.
At IOC, an interaction model should be created for all use–case implemented in this build.





[image: image36.wmf]
 




3.3.1 Critical Algorithms

· Detail and explain critical custom algorithms

· Detailed policies and associated algorithms for carrying out policies as identified in OCD 3.6.3

For the DART system, the most critical algorithms revolve around the importing and exporting of CSV files and closing the vote. Complications arise with importing and exporting mainly because DART will interact with a client’s machine (directly or indirectly). Also, while passing the csv file/database information between the CSVManager and the DataManager, the data will have to be stored in temporary structures and this is defined in the import and export algorithms as well. Please refer to appendix A for a sample CSV file that is in the correct format. See SSAD 3.2 for details on the objects representing tables in the MySQL database.
Closing the vote is import because it describes the risk assessment model that we are using, namely the model that dictates how RE values are calculated. As a result, we have designed and documented algorithms to provide these capabilities and the pseudocode is as follows:

3.3.1.1 Importing a CSV File
Import CSV file:


Main:


{

…

If (webpage = ImportCSVPage)


{


myAuthenticationManager.validateSetup(myUserManager.getAccessLevel) //user is manager


flat_file = request.getContent  //save file to server 


myCSVFileManager.import(filename);  

if successful



Output = “Your file has successfully been imported”;

else

Catch Exception



( Output = “Your file was not imported due to an error”)

}


…

}


CSVFilemanager.import(String projectId, String filename):

{
i=j=k=0
//Declare Instances of the following objects as arrays:

Voteinfo[]
Riskinfo[]

RiskHistoryInfo[]

while no errors

(

//refer to CSV file in appendix to see ordering for data below

//use an array of objects for each table to store rows of data

loop:

RiskHistoryInfo[k] =myCSVManager.csvtoDatabase(filename);

k++

loop:

VoteInfo[i] = myCSVManager.csvtoDatabase(filename);  //parse file for errors in formatting

i++

loop:

RiskInfo[j] = myCSVManager.csvtoDatabase(filename);  //parse file for errors in formatting

j++

) if error occurs throw an exception

/* Copy DB instance in case Database Manager import function encounters an error */

myDataManager.copy() //save copy just in case
myDatabaseManager.deleterows(myUserManager.getProject());

myDatabaseManager.import(myUserManager.getProject(), dbFormattedFile) //import  into DB
}
[image: image37.emf]Get File From 

Client

Send To CSV 

Manager

Send to 

DataManager

Copy 

Database

Delete Existing 

Rows in DB

Check if File 

Has Errors

Add New Data 

From Import


Figure 31 - CSV File Algorithm
3.3.1.2 Exporting a CSV File

Export CSV file:


Main:


{


…

if (webpage = ProjectMainPage)



{



if (action =  export CSV file) 




location = MyCSVManager.export(); 



CreateURL to file (using location);  //make a link the the file location


if (action = download CSV)




Redirect to URL;

}


…


}

return location : CSVFilemanager.export():


{

i=j=k=0

//Declare Instances of the following objects:

Voteinfo[]

Riskinfo[]

RiskHistoryInfo[]

{ // populate array of objects with info from the database

loop:

RiskHistoryInfo[k]= MyDatabaseManager.export(MyUserManager.getProject) 

k++

loop:

VoteInfo[i]= MyDatabaseManager.export(MyUserManager.getProject) //get info from DB
i++

loop:

RiskInfo[j]= MyDatabaseManager.export(MyUserManager.getProject) //get info from DB

j++,

}

CSV output_file = MyCSVManager.databaseToCSV(RiskHistoryInfo[], VoteInfo[], RiskInfo[]) // create CSV file



location = file location on server

}

[image: image38.emf]User Clicks 

Export

Resquest Sent to 

CSV Manager

Command Issued to 

DataManager

Data is 

Retrieved

CSV Manager creates a 

CSV file and stores it

URL Passed back 

export page

User Clicks 

Download


Figure 32 - Export CSV File Algorithm
3.3.1.1 Closing a Vote

Closing the Vote:


closeVote
{


adjustAssess();


calculateRE ();



calcNumHits();

MyDataManager.moveToHistory ();



}


calcuateRE();



{
for each risk {

for each vote  {

P(UO)_total = P(UO) + P(UO)_total;

L(UO)_total = L(UO) + L(UO)_total;

RE = P(UO) * L(UO);

Total RE = RE + TotalRE;

increment number of voters

}

RE_Value = TotalRE/number of voters
P(UO) = P(UO)/number of voters

L(UO) = L(UO).number of voters

Update MyRiskInfo.RE //update bean

}



My.DataManager.update(riskinfo);  //add new values to database table


}
[image: image39.emf]User Clicks on 

Close Vote

Calculate Avg 

RE

Calculate 

Number of Hits

Move to 

History


Figure 33 - Close Voting Algorithm
3.3.1.4 Sorting RE Values

The system will require that a sorting algorithm be implemented in order to sort the risks by RE value. For this purpose, an efficient sorting algorithm like a standard merge sort can be utilized. This algorithm can be found in any programming text.
Common Pitfalls:

· Identifying algorithms without providing a description of the algorithm (this is allowed at LCO, but at LCA all critical algorithms should either be assigned to identified COTS or described in detail)

3.3.2 Operation Specifications

Describe the operations performed to demonstrate all the system behaviors described in Behavior Model (SSAD 2.2). 

· Identify the flow of control through the system during system execution and provide operation signatures and entry/exit conditions.

· Provide an Operation Specification Template for non-trivial operations. These often need to refer to System Requirements Specifications. You may wish to include the following information:

Operation Specification Template:

Identifier - Unique identifier used for traceability (e.g., OP-xx)


Initiator - An Initiator can be one of {Event, Policy, Behavior}
Event - Reference which one


Policy - Reference which one


Behavior - Reference which one


Passed parameters -


Return values - 


Exception handling - 


Guards - 

Validation - 

Messages - A message can be any of {Notification, Request, Custom} 


Notifications - Reference which one


Requests - Reference which one


Custom - Reference which one

Exits - 


Constraints - 



Synchronization - (valid event sets, timing, concurrency, etc.)

Relates to - Reference corresponding Behavior (SSAD 2.2) or System Requirement (SSRD 3.2)

This section defines all the operations derived from the behaviors in the Behavior Model SSAD 2.2) in detail that are considered non trivial.  Other sections were deemed low risks.  

Describe the operations performed to demonstrate all the system behaviors described in Behavior Model (SSAD 2.2). 

· Identify the flow of control through the system during system execution and provide operation signatures and entry/exit conditions.

· Provide an Operation Specification Template for non-trivial operations. These often need to refer to System Requirements Specifications. You may wish to include the following information:

Operation Specification Template:

Identifier - Unique identifier used for traceability (e.g., OP-xx)


Initiator - An Initiator can be one of {Event, Policy, Behavior}
Event - Reference which one


Policy - Reference which one


Behavior - Reference which one


Passed parameters -


Return values - 


Exception handling - 


Guards - 

Validation - 

Messages - A message can be any of {Notification, Request, Custom} 


Notifications - Reference which one


Requests - Reference which one


Custom - Reference which one

Exits - 


Constraints - 



Synchronization - (valid event sets, timing, concurrency, etc.)

Relates to - Reference corresponding Behavior (SSAD 2.2) or System Requirement (SSRD 3.2)

3.3.2.1 Create a Project 

3.3.2.1.1 Admin Login

Identifier
OP-1

Initiator<event>
User enters login and password and checks administrator flag

Passed Parameter
adminlogin, adminpassword, administrator flag

Returned Value
none

Exception Handling
none

Constraints
concurrent

Relates to
UC-1
3.3.2.1.2 Identify System Admin

Identifier
OP-2

Initiator
<policy>
Response to login request

Passed Parameter
adminlogin, adminpassword, administrator flag

Returned Value
boolean 

Exception Handling
none

Constraints
concurrent

Relates to
UC-1
3.3.2.1.3 Admin Names Project
Identifier
OP-3

Initiator
<event>
Administrator creates a new project

Passed Parameter
projectname

Returned Value
boolean 

Exception Handling
none

Constraints
concurrent

Relates to
UC-3
3.3.2.1.4 Create Manager for project

Identifier
OP-5

Initiator<event>
Administrator creates one manager for the new project

Passed Parameter
managername

Returned Value
boolean 

Exception Handling
none

Constraints
concurrent

Relates to
UC-3
3.3.2.1.5 Add Project Info To DB
Identifier
OP-5
Initiator
<policy>
Adds Project Info to Project Table in DB

Passed Parameter
projectname, managername

Returned Value
none

Exception Handling
none

Constraints
concurrent

Relates to
UC-3
3.3.2.2 Manager Setup Project Configurations – Import CSV
3.3.2.2.1 Select Import CSV File 

Identifier
OP-6
Initiator
<event>
Manager wants to import a CVS file

Passed Parameter
managerstatus, filename

Returned Value
none

Exception Handling
none

Constraints
status is managerstatus

Relates to
UC-11
3.3.2.2.2 Get CSV file 

Identifier
OP-7
Initiator
<policy>   
Get file from client machine



Passed Parameter
filename

Returned Value
none

Exception Handling
none

Constraints
none
Relates to
UC-11
3.3.2.2.3 Check If Input Correct 

Identifier
OP-8
Initiator
<policy>    
Parse file and see if input is correct



Passed Parameter
filename

Returned Value
none

Exception Handling
none

Constraints
none
Relates to
UC-11
3.3.2.2.4 Add CVS to DB
Identifier
OP-9
Initiator
<policy>
response to import CSV file

Passed Parameter
filename
Returned Value
boolean

Exception Handling
none

Constraint
File must be in the correct format

Relates to
UC-11
3.3.2.3 Voting on Risks 

3.3.2.3.1 Select Vote on Risk Items

Identifier
OP-10
Initiator
<event>
User clicks vote on a risk
Passed Parameter
none 

Returned Value
none

Exception Handling
none

Constraint
status is general user status
Relates to
UC-14
3.3.2.3.2 Cast votes

Identifier
OP-11
Initiator
<event>
User has entered all the votes for current assessment period

Passed Parameter
none
Returned Value
none

Exception Handling
none

Constraint
user voting is user logged in
Relates to
UC-14
3.3.2.3.3 Click on Submit
Identifier
OP-12
Initiator
<event>
User clicks on the submit button
Passed Parameter
voteInfo[]
Returned Value
none
Exception Handling
none

Constraint
user voting is user logged in
Relates to
UC-14
3.3.2.3.4  Store Votes

Identifier
OP-13
Initiator
<policy>
Votes are stored in DB
Passed Parameter
voteInfo[]

Returned Value
none

Exception Handling
none

Relates to
UC-14
3.3.2.3 View Project Risks 

3.3.2.3.1 Select View Risk Items

Identifier
OP-14
Initiator
<event>
User clicks on view risk items
Passed Parameter
none 

Returned Value
none

Exception Handling
none

Constraint
status is userstatus

Relates to
UC-17
3.3.2.3.2 Select View Top N Risks

Identifier
OP-15
Initiator
<event>
User clicks on view top n summary
Passed Parameter
none
Returned Value
none

Exception Handling
none

Constraint
status is userstatus

Relates to
UC-17
3.3.2.3.3 Enter N
Identifier
OP-16
Initiator
<event>
User enters N
Passed Parameter
N

Returned Value
none

Exception Handling
none

Constraint
status is userstatus

Relates to
UC-17
3.3.2.3.4  Sort N
Identifier
OP-17
Initiator
<policy>
N has been entered by the user
Passed Parameter
N

Returned Value
contents of html page listing riskitems, P(UO), L(UO), RE, Mitigation,date

Exception Handling
none

Constraint
none

Relates to
UC-17
3.3.2.3.5 get RiskAssessmentInfo

Identifier
OP-18
Initiator
<policy>
response to action Sort N Functons action
Passed Parameter
none

Returned Value
RiskAssessementInfo[]

Exception Handling
none

Constraint
none

Relates to
UC-17
3.3.2.3.6 Display Top N list

Identifier
OP-19
Initiator
<policy>
respose to user’s action
Passed Parameter
RiskAssessementInfo[]

Returned Value
none

Exception handling
none

Constraints
none

Relates to
UC-17
3.3.2.4 View Project Risk History Chart
3.3.2.4.1 Select Chart Risks

Identifier
OP-20
Initiator
<event>
User clicks on chart risks
Passed Parameter
RiskAssessementInfo[]

Returned Value
none

Exception handling
none

Constraints
status is userstatus

Relates to
UC-16
3.3.2.4.2  Display Risks Chart

Identifier
OP-21
Initiator
<policy>
Response to user’s action
Passed Parameter
RiskAssessementInfo[]

Returned Value
riskitems, RE values, assessment period, REcolorrnage 

Exception handling
none

Constraints
none

Relates to
UC-16
3.3.2.5   Close Votes 

3.3.2.5.1  Close Votes

Identifier
OP-22
Initiator
<event>
Manager closes assessment period

Passed Parameter
date

Returned Value
none

Exception handling
none

Guards
Project Setup Page

Constraints
none

Relates to
UC-13
3.3.2.5.2  Move To History
Identifier
OP-23
Initiator
<policy>
Votes are moved into the history.
Passed Parameter
date

Returned Value
none

Exception handling
none

Constraints
none 

Relates to
UC-13
3.3.2.6   Export CSV 

3.3.2.6.1  Click On Export
Identifier
OP-24
Initiator
<event>
User clicks on Export
Passed Parameter
none
Returned Value
none
Exception handling
none

Guards
Project Setup Page

Constraints
none

Relates to
UC-15
3.3.2.6.2  Gets Info
Identifier
OP25
Initiator
<policy>
Get all information from DB
Passed Parameter
none
Returned Value
none
Exception handling
none

Constraints
none 

Relates to
UC-15
3.3.2.6.3 Creates File
Identifier
OP-26
Initiator
<policy>
Create a file
Passed Parameter
none
Returned Value
filename
Exception handling
none

Constraints
none 

Relates to
UC-15
3.3.2.6.3 Clicks Download
Identifier
OP-27
Initiator
<event>
User clicks download for the file
Passed Parameter
none
Returned Value
url
Exception handling
none

Constraints
none 

Relates to
UC-15
Common Pitfalls:

· Including analysis level operations specifications which do not identify the operation signatures 

· Including operations in Operations Model that are not assigned to Objects in the Class Model

· Haphazard introduction of objects to handle operations: only create new classes as absolutely needed

· Not tying operations to System Behaviors and Capabilities

· Including operations that do not references Behaviors, System Requirements or Level of Service Requirements

· Including operations in the Operations Model that are not assigned to classes in the Object Model

· Not covering all the behaviors from the Behavior Model (SSAD 2.2)

3.4 Implementation Class Model

This model takes the objects from Section 3.2 and shows how they can be grouped together for implementation purposes.

[image: image40.emf]ProjectsListPage

errorMessage()

ProjectsMainPage

projectId : int

myStakeholderinfo : stakeholderInfo

start()

ProjectSetupPage

projectId : int

displayErrorMessage()

ImportCSVPage

start()

errorMessage()

confirmation()

EditRisksPage

EditStakeHolderPage

ViewTopNSummaryPage

start()

ChartAllProgessPage

ListAllPage

start()

VotingPage

+ start()

AuthenticationManager

DataManager

CSVFileManager

SortingFunction

VoteInfo

RiskAssessmentInfo

MitigationInfo

StakeholderInfo

RiskInfo

- riskName : String

- riskDescrip : String

RiskHistoryInfo

Model

closeVote()

adjustAssess()

calculateRE()

calcNumHits()

UserManager

JavaServerPages

<<jsp>>

JavaBeans

<<java>>

DART User Interface

<<Component>>

Servlets

<<java>>


Figure 34 - Implementation Class Model for the User Interface Component
[image: image41.emf]RiskTable

VotingTable

StakeholderTable

ProjectTable

RiskHistoryTabl

e

Database Tables

DART Data Repository

<<Component>>


Figure 35 - Implementation Class Model for the Data Repository Component
[image: image42.emf]AdminModifyProjectPage

<<jsp>>

projectInfo : String

AdminModifyProjectPage.start()

DART Administrative Interface

<<Component>>

JavaServerPages

<<jsp>>


Figure 36 - Implementation Class Model for the Administrative Interface Component
 The design should be enough for someone to start coding, but not necessarily complete as the actual code.

Common Pitfalls:

· Not including at least one implementation class in the Class Model for each object from the Object Model

· Not separating class taxonomies by implementation categories

· Including one model to contain all categories of classes.  For example programs and help files belong in separate Classification Models.
· Including non-hierarchical relationships such as aggregation and reference associations
RUP GL:  RLCA SSAD 3.4 – Implementation Class Model

In each Component Package created for the Component Model (see RUP Guidelines in section 2.1 Component Model) that either (1) will be implemented by a team–developed code or database, or (2) is a COTS Component that provides classes which will be used in the implementation, create one or more Static–Structure Diagrams that shows the classes for all objects in 3.2 Object-Structure Model. Each class should be to be directly implementable in the programming language or database to be used.

The Implementation Class Model maybe identical to the Logical Class Model if no language– or database–specific objects are in the Object–Structure Model and no language– or database–specific classes (e.g. “int” in C++ or Java) needed to be substituted for UML “data types”.  (The code–generator of some UML tools will automatically replace some UML data types.)

The Implementation Class Model for a COTS Component need only contain those classes and interfaces, and their features (e.g. attributes, operations, relations) that are used by the implementation.

At LCO, an Implementation Class Model is not generally created.
At LCA, an Implementation Class Model should be created for each high–risk or architecturally–significant Component that will be implemented by the development team or that provides classes that will be used in the implementation.





[image: image43.wmf]
 







3.5 Configuration Model

This model displays the configuration for the web application files for the DART system. In addition, the following configuration is necessary in order for the components to interact with one another.
· Describe how Compenents defined in section 2.1 Component Model, and classes define in section 3.4 Implementation Class Model are organized into artifacts used to produce code (e.g. files, database tables).

· Describe the dependency relations among the artifacts and directory structure used to organize the artifacts. 

· Describe details of special file types, database schema, COTS, Web site, etc.

· Include all required files, scripts, programs, images and libraries in the directory structure.
[image: image44.emf]Local User 

Files

<<directory>>

Servlet Container 

Directory

<<directory>>

(from Local User Files)

DART 

Documentation

<<directory>>

(from Local User Files)

DART webapps

<<directory>>

(from Servlet Container Directory)

Servlet

(from Servlet Container Directory)

<<directory>>


Figure 37 - Documents and Source File Configuration
There are the contents of the DART Documentation Directory:
[image: image45.emf]Readme

<<document>>

User Guide

<<document>>

FRD

<<document>>

SSAD

<<document>>

LCP

<<document>>

SSRD

<<document>>

OCD

<<document>>


Figure 38 – Contents of the Documentation Directory

[image: image46.emf]LoginPage

<<jsp>>

IndividualRiskHistoryPage

<<jsp>>

ListAllPage

<<jsp>>

EditStakeHolderPage

<<jsp>>

EditRisksPage

<<jsp>>

AdminModifyProjectPage

<<jsp>>

ProjectsListPage

<<jsp>>

ProjectSetupPage

<<jsp>>

ProjectsMainPage

<<jsp>>

ImportCSVPage

<<jsp>>

ViewTopNSummaryPage

<<jsp>>

ChartAllProgessPage

<<jsp>>

VotingPage

<<jsp>>


Figure 39- Contents of the Webapps Directory

[image: image47.emf]AuthenticationManager

<<servlet>>

CSVFileManager

<<servlet>>

UserManager

<<servlet>>

SortingFunction

<<servlet>>

DataManager

<<servlet>>


Figure 38- Contents of the Servlet Directory

RUP GL:  SSAD 3.5 Configuration Model

Create a package with the label “Configuration Model”.  In this package, create one or more UML Class Diagrams that show the artifacts of the system and their dependency relations.  Each artifact should be represented using the classifier icon with one of the following UML stereotypes or with an implementation– or platform–specific stereotype (e.g. webpage, jarFile, script).

General

<<file>>

– a physical file that is otherwise undifferentiated

<<table>>
– a database table

Specialized

<<source>>
– a compilable source code file

<<executable>>
– a file that can be executed on a computer

<<document>>
– a generic file that is not a source or executable file

If you have a large number of artifacts, create subpackages of the “Configuration Model” package that represent the file–system directories that hold the artifacts.

Strategies

· One strategy for organize a large number of artifacts is too create separate diagrams for different categories of artifacts (e.g., webpages, database files, source code files).  It is often necessary to include a one or more artifacts from another category on a diagram that is otherwise devoted to a particular category in order to show dependencies on those artifacts.

· One strategy for defining subpackages is to create a directory structure that parallels the Component hierarchy.  Another strategy is to create packages that reflect different categories of artifacts.  Mixed strategies are common.

If your tool does not fully support the notation of the UML Component Diagram, then create one or more UML Static–Structure Diagrams to show the Components of the system, their interfaces, and relations.  Represent each Component using classifier icon with the stereotype <<component>> or a more specific stereotype, e.g. EJBEntity.  (If you use a more specific stereotype that is not defined in a standard profile, you will need to define the stereotype.)

For each artifact, create a UML Class diagram in the package containing the artifact that shows the artifact and either any Components or any implementation classes that are contained the artifact.  If an artifact contains one or more Components, then the diagram should show an aggregation relation from the artifact to each component.  If an artifact contains only a subset of the classes of a Component, then the diagram should show a dependency relation with the stereotype <<derived>> from the artifact to each implementation classes.
At LCO, a Configuration Model is created if a prototype is developed.

At LCA, a Configuration Model is created to show the configuration any COTS Components and configuration of any prototype of high–risk or architecturally–significant Components.

At IOC, a Configuration Model is created to show the configuration of all` Components.






[image: image48.wmf]
 




Common Definition Language

· Define new terms and acronyms encountered or introduced during System Design
· May include technology implementation terms
Java Beans - is a reusable software component that can be visually manipulated in builder tools.
Java Server Pages (JSP) - a technology for controlling the content or appearance of Web pages through the use small java programs that are specified in the Web page and run on the Web server to modify the Web page before it is sent to the user who requested it
JDBC (Java Database Connectivity) - an application program interface specification for connecting programs written in java to the data in a database
MySQL Database - an open source relational database management system that uses Structured Query Language 
CSV (comma-separated values) - file contains the values in a table as a series of ASCII text lines organized so that each column value is separated by a comma 
Local Area Network (LAN) - a group of computers and associated devices that share a common communications line and typically share the resources of a single processor or server 
Wide Area Network (WAN) - a geographically dispersed telecommunications network
5.  Appendices 

As applicable, each appendix shall be referenced in the main body of the document where the data would normally have been provided.

A. Reference 

Provide supplementary data such as algorithm descriptions, alternative procedures, tabular data, or other document excerpts from technical publications, etc…

CSV importing and exporting format.  

The following fields are required:

Risk History: id,hits, RE,assessDate, projectId, 
Risk: id, name,descrip, hits, projectId
Votes: userid, PUO, LUO, riskId,assessDate,projectId

Project: id

**Other fields listed in the file below are optional.

NOTES
1) For all votes and risks in the current assessment period, the assessment date should be entered as "CURRENT"
2) The of hits on the top 10 list and RE value must be calculated by the manager importing the CSV file for all non-current votes.
3) Tables must be in the order given below will the appropriate fields in the correct order as well. If there is no data for the field, it can be left blank with "," on either side. 

4) DART only performs basic data integrity checks, we are not responsible for any of the semantics/content in the file the manager importing the file is. For exporting, we are responsible for presenting the correct data.
##Start File -- must contain all title lines and headers

Project 

id

1
Risks History
#title line
id,notes,RE,assessDate,mitigationPlan,mitigationDate,projectId #headers
1,,26,11/01/01, Try and work with the customer so that the distributed part of the project can be lower on the list of priorities,11/10/01,1

2,The amount of data to retain for the risk history graphs and in turn output CSV file,46,CURRENT,Contact Dr. Boehm Dan and Jung-won.  Also read examples of previous documents and MBASE guidelines,10/15/01,1

3,little expertise in Java so making the project distributed may prove difficult,27,CURRENT,mitigationPlan,mitigationDate,1

Votes

userid,PUO,LUO,rationale,riskId,assessDate,projectID

pallavi,2,7,,3,11/01/01,1

lucy,3,3,,2,10/01/01,1

karl,6,7,Need to determine how large the data is,2,CURRENT,1

mike,8,3,,1,09/01/01,1

antonia,9,6,Seem to satisfy the OCD,3,CURRENT,1

Risks 

id, name, descrip, hits, projectID

1, Voting interface is not defined,, 12, 1

2, Requirements creep, Requirements creep with respect to advanced features, 14, 1

3, Lack of understanding of documentation process,Lack of understanding of documentation process with respect to what is expected in LCO and LCA packages, 5, 1

B. Vendor documents

· Provide information, technical specification sheets on the COTS products used

· Describe/refine domain or application independent components

· Frameworks

· Components

· Class Libraries

http://www.mysql.com
 
http://java.sun.com/products/jsp/docs.html

http://www.visualbuilder.com/jsp/tutorial 




























































�F:Components:Rose:Package:U=MainDiagram:Image:GAA:


�C:BehaviorModel:Rose:Package:Model.Path=^SMBASE\x2Emdl,Package.Name=^SLogical\x20View\x3A\x3ABehavior\x20Model


�M:UseCaseDiagram:Rose:UseCaseDiagram:BehaviorModel:Rose:Package:N=AllUseCaseDiagrams:!=A:Rose:UseCaseDiagram::Name:SMBASE/RUP\x20GL\x3A\x20LCA


�R:UseCaseDiagram:Rose:UseCaseDiagram:BehaviorModel:Rose:Package:N=AllUseCaseDiagrams:!=A:Rose:UseCaseDiagram::Name:SMBASE/RUP\x20GL\x3A\x20LCA


�F:UseCaseDiagram:Rose:UseCaseDiagram::Image:GAA:


�F:UseCaseDiagram:Rose:UseCaseDiagram::Image:GAA:


�R:UseCaseDiagram:Rose:UseCaseDiagram:BehaviorModel:Rose:Package:N=AllUseCaseDiagrams:!=A:Rose:UseCaseDiagram::Name:SMBASE/RUP\x20GL\x3A\x20LCA


�M:UseCaseDiagram:Rose:UseCaseDiagram:BehaviorModel:Rose:Package:N=AllUseCaseDiagrams:!=A:Rose:UseCaseDiagram::Name:SMBASE/RUP\x20GL\x3A\x20LCA


�C:SystemTopology:Rose:Package:Model.Path=^SMBASE\x2Emdl,Package.Name=^SLogical\x20View\x3A\x3ASystem\x20Topology


�C:SystemDeploymentModel:Rose:Package:Model.Path=^SMBASE\x2Emdl,Package.Name=^SLogical\x20View\x3A\x3ASystem\x20Deployment\x20Model


�M:NodeClassifiers:Rose:ClassDiagram:SystemDeploymentModel:Rose:Package:N=AllClassDiagrams:


�R:NodeClassifiers:Rose:ClassDiagram:SystemDeploymentModel:Rose:Package:N=AllClassDiagrams:


�F:NodeClassifiers:Rose:ClassDiagram::Image:GAA:


�F:NodeClassifiers:Rose:ClassDiagram::Image:GAA:


�R:NodeClassifiers:Rose:ClassDiagram:SystemDeploymentModel:Rose:Package:N=AllClassDiagrams:


�M:NodeClassifiers:Rose:ClassDiagram:SystemDeploymentModel:Rose:Package:N=AllClassDiagrams:


�M:Nodes:Rose:Scenario:SystemDeploymentModel:Rose:Package:N=Scenarios:


�R:Nodes:Rose:Scenario:SystemDeploymentModel:Rose:Package:N=Scenarios:


�F:Nodes:Rose:Scenario::Image:GAA:


�F:Nodes:Rose:Scenario::Image:GAA:


�R:Nodes:Rose:Scenario:SystemDeploymentModel:Rose:Package:N=Scenarios:


�M:Nodes:Rose:Scenario:SystemDeploymentModel:Rose:Package:N=Scenarios:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:LogicalClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SLogical\x20Class\x20Model


�R:LogicalClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SLogical\x20Class\x20Model


�F:LogicalClassModel:Rose:ClassDiagram::Image:GAA:


�F:LogicalClassModel:Rose:ClassDiagram::Image:GAA:


�R:LogicalClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SLogical\x20Class\x20Model


�M:LogicalClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SLogical\x20Class\x20Model


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:InteractionDiagram:Rose:Scenario:Components:Rose:Package:N=Scenarios:


�R:InteractionDiagram:Rose:Scenario:Components:Rose:Package:N=Scenarios:


�F:InteractionDiagram:Rose:Scenario::Image:GAA:


�F:InteractionDiagram:Rose:Scenario::Image:GAA:


�R:InteractionDiagram:Rose:Scenario:Components:Rose:Package:N=Scenarios:


�M:InteractionDiagram:Rose:Scenario:Components:Rose:Package:N=Scenarios:


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�C:InteractionModel:Rose:Package:Model.Path=^SMBASE\x2Emdl,Package.Name=^SLogical\x20View\x3A\x3AInteraction\x20Model


�M:InteractionDiagram:Rose:Scenario:InteractionModel:Rose:Package:N=Scenarios:


�R:InteractionDiagram:Rose:Scenario:InteractionModel:Rose:Package:N=Scenarios:


�F:InteractionDiagram:Rose:Scenario::Image:GAA:


�F:InteractionDiagram:Rose:Scenario::Image:GAA:


�R:InteractionDiagram:Rose:Scenario:InteractionModel:Rose:Package:N=Scenarios:


�M:InteractionDiagram:Rose:Scenario:InteractionModel:Rose:Package:N=Scenarios:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:ImplementationClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SImplementation\x20Class\x20Model


�R:ImplementationClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SImplementation\x20Class\x20Model


�F:ImplementationClassModel:Rose:ClassDiagram::Image:GAA:


�F:ImplementationClassModel:Rose:ClassDiagram::Image:GAA:


�R:ImplementationClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SImplementation\x20Class\x20Model


�M:ImplementationClassModel:Rose:ClassDiagram:Components:Rose:Package:N=AllClassDiagrams:==A:Rose:ClassDiagram::Name:SImplementation\x20Class\x20Model


�R:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�M:Components:Rose:Package:ComponentModel:Rose:Package:N=SubPackages:


�C:ConfigurationModel:Rose:Package:Model.Path=^SMBASE\x2Emdl,Package.Name=^SLogical\x20View\x3A\x3AConfiguration\x20Model


�M:ClassDiagram:Rose:ClassDiagram:ConfigurationModel:Rose:Package:N=AllClassDiagrams:


�R:ClassDiagram:Rose:ClassDiagram:ConfigurationModel:Rose:Package:N=AllClassDiagrams:


�F:ClassDiagram:Rose:ClassDiagram::Image:GAA:


�F:ClassDiagram:Rose:ClassDiagram::Image:GAA:


�R:ClassDiagram:Rose:ClassDiagram:ConfigurationModel:Rose:Package:N=AllClassDiagrams:


�M:ClassDiagram:Rose:ClassDiagram:ConfigurationModel:Rose:Package:N=AllClassDiagrams:






