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Abstract  
In the past decade, machine learning algorithms 
have been widely applied to various real-world 
applications such as diagnostics, prognostics and 
bioinformatics. In developing high-performance 
classifiers for such problems, evaluation of 
classifiers remains an important challenge facing 
researchers. This paper addresses this issue from 
the viewpoint of fielded classifier evaluation. 
Generic methods, such as classic accuracy, a 
paired t-test, ROC and AUC, cannot fully meet 
its needs. The paper first reviews generic 
methods. It summarizes the criticisms from the 
machine learning community and analyzes the 
limitations or deficiencies with respect to fielded 
applications. It also surveys some emerging 
domain-oriented approaches which take the 
specificities of domain problems into 
consideration. We argue that classifiers have to 
be evaluated carefully not only using generic 
methods but also domain-oriented ones in order 
to promote the acceptance of classifiers in real-
world applications. 

1.  Introduction 

Classifier evaluation, or the evaluation of machine 
learning algorithms, is an important exercise, particularly, 
in developing classifiers for real-world applications. 
Evaluation not only helps practitioners compute the 
performance of a classifier but also helps end-users assess 
the usefulness of a classifier for a particular domain 
problem. The ideal way to evaluate classifiers is to 
perform field trials in real-world environments. This is, 
however, not realistic because of cost.  The traditional 
way to address this problem is to conduct statistical-based 
evaluation using generic methods such as accuracy 
calculation, paired t-test, cross-validation, and 
bootstrapping. Over the last decade, some newly 
developed methods have gradually replaced the traditional 
methods. They include ROC (Receiver Operating 
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Characteristics) analysis [3] and ROC-based approaches 
such as ROCCH (ROC Convex Hull) [4, 5], AUC (Area 
Under the ROC Curve) [6,7]. The DEA (Data 
Envelopment Analysis) [9, 10] approach is also gaining 
popularity in the multi-class problem. These approaches 
improve the evaluation of classifiers for general purposes.   

 

However, they fail to address specificities of fielded 
applications, and thus cannot satisfy the needs of 
classifier evaluation for real-world applications. Different 
domain problems demand a tailored approach to evaluate 
the performance of a classifier. For example, from the 
perspective of prognostic1 classifier evaluation, the 
approach has to take the time to failure and failure 
coverage into consideration [11]. Unfortunately, none of 
the existing generic methods do. Even through our 
experience lies in prognostic applications, we believe that 
the arguments from other fielded applications such as 
bioinformatics are similar. Bioinformatics may have 
different requirements or specificities for classifier 
evaluation.  In order to improve over generic methods for 
evaluating classifiers researchers have been focusing on 
developing domain-oriented approaches, to address issues 
and overcome limitations with generic methods [11, 12]  

 

This paper briefly reviews the generic methods and their 
deficiencies, and surveys some domain-oriented 
approaches developed for real-world applications. These 
domain-oriented approaches not only help developers to 
evaluate performance of classifiers, but also help 
operators to identify the usefulness, or business value, 
which will be achieved if a classifier is deployed. They 
promote machine leaning techniques to be more widely 
applied to real-world applications. From our own 
experience, we argue that classifier evaluation strategy 

————— 
1 Data-driven prognostics [15] is an emerging application of machine 
learning or data mining to real-world problems. In data-driven 
prognostics, the main task is to develop the predictive models from 
large-sized database by using techniques from machine learning. The 
prognostic model (or called prognostic classifier) is able to predict the 
likelihood of a failure with a precise time-to-failure prediction in the 
prognostic systems.   
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has to take the specificities of fielded applications into 
consideration. We contend that a classifier has to be 
carefully and effectively evaluated not only using generic 
methods, but also domain-oriented approaches. 

 

The following Section reviews issues with generic 
methods from the viewpoint of fielded applications, for 
simplicity, we focus on prognostic applications; Section 3 
surveys domain-oriented approaches that have been 
developed recently; the final Section presents our view on 
classifier evaluation strategy from the viewpoint of 
fielded applications.   

2.  Issues with Generic Methods 

Over the past decades, in machine learning research, 
generic methods, either traditional metrics such as 
accuracy or error-rate, or recent approaches such as ROC 
and AUC, have been widely used by a majority of 
researchers. There is no doubt that these methods play an 
important role in evaluating the performance of a 
classifier. However, some researchers [1, 2] have recently 
started to question the effectiveness of these generic 
methods. The issues with generic methods in classifier 
evaluation [1] can be summarized from three 
perspectives: evaluation metrics, sampling approaches, 
and interpretation of evaluation results.  

 

Evaluation metrics have many shortcomings themselves. 
For example, the widely-used accuracy does not account 
the cost of misclassification. This is a serious problem 
because some errors cost more than others in different 
problems. Even though ROC or AUC can help overcome 
this shortcoming, they are sometimes carelessly used in 
evaluation. As the author in [1] points out, the results 
obtained on different datasets (or domains) are averaged 
for each classifier. This may not work sometimes because 
the values on different datasets may have different 
meanings. For example, when a new algorithm is 
published, the results are most likely compared to old 
ones by averaging the metrics obtained on multiple 
datasets such as ones from the UCI Repository.  

 

On the side of sampling approaches, a generic method, 
such as statistical-based approach, requests iid sampling 
from a normal distribution. This is very dangerous in 
practice because some data may be dependent on others. 
For example, data in time-series depend on each other. 
Random sampling will separate dependent data into 
different groups. In practical problems, the distribution is 
not always a normal distribution.   

 

On the side of interpretation of evaluation results, generic 
metrics cannot tell operators meaningful information on a 

classifier. In other words, interpretation of evaluating 
results is hard to be understood, even misleading. For 
example, AUC is developed for addressing the problem of 
ROC by normalizing the value between 0 and 1. 
Theoretically, the higher the AUC value, the better the 
performance of a classifier. Therefore, a classifier with  
0.8 of AUC value should be better than one which has 
0.75 of AUC value.  However, such interpretation may be 
meaningless or useless for an end user from fielded 
applications.  From the viewpoint of business value that a 
classifier produces if it is deployed, the interpretation may 
be totally different.  

From the perspective of fielded applications, the most 
important concern is that existing generic methods do not 
take the specificities or settings of applications into 
consideration. Taking prognostics as an example, those 
methods failed to capture two important aspects for 
prognostic applications. The first aspect is the time to 
failure (or called remaining useful life of a component). A 
classifier that predicts a failure too early leads to non-
optimal component use.  On the other hand, if the failure 
prediction is too close to the actual failure then it becomes 
difficult to schedule an action for the maintenance. The 
second aspect relates to coverage of potential failures. 
Ideally, a prognostic classifier generates at least one alert 
for all failures instead of many alerts for just a few 
failures. That is, the failure coverage is very important 
when we evaluate performance of classifiers. 

 

Certainly, specific consideration for other applications 
such as bioinformatics will be different. Therefore, 
domain-oriented approaches are critical for classifier 
evaluation.                  

3.   Domain-oriented Approaches 

Due to the problems of generic methods in fielded 
applications, researchers from various areas started to 
look into domain-oriented approaches for evaluating 
performance of classifiers. Domain-oriented approaches 
take specificities of fielded applications into 
consideration. For example, in the area of text mining, 
Precision, Recall and the F-measure were often used; in 
the area of diagnostics, cost curve [8] is widely used to 
evaluate performance of classifiers. Cost curve transforms 
a point in ROC which represents a classifier into a cost 
line by normalizing the error rate and failure rate into 
cost. Cost curve virtualizes performance of a classifier. 
Such cost information is much clearer than a coordinate 
point in ROC. People have used it to evaluate diagnostic 
classifiers in maintenance domain. As discussed in the 
later section, cost curve has been used to estimate a range 
of cost saving for prognostic classifiers as well.      
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The most successful development of domain-oriented 
evaluation approaches lies in the area of prognostics. To 
address the issues described above, two main approaches, 
score-based and cost-based approaches [11, 12, 13, 14], 
have been developed and are often used in evaluating 
prognostic classifiers. The following is the brief review of 
these two approaches. 

 

Score-based approach: This method takes specificities 
of prognostics into the evaluation metric [13, 14]. 
Basically, it defines a reward function for positive 
prediction (or so-called alerts) from each prognostic 
classifier. The reward function determined a score based 
on the timeline of each positive prediction. In prognostics, 
it is desirable that a positive prediction should be 
generated in a target time window, which is determined 
with the requirements of applications. Therefore, a 
positive prediction within the target window will be 
rewarded as a positive value; otherwise, it will be 
punished by assigning a negative value.   On the other 
hand, score-based approach also incorporates the problem 
coverage into its score formula. In the score-based metric, 
the accumulated score for all positive predictions will be 
multiplied by a factor which is the number of predicted 
failure over total number of failures in the testing dataset. 
This method has been successfully applied to evaluate 
classifiers for component prognostics in a complex 
system such as train wheel prognostics and aircraft engine 
prognostics. 

 

Cost-based approach: Although the score-based 
approach proposed above takes the time to failure 
prediction and problem detection coverage into account 
for evaluating prognostic classifiers, the scores computed 
do not inform the end user on the expected cost savings of 
the classifiers. In real-world applications, the best way to 
promote machine learning algorithms is to estimate cost 
savings that will be achieved if a classifier is deployed. 
To this end, the authors in [11, 12] developed a cost-based 
method for prognostic classifier evaluation. The goal of 
this method is to estimate the cost savings for a deployed 
classifier in a fielded application.  

 

Estimating cost saving is a challenging task.  It fully 
depends on the real cost information from applications. In 
particular, the cost may be changed from time to time and 
deployment environments may be changed as well. 
Therefore, two different metrics for estimating the cost 
savings are proposed: one for accurate cost information 
[11], another one for uncertain or missed cost information 
[12].  

  

When we are able to obtain the accurate cost information 
from the end user, we can use cost-saving metric in [11] 

to estimate the business value. By using this metric, four 
kinds of cost information are requested: the cost of a false 
alert (an inspection without component replacement), a 
pro rata cost for early replacement, the cost for fixing a 
faulty component, and the cost of an undetected failure 
(i.e., a functional failure during operation without any 
prior prediction from the prognostic model).  The first 
three costs are generally easy to obtain while the last one 
is difficult to approximate accurately.  This is because 
failures during operations may incur various other costs 
that are themselves difficult to estimate. 

 

However, the real cost will change from time to time or is 
missed in many applications. For example, the cost for 
fixing a failure changes from time to time. Also, the 
requested cost information above is not always easy to 
obtain. This may occur because no one has all this 
information readily at hand. It may also be due to the fact 
that people are often reluctant to count the costs 
associated with safety issues. Even in such tough case, we 
are still able to estimate a range of the cost savings by 
using the approach proposed in [12]. This method is 
called reverse-engineering cost. The idea is to apply the 
cost curve to visualize the cost saving range for uncertain 
cost information. For example, when the cost of missed 
failure ranges from X to Y, and other cost information is 
exact, the cost curve will show a potential range of cost 
savings to the end users. Such estimation for cost savings 
is still useful for evaluating prognostic classifiers.       

4.  Remarks 

Even through generic methods have limitations for 
classifier evaluation, particularly, for fielded classifier 
evaluation, they are improved or incorporated to domain-
oriented approaches. The most domain-oriented 
approaches are evolved from generic methods.  We 
believe that generic methods, as statistical-based 
approaches, are still and will be used for classifier 
evaluation in the machine learning community. These 
generic methods will be improved through different 
processes. For instances, N. Japkowicz suggested two 
useful processes to improve generic methods: better 
education and better division between exploratory and 
evaluation [1].  

We also believe that more and more feasible and effective 
domain-oriented approaches will be developed to meet 
the needs of real-world applications. This is a right way to 
promote machine learning algorithms in solving real-
world problems. Domain-oriented approaches overcome 
the limitations of generic methods and incorporate 
specificities of a domain problem into the evaluation 
metrics; therefore, they are widely used in real-world 
applications. At the same time, they are also welcome by 
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end users. However, we can’t expect to apply a domain-
oriented approach to different domains. This should never 
happen. Otherwise, we will go back to way, a way generic 
method goes. 

We strongly argue that a classifier has to be evaluated not 
only using generic methods but also domain-oriented 
approaches. Generic method could help developers   
identify the performance of a classifier from the statistical 
viewpoint at the beginning stage of classifier 
development. Domain-oriented approaches will be used to 
evaluate the usefulness and business value more clearly in 
a simple way, which in turn will promote machine 
learning techniques in real-world applications.   

It has been a long time that we have dreamed to have a 
simple way to validate the classifiers not only for 
researchers but also for end users. We believe the cost-
based approach [11, 12] will make our dream to be true. 
This should become an example for other fielded 
applications.    
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