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Abstract

A probabilistic classifier assigns probability
scores to data examples. The ROC curve
depicts the ranking performance of the clas-
sifier by imposing threshold values on these
probabilities and by plotting the true positive
rates against the false positive rates. Once
classification decisions are made, the ROC
eliminates these probabilities from the per-
formance analysis. In this paper, we argue
that discarding these probabilities can result
in a loss of information. We show that the
lost information is related to changes in the
domain. We propose an evaluation method,
the sensibility analysis, to remedy this situa-
tion. Using synthetic data, we illustrate that
visualizing the sensibility values for all clas-
sification thresholds depicts changes in the
underlying distribution, otherwise known as
concept drift.

1. Introduction

For a probabilistic classifier in a binary classification
problem, the ROC curve is generated by plotting the
true positive rates against false positive rates for all
classification thresholds between 0 and 1. The true
positive and the false positive rates are obtained by
imposing the classification thresholds on class mem-
bership probabilities, assigned to data examples by
the classifier, to produce a confusion matrix gener-
ating points that form the ROC curve (Provost &
Fawcett, 2001). Once classification decisions are made,
the probability scores are excluded form the perfor-
mance analysis. In a last year’s workshop (Klement
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& Flach, 2008), we proposed a method to incorporate
these probability scores into the ROC space based on
the intuition that the probability scores provide addi-
tional insights beneficial to the assessment of the clas-
sifier’s performance. We argued that the ROC analy-
sis fails to distinguish between examples whose scores
differ in magnitude. For instance, if a probabilistic
classifier assigns probabilities 0.9 and 0.51 to two pos-
itive examples respectively, a classification threshold of
0.5 results in both examples being classified correctly,
however, the margin in their probabilities remains ig-
nored.

In this paper, we present a scenario of when class
membership probabilities present additional informa-
tion related to the data distribution. Further, we pro-
pose the concept of classification sensibility which, we
argue, is capable of detecting that what the ROC anal-
ysis fails to detect. In particular, we use a synthetic
medical data generator to introduce changes in the un-
derlying distribution. We train a Naive Bayes clas-
sifier data drawn from the original synthetic domain
and test it on data drawn from the modified domain
with various types of concept drift (Widmer & Kubat,
1996). Our illustration shows that, in some situations,
the ROC curve of the training data remains indistin-
guishable for that of the testing data despite a change
in the domain. Our sensibility curve, on the other
hand, is capable of visualizing such changes.

Recently, machine learning assumptions have been
criticized (Hand, 2006) of being ignorant to changes
in the underlying data distributions. The criticism is
based on the assumption which, most machine learn-
ing methods make, that training and testing data are
drawn form the same static distribution. Hand ar-
gues that training and testing data may be drawn
from different data distributions more often than not.
This problem of learning in changing environments
has been studied by machine learning researchers for
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over a decade (Alaiz-Rodriguez & Japkowicz, 2008;
Klinkenberg, 2004; Narasimhamurthy & Kuncheva,
2007; Widmer & Kubat, 1996). In this work, the focus
is on the ROC analysis in the context of changing envi-
ronments. We present simulation of changing medical
environments (Alaiz-Rodriguez & Japkowicz, 2008) in
which, we show that the ROC my be unable to de-
tect changes in the domain. To remedy this situation,
we propose the utilization of those probability scores,
discussed earlier, which are excluded from the ROC
analysis altogether.

2. Classification Sensibility

The principle of sensibility is to measure classification
performance on two subsets of the data. These two
subsets are the sensible and the non-sensible examples
respectively. As shown in table 1, this division is based
on calculating a midpoint ts which we describe first.
Later, we illustrate how we compute the sensibility,
the capability and the struggle ratio metrics.

Let X be a set of n examples where the 3" example is a
vector x; of values for attributes aq,as,...,a,,. Each
x; is assigned a label ¢; € C = {+4,—} in a binary
classification problem for simplicity. Let p;” and p;
be the probabilities assigned to the positive example
i and to the negative example j respectively. Let n*
and n~ be the number of positives and negatives in
X also respectively. For ease of notations, let P+ =
Spf and P~ = 3 p;, thus, P = Pt + P~ be the
sum of all probabilities assigned to X. Then, we can

" +
calculate the mean scores of positives m* = 1;—+ and
the mean score of negatives m~ = 1:—: respectively.

The class distribution is d = ;l—f and in the case of

calibrated p; scores, m* + m—d_ = 1. This is obvious in
the extreme case where p; € {0,1} and d = 1 where
nT x mT +n~ x m™ = nt. Generally, the p; scores
are not calibrated, and the class distribution d # 1,
then we have m* + 2 = 5—:—#%-5—:.
m+—|—mT; = IZ—I—FZ—; . 1;—: = n%. The midpoint ¢4 for
X is estimated by:

Therefore,
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We illustrate this concept in table 1. We propose that
sensible examples are either, positives whose probabili-
ties p; are above the midpoint ts, or, negatives that are
assigned probabilities p; below the midpoint t5. With
a midpoint t5; = 0.56 and a classification threshold of
0.35, this division appears in the right column of ta-
ble 1. The positive examples (1,2, 4,5) are assigned p;
probabilities above the midpoint t; = 0.56. The nega-

Table 1. Sensible and non-sensible examples for classifica-
tion threshold =0.35 and a midpoint = 0.56.

i Label p; Prediction Sensible?
1 + 1.0 + yes
2 + 0.9 + yes
3 - 0.8 + no
4 + 0.7 + yes
5 + 0.6 + yes
6 - 0.5 + yes
7 + 0.4 + no
8 - 0.3 - yes
9 - 0.2 - yes
10 - 0.0 - yes

tive examples (6, 8,9,10) are assigned p; probabilities
below the midpoint t; = 0.56. The union of these
examples forms the set of sensible examples. On the
other hand, the positive example (7), its p; is below
the midpoint t; = 0.56, as well as, the negative exam-
ple (3), its p; is above the midpoint ¢, = 0.56, form
the set of non-sensible (or difficult examples). This
is due to the disagreement between their probability
assignments, relative to the midpoint ¢5, and their la-
bels. Table 1 shows that the classifier assigns sensible
probabilities to examples 1,2,4,5,6,8,9, and 10. Exam-
ples 3 and 7, on the other hand, are assigned non-
sensible probabilities. It is important to mention that
the probabilities are assumed to reflect positive class
membership expressed by a probabilistic classifier.

The principle of sensibility analysis is based on distin-
guishing between classification errors made on these
two subsets of examples. From an evaluation perspec-
tive, we would expect a sensible classifier to make few
errors on the set of sensible examples because their
probabilities are sensible. In addition, a classifier that
makes few errors on the set of non-sensible examples is
a capable classifier, i.e. capable of addressing the non-
sensible probability assignment. The over all idea is
to distinguish between errors made due to wrong clas-
sifications from those due to non-sensible probability
assignment.

We now describe how to compute our performance
metrics. First, we measure the extent to which the
probability estimation struggles with the given data.
The fraction of non-sensible to sensible examples shows
just that, we call it, the struggle ratio. In table 1, the
struggle ratio is % = 0.25. Second, the classification
accuracy on the set of sensible examples measures clas-
sification sensibility and, in our example, is 7 out of 8
sensible examples (6 is an incorrectly classified sensible
example) for a classification threshold of 0.35. There-
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Table 2. An illustration with synthetic flu symptoms.

Data Set AUC Midpoint ts  Struggle Ratio
Original Distribution

NGP-Train 0.815 0.512 0.488

NGP-Test  0.800 0.518 0.486
Modified Distribution

DP-Test 0.770 0.338 0.691

FC-Test 0.803 0.681 0.351

fore, the sensibility for table 1 is g x 100 = 87.5%.
Similarly, the classification accuracy on the set of non-
sensible examples depicts the capability of the classifier
in classifying these difficult examples. In table 1 and
using a classification threshold of 0.35, the capability
is 1 out of 2 non-sensible examples (3 is an incorrectly
classified non-sensible example) resulting in capability
of % x 100 = 50%. Finally, for a given data, we can
only compute one midpoint ¢, and, thus, one struggle
ratio. This is so because there is is only one proba-
bility score assigned to each example. The sensibility
and the capability values, however, vary depending on
the classification threshold. For these, we generate
their values for all classification thresholds (between 0
and 1) in a manner similar to generating ROC curves
(Provost & Fawcett, 2001).

3. Illustrations with synthetic data

To demonstrate information added by considering the
probabilities in the evaluation process, we use a syn-
thetic medical data generator to introduce changes to
the domain for testing. In each case of testing, we
plot the corresponding curves for the sensibility, the
capability, and the ROC . The synthetic medical do-
main (Alaiz-Rodriguez & Japkowicz, 2008) models the
prognosis of patients, infected with the flu symptoms,
as NormalRemission or Complication. The original
domain corresponds to the Negative Growth Popula-
tion (NGP) with several attribute dependencies. We
train a Naive Bayes classifier on data generated from
the original domain NGP, then, test it on three data
sets. We test on the original NGP domain, i.e. on
the training data and on test data obtained from the
original unmodified NGP domain. Then, we test the
Naive Bays classifier, trained as before, on test data
obtained from the Developing Population domain, the
DP domain. This domain is a modified NGP domain
representing the population in a developing country
region where the medical classifier is deployed (Alaiz-
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Figure 1. Left: Sensibility and Capability curves. Right:
the ROC Curve for training and testing NGP domain

Rodriguez & Japkowicz, 2008). This domain contains
a population drift. The third and final test evaluates
the Naive Bayes classifier, again trained as before, on
the FC data. This represent a modified version of the
original NGP domain by introducing a class definition
change with fewer complications. We generate 1000
examples for each data set. Further details can be
found in (Alaiz-Rodriguez & Japkowicz, 2008).

Table 2 illustrates that, when test data is drawn from
the original domain NGP, for both training and test-
ing, the AUC value is over 80% and the struggle ratio
is under 50%. The AUC and the struggle ratio values
remain unchanged for testing on the training set and
on the testing set. This is also depicted by the cor-
responding sensibility, capability and ROC curves in
figure 1. All three types of curves remain unchanged
between training and testing. In this case, both train-
ing and testing data are obtained form the original
NGP domain. This leads us to the conclusion that the
ROC and our sensibility curves depict the same results
when data is drawn from the same static distribution.
However, if we consider the Developing Population DP
data, the corresponding AUC value in table 2 shows
a drop to 77%. The Struggle ratio increases to 69%
indicating a higher struggle in the probability estima-
tion. Inspecting the plots in figure 2 reveals that all
curves, corresponding to testing on DP data, visually
differ from those obtained by testing on the training
data. This corresponds to the fact that the DP test
data is generated with a population drift. The ob-
served drop in performance and the increased struggle
can be attributed to the change in the testing domain.

However, results obtained by testing on the FC data
shows that, while the AUC value does not change, the
struggle ratio deceases to 35%. This implies that the
probability estimation struggles less with fewer com-
plications in the data. The corresponding ROC curves,
in figure 3, show that the change in the class defini-
tion in the FC data produces little to no effects on the
ranking performance of the Naive Bayes classifier. In
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Figure 2. Left: Sensibility and Capability curves. Right:
the ROC Curve for training NGP and testing DP domains.

fact, a lower struggle ratio also confirms an improved
probability estimation on the FC test data. Never-the-
less, the test data produces sensibility and capability
curves that are visually different from those obtained
for training on the original domain, the NGP domain.
Therefore, we argue that the ROC analysis fails to de-
pict changes in the underlying distribution which do
not impact the classification performance. The use of
probability scores in our analysis remedies this situa-
tion by depicting classification sensibility.

4. Conclusion

In this paper, we argue that the ROC analysis depicts
the ranking performance of a probabilistic classifier in-
dependent of its probability estimation performance.
Since the probabilities are assigned to examples by the
classifier, they are also eliminated from the process of
performance analysis, therefore, the ROC curve may
be unable to detect changes in the distribution of these
probabilities. The ROC analysis remains consistent
with the assumption that training and testing data
are drawn from the same static distribution. However,
this assumption is criticized in practical applications.
In fact, it may be desired to include such changes in
the performance analysis. To this extent, we propose
the method of sensibility analysis to measure changes
in the underlying distribution. Our method utilizes
class probabilities to determine classification sensibil-
ity. Further, the use of class probabilities as part of
the evaluation process supports our Soft ROC analy-
sis presented in the 2008 workshop (Klement & Flach,
2008).

Several extensions may be applied to our method of
classification sensibility. Our metrics can be used to
assess the quality of time-stamped data, such that,
when a change in the domain occurs, our method
can determine whether a particular test set is suitable
for evaluating a given learning method. In addition,
it may be interesting to study the effect of optimiz-
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Figure 3. Left: Sensibility and Capability curves. Right:
the ROC Curve for training NGP and testing FC domains.

ing classification sensibility during the learning phase.
Such studies remain in our future work.
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