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Abstract

We present an empirical study of the value
added by four commonly employed classifier
evaluation metrics and consider whether the
informedness of a metric is correlated with its
ability to predict the classifier’s performance
on future datasets, in terms of the true and
false positive rates. In doing so, a variety of
UCI datasets are examined in order to test
the metrics, in general and under specific do-
main conditions. Through the experiments,
we show there is no direct correlation between
the informedness of a metric and its ability to
predict future performance.

1. Introduction

Classifier evaluation is typically undertaken by employ-
ing one of several classes of performance metrics (Caru-
ana & Niculescu-Mizil, 2004): threshold, ranking and
probabilistic. Additionally, ensembles of metrics are
occasionally used in order to use metrics from multiple
classes.

Accuracy (ACC) is an example of a threshold metric;
it relays the number of correct classification decisions
made by the classifier. It has been noted (Kononenko
& Bratko, 1991) that the simplicity of this metric can
produce unexpected results under certain domain con-
ditions, such as imbalance.

For this reason, alternative metrics, from the ranking
or probabilistic classes, are often preferred. Such met-
rics are often described as being more informative, as
they base their judgements on a wider variety of in-
formation. The area under the ROC curve (AUC)
(Fawcett, 2006), for example, can take true positives
and false positives or true and false negatives, at var-
ious thresholds, into consideration. Some other met-
rics commonly considered more informative, are root

mean square error (RMSE) and the K&B information
score (K&B) (Kononenko & Bratko, 1991). While the
ranking and probabilistic classes of metrics base their
decisions on more information, it remains to be seen
whether this extra knowledge produces a more accu-
rate prediction of future performance.

The remainder of this paper is formatted as follows:
Section 2 provides a motivating scenario. Section 3
describes the experimental methodology and Section
4 provides the results. In Section 5, a discussion of
the results is undertaken and Section 6 contains our
concluding thoughts.

2. Motivation

Studies, such as (Rosset, 2004), suggest that the use of
different metrics for model selection and testing may
be beneficial. Related studies on model optimization
(Huang & Ling, 2007), suggested that the more in-
formative metrics are indeed beneficial to the opti-
mization process. However, later work (Huang et al.,
2008) contradicts the original findings and suggests
that when proper statistical tests are applied, model
optimization can achieve better results if it is con-
ducted with the metric that will be of interest during
future applications.

In this paper, we carry these ideas forward to model se-
lection. In particular, we consider the scenario in which
model selection aims to maximize the true positive rate
(TPR) or minimize the false positive rate (FPR), on a
particular class, during the future applications of the
classifier. Within this scenario, we examine whether
the more informative metrics are more acute predic-
tors of future performance. The TPR and FPR have
been selected to gage the performance of the individual
models because their optimization represents two fun-
damental, albeit often opposing, goals in classification.
Furthermore, this process enables us to evaluate the
training metrics based on a single test metric, which in
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the future could be altered to represent different goals.

3. Experiments

In this study, a series of experiments will be performed
in order to test the hypothesis that the more informa-
tive metrics, namely AUC, RMSE and K&B, are more
proficient than ACC at predicting the future perfor-
mance of classifiers. The following subsections describe
the datasets’ classification techniques and evaluation
approaches applied in the experiments.

3.1. Data

Datasets of the following four characteristics are of par-
ticular interest in this paper: binary, multi-classed,
balanced and imbalanced, as it is conceivable that
these variations may produce different results. Initially,
seven binary and seven multi-classed datasets were se-
lected from the UCI repository.

As a means to increase the number of the balanced
sets, three multi-class datasets were converted to bi-
nary, which resulted in ten binary classification prob-
lems and seven mutli-class problems.

In order to determine if class distribution has an effect
on the various metrics, the balanced datasets were ma-
nipulated to produce imbalanced sets. This approach
ensures that any variation in the results obtained were
truly a result of the domain conditions, and not other
factors that may exist within the datasets. The ma-
nipulation process was carried out by randomly re-
moving instances from the minority class, or minority
classes, until the majority class represented 75 percent
of the instances. This resulted in ten balanced binary
datasets, ten imbalanced binary datasets, seven bal-
anced multi-class datasets and seven imbalanced multi-
class datasets.

As a final step, the datasets were randomly divided into
training (66 percent) and testing (33 percent) sets.

3.2. Classifiers

In this experiment, Näıve Bayes (NB), Multilayer Per-
ceptron (MLP), J48 decision tree and k-nearest neigh-
bour (IBK) are applied to the classification tasks. As
the performance of individual classifiers is not of inter-
est, no steps are taken to optimize their performances.
Instead, the classifiers are trained with ten-fold cross
validation, and tested in Weka with the default set-
tings.

Table 1. The correlation between four training metrics
(rows) and the three test metrics (columns) with respect
to the first dataset

TPR FPR
ACC -0.316 0.800
K&B 0.853 -0.135
RMSE 0.211 0.600
AUC -0.316 0.898

3.3. Evaluation

As a means to evaluate the predictive capabilities of the
four metrics, a series of steps were performed. Initially,
the performance of each classifier on each of the thirty-
four datasets during the training and testing phases,
according to the evaluation metrics, was recorded. Fol-
lowing this, a series of ranked lists were compiled in
which the classifiers were sorted according to each of
the metrics.

Once sorted, the degree of correlation between each
training metric and the test metrics were calculated.
Table 1 corresponds to the first dataset, and displays
the correlation between each of the training metrics
and the test metrics. These correlation scores are in-
dicative of the metrics’ ability to predict the future per-
formance of the classifiers in terms of TPR and FPR.
For example, ACC has a score of -0.32. Therefore, it
has a slightly negative correlation with TPR. This in-
dicates that during training on the first dataset, ACC
did not accurately predict how the classifiers would per-
form on the test data. Alternatively, the correlation
between K&B and TPR is quite close to one. There-
fore, it was much more acute in its predictions. By
ranking these correlation tables and compiling them
into one, we begin to paint a picture that indicates
the training metric or metrics most correlated with the
test metrics. For example, Table 2 shows the first four
ranked correlations between each training metric and
TPR on the ten balanced binary datasets. In addi-
tion, the final row displays the summations over the ten
domains with respect to each training metric. These
summations illustrate the overall predictive power of
each training metric. Because they represent the sum-
mation of ranks, the lower totals identify the metrics
that are more correlated with the test results. In this
case, RMSE has the smallest summation, therefore, we
might conclude that it is most correlated with TPR.

This process was repeated for each of the four cate-
gories discussed in Section 3.1, and is augmented with
the combined group of the thirty-four datasets. The
results of each of these experiments are disseminated
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Table 2. The training metrics ranked in terms of their cor-
relation to TPR on the first four balanced, binary datasets.
The final row gives the sum of each training metrics’ rank
on the ten balanced, binary datasets

Dataset ACC K&B RMSE AUC
d1 3.500 1.000 2.000 3.500
d2 2.500 1.000 2.500 4.000
d3 2.500 2.500 2.500 2.500
d4 3.000 3.000 1.000 3.000

. . . .
total 27.000 25.000 23.500 24.500

Table 3. The rank correlation totals for the training metrics
ranked with respect to each of the test metrics over all
thirty-four datasets.

TPR Rank(TPR) FPR Rank(FPR)
ACC 83 2 78 1
KnB 88 4 81 2

RMSE 82 1 94.5 4
AUC 87 3 82.5 3

in the next section.

4. Results

In this section, the results produced in the four do-
main categories are reported. Prior to that, the re-
sults, which ensued from the combining of the thirty-
four datasets into an all inclusive group, are revealed.
These results are visualized in a series of tables, which
depict the measured correlations between each train-
ing metric and the two test metrics with respect to the
datasets in the particular category. The correlation
scores contained in the tables were produced precisely
as those in the final row of Table 2 were constructed.
In addition, the training metrics are ranked according
to the degree of correlation, in order to highlight their
relative strengths and weaknesses.

4.1. Overall predictive power

The correlation scores displayed in Table 3 specify the
relationship between the training metrics and each test
metric over all thirty-four datasets. When the TPR is
identified as the property for which the model is to be
optimized, RMSE and ACC produce the best corre-
lation score. Alternatively, ACC and k&B are most
correlated with the FPR.

Table 4. The rank correlation totals for the training metrics
ranked with respect to each of the test metrics over the
binary datasets.

TPR Rank(TPR) FPR Rank(FPR)
ACC 49.5 2 47.5 2
KnB 52 4 50.5 3

RMSE 48 1 57.5 4
AUC 50.5 3 44.5 1

Table 5. The rank correlation totals for the training metrics
ranked with respect to each of the test metrics over the
multi-class datasets.

TPR Rank(TPR) FPR Rank(FPR)
ACC 33.5 1 30.5 1.5
KnB 36 3 30.5 1.5

RMSE 34 2 37 3
AUC 36.5 4 38 4

4.2. Cardinality

The results in this subsection highlight the effect of
moving from a binary classification problem to one of
a multi-class persuasion. An examination of the rank-
ing of the metrics, with respect to TPR, in Table 4 and
Table 5, reveals that the top two metrics remain the
same regardless of the datasets’ cardinality. However,
their relative position is reversed. In terms of the FPR,
ACC is consistently one of the most correlated training
metrics. Alternatively, AUC has the strongest corre-
lation with respect to the binary datasets. It is least
correlated in the multi-class problem, where k&B has
a strong correlation with FPR.

4.3. Class Balance

Table 6 and Table 7 display the correlation scores pro-
duced on the balanced and imbalanced datasets, re-
spectively. Similar to Section 4.2, in which the goal
is to optimize the TPR, RMSE and ACC have the
strongest correlation. Also reminiscent of this, is the
fact what when the nature of the datasets in question
change, the relative ranking of the two primary met-
rics reverse. These properties are also consistent in the
cases where the FPR is the target for optimization.
However, in this case ACC and K&B are the training
metrics most correlated to the test metric of interest.

5. Discussion

In order to determine how meaningful the results re-
ported in Section 4 were, Friedman’s rank test (Fried-
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Table 6. The rank correlation totals for the training metrics
ranked with respect to each of the test metrics over the
balanced datasets.

TPR Rank(TPR) FPR Rank(FPR)
ACC 41.5 2 36 1
KnB 44 3 41.5 2

RMSE 40 1 48.5 4
AUC 44.5 4 44.5 3

Table 7. The rank correlation totals for the training metrics
ranked with respect to each of the test metrics over the
imbalanced datasets.

TPR Rank(TPR) FPR Rank(FPR)
ACC 41.5 1 42 2
KnB 44 4 39.5 1

RMSE 42 2 46 4
AUC 42.5 3 42.5 3

man, 1937) was applied. This test judges the signif-
icance of the rankings by testing a null hypothesis,
which states that the rankings are the results of pure
chance. This null hypothesis could not be rejected in
any of the five categories discussed, at either the α0.05

or α0.1 levels. This is the case, both when the model is
to be optimized for TPR and for FPR. Therefore, when
these thirty-four datasets are considered collectively, or
when they are segregated based on domain conditions,
we cannot in fact assume with confidence that any one
of these metrics is superior in model selection.

Also worth noting, is that by selecting TPR and FPR
as the test metrics, we are simulating a situation where
there is a particular class of interest. For example,
when TPR is applied, one class is singled out and the
true positive rate produced on that class is recorded. A
consequence of this is that AUC, which also focuses on
an individual class of particular interest, can be directly
applied in the multi-class domain, and a more compre-
hensive approach, such as the Volume Under the ROC
Curve (VUS) (Mossman, 1999) can be forgone.

6. Conclusions

In this paper, we tested the hypothesis that the more
informative metrics are superior to ACC, in the task of
model selection. In particular, we examined whether
K&B , RMSE and AUC were more proficient at se-
lecting the model that would produce optimal results
in terms of the TPR and FPR on future classification
tasks. The results indicate that regardless of domain
conditions, none of these metrics are significantly more

predictive than the others, with respect to model se-
lection of this nature.

This paper presents our initial work on the predictive
power of evaluation metrics. Moving forward, a broad-
ening of the base from which the datasets are selected
is an item of particular interest. Aside from diversify-
ing and increasing the size of the experiment, this will
help mitigate the effect of the less challenging classifi-
cation task. These datasets result in trivial results and
were found to be ineffective for our purposes.

Finally, ACC has much in common with TPR and
FPR. It is therefore entirely conceivable that ACC
had an advantage in this experiment, and that repeat-
ing this experiment with alternate optimization goals,
would produce new results. Thus, future experiments,
which judged the training metrics based on alternative
criteria, are of interest.
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