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Abstract
This paper explores different methods for
interpreting the results of multiple, cascad-
ing machine learners, each of which per-
forms a different task. For instance, the first
learner may classify news as “sports,” the
second learner may extract the people from
the sports articles, and the third learner may
classify the extracted people as belonging to
a certain team. We present a framework
for modeling such cascading learners as a di-
rected acyclic graph, which allows us to con-
struct three-way contingency tables on which
we can perform various independence tests.
These independence tests provide insight into
how the various learners’ performance de-
pend on their predecessor in the chain and/or
the inputs themselves.

1. Introduction

Chaining together multiple machine learners in a cas-
cading process can yield powerful algorithms, but un-
derstanding the results of each learner poses prob-
lems. More concretely, consider three cascading ma-
chine learners, as shown in Figure 1. The ultimate goal
is to process news articles and pull out mentions of
anyone who belongs to the “Los Angeles Lakers” bas-
ketball team. To accomplish this goal requires three
different machine learning models.
The first machine learner takes in news articles from
two different sources and classifies the articles as sports
or not sports. The second machine learner then takes
all sports articles as inputs, and extracts all of the
people in the news articles. Lastly, the third machine
learner classifies each of the extracted people as players
for the “Los Angeles Lakers” (or not). Since a model’s
input is the output of the model preceding it, we call
this a “cascading” machine learning model.
Our notion of cascading learners here differs from pre-
vious work on combining machine learners where the
goal is to group learners for improvement on the same
task (e.g. (Gama & Brazdil, 2000; Dietterich, 2000;
Kuncheva, 2004)). Instead, we focus on combining
learners that each perform a different task, but tie
together. This often happens in information extrac-

Figure 1. Cascading Models

tion where it might be necessary to first discover the
documents to process before extraction (Corney et al.,
2004), or classify particular sentences to aid extraction
(Riloff et al., 2005). In these cases, multiple processes
affect each other toward the goal of extraction.
Difficulties arise in determining how well the results
for each model relate to the inputs and the preceding
model. For instance, Model3 may classify Los Angeles
Lakers players with 95% accuracy. However, Model2
may only extract 50% of the people from the sports
articles. Therefore, does Model3 perform well because
it is a great classifier, or because it only has to classify
half of the extracted people? That is, how much does
Model2 depend on Model3?
Further, a model might not only depend on the model
preceding it, but the inputs themselves. Model2 might
only extract 50% of the people. However, this is not
due to Model1’s results, but rather the fact that it per-
forms almost perfectly given articles from Source1, but
fails miserably on articles from Source2. Therefore, in-
put dependency is also something to consider.
Note that the input dependency, as we define it here,
is based on disparate sources. However, this is easy to
generalize to most machine learning exercises. The key
is that the inputs need to be stratified and such that
inputs can be tested for dependencies conditioned on
the strata. For example, the traditional x-fold cross-
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validation experimental framework fits this criterion.
In this case, each “input strata” is the slice of test
data for each trial, and users can see if the models
are actually performing independently of the test data
splits. So we believe that understanding both how
each model depends on its predecessor and the input
strata is important. Therefore, we need a mechanism
by which to measure such dependencies.
To examine these dependencies, we propose using
three-way contingency tables based on a directed
acyclic graph (DAG) modeling of the cascade. Build-
ing three-way tables allows us to perform a number of
statistical tests, such as mutual independence, joint
independence, and conditional independence, which
yields a better understanding of how each piece on
the cascade fits together, along with the input strata.
Mutually independent pieces means that we may as-
sert that the performance of the current model does
not depend on the previous model or the inputs. For
instance, if it holds we could claim that Model3 clas-
sifies Laker players with 95% accuracy, and this is not
due to the limited people extracted by Model2 or which
source the articles come from.
Meanwhile, joint independence testing yields insights
such as Model3 may (or may not) depend on Model2,
but the models are both independent of the input
strata. This isolates pieces with respect to the input
since it says the dependency is only on the cascade,
and has nothing to do with the various inputs.
Conditional independence tests, conditioned on the in-
put strata, examine the role that each input strata
plays in influencing the results. If a current model and
its predecessor are conditionally independent based on
the input strata, this means that each model is some-
how dependent some given input. Note, they may not
be dependent on each other, but only through the in-
put. This is interesting because it would show that
some input strata (say Source2) is affecting the mod-
els and therefore affecting each result. Lastly, inde-
pendence tests can yield more compact mathematical
expressions for the whole cascading procedure (e.g., by
factorization of conditionally independent pieces, mul-
tiplication of mutually independent pieces, etc.), which
can allow for easier computation of the expected prob-
abilities of seeing a certain path through the cascade
(e.g. the path: article classified as sports, person is
extracted, person is classified as Laker).
The rest of this paper is as follows. Section 2 describes
how to turn cascading machine learners into a DAG
which translates into a three-way contingency table,
and reviews the independence tests for three-way ta-
bles. Section 3 presents our conclusions and future
directions of this research.

2. Judging Cascading Learners

As stated above, the goal is to model our cascading
learner process in such a way that we can build three-
way tables for independence testing. To do this, we
make the simplifying assumption that a model’s per-
formance depends on either (or both) the preceding

model’s performance in the cascade, and/or the in-
puts themselves. Although our assumption ignores
the many possible complex interactions, it gives us a
framework for generating three-way table tests. Fur-
ther it is not clear how to model arbitrarily complex
dependencies. Using this assumption we can generate
a directed-acyclic graph from the cascade where the di-
rection of edges follows the flow of inputs through the
whole cascading process. So the nodes of the graph
are the models (plus one node for the inputs), and the
edges follow the flow of inputs through the models.
Since each model’s performance can also depend on
the inputs themselves, we also add an edge between
the input node and each model node. Figure 2 (a)
shows the the DAG constructed from the cascade of
Figure 1, and Figure 2(b) shows the generalization of
the framework for arbitrary cascading models.

Figure 2. DAG for Cascading Models

Given the DAG, we next construct three-way tables
for analysis. Note that for each current model (minus
the first), we have three participating components: the
current model Mx, the previous model Mx−1, and the
inputs I. (For notational convenience, we will refer to
predecessor Mx−1 as Mp.) Further, our goal is to ex-
amine the performance, therefore for each model we
create two categories: whether an extraction is cor-
rect (e.g. labeled “corr”) or not (“incorr”). For inputs
I, we define each category as the strata’s label (e.g.
Source 1, Fold 1, etc.).1 Therefore, we construct tables
by considering triples of the form I X Mp X Mx. For
instance, given Model3 of Figure 1, we come up with
the following three-way table, shown in Table 1, which
we condition on the input stratas. (Note, Model2 gets
almost 50% correct while Model3 gets roughly 95%
correct). Given this three-way table, we can now test
a given model, its predecessor, and the inputs for the
various independence tests.

1Note that three-way table analysis is not unique to
nominal or categorical data. We make this assumption
here to keep our discussion focused.
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Table 1. A Three-Way Table: I X M2 X M3

Input Strata Model 3
Model 2 Corr Incorr

Source 1 Corr 474 26
Incorr 466 24

Corr Incorr
Source 2 Corr 471 27

Incorr 470 29

2.1. Mutual Independence

If a mutual independence test holds, this means that
the performance of current Mx does not depend on ei-
ther its predecessor Mp, or the inputs I. This is an im-
portant result, for instance, when we examine Model3
and see its performance is 95%. If Mutual Indepen-
dence holds, we can assert that Model3 is perform-
ing well and did not depend on some configuration of
Model2 or certain inputs I. Note, however, that there
could still be bias introduced by Model2. For instance,
Model2 could only get 50% of the extractions correct,
but these could be the easiest for Model3 to classify.
In this case, if these easy cases were independently
distributed across sources, we could have mutual in-
dependence, but this could be misleading because of
the bias. This is still preliminary work, and we need
to determine how to isolate such bias in our frame-
work. Nonetheless, a number of interesting results can
come from mutual independence testing. For one, as
we stated, we can isolate the pieces that perform well
regardless of their predecessor and inputs. Second, if
all models are mutually independent, then we can the-
orize about the eventual probability of any possible
outcome through the process. That is, we have some
likelihood of a given input strata member, and likeli-
hoods for each category of each model, so if the whole
chain is mutually independent, the probability of see-
ing some path through the chain is just the product of
these likelihoods. This is an interesting result as it al-
lows users to infer various probable outcomes. If this
holds through the whole process, it becomes easy to
determine the likelihood of all outcomes through the
process (and at each step of the cascade).
To calculate the mutual independence, we first calcu-
late all of the expected cell counts for the three-way
table. That is, for some combination (ipx) ∈ {I X Mp

X Mx}, we define the expected cell count as:

Eipx =
ni++n+p+n++x

n2

Where ni++ is the count for each i summed over

the other variables (e.g. ni++ =
Mp∑
p=1

Mx∑
x=1

nipx), (sim-

ilarly for n+p+, n++x) and n2 is the square of the
total counts. For example, using Table 1, the total
number of observations is 1,987, and so the value of
ESource 1,Corr,Incorr = ( (474 + 26 + 466 + 24)*(474
+ 26 + 471 + 27)*(26 + 24 + 27 + 29) ) / ( 1, 9872)
= 26.53.

Table 2. A Three-Way Table for Joint Indep.
Model 2 Result Input Strata

Model 3 Source 1 Source 2
Model 2: Corr Corr 474 471

Incorr 26 27

Source 1 Source 2
Model 2: Incorr Corr 466 470

Incorr 24 29

Once all expected frequencies are calculated, one com-
pares them to the observed frequencies (e.g. the values
in the table) using the chi-square statistic.2 At a 95%
confidence level we see that indeed, Model3, Model2,
and the Inputs share mutual independence. That im-
plies that the accuracy of Model3 does not depend on
how well Model2 performs or what source delivers the
inputs. Further, we could factorize this part of the
chain into independent events, and if Mutual Indepen-
dence holds for Model1 and Model2, the probability of
being classified by any classifier along the way is just
the product of those likelihoods. (Note, you need to
test for dual independence between Model1 and the
Inputs).

2.2. Joint Independence

We use the Joint Independence test to examine
whether the models Mx and Mp perform independently
of the inputs I. If Joint Independence holds, although
there may (or may not) be an association between Mx
and Mp, their performance does not depend on the
various input strata I. This result would state that
across the various inputs, the performance of Mx and
Mp should hold (or to put it another way, the perfor-
mance of Mx and Mp does not predict the input strata
as a response). To test Mx and Mp jointly against I,
we set up the three-way table slightly differently, as
shown in Table 2.
Using this new view of the table, the test for Joint
Independence is similar to testing for Mutual Inde-
pendence (in fact it is a special case). However, we
change the definition of the expected cell count to:

Epxi =
npx+n++i

n

Again, we compare these expected values to the ob-
served table values using the Chi-square test for inde-
pendence.3

Using Table 2, the Joint Independence holds for a Chi-
square test with a confidence of 95%. Therefore, the
performance of Model2 and Model3 does not depend
on the input coming from either Source1 or Source2.
Given how the performance is evenly distributed across
sources, this is not surprising. So, the result indicates

2The degrees of freedom for this table are (I X Mp X
Mx - 1) - ( (I - 1)+(Mp-1)+(Mx-1) ). So, in our example
it is (2*2*2-1)-3 = 4 degrees of freedom.

3For this test, the degrees of freedom changes to (Mp X
Mx -1)(I -1). So, our example becomes (2*2 -1)(2 -1) = 3.



Judging the Performance of Cascading Models: A First Look

that the models do hold across the various input strata.
To reiterate, the Joint Independence test allows us to
examine whether the results of the two connected mod-
els depends on the strata of the inputs.
2.3. Conditional Independence

Conditional Independence testing allows us to examine
the case where the models are related to each other,
but only through the inputs. That is, Mx is related
to I, and Mp is related to I, but Mx and Mp are not
directly related, but rather only related to each other
because of their relation to I. In other words, the re-
lationship between the performance of the models is
related to how they each perform on some given input
strata. It is important to understand that this tests for
independence given (i.e. fixing) the strata of the in-
puts. This is in contrast to Joint Independence where
Mx and Mp are independent of any input strata. For
this test, we use the original view of the example data
provided by Table 1.
As with the previous two tests, we calculate the ex-
pected counts and compare them to the observed
counts, using the Chi-square test. In this case, we
define degrees of freedom as (I X (Mp - 1)(Mx - 1)),
and the expected counts as:

Eipx =
nip+ni+x

ni++

In fact, using Table 1, Model2 and Model3 are condi-
tionally independent given input strata I, at a confi-
dence level of 95%.
Beyond examining how the models hold up against
given input strata, if Conditional Independence holds
we can factorize this piece of the cascade down to just
the conditionally independent part. That is, rather
than considering the whole probability of seeing a
given classification chain up to the current model, we
instead just use the factorization. This yields a more
compact and easily calculated probability.
2.4. Brief discussion

Using our example, all three of the independence mod-
els hold. However, one must consider the relationships
between these models. Essentially, Joint Independence
is a special case of Mutual Independence, so if variables
are mutually independent, then they are jointly inde-
pendent. If the models are jointly independent of the
input, that means that given any input, the models
would still be independent. Therefore, since the mod-
els are jointly independent of the input, they are also
conditionally independent of it too, since they would
be independent for a given input if they are indepen-
dent for any input. Essentially, the tests should be as-
sessed in order. If Mutual Independence holds, there is
no need to test for Joint Independence. However, if it
does not hold, one can test for Joint Independence to
see if the models are independent of all of the inputs.
If they are not, then one can apply the Conditional
Independence test, to find out if for some given input
strata the models are independent.

3. Conclusions and Future Work

This paper presented a framework for understanding
how cascading machine learners fit together to accom-
plish a certain task. In particular, we want to examine
how the performance of some part of the chain is af-
fected by the previous part and the inputs themselves.
We show how to address this issue by formulating a
DAG of the chain, which allows for three-way inde-
pendence testing. Our independence tests allow for the
analysis of 3 cases: Mutual Independence (MI) testing
shows that a current model’s performance is not af-
fected by either its predecessor or the inputs. When
MI does not hold, we test for Joint Independence (JI)
between the models and the inputs. JI shows that al-
though there may or may not be a dependency between
the models, the models do not depend on any of the
input strata. Lastly, when JI does not hold, we test
for Conditional Independence (CI), conditioned on the
inputs. CI shows that even though the models may ap-
pear independent, but they in fact depend on certain
fixed values of the input (e.g. some fixed strata).

As stated, it is possible for bias to leak into this
analysis. For instance, Model2, Model3, and the
Inputs of Figure 1 could all be mutually independent.
However, Model3 could still do well because Model2
only parses out the easiest people to classify. So, even
though a mutual independence is established (i.e.,
the easy people are evenly distributed across sources
and pulled out as likely as other people), this bias
could still exist. Modeling, understanding, and even
discovering this bias is part of our future research.
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