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Abstract

Model selection measures such as hold-out set
error, cross-validation error, leave-one-out er-
ror etc. are used to evaluate the performance
of a classification algorithm on a given data
set. To get an accurate estimate of the per-
formance it is important that we choose the
appropriate model selection measure or eval-
uation measure for the setting of interest. In
this paper, we describe in brief a recently in-
troduced methodology, which can be used to
accurately and efficiently study the behav-
ior of such evaluation measures in relevant
settings. We also discuss the implications of
having such a methodology as an exploratory
tool and the potential challenges for the fu-
ture.

1. Introduction

The problem of automated classification is om-
nipresent in todays world. Various domains ranging
from health care to finance require efficient and accu-
rate classification tools (i.e. classification algorithms)
that perform inference on huge amounts of available
data. To evaluate the accuracy of these classifica-
tion algorithms a number of evaluation measures have
been developed in literature (Plutowski, 1996; Devroye
et al., 1996). Some of the most popular evaluation
measures are hold-out set error, cross-validation error
and leave-one-out error. It would be interesting and
useful to study the behavior of these measures under
different settings, such as their behavior for different
classification algorithms with varying dataset size or
with varying amounts correlation between the input
and output attributes or by varying parameters that
are specific to the particular evaluation measure (for
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example, test set size in hold-out set or number of
folds in cross-validation). Such studies would most
likely lead to more informed decisions when choosing
an appropriate measure in a real life setting, result-
ing in better evaluation of the chosen classification al-
gorithms and hence improved decision making in the
practice of model selection. Considering the poten-
tial impact of such studies, we in this paper, discuss a
recently proposed semi-analytical methodology which
can be used to study the behavior of these measures
accurately and efficiently for settings such as the ones
just mentioned.

The rest of the paper is organized as follows: In
the next section we motivate and briefly describe this
methodology. In Section 3, we discuss applications of
the methodology. We conclude in section 4, by looking
at possible roadblocks and explore potential research
opportunities for the future.

2. Methodology

We motivate the methodology by first explaining the
underlying philosophy it is based on, following which
we provide a brief overview of the methodology.

2.1. Underlying Philosophy

The two prevalent approaches to study learning al-
gorithms are either based on theory or on empirical
studies but usually not both1. While both methods
are powerful in themselves, each suffers from at least
a major deficiency.

The theoretical method depends on nice closed form
formulae that restricts the types of results that can be
obtained to asymptotic results (Shao, 1993) or statis-
tical learning theory type of results (i.e. distribution
free bounds) (Vapnik, 1998; J. Shawe-taylor & An-
thony, 1998). These results are usually weak making
them less applicable in practice.

1unless empirical studies are used to validate the theory.
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The empirical method is well suited for validating in-
tuitions but is significantly less useful for finding novel,
interesting things, since large number of experiments
have to be conducted in order to reduce the error to a
reasonable level. This is particularly true when small
probabilities are involved, making the empirical eval-
uation impractical in such a case.

An ideal scenario, from the point of view of produc-
ing interesting results, would be to use theory to de-
rive computationally efficient but potentially uninter-
pretable formulae and to use experiments to interpret
these formulae. This would avoid the limitation of
theory to use only nice formulae which leads to weak
results and the limitation of empirical studies to per-
form large number of experiments. Thus, the role of
the theory could be to significantly reduce the amount
of computation required and the role of experiments
(through visualization) to understand the potentially
complicated theoretical formulae. This is the philoso-
phy behind the methodology introduced in (Dhurand-
har & Dobra, 2009); a new hybrid method to char-
acterize and understand models and model selection
measures. The work we discuss here is an initial for-
ray into what might prove to be an useful tool for
studying learning algorithms. We call this method
semi-analytical, since not just the formulae, but visu-
alization in conjunction with the formulae leads to in-
terpretability. What makes such an endeavor possible
is the fact that, mostly due to the linearity of expecta-
tion, moments of complicated random variables can be
computed accurately and efficiently even though com-
puting the exact distribution efficiently, is a daunting
task.

2.2. Technical Overview

Consider the problem of estimating how a given clas-
sification algorithm performs on a given joint distri-
bution over the input-output space (X × Y ). As op-
posed to the general setup in machine learning where
the distribution is unknown and only independent and
identically distributed (i.i.d.) samples are available, in
this scenario, in principle, the behavior of classifica-
tion algorithm can be accurately studied. Solving this
problem efficiently, offers an alternative line of study
for classification algorithms and potentially unique in-
sights into the non-asymptotic behavior of other ma-
chine learning algorithms.

While the problem of estimating classification algo-
rithm performance on a given distribution might look
simple, solving it efficiently poses significant technical
hurdles. The most natural way of studying a classi-
fication algorithm would be to sample N datapoints

from the given distribution, train the algorithm to
produce a classifier, test the classifier on a few sam-
pled test sets and report the average error computed
over these test sets. A shortcoming of the above ap-
proach is that based on just one single instance of the
algorithm (since the algorithm was trained on a sin-
gle data set of size N) we conclude about its general
behavior. A straightforward extension of the above
approach to make the results more relevant in study-
ing the algorithm would be to sample multiple data
sets of size N , train on each of them to produce differ-
ent classifiers, compute the test error for each of the
classifiers and calculate the average and variance of
the obtained test errors. This procedure would be a
better indicator of the behavior of the algorithm than
the previous case since we study multiple instances of
the algorithm than just an isolated instance. Ideally,
we would want to study the behavior of the algorithm
by training it on all possible data sets of size N pro-
ducing a variety of classifiers and then evaluating the
expected value and variance of the generalization error
(GE) of each of these classifiers. The GE of a classi-
fier ζ is given by, GE(ζ) = E [λ(ζ(x), y)], where λ(., .)
is a 0-1 loss function, x is an input and y is an out-
put and the expectation is over the input-output space
X×Y . The expected value and variance of GE over all
possible classifiers are denoted by, EZ(N) [GE(ζ)] and
V ar(GE(ζ)) respectively. Here Z(N) represents the
space of all possible classifiers produced by training
the classification algorithm on all data sets of size N ,
drawn from the joint distribution. Thus, the moments
provide a natural and informative avenue for studying
classification algorithms.

In similar fashion, moments of the evaluation measures
such as moments of hold-out error (HE) and moments
of cross-validation error (CE) (leave-one-out is just a
special of cross-validation, when the number of folds is
N) computed over all datasets of size N and over all
possible splits into training and testing, also provide
important information regarding the non-asymptotic
behavior of these measures. HE is formally defined
as, HE = 1

Ns

∑
(x,y)∈Ds

λ(ζ(x), y) where Ds and Ns

denote the test set and the size of the test set respec-
tively. CE is formally defined as, CE = 1

v

∑v
i=1 HEi

where v is the number of folds and HEi is the hold-out
error on the ith fold.

The important question now is; can we compute these
moments efficiently and accurately? In our previous
work (Dhurandhar & Dobra, 2009), we presented a
general framework for computing these quantities for
an arbitrary classification algorithm efficiently and ac-
curately. By extensive use of the linearity of expecta-
tion and change of the order of sums (and integrals),
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Figure 1. Behavior of CE for NBC when sample size is
small and input-output correlation is low.
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Figure 2. Convergence behavior of HE and CE to-
wards GE for NBC.

the moments of GE can be expressed in terms of the
behavior of the classification algorithm on specific in-
puts rather than on the whole space, thus reducing
the complexity from an exponential in the size of the
input space to linear for the computation of the first
moment and quadratic for the second moment without
loss of accuracy. In this work, we also drew relation-
ships between the moments of GE and moments of HE
and CE, thus enabling us to compute the moments
of these evaluation measures efficiently and accurately
as well. We then customized the generic expressions
for the moments to particular classification models
namely; Naive Bayes Classifier (NBC) (Dhurandhar
& Dobra, 2009), Decision Trees (DT) (Dhurandhar
& Dobra, 2008c) and k-Nearest Neighbor Classifier
(KNN) (Dhurandhar & Dobra, 2008b), thus allowing
us to study the behavior of the moments of GE, HE
and CE for these algorithms in settings of interest.
It was shown in the relevant prior works that esti-
mating moments using these customized expressions
is a more viable alternative compared to estimating
them directly using Monte Carlo or to other evalua-
tion methods such as distribution free bounds. The
primary reason these expressions are more accurate
than Monte Carlo, is that the parameter space of the
individual terms in these customized expressions is sig-
nificantly smaller than the entire space over which the
moments are computed. The reason they are pref-
ferable to distribution free bounds such as SLT type

bounds, is that the class of classifiers in our case which
is induced by training the classification algorithm on
i.i.d. samples of size N , is much smaller and more
tightly coupled to the behavior of the algorithm on
these samples than the class of classifiers considered
in SLT type bounds (for example, bounds based on
Vapnik-Chervonenkis dimension).

3. Applications

We now discuss the potential benefits of having such
a methodology.

Gaining Insight: One of the main advantages of de-
ploying such a methodology is that it can be used as
an exploratory tool and as an analysis tool. We can
accurately study when and why a particular evalua-
tion measure or classification algorithm behaves in the
manner it does.

For instance, in (Dhurandhar & Dobra, 2008a) we
studied the behavior of cross-validation and provided
interesting explanations for its behavior with respect
to varying sample size, varying number of folds and
varying amount of correlation between the input and
output attributes. There, we were able to explain
when and why we observe the ”V-shaped” behavior
of cross-validation (i.e. when and why performance
of cross-validation is best around intermediate (10-20)
folds) shown in figure 1, by relating its behavior with
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the behavior of the covariances of CE between pairs
of runs.

Finite Sample Convergence: Another benefit of
the methodology is that it can be used to evaluate the
performance of the evaluation measures in estimating
GE under different conditions. For example, as shown
in figure 2, we can study how well HE and CE es-
timate GE with increasing sample size. We can thus
use CE below a certain sample size and HE beyond
that sample size so as to estimate GE accurately and
efficiently. The methodology can thus be used as a
guidance tool.

Robustness: If an algorithm designer validates
his/her algorithm by computing moments as men-
tioned earlier, it can instill greater confidence in the
practitioner searching for an appropriate algorithm for
his/her dataset. The reason for this being, if the prac-
titioner has a dataset which has a similar structure or
is from a similar source as the test dataset on which
an empirical distribution was built and favorable re-
sults reported by the designer, then this would mean
that the good results apply not only to that particular
test dataset, but to other similar type of datasets and
since the practitioner’s dataset belongs to this similar
collection, the results would also apply to his. Hence,
the robustness of the algorithm can be evaluated us-
ing this methodology which can result in the algorithm
having wider appeal.

Other Benefits: The methodology can be used
to evaluate Probably Approximately Correct (PAC)
Bayes bounds (McAllester, 2003) in certain settings.
Roughly speaking, PAC Bayes bounds, bound the dif-
ference between the expected GE and expected empir-
ical error where the expectation is over a distribution
defined over the hypothesis space. In our case this dis-
tribution is induced by training a classification algo-
rithm on all i.i.d. samples of size N . We can compute
the moments of GE and the moments of the evaluation
measures using our expressions for this case and com-
pare them to verify the tightness of the corresponding
PAC Bayes bounds.

The derived expressions can also be used to focus on
specific portions of the data, since the individual prob-
abilities in the expressions are only concerned with the
behavior of the classification algorithm or evaluation
measure on single or pairs of inputs.

4. Discussion

In the previous sections we argued that the method-
ology we discussed, can serve as a guidance tool, as
an analysis tool and as an exploratory tool to accu-

rately study classification algorithms in conjunction
with evaluation measures. In the future it would be
interesting to analyze and develop efficient character-
izations for other classification algorithms and evalu-
ation measures in this framework. This analysis will
hopefully assist us in gaining new insights into the be-
havior of these techniques. A more ambitious goal is to
extend this kind of analysis to study the more general
class of learning algorithms.

A drawback of this methodology is that results are
technique specific and scalable customized expressions
can be tedious to obtain for arbitrary learning algo-
rithms. We believe however, that studies such as these
hold the key to delving deep into the non-asymptotic
statistical behavior of learning algorithms.
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