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Abstract 
Classifier evaluation is often performed 
following a de-facto strategy that involves 
the use of accuracy, 10-fold cross-validation 
and a paired t-test. Various aspects of this 
strategy have previously been criticized, but, 
in most cases, to little avail: the strategy is 
still very popular. This paper questions why 
this is the case and suggests two 
explanations. On the one hand, the criticisms 
may have been ignored because they were 
issued in isolation of one another. On the 
other hand, they may have been ignored 
because they are inconvenient.  The paper 
addresses the first explanation by unifying 
the various facets of this criticism within a 
single document. It addresses the second by 
issuing a couple of recommendations to the 
machine learning community. 

1. Introduction 

The field of classification is at a crossroad. On the one 
hand, it has matured to the point where it has developed 
a plethora of impressive and useful classification 
methods, each with different strengths and advantages.  
On the other hand, it is now overflowed by hundreds of 
studies trying to improve the basic methods but only 
marginally succeeding in doing so [1]. While the 
machine learning community keeps itself busy 
developing these new improvements, the applied world, 
or consumers of our research, remains sceptical about 
its worth. This is caused, in great part, by the fact that 
our  often ritualized approach to classifier evaluation 
lacks the depth necessary to help us focus on 
worthwhile research improvements or convince 
potential users of its worth.  

Indeed, classifier evaluation, while branded by most 
machine learning scientists as essential is, in general,  
poorly understood and performed automatically by 
blindly following a set of rules accepted by the 

community at large with no concerns about the meaning 
of these rules or the fact that they do not apply in every 
case. As a result of this poor understanding, a large 
portion of researchers has come to rely on this 
procedure and accept its results as near representative of 
the truth. This is, in fact, wrong. 

Over the past ten to fifteen years, several important 
papers have rung the alarm bell ([2], [3], [4], [5]). 
While their arguments were noted, they have, for the 
most part been ignored. (See, for example, the survey in 
[5]). There may be several reasons why this has been 
the case. The first one, and the one mostly addressed in 
this paper, could be the fact that each of these authors 
pointed to different aspects of our evaluation framework 
that leaves to be desired in an isolated fashion. To 
address this problem, this paper seeks to gather all the 
issues that have been considered by the above authors 
and others ([6], [7], [8]) and show the different 
challenges that plague the framework.  

The second reason, potentially, explaining why so little 
interest has generally been given to the arguments 
criticizing our evaluation framework may be of a more 
social nature. By this I mean that these criticisms are 
inconvenient and their conclusions not universally 
recognized and enforced by the reviewers of conference 
and journal articles. First, understanding and 
implementing new evaluation schemes is not easy and 
can be quite time-consuming. Second, a researcher may 
conclude that since no one else does it, why should he 
or she ‘waste’ his or her time with this issue. Similarly, 
reviewers may feel that since they are not implementing 
these schemes themselves, they should not hold other 
researchers to strict standards. Mixed with this could 
also be the fear that the results obtained by a new 
evaluation scheme may not be encouraging. Because the 
community as a whole has not adopted the new 
standards, a researcher adhering to them may be 
unfairly penalized as compared to one who uses less 
stringent evaluation methods.  
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Thus, the purpose of this paper is both to reiterate, 
within the same document the different issues regarding 
classifier evaluation that have previously been pointed 
out, but more or less ignored, and to suggest ways for 
the community to break away from the vicious circle in 
which it is caught. 

I begin with a discussion of the problems emanating 
from the current status quo and of their proposed 
solutions. I, then, make a couple of recommendations 
regarding the steps that could be taken to ensure that 
classifier evaluation be done more rigorously. 

2. Issues with Machine Learning Evaluation 
  
For the past 20 years, with [9] suggesting the need for 
a greater emphasis on performance evaluation, the 
machine learning community has recognized the 
importance of proper evaluation. Over the years, a de-
facto procedure has been used by the majority of 
researchers involved in experimental work. This 
procedure consists of selecting an evaluation metric 
(often accuracy), selecting a large enough number of 
domains (often chosen from the UCI Repository for 
machine Learning), selecting a convincing number of 
previously designed strong learning algorithms to be 
compared to one another or pitted against a new 
proposed method, and running (stratified or not) 10-
fold cross-validation experiments on each domain, 
possibly, repeating these experiments several times on 
different shufflings of the data. Once these 
experiments are completed, it is customary to apply 
paired t-tests to all pairs of results or to all pairs of 
results that include the new algorithm of interest and to 
average the results obtained by each classifier on each 
domain or to record the number of wins, ties and losses 
experienced by each algorithm with respect to the 
others. (See [10], for example, for a more detailed 
discussion of the procedure). We now discuss, in turn, 
three categories of problems associated with this 
approach.  
 
2.1 Problems with Evaluation Metrics 
 
In the realm of all the issues related to classifier 
evaluation, those concerning evaluation metrics have 
by far been given the most attention, both in terms of 
discussions and following. The metric most commonly 
used by machine learning researchers and practitioners 
is accuracy [5]. Yet, accuracy suffers from a serious 
shortcoming: it does not take misclassification costs 
into consideration. This is a serious issue in practical 
research since there is almost always an unequal  

misclassification cost associated with each class.  
 
This problem was recognized early. In [11], 
Kononenko and Bratko proposed an information-based 
approach that takes this issue into consideration, along 
with the questions of dealing with classifiers that issue 
different kind of answers (categorical, multiple, no 
answer or probabilistic) and comparisons on different 
domains. Their method did not receive large scale 
acceptance, possibly because it relies on knowledge of 
the cost-matrix and prior class probabilities, which 
cannot be estimated that accurately. 
 
More successful has been the effort initiated in [4] 
which introduced ROC Analysis to the Machine 
Learning community. ROC Analysis allows an 
evaluator not to commit to a particular class prior 
distribution nor to a particular cost matrix. Instead, it 
displays the classifier’s performance over all the 
possible priors and costs. ROC Analysis is graphical in 
nature and has not had much success in and of itself. 
Its associated metric, however, the Area under the 
Curve (AUC), has now become relatively popular 
especially in cases of class imbalances. 
 
Other evaluation metrics are also, often, used in 
specific domains. For example, the area of text 
categorization often uses metrics such as Precision, 
Recall, and the F-Measure. In medical application, it is 
not uncommon to encounter results expressed in terms 
of sensitivity and specificity, as well as in terms of 
positive and negative predictive values. 
 
More recently, [6] engaged in a comparison of 
classifiers on a number of domains that uses eight 
performance metrics divided into three categories: the 
threshold metrics (Accuracy, F-Measure and Lift), the 
ordering/rank metrics (Area under the curve, average 
precision and precision/recall break-even point) and 
the probability metrics (root-mean square and cross-
entropy). In [12], they compared the various evaluation 
metrics using correlation analysis and found that root 
mean square is the metric that is best correlated with 
all the others. It can, thus, be seen as a good 
compromise if the particular criteria of interest to the 
evaluator are not clearly laid out. 
 
Another issue relating to evaluation metrics is that of 
aggregation of the results obtained by different 
classifiers on different domains. Sometimes, the results 
are averaged for each classifier over all the domains. 
This is a mistake since the same value may take 
different meanings depending on the domain. 
Recognizing this problem, researchers sometimes use a 
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win/tie/loss approach, counting the number of times 
each classifier won over all the others, tied with the 
best or lost against one or more. This approach, 
however, ignores any kind of information pertaining to 
how close classifiers were to winning or tieing. The 
best alternative would be to refrain from aggregating 
the results, but since that may not always be practical,  
[8] attempts to provide a visualization technique for 
dealing with the problem.  
 
2.2 Problems with Sampling approaches and 
Statistical Tests 
 
The statistical test most often used in machine learning 
experiments is the cross-validated paired t-test. This 
test is usually applied without much concern about the 
assumptions upon which it depends (normal 
distribution of the data to which it is applied or 
sufficient data in the testing set to ensure that the 
assumption of a normal distribution is acceptable). 
Perhaps even more serious, is the fact that many 
researchers using it are often unaware of the true 
significance of this test. In particular, they do not 
always consider all the uncertainty revolving around 
statistical tests. [2] and [5] provide some alternatives to 
the t-test, which we now summarize.  
 
In [2], Dietterich considers five different statistical 
tests. He compares these tests based on two quantities: 
the Type I Error of the test—the probability of 
incorrectly detecting a difference when no such 
difference between two classifiers exists. The Power 
of the test—the  ability to detect algorithm differences 
when such differences do exist. His experiments 
suggest that the most often used statistical test, the 
paired difference t-test based on 10-fold cross-
validation has high power as compared to the other 
tests, but unacceptable Type I error. On the other hand, 
he concludes that both McNemar’s test and 5x2CV 
present good compromises with respect to Type I error 
and Power.  
 
In [5], Demšar discusses several parametric and non-
parametric tests for both the comparisons of two 
algorithms and that of several algorithms. For the case 
of two algorithms, he suggests the use of the non-
parametric Wilcoxon test which, although less 
powerful than the t-test when the t-test’s assumptions 
are verified, can be more powerful when these 
assumptions are violated. In the case of more than two 
algorithms, he similarly recommends a non-parametric 
alternative to ANOVA, namely, the Friedman test.  
 

Another related issue is that of sampling. Most 
researchers in the field today apply 10-fold cross-
validation, which makes intuitive sense, but causes 
accrued uncertainty in the ensuing commonly used t-
test, because the learned classifiers are not independent 
of each other. When cross-validation is further 
repeated, the independence assumption between the 
test sets is then violated in addition to the one 
concerning the classifiers. As an alternative to cross-
validation, another branch of statistics that, so far, has 
practically eluded the machine learning community, is 
the newer field of re-sampling statistics. The two areas 
of research in re-sampling statistics are Bootstrapping 
and Randomization. Bootstrapping has attracted a bit 
of interest in the field (e.g., [13]) but is not, by any 
means, widely used. Randomization has been 
practically unnoticed. It is compared to other statistical 
tests in [14], but has not been used, otherwise. Re-
sampling tests appear to be strong alternatives to 
parametric or non-parametric tests. We believe that the 
machine learning community should engage in more 
experimentation with them to establish the kind of 
situations in which they can be considered good 
alternatives. 

2.3 Problems with our Evaluation Framework 

The evaluation framework used by the machine 
learning community often consists of running large 
numbers of experiments on community shared 
domains such as the data sets from the UCI Repository 
for machine learning. There are many advantages to 
working in such a setting. In particular, new algorithms 
can easily be tested in real-world settings; problems 
arising in such settings can, thus, be promptly 
identified and focused on; and comparisons between 
new and old algorithms is easy since researchers share 
the same data sets. Unfortunately, coupled with these 
advantages, are a number of disadvantages that were 
pointed out in [3] and described below. 
 
The first disadvantage is the Multiplicity Effect which 
concerns the execution of large numbers of 
experiments. In such cases, more stringent 
requirements need to be used to establish statistical 
significance than when only a small number of 
experiments are considered. The next disadvantage, the 
Community Experiments problem corresponds to the 
fact that if many researchers run the same experiments, 
it is possible that, by chance, some of them will obtain 
statistically significant results that will get published 
and gain undue significance. The Repeated Tuning 
problem states that in order to be valid, all tuning 
should be done before the test set is known, a seldomly 
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applied practice. Finally, the problem of generalizing 
results recognizes that it is not necessarily correct to 
generalize from the UCI Repository to any other data 
sets, given that these data sets only represent a small 
portion of the data sets encountered in the real-world.  
[3] proposes a solution to some of these problems that 
includes Bonferroni’s adjustment and a strict testing 
strategy. 

3. Practical Recommendations 

We believe that the current de-facto evaluation method 
used in machine Learning could be improved upon 
through two processes: Better Education and Better 
division between exploratory research and evaluation. 
 
In better educating students interested in machine 
learning, I advocate sensitization to the uncertainties 
associated with the evaluation procedure, and 
familiarization with the kind of tools mentioned in this 
paper. The education process could involve the 
inclusion of more material on evaluation in 
introductory courses in machine learning, or, as we are 
currently experimenting with, the creation of an 
advanced course in Machine Learning devoted entirely 
to the topic of classifier evaluation. 
 
In seeking a better division between exploratory 
research and evaluation, I was inspired by the field of 
drug design where the researchers involved in drug 
design are, typically, not involved in the drug testing 
process. The tests are typically performed 
independently, once the drug design process is 
completed. In machine learning, we have the 
advantage that our experiments are simple and of low 
cost. With this advantage, however, comes the 
disadvantage of believing that we can engage in formal 
testing by ourselves. This, I believe, is incorrect. Any 
such testing will be necessarily biased. Based on these 
observations, my recommendation is to follow the kind 
of division that is materially necessary in the drug 
design field and divide our experimental process in 
three groups. More specifically, I envision a distinction 
between the exploratory researchers who would come 
up with new ideas and algorithms, and would not need 
to test their ideas very stringently, but instead would be 
judged on their innovations. The evaluators who 
would pick previously published algorithms from the 
literature and test them formally and independently of 
the researchers that designed them. The evaluation 
designers who would come up with new approaches to 
evaluation, such as those of [2], [3] [4] or [5]. 
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