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Introduction
consider a 1st-order LTI IIR Filter
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iteration period: Tm + Ta

Tm: multiplication time 

Ta:  addition time



Interleaved Time Series
• a naïve try:

inefficient interleaving and slow sample rate 

Time
(n)

0 1 2 3 4 5 6 7 8 9 10

State
x(n)

y(1)(0) y(2)(0) y(3)(0) y(4)(0) y(5)(0) y(1)(1) y(2)(1) y(3)(1) y(4)(1) y(5)(1) y(1)(2)



Look-Ahead Computation

• more iterated recursion

iteration bound: 2 (Tm + Ta)/2

the same as the previous version



Look-Ahead Computation

• another equivalent recursion

iteration bound: (Tm + Ta)/2



Look-Ahead Computation

• general case: 
applying M-1 steps of look-ahead

iteration bound: (Tm + Ta)/M
linear increase in complexity



Interleaved Time Series
• pipelined interleaving M = 5

Time
(n) 0 1 2 3 4 5 6 7 8 9

State
x(n) y(-4) y(-3) y(-2) y(-1) y(0) y(1) y(2) y(3) y(4) y(5)



Pipelining in 1st-Order IIR Digital 
Filters

• revisit the 1st-order IIR filter
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• Example: 3-stage pipelining

adding poles and zeros at



Look-Ahead Pipelining with 
Power-of-2 Decomposition

consider a 1st-order LTI IIR Filter

applying the decomposition technique

sets of transformation

logarithmic increase in hardware complexity



pipelined
IIR

( M = 8 )

original
IIR

pipelined
IIR

with
Decomposition

( M = 8 )



Finite Precision Problems
• pole position sensitivity to filter coefficients

more sensitive for small value of a

• inexact pole/zero cancellation



Look-Ahead Pipelining with 
General Decomposition

• the 1st-order IIR filter again

• 12-stage pipelined: 
2x3x2 decomposition



pipelined
IIR

( M = 12 )

pipelined
IIR

with
Decomposition

( M = 12 )



Look-Ahead Pipelining with 
General Decomposition

• 2x2x3 decomposition

• 3x2x2 decomposition



Pipelining in Higher-order IIR 
Digital Filters

• Clustered Look-Ahead Pipelining
consider a 2nd-order IIR filter:

with poles at
1/2 and 3/4

using 2-stage pipelining



Pipelining in Higher-order IIR 
Digital Filters

• Clustered Look-Ahead Pipelining

if using higher value of M (ex. M = 3): 
multiplying 

linear increase hardware complexity



Instability Problems

pipelined
IIR

( M = 3 )

pipelined
IIR

( M = 2 )
original

IIR

numerical method to find M for stability



Pipelining in Higher-order IIR 
Digital Filters

• Scattered Look-Ahead Pipelining
revisit the 2nd-order IIR filter:

guaranteed stability if the original filter is stable

using decomposition to obtain area efficiency



Parallel Processing in IIR Filters

• consider a 1st – order IIR filter
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L = 4



A Straightforward Structure

L = 4

Hardware complexity : Multiply-add operation2L



Incremental Block Processing

L = 4

Hardware complexity : 12 −L multiply-add operation



Round-off Noise Robustness
• pole movement

4az=az = V.S.
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for one pole IIR filter



Parallel Processing in IIR Filters

• consider a 2nd – order IIR filter
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Round-off Noise Robustness
• pole movement
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Combined Pipelining and Parallel
Processing For IIR Filters

• revisit the 1st – order IIR filter
with L = 4 and M = 3
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⇒
== 1&4 NMQ

4 poles : 3333 ,,, jajaaa −−

⇒
= 3LQ

pole distance :
3a

The multiplication complexity : 



Combined Pipelining and Parallel
Processing For IIR Filters
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zH(z)• revisit the 2nd – order IIR filter

loop update L = 3 and M = 2
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Case Analysis
• Example: 4-th order Chebyshev low-pass filter

with M =4
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result (if using V=5 and Vth=1): V’ = 2.38
power ratio = 58.91%



Case Analysis
• Example: 2nd order IIR filter with L =3
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result (if using V=5 and Vth=1): V’ = 2.3365
power ratio = 29.116%


