
2 The z and Fourier transforms

2.1 Introduction

In Chapter 1, we studied linear time-invariant systems, using both impulse responses

and difference equations to characterize them. In this chapter, we study another very

useful way to characterize discrete-time systems. It is linked with the fact that, when

an exponential function is input to a linear time-invariant system, its output is an

exponential function of the same type, but with a different amplitude. This can be

deduced by considering that, from equation (1.38), a linear time-invariant discrete-time

system with impulse response h(n), when excited by an exponential x(n) = zn ,

produces at its output a signal y(n) such that

y(n) =
∞
∑

k=−∞
x(n − k)h(k) =

∞
∑

k=−∞
zn−kh(k) = zn

∞
∑

k=−∞
h(k)z−k (2.1)

that is, the signal at the output is also an exponential zn , but with an amplitude

multiplied by the complex function

H(z) =
∞
∑

k=−∞
h(k)z−k (2.2)

In this chapter, we characterize linear time-invariant systems using the quantity

H(z) in the above equation, commonly known as the z transform of the discrete-time

sequence h(n). As we will see later in this chapter, with the help of the z transform,

linear convolutions can be transformed into simple algebraic equations. The impor-

tance of this for discrete-time systems parallels that of the Laplace transform for

continuous-time systems.

The case when zn is a complex sinusoid with frequency ω, that is, z = e jω, is of
particular importance. In this case, equation (2.2) becomes

H(e jω) =
∞
∑

k=−∞
h(k)e− jωk (2.3)

which can be represented in polar form as H(e jω) = |H(e jω)|e j�(ω), yielding, from

equation (2.1), an output signal y(n) such that

y(n) = H(e jω)e jωn = |H(e jω)|e j�(ω)e jωn = |H(e jω)|e jωn+ j�(ω) (2.4)
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37 2.2 Definition of the z transform

This relationship implies that the effect of a linear system characterized by H(e jω) on a

complex sinusoid is to multiply its amplitude by |H(e jω)| and to add�(ω) to its phase.

For this reason, the descriptions of |H(e jω)| and �(ω) as functions of ω are widely

used to characterize linear time-invariant systems, and are known as their magnitude

and phase responses, respectively. The complex function H(e jω) in equation (2.4) is

also known as the Fourier transform of the discrete-time sequence h(n). The Fourier

transform is as important for discrete-time systems as it is for continuous-time systems.

In this chapter, we will study the z and Fourier transforms for discrete-time signals.

We begin by defining the z transform, discussing issues related to its convergence and

its relation to the stability of discrete-time systems. Then we present the inverse z

transform, as well as several z-transform properties. Next, we show how to transform

discrete-time convolutions into algebraic equations, and introduce the concept of

a transfer function. We then present an algorithm to determine, given the transfer

function of a discrete-time system, whether the system is stable or not and go on to

discuss how the frequency response of a system is related to its transfer function.

At this point, we give a formal definition of the Fourier transform of discrete-time

signals, highlighting its relations to the Fourier transform of continuous-time signals.

An expression for the inverse Fourier transform is also presented. Its main properties

are then shown as particular cases of those of the z transform. We close the chapter by

presenting some MATLAB functions which are related to z and Fourier transforms,

and which aid in the analysis of transfer functions of discrete-time systems.

2.2 Definition of the z transform

The z transform of a sequence x(n) is defined as

X (z) = Z{x(n)} =
∞
∑

n=−∞
x(n)z−n (2.5)

where z is a complex variable. Note that X (z) is only defined for the regions of the

complex plane in which the summation on the right converges.

Very often, the signals we work with start only at n = 0, that is, they are nonzero
only for n ≥ 0. Because of that, some textbooks define the z transform as

XU (z) =
∞
∑

n=0
x(n)z−n (2.6)

which is commonly known as the one-sided z transform, while equation (2.5) is

referred to as the two-sided z transform. Clearly, if the signal x(n) is nonzero for

n < 0, then the one-sided and two-sided z transforms are different. In this text, we

work only with the two-sided z transform, which is referred to, without any risk of

ambiguity, just as the z transform.
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38 The z and Fourier transforms

As mentioned above, the z transform of a sequence exists only for those regions of

the complex plane in which the summation in equation (2.5) converges. The example

below clarifies this point.

EXAMPLE 2.1

Compute the z transform of the sequence x(n) = Ku(n).

SOLUTION

By definition, the z transform of Ku(n) is

X (z) = K

∞
∑

n=0
z−n = K

∞
∑

n=0

(

z−1
)n

(2.7)

Thus, X (z) is the sum of a power series which converges only if |z−1| < 1. In such a

case, X (z) can be expressed as

X (z) =
K

1− z−1
=

Kz

z − 1
, |z| > 1 (2.8)

Note that for |z| < 1, the nth term of the summation, z−n , tends to infinity as

n → ∞, and therefore X (z) is not defined. For z = 1, the summation is also infinite.
For z = −1, the summation oscillates between 1 and 0. In none of these cases does
the z transform converge.

△

It is important to note that the z transform of a sequence is a Laurent series in the

complex variable z (Churchill, 1975). Therefore, the properties of Laurent series apply

directly to the z transform. As a general rule, we can apply a result from series theory

stating that, given a series of the complex variable z

S(z) =
∞
∑

i=0
fi (z) (2.9)

such that | fi (z)| < ∞, i = 0, 1, . . ., and given the quantity

α(z) = lim
n→∞

∣

∣

∣

∣

fn+1(z)

fn(z)

∣

∣

∣

∣

(2.10)

then the series converges absolutely if α(z) < 1, and diverges if α(z) > 1 (Kreyszig,

1979). Note that, for α(z) = 1, the above procedure tells us nothing about the

convergence of the series, which must be investigated by other means. One can justify

this by noting that, if α(z) < 1, the terms of the series are under an exponential an for

some a < 1, and therefore their sum converges as n → ∞. One should clearly note
that, if | fi (z)| = ∞, for some i , then the series is not convergent.

Administrator
Highlight

Administrator
Highlight

Administrator
Placed Image

Administrator
Placed Image

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



39 2.2 Definition of the z transform

The above result can be extended for the case of two-sided series as in the equation

below

S(z) =
∞
∑

i=−∞
fi (z) (2.11)

if we express S(z) above as the sum of two series S1(z) and S2(z) such that

S1(z) =
∞
∑

i=0
fi (z) and S2(z) =

−1
∑

i=−∞
fi (z) (2.12)

then S(z) converges if the two series S1(z) and S2(z) converge. Therefore, in this case,

we have to compute the two quantities

α1(z) = lim
n→∞

∣

∣

∣

∣

fn+1(z)

fn(z)

∣

∣

∣

∣

and α2(z) = lim
n→−∞

∣

∣

∣

∣

fn+1(z)

fn(z)

∣

∣

∣

∣

(2.13)

Naturally, S(z) converges absolutely if α1(z) < 1 and α2(z) > 1. The condition

α1(z) < 1 is equivalent to saying that, for n → ∞, the terms of the series are
under an for some a < 1. The condition α2(z) > 1 is equivalent to saying that,

for n → −∞, the terms of the series are under bn for some b > 1. One should note

that, for convergence, we must also have | fi (z)| < ∞, ∀i .
Applying these convergence results to the z-transform definition given in equa-

tion (2.5), we conclude that the z transform converges if

α1 = lim
n→∞

∣

∣

∣

∣

∣

x(n + 1)z−n−1

x(n)z−n

∣

∣

∣

∣

∣

=
∣

∣z−1
∣

∣ lim
n→∞

∣

∣

∣

∣

x(n + 1)
x(n)

∣

∣

∣

∣

< 1 (2.14)

α2 = lim
n→−∞

∣

∣

∣

∣

∣

x(n + 1)z−n−1

x(n)z−n

∣

∣

∣

∣

∣

=
∣

∣z−1
∣

∣ lim
n→−∞

∣

∣

∣

∣

x(n + 1)
x(n)

∣

∣

∣

∣

> 1 (2.15)

Defining

r1 = lim
n→∞

∣

∣

∣

∣

x(n + 1)
x(n)

∣

∣

∣

∣

(2.16)

r2 = lim
n→−∞

∣

∣

∣

∣

x(n + 1)
x(n)

∣

∣

∣

∣

(2.17)

then equations (2.14) and (2.15) are equivalent to

r1 < |z| < r2 (2.18)

That is, the z transform of a sequence exists in an annular region of the complex plane

defined by equation (2.18) and illustrated in Figure 2.1. It is important to note that, for

some sequences, r1 = 0 or r2 → ∞. In these cases, the region of convergence may or
may not include z = 0 or |z| = ∞, respectively.
We now take a closer look at the convergence of z transforms for four important

classes of sequences.
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40 The z and Fourier transforms

r1r2

Im{z}

Re{z}

Figure 2.1 General region of convergence of the z transform.

• Right-handed, one-sided sequences: These are sequences such that x(n) = 0, for
n < n0, that is

X (z) =
∞
∑

n=n0

x(n)z−n (2.19)

In this case, the z transform converges for |z| > r1, where r1 is given by

equation (2.16). Since |x(n)z−n| must be finite, then, if n0 < 0, the convergence

region excludes |z| = ∞.
• Left-handed, one-sided sequences: These are sequences such that x(n) = 0, for

n > n0, that is

X (z) =
n0
∑

n=−∞
x(n)z−n (2.20)

In this case, the z transform converges for |z| < r2, where r2 is given by

equation (2.17). Since |x(n)z−n| must be finite, then, if n0 > 0, the convergence

region excludes |z| = 0.
• Two-sided sequences: In this case,

X (z) =
∞
∑

n=−∞
x(n)z−n (2.21)
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41 2.2 Definition of the z transform

and the z transform converges for r1 < |z| < r2, where r1 and r2 are given by

equations (2.16) and (2.17). Clearly, if r1 > r2, then the z transform does not exist.

• Finite-length sequences: These are sequences such that x(n) = 0, for n < n0 and

n > n1, that is

X (z) =
n1
∑

n=n0

x(n)z−n (2.22)

In such cases, the z transform converges everywhere except at the points such that

|x(n)z−n| = ∞. This implies that the convergence region excludes the point z = 0
if n1 > 0 and |z| = ∞ if n0 < 0.

EXAMPLE 2.2

Compute the z transforms of the following sequences, specifying their region of

convergence:

(a) x(n) = k2nu(n)

(b) x(n) = u(−n + 1)
(c) x(n) = −k2nu(−n − 1)
(d) x(n) = 0.5nu(n) + 3nu(−n)

(e) x(n) = 4−nu(n) + 5−nu(n + 1)

SOLUTION

(a) X (z) =
∞
∑

n=0
k2nz−n

This series converges if |2z−1| < 1, that is, for |z| > 2. In this case, X (z) is the

sum of a geometric series, and therefore

X (z) =
k

1− 2z−1
=

kz

z − 2
, for 2 < |z| ≤ ∞ (2.23)

(b) X (z) =
1
∑

n=−∞
z−n

This series converges if |z−1| > 1, that is, for |z| < 1. Also, in order for the term

z−1 to be finite, |z| 
= 0. In this case, X (z) is the sum of a geometric series, such

that

X (z) =
z−1

1− z
=

1

z − z2
, for 0 < |z| < 1 (2.24)

(c) X (z) =
−1
∑

n=−∞
−k2nz−n

This series converges if | z
2
| < 1, that is, for |z| < 2. In this case, X (z) is the sum
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42 The z and Fourier transforms

of a geometric series, such that

X (z) =
−k z

2

1− z
2

=
kz

z − 2
, for 0 ≤ |z| < 2 (2.25)

(d) X (z) =
∞
∑

n=0
0.5nz−n +

0
∑

n=−∞
3nz−n

This series converges if |0.5z−1| < 1 and |3z−1| > 1, that is, for 0.5 < |z| < 3. In

this case, X (z) is the sum of two geometric series, and therefore

X (z) =
1

1− 0.5z−1
+

1

1− 1
3
z

=
z

z − 0.5
+

3

3− z
, for 0.5 < |z| < 3 (2.26)

(e) X (z) =
∞
∑

n=0
4−nz−n +

∞
∑

n=−1
5−nz−n

This series converges if | 1
4
z−1| < 1 and | 1

5
z−1| < 1, that is, for |z| > 1

4
. Also, the

term for n = −1,
(

1
5
z−1

)−1 = 5z, is finite only for |z| < ∞. In this case, X (z) is

the sum of two geometric series, resulting in

X (z) =
1

1− 1
4
z−1

+
5z

1− 1
5
z−1

=
4z

4z − 1
+
25z2

5z − 1
, for

1

4
< |z| < ∞ (2.27)

In this example, although the sequences in items (a) and (c) are distinct, the

expressions for their z transforms are the same, the difference being only in their

regions of convergence. This highlights the important fact that, in order to completely

specify a z transform, its region of convergence must be supplied. In Section 2.3, when

we study the inverse z transform, this issue is dealt with in more detail.

△

In several cases we deal with causal and stable systems. Since for a causal system

its impulse response h(n) is zero for n < n0, then, from equation (1.48), we have that

a causal system is also BIBO stable if

∞
∑

n=n0

|h(n)| < ∞ (2.28)

Applying the series convergence criterion seen above, we have that the system is stable

only if

lim
n→∞

∣

∣

∣

∣

h(n + 1)
h(n)

∣

∣

∣

∣

= r < 1 (2.29)

This is equivalent to saying that H(z), the z transform of h(n), converges for |z| > r .

Since, for stability, r < 1, then we conclude that the convergence region of the z
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43 2.3 Inverse z transform

transform of the impulse response of a stable causal system includes the region outside

the unit circle and the unit circle itself (in fact, if n0 < 0, then this region excludes

|z| = ∞).
A very important case is when X (z) can be expressed as a ratio of polynomials, in

the form

X (z) =
N (z)

D(z)
(2.30)

We refer to the roots of N (z) as the zeros of X (z) and to the roots of D(z) as the poles

of X (z). More specifically, in this case X (z) can be expressed as

X (z) =
N (z)

K
∏

k=1
(z − pk)

mk

(2.31)

where pk is a pole of multiplicity mk , and K is the total number of distinct poles.

Since X (z) is not defined at its poles, its convergence region must not include them.

Therefore, given X (z) as in equation (2.31), there is an easy way of determining its

convergence region, depending on the type of sequence x(n):

• Right-handed, one-sided sequences: The convergence region of X (z) is |z| > r1.

Since X (z) is not convergent at its poles, then its poles must be inside the circle

|z| = r1 (except for poles at |z| = ∞), and r1 = max
1≤k≤K

{|pk |}. This is illustrated in
Figure 2.2a.

• Left-handed, one-sided sequences: The convergence region of X (z) is |z| < r2.

Therefore, its poles must be outside the circle |z| = r2 (except for poles at |z| = 0),
and r2 = min

1≤k≤K
{|pk |}. This is illustrated in Figure 2.2b.

• Two-sided sequences: The convergence region of X (z) is r1 < |z| < r2, and

therefore some of its poles are inside the circle |z| = r1 and some outside the

circle |z| = r2. In this case, the convergence region needs to be further specified.

This is illustrated in Figure 2.2c.

2.3 Inverse z transform

Very often one needs to determine which sequence corresponds to a given z transform.

A formula for the inverse z transform can be obtained from the residue theorem, which

we state next.

THEOREM 2.1 (RESIDUE THEOREM)

Let X (z) be a complex function that is analytic inside a closed contour C, including
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44 The z and Fourier transforms

Im{z}

Re{z}

Im{z}

Re{z}

(a) (b)

Im{z}

Re{z}

(c)

Figure 2.2 Regions of convergence of a z transform in relation to its poles: (a) right-handed,

one-sided sequences; (b) left-handed, one-sided sequences; (c) two-sided sequences.

the contour itself, except in a finite number of singular points pn inside C. In this case,

the following equality holds:

∮

C

X (z)dz = 2π j
K
∑

k=1
res
z=pk

{X (z)} (2.32)

with the integral evaluated counterclockwise around C.

If pk is a pole of multiplicity mk of X (z), that is, if X (z) can be written as

X (z) =
Pk(z)

(z − pk)mk
(2.33)

where Pk(z) is analytic at z = pk , then the residue of X (z) with respect to pk is

given by
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