MATLAB Tutorial

This tutorid is available as a supplement to the textbook Fundamentals of Sgnals and Systems Using
Matlab by Edward Kamen and Bonnie Heck, published by Prentice Hall. The tutorid covers basic
MATLAB commandsthat are used in introductory signals and sysems analyss. It is meant to serve as
aquick way to learn MATLAB and a quick reference to the commands that are used in this textbook.
For more detailed information, the reader should consult the officid MATLAB documentation. An
easy way to leern MATLAB isto st down at a computer and follow along with the examples given in
thistutoria and the examples given in the textbook.

The tutorid is desgned for students using ether the professona verson of MATLAB (ver. 5.0) with
the Control Systems Toolbox (ver. 4.0) and the Signd Processing Toolbox (ver. 4.0), or using the
Student Edition of MATLAB (ver. 5.0). The commands covered in the tutoria and their descriptions
aredso vdid for MATLAB verson 4.0.

The topics covered in thistutoria are:

1. MATLAB Basics 2
A. Definition of Variables 2
B. Definition of Matrices 4
C. General Information 6
D. M-files 6
2. Fourier Analysis 8
3. Continuous Time System Analysis 10
A. Transfer Function Representation 10
B. Time Simulations 12
C. Frequency Response Plots 14
D. Analog Filter Design 15
E. Control Design 16
F. State Space Representation 16
4. Discrete-Time System Analysis 18
A. Convolution 18
B. Transfer Function Representation 18
C. Time Simulations 19
D. Frequency Response Plots 21
E. Digital Filter Design 21
F. Digital Control Design 23
G. State Space Representation 25
5. Plotting 26
6. Loading and Saving Data 28

1. MATLAB Basics

MATLAB is gtarted by clicking the mouse on the appropriate icon and is ended by typing exi t or by
usng the menu option. After eech MATLAB command, the "return” or "enter” key must be
depressed.

A. Definition of Variables

Variables are assgned numerical vaues by typing the expression directly, for example, typing

a = 1+2

yields: a
3

The answer will not be displayed when a semicolon is put at the end of an expression, for example type
a = 1+2;.

MATLAB utilizes the following arithmetic operators:

+ addition

- subtraction

* multiplication

/ divison

A power operator
' transpose

A variable can be assgned using a formula that utilizes these operators and ether numbers or
previoudy defined variables. For example, snce a was defined previoudy, the following expresson is
valid

b = 2*a;
To determine the value of a previoudy defined quantity, type the quantity by itsaif:

b

yields b =
6

If your expression does not fit on one line, use an dlipsis (three or more periods at the end of the line)
and continue on the next line.

c = 1+243+..
5+6+7;

There are severd predefined variables which can be used a any time, in the same manner as user-
defined variables:

i srt(-1)
j sort(-1)
pi 3.1416...
For example,
y= 2*(1+4%j)
yields: y=

2. 0000 + 8.0000i

There are dso a number of predefined functions that can be used when defining a variable. Some
common functionsthat are used in thistext are:

abs magnitude of a number (absolute value for real numbers)
angl e angle of acomplex number, in radians

cos cosine function, assumes argument isin radians

sin sine function, assumes argument isin radians

exp exponentid function

For example, with y defined as above,

c = abs(y)
yields: c =
8. 2462
c = angle(y)
yields: c =
1.3258

With a=3 as defined previoudy,

c = cos(a)
yields: c =
-0. 9900
c = exp(a)
yields: c =
20. 0855

Notethat exp can be used on complex numbers. For example, with y = 2+8i asdefined above,

c = exp(y)

yields: C
-1.0751 + 7.3104i

which can be verified by using Euler's formula:
c = €coy(8) + j&sin(8)

B. Definition of M atrices

MATLAB is based on matrix and vector agebra; even scaars are treated as 1x1 matrices. Therefore,
vector and matrix operations are as Smple as common calculator operations.

Vectors can be defined intwo ways. The first method is used for arbitrary eements:
v=[135717];

creates a 1x4 vector with elements 1, 3, 5 and 7. Note that commas could have been used in place of
gpaces to separate the eements. Additional elements can be added to the vector:

v(5) = 8;

yiddsthevector v = [1 3 5 7 8]. Previoudy defined vectors can be used to define a new
vector. For example, with v defined above

a
b

[9 10];
[v a];

createsthevector b = [1 3 5 7 8 9 10].
The second method is used for creating vectors with equally spaced elements:
t = 0:.1:10;

creates a 1x101 vector with the dements 0, .1, .2, .3,...,10. Note that the middie number defines the
increment. If only two numbers are given, then the increment is set to adefault of 1.

k = 0:10;
creates a 1x11 vector with the dements O, 1, 2, ..., 10.
Matrices are defined by entering the elements row by row:

M=1[124;, 36 8];
creates the matrix

1 o 4
M=y > ™
8 6 8

There are anumber of specia matrices that can be defined:

null matrix: M=11;

nxm matrix of zeros. M= zeros(n,m;
nXm matrix of ones: M = ones(n, m;
nxn identity matrix: M = eye(n);

A particular element of a matrix can be assgned:
M1,2) =5
places the number 5 in the first row, second column.
In this text, matrices are used only in Chapter 12; however, vectors are used throughout the text.

Operations and functions that were defined for scaars in the previous section can aso be used on
vectors and matrices. For example,

a=1[12 3];

b=1[45 6];

c=a+b
yidds ¢ =

579

Functions are gpplied element by element. For example,

t
X

0: 10;
cos(2*t);

createsavector x with eementsequa to cos(2t) fort =0, 1, 2, ..., 10.

Operations that need to be performed eement-by-element can be accomplished by preceding the
operation by a".". For example, to obtain a vector x that contains the elements of x(t) = tcog(t) at
gpecific pointsin time, you cannot smply multiply the vector t with the vector cos(t) . Instead you
multiply their elements together:

t
X

0:10;
t.*cos(t);

C. General Information

Matlab is case sendtive so "a" and "A" are two different names.
Comment statements are preceded by a"%.

On-line help for MATLAB can be reached by typing hel p for the full menu or typing hel p
followed by a particular function name or M-file name. For example, hel p cos gives help on the
cosine function.

The number of digits displayed is not related to the accuracy. To change the format of the display, type
format short e for scientific notation with 5 decimd places, f or mat | ong e for scientific
notation with 15 sgnificant decima placesand f or mat bank for placing two sgnificant digits to
the right of the decimdl.

The commands who and whos give the names of the variadbles that have been defined in the
workspace.

The command | engt h(x) returns the length of avector x and si ze(x) returns the dimension
of the matrix X.

D. M-files

M-files are macros of MATLAB commands that are stored as ordinary text files with the extenson
"m", that isfilenamem. An M-file can be ether a function with input and output variables or a list of
commands. All of the MATLAB examples in this textbook are contained in M-files that are available
a the MathWorks ftp ste.

The following describes the use of M-files on a PC verson of MATLAB. MATLAB requires that the
M-file must be stored either in the working directory or in a directory that is specified in the MATLAB
path lis. For example, consder usng MATLAB on a PC with a user-defined M-file stored in a
directory cdled "\MATLAB\MFILES'. Then to access that M-file, either change the working
directory by typing cd\ nmat | ab\ nfi | es from within the MATLAB command window or by
adding the directory to the path. Permanent addition to the path is accomplished by editing the
\MATLAB\matlabrc.m file, while temporary modification to the path is accomplished by typing
addpat h c:\mat| ab\ nfi | es fromwithin MATLAB.

The M-files associated with this textbook should be downloaded from
www.ece.gatech.edu/users/192/book/M-fileshtml and copied to a subdirectory named
"\MATLAB\KAMEN?", and then this directory should be added to the path. The M-files that come
with MATLAB are aready in appropriate directories and can be used from any working directory.

As example of an M-file that defines a function, create afile in your working directory named yplusx.m
that contains the following commands:

function z = yplusx(y, x)
z =y + X

The following commands typed from within MATLAB demonstrate how this M-file is used:

X = 2;
y =3
z = yplusx(y, x)

MATLAB M-files are mogt efficient when written in a way that utilizes matrix or vector operations.
Loops and if satements are available, but should be used sparingly since they are computationaly
inefficient. An example of the use of the command f or is

for k=1:10,
x(k) = cos(k);
end

This creates a 1x10 vector x containing the cosine of the postive integersfrom 1 to 10. Thisoperation
is performed more efficiently with the commands

which utilizes a function of a vector instead of a for loop. An i f statement can be used to define
conditional statements. An exampleis

if(a <= 2),
b = 1;

el seif(a >=4)
b = 2;

el se
b = 3;

end

The dlowable comparisons between expressons are >=, <=, <, >, ==, and ~=.

Severd of the M-fileswritten for this textbook employ a user-defined variable which is defined with the
command i nput. For example, suppose that you want to run an M-file with different values of a
variable T. The following command line within the M-file defines the value:

T =input('Input the value of T: ")

Whatever comment is between the quotation marks is displayed to the screen when the M-file is
running, and the user must enter an appropriate vaue.

2. Fourier Analysis

Commands covered: df t
i dft
fft
ifft
contfft

The df t command uses a Sraightforward method to compute the discrete Fourier transform. Define
avector x and compute the DFT using the command

X = dft(x)

The first dlement in X corresponds to the value of X(0). The function dft is avallable from the
Mathworks ftp site and is defined in Figure C.2 of the textbook.

The command idft uses a draghtforward method to compute the inverse discrete Fourier
trandform. Defineavector X and compute the IDFT using the command

x = idft(X)

The first element of the resulting vector x isx[0]. Thefunction i df t isavailable at the MathWorks
ftp dte and is defined in Figure C.3 of the textbook.

For a more efficient but less obvious program, the discrete Fourier transform can be computed using
the command f ft which performs a Fast Fourier Transform of a sequence of numbers. To compute
the FFT of a sequence x[n] whichis tored in the vector X, use the command

X = fft(x)

Usad in this way, the command fft is interchangesble with the command dft. For more
computational efficiency, the length of the vector x should be equd to an exponent of 2, that is 64,
128, 512, 1024, 2048, etc. The vector x can be padded with zeros to make it have an gppropriate
length. MATLAB does this automatically by using the following command where N is defined to be
an exponent of 2:

X =fft(x,N;

The longer the length of x, the finer the grid will be for the FFT. Due to a wrap around effect, only
thefirst N/2 points of the FFT have any meaning.

The i f ft command computes the inverse Fourier transform:

X = ifft(X;

The FFT can be used to gpproximate the Fourier transform of a continuous-time signa as shown in
Section 6.6 of the textbook. A continuous-time signal x(t) is sampled with a period of T seconds, then
the DFT is computed for the sampled sgna. The resulting amplitude must be scded and the
corresponding frequency determined. An M-file that approximates the Fourier Transform of a sampled
continuous-time signal is available from the ftp site and is given below:

function [XXwW = contfft(x,T);
[n,n] = size(x);

i f n<m

X = X';

d

fft(x);
| engt h(x);
0: N-1;

= eps;
(1-exp(-j*2*pi*n/N)) ./ (j*2*pi *n/ N T) . *Xk. " ;
2*pi *n/ N T;

SX33ZKO

eI nu
N—r

The input is the sampled continuous-time sgna x and the sampling time T. The outputs are the
Fourier transform stored in the vector X and the corresponding frequency vector w.

3. Continuous Time System Analysis

A. Transfer Function Representation

Commands covered: tf2zp
zp2tf
cl oop
f eedback
paral | el
series

Trandfer functions are defined in MATLAB by storing the coefficients of the numerator and the
denominator in vectors. Given a continuous-time transfer function

H(s) = —=

where B(S) = bys"+oy.18" +...+00 and A(9) = S+auas +...+a. Store the coefficients of B(s) and
A(9) inthevectors num = [by bui ... Dbo] and den = [1 an: ... ag] . Inthistext,
the names of the vectors are generaly chosento be numand den, but any other name could be used.
For example,

2st+3
Hs) = b —
S S+42+5
is defined by

num
den

[2 3];
[1 4 0 5];

Note that all coefficients must be included in the vector, even zero coefficients.

A trangfer function may aso be defined in terms of its zeros, poles and gain:

H(s) = k(s z)(s 22)...(S zm)
(s P(S Py)---(sPp)

To find the zeros, poles and gain of a transfer function from the vectors numand den which contain
the coefficients of the numerator and denominator polynomials, type

[z, p, k] = tf2zp(num den)

The zeros are sored in z, the poles are stored in p, and the gain is sored in k. To find the
numerator and denominator polynomialsfrom z, p, and k, type

10

[num den] = zp2tf(z,p, k)
The overdl trandfer function of individud systems in paralld, series or feedback can be found using
MATLAB. Condder block diagram reduction of the different configurations shown in Figure 1. Store
the trander function G in nunGand denG and the transfer function H innunHand denH
To reduce the general feedback system to asingle transfer function, Gy (s) = G(s)/(1+G(s)H(9)) type

[nuntl , dencl] = feedback(nuntg denG nunH, denH) ;

For a unity feedback system, let nunH = 1 and denH = 1 before applying the above agorithm.
Alternately, use the command

[nuncl , dencl] = cl oop(nunG denG -1);
To reduce the series system to a single transfer function, Gys) = G(9)H(s) type
[nuns, dens] = series(nunG denG nunH, denH) ;
To reduce the pardle system to asingle transfer function, Gy(s) = G(s) + H(s) type
[nunp, denp] = paral | el (nunG denG nuntH, denH);

(Pardld isnot available in the Student Version.)

» G(s) >
unity feedback
> G(S) >

H(s) [

feedback

11

—» G(s) —» H(s) —»

series

—> G(s)

™ H(s)

parallel

B. Time Simulations

Commands covered: resi due
step
i mpul se
| sim

The analytica method to find the time response of a system requires taking the inverse Laplace
Transform of the output Y(s). MATLAB ades in this process by computing the partid fraction
expangon of Y (s) usng the command r esi due. Store the numerator and denominator coefficients
of Y(9) in numand den, thentype

[r,p, k] = residue(num den)

The resdues are gored in 1, the corresponding poles are gored in p, and the gain is stored in K.
Once the partid fraction expanson is known, an anaytical expression for y(t) can be computed by
hand.

A numerica method to find the response of a system to a particular input is available in MATLAB.
First store the numerator and denominator of the transfer functionin numand den, respectively. To

plot the step response, type

st ep(num den)

12

To plot the impulse response, type
i mpul se(num den)

For the response to an arbitrary input, usethe command | si m Createavector t which containsthe
time values in seconds at which you want MATLAB to caculate the response. Typicdly, thisis done
by entering

t = a:b:c;

where aisthedartingtime, b isthetimesepand c istheend time. For smooth plots, choose b so
that there are at least 300 elementsin t (increase as necessary). Define the input X as a function of
time, for example, arampisdefinedas x = t. Then plot the response by typing

| si m(num den, x, t);
To customize the commands, the time vector can be defined explicitly and the step response can be
saved to avector. Simulating the response for five to six time congstants generdly is sufficient to show
the behavior of the system. For agtable system, atime constant is calculated as 1/Re(-p) where p isthe
pole that hasthe largest redl part (i.e., is closest to the origin).

For example, consder atransfer function defined by

2
He = ——
© = o3

The step responsey is calculated and plotted from the following commands:

num= 2; den = [1 2];

t = 0:3/300: 3; %for a tine constant of 1/2
y = step(numden,t);
plot(t,y)

For the impulse response, smply replace the word st ep with i npul se. For the response to an
arbitrary input sored in X, type

y = Isinm(numden, x,t);
plot(t,y)

13

C. Frequency Response Plots

Commands covered: fregs
bode
| ogspace
| 0g10
sem | ogx
unw ap

To compute the frequency response H(w) of a transfer function, store the numerator and denominator
of the transfer function in the vectors numand den. Define avector w that contains the frequencies
for which H(w) isto be computed, for example w = a: b: ¢ where a is the lowest frequency, c is
the highest frequency and b istheincrement in frequency. The command

H = fregs(num den, w)
returns acomplex vector Hthat contains the value of H(w) for each frequency in w.
To draw aBode plot of atransfer function which has been stored in the vectors numand den, type
bode(num den)
To customize the plot, first define the vector wwhich contains the frequencies at which the Bode plot
will be caculated. Since w should be defined on alog scae, the command | ogspace isused. For
example, to make a Bode plot ranging in frequencies from 10™ to 107, define wby
w = | ogspace(-1, 2);
The magnitude and phase information for the Bode plot can then be found be executing:
[mag, phase] = bode(num den, w);
To plot the magnitude in decibels, convert nag using the following command:
magdb = 20*| 0g10(nag);
To plot the results on a semilog scale where the y-axisiis linear and the x-axisis logarithmic, type
sem | ogx(w, magdb)
for the log-magnitude plot and type

sem | ogx(w, phase)

14

for the phase plot. The phase plot may contain jumps of +2p which may not be desred. To remove
these jJumps, use the command unwr ap prior to plotting the phase.

sem | ogx(w, unw ap(phase))

D. Analog Filter Design

Commands covered: buttap
cheblab
zp2tf
| p21p
| p2bp
| p2hp
| p2bs

MATLAB contains commands for various andog filter designs, including those for designing a
Butterworth filter and a Type | Chebyshev filter. The commands but t ap and cheblab are used
to design lowpass Butterworth and Type | Chebyshev filters, respectively, with cutoff frequencies of 1
rad/sec. For an n-pole Butterworth filter, type

[z, p, k] = buttap(n)

where the zeros of thefilter are tored in z, the poles are sored in p and the gain of the filter isin k.
For an n-pole Type | Chebyshev filter with Rp decibels of ripple in the passband, type

[z, p, k] = cheblab(n, Rp)
To find the numerator and denominator polynomials of the resulting filter from z, p and k; type
[b,a] = zp2tf(z,p, k)

where a contains the denominator coefficientsand b contains the numerator coefficients. Frequency
transformations from one lowpass filter to another with a different cutoff frequency, or from lowpass
to highpass, or lowpass to bandstop or lowpass to bandpass can be performed in MATLAB. These
transformations can be used with either the Butterworth filters or the Chebyshev filters. Suppose b
and a dore the numerator and denominator of a transfer function of a lowpass filter with cutoff
frequency 1 rad/sec. To map to a lowpass filter with cutoff frequency W and numerator and
denominator coefficientsstoredin b1l and al, type

[bl, al] = | p2l p(b, a, W)
To map to ahighpassfilter with cutoff frequency W, type

[bl, al] = | p2hp(b, a, W)

15

To map to abandpassfilter with bandwidth Bw centered at the frequency W, type
[bl, al] = | p2bp(b, a, W, Bw)

To map to abandstop filter with sopband bandwidth Bw centered about the frequency W, type
[bl, al] = | p2bs(b, a, W, Bw)

E. Control Design

Commandscovered: r| ocus

Congder a feedback loop as shown in Figure 1 where G(s)H(s) = KP(s) and K is a gain and P(s)
contains the poles and zeros of the controller and of the plant. The root locusis a plot of the roots of
the closed loop transfer function as the gain is varied. Suppose that the numerator and denominator
coefficients of P(s) are stored in the vectors numand den. Then the following command computes
and plotstheroot locus:

rl ocus(num den)

To customize the plot for a specific range of K, say for K ranging from 0 to 100, then use the following
commands.

K
r

p

0: 100;
rl ocus(num den, K) ;
ot(r,".")

The graph contains dots a points in the complex plane that are closed loop poles for integer vaues of
K ranging from O to 100. To get afiner grid of points, use a smaller increment when defining K, for
example, K = 0:.5:100. The resulting matrix r contains the closed poles for al of the gains
defined inthe vector K. Thisis particularly useful to calculate the closed loop poles for one particular
vaueof K. Notethat if theroot locus lies entirely on therea axis, thenusng pl ot (r,"'.") gives
inaccurate results.

F. State Space Representation

Commands Covered: step
| sim
ss2tf
tf2ss
SS2SS

The sandard state space representation isused in MATLAB, i.e,

16

X=Ax+Bu
y =Cx

where x is nx1 vector, uismx1, yispx1, A isnxn, B is nxm, and C is pxn. The response of a system
to various inputs can be found using the same commands that are used for transfer function
representations. st ep, i npul se, and | si m The argument list contains the A, B, C, and D
meatricesinstead of the numerator and denominator vectors. For example, the step response is obtained
by typing:

[y, x,t] = step(A B CD);

The states are stored in X, the outputsin y and the time vector, which is automatically generated, is
goredin t. Therowsof x and y contain the states and outputs for the time pointsin t. Each
columnof X representsastate. For example, to plot the second state versustime, type

plot(t,x(:,2))

To find the response of an arbitrary input or to find the response to initia conditions, use | si m
Define atime vector t and an input matrix u with the same number of rowsasin t and the number
of columns equaling the number of inputs. An optiona argument is the initial condition vector xO.
The command isthen given as

[v,x] =1Isim(A B, CD,u,t,x0);

Y ou can find the transfer function for a single-input/single-output (SISO) system using the command.:
[numden] = ss2tf(A B, C D;

The numerator coefficients are stored in numand the denominator coefficients are sored inden.

Given atransformation matrix P, the ss2ss function will perform the smilarity transform. Store the
date spacemodd in A, B, Cand D and the transformation matrix in P.

[Abar, Bbar, Cbar, Dbar] =ss2ss(A B, C D, P);
performs the smilarity transform z=Px resulting in a State space system that is defined as:

X = Ax + Bu

y = Cx+Du

where A = PAP!, B=PB, C=CP*!, D=D.

17

4. Discrete-Time System Analysis

A. Convolution

Commands covered: conv
deconv

To perform discrete time convolution, x[n]*h[n], define the vectors x and h with elements in the
sequences X[n] and h[n]. Then use the command

y = conv(x, h)

This command assumes that the first element in x and the first element in h correspond to n=0, so
that the first element in the resulting output vector corresponds to n=0. If thisis not the case, then the
output vector will be computed correctly, but the index will have to be adjusted. For example,

X
h

y

1];
1;
)

o r—r—

11
01
onv

nv(
yildsy = [0 1 3 6 6 6 5 3]. If xisindexed asdescribed above, theny[0] =0, y[1] = 1,
.... . Ingenerd, total up the index of thefirst element in h and the index of thefirst ement in x, thisis

theindex of thefirst eement in y. For example, if the first element in h corresponds to n = -2 and the
first dement in x correspondsto n = -3, thenthe first ement in y correspondsto n=-5.

X NP
0 Wk

Care must be taken when computing the convolution of infinite duration signals. If the vector x has
length g and the vector h has length r, then you must truncate the vector y to have length min(qr).
See the comments in Problem 3.7 of the textbook for additional information.

The command conv can aso be used to multiply polynomias. suppose that the coefficients of a(s)
are given inthe vector a and the coefficients of b(s) are given in the vector b, then the coefficients of
the polynomial a(s)b(s) can be found as the elements of the vector defined by ab = conv(a, b).

Thecommand deconv isthe inverse procedure to the convolution. Inthistext, it is used as ameans
of dividing polynomias. Given &(s) and b(s) with coefficients ored in a and b, then the coefficients
of ¢(s) = b(9)/a(s) are found by using thecommand ¢ = deconv(b, a).

B. Transfer Function Representation

For adiscrete-time transfer function, the coefficients are stored in descending powers of z or ascending
powersof z*'. For example,

272+3z+4 _ 2+371+477?
72+57+6 1+571+ 672

H(Z) =

18

then define the vectors as

num= [2 3 4];
den = [1 5 6];
C. Time Simulations
Commands Covered: recur
conv
dstep
di npul se
filter

There are three methods to compute the response of a system described by the following recursive
relationship
M

N
yinl + & ayin-i] = & bixn-i]
i=1 i=0

The first method uses the command r ecur and is useful when there are nonzero initial conditions.
This command is available from the MathWorks ftp Ste and a shortened verson is given in Figure C.5
of the textbook. The inputs to the function are the coefficients a and by stored in the vectors a =

[a; a2 ... ayy and b = [by by ... by, theinitid conditions on x and on y are stored in
thevectors X0 = [X[nNo-M, X[no- M+l], ..., X[Nno-1]] and yO = [y[no-N], Y[no-
N+, ..., y[no-1]]], and the time indices for which the solution needs to be calculated are

stored inthe vector n where np represents the first element in thisvector. Touse r ecur , type
y = recur(a,b,n, x, x0,y0);

The output isavector y with eements y[n]; the first element of y corresponds to the time index .
For example, consider the system described by

y[n] - 0.6y[n-1] + 0.08y[n-2] = x[n-1]

where x[n] = u[n] and with initia conditionsy[-1] = 2, y[-2] = 1, and X[-1] = x[-2] = 0. To compute
theresponsey[n] for n=0, 1,...,10, type

a=[-0.60.08]; b=1[01];
x0 =0; yo =11 2];

n = 0:10;

x = ones(1,11);

y:

recur(a, b, n, x, x0,y0);

The vector y containsthe values of y[n] for n=0,1,...,10.

19

The second method to compute the response uses convolution and is useful when the initia conditions
ony ae zero. This method involves firg finding the impulse response of the system, h[n], and then
convolving h[n] with x[n] as discussed in Section 4.A. For example, consder the system described
above with zero initia conditions, that is, y[-1]=y[-2]=0. The impulse response for this sysemis h[n]
=5[(0.4)"-(0.2)"u[n]. The commandsto computey[n] are

n = 0:10;

x = ones(1,11);

h = 5*(0.4)."n - 5*%(.02)."n;
y = conv(x, h);

y = y(l:length(n));

The vector y contains the vaues of y[n| for n = 0,1,...,10. Note that the vector was truncated to
| engt h(n) because both x[n] and h[n] are infinite duration signals. See the comments in Section
4.A regarding the convolution of infinite duration Sgnals.

The third method of solving for the response requires that the transfer function of the system be
known. The commands dstep and di npul se compute the unit step response and the unit
impulse response, respectively while the command filter computes the response to initia
conditions and to arbitrary inputs. The denominator coefficients are tored as den = [1 a; a»

ayn] and the numerator coefficients are sored as num = [bg by ... by 0 ... 0]
where there are N-M zeros padded on the end of the coefficients. For example, congder the system
given above with initia conditions y[-1] = y[-2] = 0. To compute the step response for n=0 to n=10,
type the commands

01
[0O10]; den =[1 -0.6 0.08];
t

n=2~0
num =
y = dstep(num den, | ength(n));

The response can then be plotted using the st emplot. To compute the impulse response, Smply
replace dst ep with di npul se in the above commands.

To compute the response to an arbitrary input, store the input sequencein the vector x. The command
y = filter(numden, x);

is used to compute the system response. If the syssem has nonzero initid conditions, the initia
conditions can be stored in a vector vO. For a fird order sysem where N=M=1, define zi =
[b,*x[-1]-a*y[-1]]. For asecond order sysem where N=M=2, define zi = [bi*X]-
1] +bo* X[- 2] -ar*y[- 1] -ax*y[- 2], bi*x[-1]-a*y[-1]]. To compute the response
with nonzero initia conditions, type

y = filter(numden,x, zi);

For example, congder the previous system with the initial conditions y[-1] = 2 and y[-2] = 1 and input
X[n] =u[n]. Type thefollowing commandsto computey[n].

20

n = 0:10; x = ones(1,11);

num= [0 1 0]; den =[1 -0.6 0.08];
zi = [0.6*2-0.08*1, -0.08*2];

y = filter(numden,x, zi);

D. Frequency Response Plots

Commands covered: freqz

The DTFT of a sysem can be calculated from the transfer function usng freqz. Define the
numerator and the denominator of the trandfer functionin numand den. The command

[H Orega] = freqz(numden, n,' whole');

computes the DTFT for n points equally spaced around the unit circle at the frequencies contained in
the vector Onega. The magnitude of Hisfound from abs(H) and the phase of H is found from
angl e(H). To customize the range for W, define a vector Orega of desred frequencies, for
example Orega = -pi: 2*pi/ 300: pi defines a vector of length 301 with vaues that range
from-p top. Toget the DTFT at these frequencies, type

H = fregz(num den, Orega);

E. Digital Filter Design

Commands covered: bi | i near
butter
chebyl
hamm ng
hanni ng

The andlog prototype method of designing IR filters can be done by first designing an analog filter
with the desred characterigtics as shown in Section 3.D, then mapping the filter to the discrete-time
domain. Store the numerator and denominator of the andlog filter, H(s), in the vectors num and
den, andlet T bethe sampling period. Then the numerator and denominator of the digita filter Hy(2)
is found from the following command

[nund, dend] = bilinear(numden, 1/T)

Alternately, the commands butt er and chebyl automaticaly design the analog filter and then use
the bilinear transformation to map the filter to the discrete-time domain. Lowpass, highpass, bandstop,
and bandpass filters can be desgned using this method. The digitad cutoff frequencies must be
specified; these should be normdized by p. To design a digita lowpass filter based on the andlog
Butterworth filter, use the commands:

[num den] = butter(n, Oregac)

21

where n isthe number of polesand Onegac isthe normaized digital cutoff frequency, W, = w.T/p.
To design ahighpassfilter with cutoff frequency Onegac, use the commands

[num den] = butter(n, Oregac, ' high')

To dedsgn a bandpass filter with passband from Qregal to Onegaz2, define Orega =
[Omegal, Onega2] and usethe command

[num den] = butter(n, Onega)

To dedgn a bandstop filter with stopband from Qregal to Onegaz2, define Orega =
[Oegal, Qrega2] and usethe command

[num den] = butter(n, Onrega, ' stop')

The design for an n" order Type | Chebyshev filter is accomplished using the same methods as for
but t er except that "but t er " isreplaced by "cheby1":

[num den]
[num den]

chebyl(n, Oregac); %for a |owpass filter
chebyl(n, Oregac, ' high'); % for a highpass filter

If Omega hastwo eements,

[num den]
[num den]

chebyl(n, Orega); % for a bandpass
chebyl(n, Orega, 'stop'); % for a bandstop

The windows used in FIR filter design are given by

boxcar (N) % rect angul ar wi ndow
hamm ng(N)
hanni ng(N)

===
T

These commands are used to truncate the infinite impulse response of an ided digitd filter with the
result being an FIR filter with length N.

The Signal Processing Toolbox aso provides commands for computing the FIR filter directly. To
obtain an FIR filter with length N and cutoff frequency Omegac (normalized by p) use the command

hd = firl(N 1, Oregac)

The vector hd contains the impulse response of the FIR where hd(1) isthe value of hy[Q].
A length N highpassfilter with normalized cutoff frequency Omegac is designed by using the command

hd = firl(N 1, Oregac, ' high')

22

A bandpass with passhand from Qregal to Orega2 isobtained by typing
hd = firl(N 1, Orega)

where Orega = [Oregal, Onega2]. A bandstop filter with stopband from Qregal to
Orega2 isobtained by typing

hd = firl(N1, Qrega, ' stop')

where Orega = [Onegal, Onega2]. The fir1l command uses the Hamming window by
default. Other windows are obtained by adding an option of ' hanni ng' or ' boxcar' to the
arguments, for example,

hd = firl1(N 1, Oregac, ' high', boxcar(N))
creates a highpass FIR filter with cutoff frequency Qregac using arectangular window.

F. Digital Control Design

Commands covered: bi | i near
c2dm
hybrid

An andog controller G,(s) can be mapped to adigita controller Gy(z) using the bilinear transformation
or the step response matching method. Store the numerator and denominator of G¢(s) in numand
den. Then the numerator and denominator of Gy(2) is found from the bilinear trandformation using
the commands

[nund, dend] = bilinear(numden, 1/T)

where T isthe sampling frequency. To usethe step invariant method, use the commands

[nund, dend] = c2dn({numden, T,' zoh')

To smulate the response of a continuous-time plant with a digital controller, use the command
hybr i d, which is avallable at the MathWorks ftp site. Consider the block diagram in Figure 11.25.
The numerator and denominator coefficients of the plant are stored in NGp and D&p; the numerator
and denominator coefficients of the controller are stored in NGd and DCd; the reference input sgna
isstored in r ; and the sampling timeisstored in T. The increments in the time vector should selected
to be the sampling time divided by an integer, for example, t = 0: b: Tend where there is some
integer m such that bm=T. The command isused as

[y,ud] = hybrid(NG, D&, N&d, D&, T,t,r);

23

The outputs of the command are the system response, y, and the control sgna that is input to the
plant, ud. The M-file contains aloop which computes the discrete-time control and then smulates the
continuous-time plant for T seconds with the constant control. The process repesats for the next T
second interval. The commandsfor hybr i d are given below:

function [Y,UD] = hybrid(Np, Dp,Nd,Dd, T, t, U);
[Ac, Bc, Cc, Dc] =t f 2ss(Np, Dp) ;
[Ad, Bd, Cd, Dd] =t f 2ss(Nd, Dd) ;

nsam= T/(t(2)-t(1)); % # of integration pts per sanple
%initialize

Y = 0;

ub = 0;

[ncr, ncc] = size(Ac);

xc0 = zeros(ncr,1);

[ndr, ndc] = size(Ad);

xdk = zeros(ndr, 1);

kmax = fix(t(length(t))/T); %# of conplete sanples int

for k = 0: kmax-1
% cal cul ate control and out put of zoh
ek = U k*nsamtl) - Y(k*nsamtl);
xd = Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;
xdk = xd;
% integrate continuous-tine plant with input
% of zoh for T seconds
udi = zoh*ones(nsamtl, 1);
ti = t(k*nsamtl: (k+1) *nsamt+l);
[yi,xi] = IsinlAc, Bc, Cc, Dc, udi, ti, xc0);
xc0 = xi (nsamtl, :);
% augnment vectors
Y = [Y;yi(2:nsamtl)];
UD = [UD; udi (2: nsamtl)] ;
end

i f(kmax*nsamtl < | ength(t))
% conmpute tail of simulation fromt(kmax*nsan
% tot_end
k = kmax;
% cal cul ate control and out put of zoh
ek = U k*nsamtl) - Y(k*nsamtl);
xd = Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;
%integrate continuous-tine plant with input of zoh
ti = t(k*nsamtl: |l ength(t));
udi = zoh*ones(length(ti),1);
[yi,xi] = IsinlAc, Bc, Cc, Dc, udi, ti, xc0);
% augnment vectors

24

[Y;yi(2:1ength(yi))];
[

Y =
UD = [UD; udi (2: 1 ength(udi))];
end

G. State Space Representation

Commands Covered: dl sim
dstep
di npul se

Most of the commands for the continuous time state space representation aso work for the discrete
time state space. For example, ss2tf, tf2ss, and ss2ss for discrete time are used exactly the
same way as for the continuous time case discussed in Section 3.F. There is a discrete time version of
thecommand | si m whichisused asfollows:

[y, x] =dlsimAB,CDu,n);

where the output is stored in y, the states are sored in X, theinput isstored in u and the time index
isstoredin n.

25

5. Plotting

Commands covered: pl ot
x| abel
yl abel
title
grid
axi s
stem
subpl ot

The command most often used for plotting is pl ot, which creates linear plots of vectors and
meatrices, pl ot (t,y) plotsthe vector t on the x-axis versus vector y on the y-axis. There are
options on the line type and the color of the plot which are obtained using plot(t,y,'option’). The
linetype options are -' solid line (default), --' dashed line, *-." dot dash line, "' dotted line. The pointsin
y can be left unconnected and delineated by a variety of symbols: + . * o x. The following colors are
avallable options:

red
blue
green
white
black

~sa o=

For example, plot(t,y,'--") usesadashed ling, plot(t,y,"'*") uses* a dl the points
defined in t and y without connecting the points, and pl ot (t,y,"' g') usesasolid green line.
The options can aso be used together, for example, pl ot (t,y, ' g: ') plotsadotted greenline.

To plot two or more graphs on the same set of axes, use the command pl ot (t1,yl,t2,y2),
whichplots y1l versus t 1 and y2 versus t 2.

To label your axes and give the plot atitle, type
x|l abel ("time (sec)')
yl abel (' step response')
title(" M Plot")
Finally, add agrid to your plot to makeit easier to read. Type
grid

The problem that you will encounter most often when plotting functions is that MATLAB will scale
the axes in a way that is different than you want them to appear. You can eadly overide the
autoscaling of the axes by using the axi s command after the plotting command:

26

axi s([xmn xmax ymn ymax]);

where xm n, xmax, ymn, and ymax are numbers corresponding to the limits you desre for
theaxes. To return to the automeatic scaling, Smply type axi s.

For discrete-time Sgnals, use the command st emwhich plots each point with a smal open circle and
adraght line. To plot y[K] versusk, type

st em(k, y)

Youcanusesten(k,y, ' filled) toget circlesthat arefilled in. When usng Version 3.0 of the
Signal Processing Toolbox (or verson 4.0 of the Student Verson of MATLAB), the following must
be donein order to get filled-in circles: Theline in stem.m

h =plot(x,y, o ,xx(:),yy(:),linetype);
can be replaced with

h =plot(x,y,".",xx(:),yy(:),linetype);
set (h, ' markersi ze', 18);

to create closed circles.

To plot more than one graph on the screen, use the command subpl ot (rmp) which partitions the
screen into an mxn grid where p determines the position of the particular graph counting the upper left
corner asp=1. For example,

subpl ot (211), sem | ogx(w, magdb) ;
subpl ot (212), sem | ogx(w, phase) ;

plots the bode plot with the log-magnitude plot on top and the phase plot below. Titles and labels can

be inserted immediately after the appropriate sem | ogx command or pl ot command. To return
to afull screen plot, type subpl ot (111).

27

6. Loading and Saving Data

When using MATLAB, you may wish to leave the program but save the vectors and metrices you have
defined. To savethefileto the working directory, type

save fil enane
where"f i | enane" isaname of your choice. To retrieve the datalater, type

| oad fil ename

28

