(**************************************************************** Copyright © 2014-2024 Amy Felty This file is part of "Two-Level Hybrid in Coq" This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ***************************************************************) (**************************************************************** File: EqualUntypedR.v original: January 2014 Apr 2024: Current Coq Version: V8.18.0 Context relation version (R version) of: 1. Admissibility of reflexivity for algorithmic equality 2. Admissibility of symmetry, transitivity for algorithmic equality 3. Correctness of algorithmic equality with respect to declaritive equality. 4. Adequacy ***************************************************************) From HybridSys Require Export sl. #[global] Hint Resolve level_CON level_VAR level_BND level_APP level_ABS : hybrid. #[global] Hint Resolve proper_APP abstr_proper : hybrid. #[global] Hint Unfold proper: hybrid. Section encoding. (**************************************************************** Constants for Lambda Terms ****************************************************************) Inductive Econ: Set := cAPP: Econ | cLAM: Econ. Definition uexp : Set := expr Econ. Definition Var : var -> uexp := (VAR Econ). Definition Bnd : bnd -> uexp := (BND Econ). Definition app : uexp -> uexp -> uexp := fun M:uexp => fun N:uexp => (APP (APP (CON cAPP) M) N). Definition lam : (uexp -> uexp) -> uexp := fun M:uexp->uexp => (APP (CON cLAM) (lambda M)). (**************************************************************** Some Properties of Constructors ****************************************************************) Lemma proper_Var: forall x:var, (proper (Var x)). Proof. unfold Var; auto with hybrid. Qed. Lemma proper_lam : forall (e:uexp->uexp), abstr e -> proper (lam e). Proof. unfold lam; auto with hybrid. Qed. Lemma proper_app : forall e1 e2:uexp, proper e1 -> proper e2 -> proper (app e1 e2). Proof. unfold app; auto with hybrid. Qed. (**************************************************************** The atm type and instantiation of oo. ****************************************************************) Inductive atm : Set := term : uexp -> atm | deq : uexp -> uexp -> atm | aeq : uexp -> uexp -> atm. Definition oo_ := oo atm Econ. Definition atom_ : atm -> oo_ := atom Econ. Definition T_ : oo_ := T atm Econ. (**************************************************************** Definition of prog ****************************************************************) Inductive prog : atm -> oo_ -> Prop := (* well-formedness of terms (app and lam) *) | tm_a : forall M N:uexp, prog (term (app M N)) (Conj (atom_ (term M)) (atom_ (term N))) | tm_l : forall M:uexp->uexp, abstr M -> prog (term (lam M)) (All (fun x:uexp => (Imp (term x) (atom_ (term (M x)))))) (* declarative equality *) | de_l :forall M N:uexp->uexp, abstr M -> abstr N -> prog (deq (lam M) (lam N)) (All (fun x:uexp => (Imp (term x) (Imp (deq x x) (atom_ (deq (M x) (N x))))))) | de_a : forall M1 M2 N1 N2:uexp, prog (deq (app M1 M2) (app N1 N2)) (Conj (atom_ (deq M1 N1)) (atom_ (deq M2 N2))) | de_r : forall M:uexp, prog (deq M M) (atom_ (term M)) | de_s : forall M1 M2:uexp, prog (deq M2 M1) (atom_ (deq M1 M2)) | de_t : forall M1 M2 M3:uexp, prog (deq M1 M3) (Conj (atom_ (deq M1 M2)) (atom_ (deq M2 M3))) (* algorithmic equality *) | ae_l :forall M N:uexp->uexp, abstr M -> abstr N -> prog (aeq (lam M) (lam N)) (All (fun x:uexp => (Imp (aeq x x) (atom_ (aeq (M x) (N x)))))) | ae_a : forall M1 M2 N1 N2:uexp, prog (aeq (app M1 M2) (app N1 N2)) (Conj (atom_ (aeq M1 N1)) (atom_ (aeq M2 N2))). (**************************************************************** Instantiation of seq ****************************************************************) Definition seq_ : nat -> list atm -> oo_ -> Prop := seq prog. Definition seq'_ := seq' prog. Definition seq0 (B : oo_) : Prop := seq'_ nil B. End encoding. #[global] Hint Resolve proper_Var : hybrid. #[global] Hint Resolve tm_a tm_l de_l de_a de_r de_s de_t ae_l ae_a : hybrid. #[global] Hint Unfold oo_ atom_ T_: hybrid. #[global] Hint Unfold seq_ seq'_ seq0: hybrid. (**************************************************************** 1. Admissibility of Reflexivity ****************************************************************) (************) (* Contexts *) (************) Section ctx_refl. (* Context Relation for Admissibility of Reflexivity and aeq Adequacy *) Inductive xaR : list atm -> list atm -> Prop := | nil_xa : xaR nil nil | cons_xa : forall (Phi_x Phi_a:list atm) (x:uexp), proper x -> xaR Phi_x Phi_a -> xaR (term x::Phi_x) (aeq x x::Phi_a). (* Context Membership *) Lemma memb_refl_iff : forall (Phi_x Phi_a:list atm) (T:uexp), xaR Phi_x Phi_a -> (In (term T) Phi_x <-> In (aeq T T) Phi_a). Proof. intros Phi_a Phi_x T; induction 1; try (simpl; tauto). split. - intro h2; simpl in h2; destruct h2 as [h2 | h2]. + injection h2; intros; subst; simpl; auto. + simpl; tauto. - intro h2; simpl in h2; destruct h2 as [h2 | h2]. + injection h2; intros; subst; simpl; auto. + simpl; tauto. Qed. (* Membership corollary *) Lemma memb_refl : forall (Phi_x Phi_a:list atm) (T:uexp), xaR Phi_x Phi_a -> In (term T) Phi_x -> In (aeq T T) Phi_a. Proof. intros Phi_x Phi_a T h1 h2. generalize (memb_refl_iff Phi_x Phi_a T h1); intros [h3 h4]. auto. Qed. End ctx_refl. #[global] Hint Resolve nil_xa cons_xa memb_refl : hybrid. (****************************) (* Main Lemmas and Theorems *) (****************************) Section refl. Lemma aeq_refl : forall (i:nat) (T:uexp) (Phi_x Phi_a:list atm), xaR Phi_x Phi_a -> seq_ i Phi_x (atom_ (term T)) -> seq_ i Phi_a (atom_ (aeq T T)). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (T:uexp) (Phi_x Phi_a:list atm), xaR Phi_x Phi_a -> seq_ i Phi_x (atom_ (term T)) -> seq_ i Phi_a (atom_ (aeq T T)))). intro H'. apply H'; clear H' i; auto. intros i h T Phi_x Phi_a cInv h1. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* app case *) + inversion H3; subst; clear H3. assert (hi:i (Imp (aeq x x) (atom_ (aeq (M x) (M x)))))); auto with hybrid. apply s_all; auto. intros x h1. generalize (H4 x h1); intro h2. inversion h2; subst; clear h2. apply s_imp; auto. apply h with (term x::Phi_x); eauto with hybrid; try lia. (* context case *) - inversion cInv; subst. apply s_init; eauto with hybrid. Qed. (* Empty context corollary *) Lemma aeq_refl_cor : forall (T:uexp), seq0 (atom_ (term T)) -> seq0 (atom_ (aeq T T)). Proof. intros T [n h]. generalize nil_xa; intro h1. specialize aeq_refl with (1:=h1) (2:=h); intro h2. exists n; auto. Qed. End refl. (**************************************************************** 2. Admissibility of Symmetry and Transivity ****************************************************************) (************) (* Contexts *) (************) Section ctx_symm_tr. (* Context Relation for Symmetry and Transitivity *) Inductive aG : list atm -> Prop := | nil_a : aG nil | cons_a : forall (Phi_a:list atm) (x:uexp), proper x -> aG Phi_a -> aG (aeq x x::Phi_a). (* Membership Lemma: used in symmetry and transitivity proofs *) Lemma memb_symm_tr: forall (Phi_a:list atm) (T T':uexp), aG Phi_a -> In (aeq T T') Phi_a -> T=T'. Proof. intros Phi_a T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | h2]; auto. injection h2; intros; subst; simpl; auto. Qed. End ctx_symm_tr. (****************************) (* Main Lemmas and Theorems *) (****************************) #[global] Hint Resolve nil_a cons_a : hybrid. Section symm_tr. Lemma aeq_symm : forall (i:nat) (T T':uexp) (Phi_a:list atm), aG Phi_a -> seq_ i Phi_a (atom_ (aeq T T')) -> seq_ i Phi_a (atom_ (aeq T' T)). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (T T':uexp) (Phi_a:list atm), aG Phi_a -> seq_ i Phi_a (atom_ (aeq T T')) -> seq_ i Phi_a (atom_ (aeq T' T)))). intro H'. apply H'; clear H' i; auto. intros i h T T' Phi_a cInv h1. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* lam case *) + inversion H3; subst; clear H3. unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (aeq x x) (atom_ (aeq (N x) (M x)))))); auto with hybrid. apply s_all; auto. intros x h2. specialize H4 with (1:=h2). inversion H4; subst; clear H4. apply s_imp; auto. apply h; eauto with hybrid; try lia. (* app case *) + inversion H3; subst; clear H3. unfold seq_,atom_; apply s_bc with (Conj (atom_ (aeq N1 M1)) (atom_ (aeq N2 M2))); auto with hybrid. apply s_and; auto. * apply h; try lia; auto. * apply h; try lia; auto. (* context case *) - inversion cInv; subst. specialize memb_symm_tr with (1:=cInv) (2:=H2); intro; subst; auto. apply s_init; eauto with hybrid. Qed. Lemma aeq_symm_cor : forall (T T':uexp), seq0 (atom_ (aeq T T')) -> seq0 (atom_ (aeq T' T)). Proof. intros T T' [i h1]. generalize nil_a; intro h3. exists i; apply aeq_symm; auto. Qed. Lemma aeq_trans : forall (i:nat) (T R U:uexp) (Phi_a:list atm), aG Phi_a -> seq_ i Phi_a (atom_ (aeq T R)) -> seq_ i Phi_a (atom_ (aeq R U)) -> seq_ i Phi_a (atom_ (aeq T U)). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (T R U:uexp) (Phi_a:list atm), aG Phi_a -> seq_ i Phi_a (atom_ (aeq T R)) -> seq_ i Phi_a (atom_ (aeq R U)) -> seq_ i Phi_a (atom_ (aeq T U)))). intro H'. apply H'; clear H' i; auto. intros i h T R U Phi_a cInv h1 h2. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* lam case *) + inversion H3; subst; clear H3. inversion h2; subst; clear h2. * inversion H1; subst; clear H1. specialize abstr_lbind_simp with (1:=H7) (2:=H5) (3:=H0); intro h1. rewrite H. unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (aeq x x) (atom_ (aeq (M x) (N0 x)))))); auto with hybrid. apply s_all; auto. intros x h2. inversion H6; subst; clear H6. specialize H10 with (1:=h2). unfold ext_eq in h1; rewrite -> h1 in H10; auto; clear H0 H7 h1 M0. assert (hi:i1=i); try lia; subst; clear H. specialize H4 with (1:=h2). inversion H10; subst; clear H10. inversion H4; subst; clear H4. apply s_imp; auto. assert (hi:i0=i); try lia; subst; clear H. apply h with (N x); eauto with hybrid; try lia. (* lam case: context subcase *) * specialize memb_symm_tr with (1:=cInv) (2:=H3); intro; subst. unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (aeq x x) (atom_ (aeq (M x) (N x)))))); auto with hybrid. apply s_all; auto. (* app case *) + inversion H3; subst; clear H3. inversion h2; subst; clear h2. * inversion H1; subst; clear H1. inversion H3; subst; clear H3. assert (hi:i1=i); try lia; subst; clear H. unfold seq_,atom_; apply s_bc with (Conj (atom_ (aeq M1 N0)) (atom_ (aeq M2 N3))); auto with hybrid. apply s_and; auto. -- apply h with N1; try lia; auto. -- apply h with N2; try lia; auto. (* app case: context subcase *) * specialize memb_symm_tr with (1:=cInv) (2:=H2); intro; subst. unfold seq_,atom_; apply s_bc with (Conj (atom_ (aeq M1 N1)) (atom_ (aeq M2 N2))); auto with hybrid. apply s_and; auto. (* context case *) - inversion cInv; subst. specialize memb_symm_tr with (1:=cInv) (2:=H2); intro; subst; auto. Qed. Lemma aeq_trans_cor : forall (T R U:uexp), seq0 (atom_ (aeq T R)) -> seq0 (atom_ (aeq R U)) -> seq0 (atom_ (aeq T U)). Proof. intros T R U [i h1] [j h2]. generalize nil_a; intro h3. exists (i+j); apply aeq_trans with R; auto. - apply seq_mono_cor with i; auto; try lia. - apply seq_mono_cor with j; auto; try lia. Qed. End symm_tr. (**************************************************************** 3. Correctness ****************************************************************) (************************) (* Inversion Properties *) (************************) (* Specialized inversion properties of prog (could be automated) *) Section de_inv. Lemma de_l_inv : forall (i:nat) (Psi:list atm) (T T':uexp->uexp), (forall x : uexp, proper x -> seq_ i Psi (Imp (term x) (Imp (deq x x) (atom_ (deq (T x) (T' x)))))) -> exists j:nat, (i=j+2 /\ forall x : uexp, proper x -> seq_ j ((deq x x)::(term x)::Psi) (atom_ (deq (T x) (T' x)))). Proof. induction i; auto. - intros Psi T T' H. generalize (H (Var 0) (proper_Var 0)); intro H1. inversion H1; clear H1; subst. replace (i+1) with (S i) in H0; try lia. - generalize i; clear i IHi. induction i; auto. + intros Psi T T' H. generalize (H (Var 0) (proper_Var 0)); intro H1. inversion H1; clear H1; subst. inversion H4; clear H4; subst. replace (i0+1+1) with (S (S i0)) in H0; try lia. + intros Psi T T' H. exists i; split; try lia. intros x H0. generalize (H x H0); intro H1. inversion H1; clear H1; subst. inversion H5; clear H5; subst. assert (i1 = i); try lia. subst; auto. Qed. End de_inv. (************) (* Contexts *) (************) Section ctx_ceq. (* Context Relation for Completeness (also used in adequacy) *) Inductive adR : list atm -> list atm -> Prop := | nil_ad : adR nil nil | cons_ad : forall (Phi_a Phi_xd:list atm) (x:uexp), proper x -> adR Phi_a Phi_xd -> adR (aeq x x::Phi_a) (deq x x::term x::Phi_xd). (* Membership Lemma *) Lemma memb_ceq : forall (Phi_a Phi_xd:list atm) (T T':uexp), adR Phi_a Phi_xd -> In (deq T T') Phi_xd -> In (aeq T T') Phi_a. Proof. intros Phi_a Phi_xd T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | [h2 | h2]]. - injection h2; intros; subst; subst; simpl; auto. - discriminate h2. - simpl; right; auto with hybrid. Qed. Fixpoint rm_xd2x (l:list atm) {struct l} : list atm := match l with nil => nil | (deq x y::term z::l') => (term z::rm_xd2x l') | _ => nil end. Hint Resolve nil_ad cons_ad : hybrid. Lemma term_strengthen_weaken : forall (i:nat) (M:uexp) (Phi1 Phi2:list atm), (forall (M:uexp), In (term M) Phi1 -> In (term M) Phi2) -> seq_ i Phi1 (atom_ (term M)) -> seq_ i Phi2 (atom_ (term M)). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (M:uexp) (Phi1 Phi2:list atm), (forall (M:uexp), In (term M) Phi1 -> In (term M) Phi2) -> seq_ i Phi1 (atom_ (term M)) -> seq_ i Phi2 (atom_ (term M)))). intro H'. apply H'; clear H' i; auto. intros i h M Phi1 Phi2 h1 h2. inversion h2; subst; clear h2. - inversion H0; subst; clear H0. (* app case *) + inversion H3; subst; clear H3. assert (hi:i (Imp (term x) (atom_ (term (M0 x)))))); auto with hybrid. apply s_all; auto. intros x h5. generalize (H4 x h5); intro h6. inversion h6; subst; clear h6 H4. apply s_imp; auto. apply h with (term x::Phi1); auto; try lia. (* proof of extended context inv *) intro T; generalize (h1 T); simpl; tauto. (* context case *) - specialize h1 with (M:=M). generalize (h1 H2); clear h1 H2. case Phi2. + simpl; tauto. + intros a Phi1 h1. apply s_init; auto with hybrid. Qed. (* relation strengthening *) Lemma adR2xaR_strengthen : forall (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> xaR (rm_xd2x Phi_xd) Phi_a. Proof. intros Phi_a Phi_xd; induction 1; simpl; eauto with hybrid. Qed. Lemma c_str_xd2x_aux : forall (Phi_a Phi_xd:list atm) (M:uexp), adR Phi_a Phi_xd -> In (term M) Phi_xd -> In (term M) (rm_xd2x Phi_xd). Proof. intros Phi_a Phi_xd M; induction 1. - simpl; tauto. - simpl; intros [h1 | [h1 | h1]]; try tauto. discriminate h1. Qed. Hint Resolve c_str_xd2x_aux : hybrid. Lemma c_str_xd2x : forall (i:nat) (Phi_a Phi_xd:list atm) (M:uexp), adR Phi_a Phi_xd -> seq_ i Phi_xd (atom_ (term M)) -> seq_ i (rm_xd2x Phi_xd) (atom_ (term M)). Proof. intros i Phi_xa Phi_xd M h1 h2. apply term_strengthen_weaken with Phi_xd; eauto with hybrid. Qed. Lemma adRaG : forall (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> aG Phi_a. Proof. intros Phi_a Phi_xd; induction 1; eauto with hybrid. Qed. End ctx_ceq. (****************************) (* Main Lemmas and Theorems *) (****************************) Section ceq. Hint Resolve adR2xaR_strengthen c_str_xd2x : hybrid. Lemma refl_promote : forall (i:nat) (T:uexp) (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> seq_ i Phi_xd (atom_ (term T)) -> seq_ i Phi_a (atom_ (aeq T T)). Proof. intros i T Phi_a Phi_xd h h2. apply aeq_refl with (rm_xd2x Phi_xd); eauto with hybrid. (* eauto applies adR2xaR_strengthen to first subgoal *) (* eauto applies c_str_xd2x with Phi_a to second subgoal *) Qed. Hint Resolve adRaG : hybrid. Lemma symm_promote : forall (i:nat) (T T':uexp) (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> seq_ i Phi_a (atom_ (aeq T T')) -> seq_ i Phi_a (atom_ (aeq T' T)). Proof. intros i T T' Phi_a Phi_xd h h2. apply aeq_symm; eauto with hybrid. Qed. Lemma trans_promote : forall (i:nat) (T R U:uexp) (Phi_a Phi_xd :list atm), adR Phi_a Phi_xd -> seq_ i Phi_a (atom_ (aeq T R)) -> seq_ i Phi_a (atom_ (aeq R U)) -> seq_ i Phi_a (atom_ (aeq T U)). Proof. intros i T R U Phi_a Phi_xd h h2 h3. apply aeq_trans with R; eauto with hybrid. Qed. Hint Resolve nil_ad cons_ad memb_ceq: hybrid. Lemma eq_ceq : forall (i:nat) (M N:uexp) (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> seq_ i Phi_xd (atom_ (deq M N)) -> seq_ i Phi_a (atom_ (aeq M N)). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (M N:uexp) (Phi_a Phi_xd:list atm), adR Phi_a Phi_xd -> seq_ i Phi_xd (atom_ (deq M N)) -> seq_ i Phi_a (atom_ (aeq M N)))). intro H'. apply H'; clear H' i; auto. intros i h M N Phi_a Phi_xd cInv h1. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* lam case *) + inversion H3; subst; clear H3. generalize (de_l_inv i Phi_xd M0 N0 H4); clear H4; intros [j [h1 h2]]; subst. unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (aeq x x) (atom_ (aeq (M0 x) (N0 x)))))); auto with hybrid. apply s_all; auto. intros x h1. apply seq_mono with (j+1); try lia. apply s_imp; auto. apply h with (deq x x::term x::Phi_xd); eauto with hybrid; try lia. (* app case *) + inversion H3; subst; clear H3. unfold seq_,atom_; apply s_bc with (Conj (atom_ (aeq M1 N1)) (atom_ (aeq M2 N2))); auto with hybrid. apply s_and; auto. * apply h with Phi_xd; try lia; auto. * apply h with Phi_xd; try lia; auto. (* refl case *) + apply refl_promote with Phi_xd; auto. apply seq_mono with i0; auto; try lia. (* symm case *) + apply symm_promote with Phi_xd; auto. apply seq_mono with i0; try lia. apply h with Phi_xd; try lia; auto. (* trans case *) + inversion H3; subst; clear H3. apply trans_promote with M2 Phi_xd; auto. * apply seq_mono with i; try lia. apply h with Phi_xd; auto; try lia. * apply seq_mono with i; try lia. apply h with Phi_xd; auto; try lia. (* context case *) - inversion cInv; subst. apply s_init; eauto with hybrid. Qed. Lemma eq_ceq_cor : forall (T R:uexp), seq0 (atom_ (deq T R)) -> seq0 (atom_ (aeq T R)). Proof. intros T R [i h1]. generalize nil_ad; intro h3. exists i; apply eq_ceq with nil; auto. Qed. End ceq. (**************************************************************** 4. Adequacy ****************************************************************) (************************) (* Inversion Properties *) (************************) (* Specialized inversion properties of prog (could be automated) *) Section ae_inv. Lemma ae_l_inv : forall (i:nat) (Phi:list atm) (T T':uexp->uexp), (forall x : uexp, proper x -> seq_ i Phi (Imp (aeq x x) (atom_ (aeq (T x) (T' x))))) -> exists j:nat, (i=j+1 /\ forall x : uexp, proper x -> seq_ j (aeq x x::Phi) (atom_ (aeq (T x) (T' x)))). Proof. induction i; auto. - intros Phi T T' H. generalize (H (Var 0) (proper_Var 0)); intro H1. inversion H1; clear H1; subst. replace (i+1) with (S i) in H0; try lia. - intros Phi T T' H. exists i; split; try lia. intros x H0. generalize (H x H0); intro H1. inversion H1; clear H1; subst. assert (i0 = i); try lia. subst; auto. Qed. End ae_inv. (*********************) (* "proper" Adequacy *) (*********************) Section proper_adeq. Lemma term_proper : forall T:uexp, seq0 (atom_ (term T)) -> (proper T). Proof. intros T [n h1]. generalize T h1; clear h1 T. generalize (lt_wf_ind n (fun n:nat => forall T : uexp, seq_ n nil (atom_ (term T)) -> proper T)). intro h'. apply h'; clear h'; auto. clear n. intros n h1 T h2. inversion h2; clear h2; subst. inversion H0; clear H0; subst. (* app case *) - inversion H3; clear H3; subst. apply proper_app; auto. + apply h1 with i0; auto; try lia. + apply h1 with i0; auto; try lia. (* lam case *) - inversion H3; clear H3; subst. apply proper_lam; auto. Qed. Lemma deq_proper : forall T T':uexp, seq0 (atom_ (deq T T')) -> (proper T /\ proper T'). Proof. intros T T' [n h1]. generalize T T' h1; clear h1 T T'. generalize (lt_wf_ind n (fun n:nat => forall T T' : uexp, seq_ n nil (atom_ (deq T T')) -> (proper T /\ proper T'))). intro h'. apply h'; clear h'; auto. clear n. intros n h1 T T' h2. inversion h2; clear h2; subst. inversion H0; clear H0; subst. (* lam case *) - split; apply proper_lam; auto. (* app case *) - inversion H3; clear H3; subst. generalize h1; generalize h1; intros h2 h3. assert (h4:i0 (proper T /\ proper T'). Proof. intros T T' [n h1]. generalize T T' h1; clear h1 T T'. generalize (lt_wf_ind n (fun n:nat => forall T T' : uexp, seq_ n nil (atom_ (aeq T T')) -> (proper T /\ proper T'))). intro h'. apply h'; clear h'; auto. clear n. intros n h1 T T' h2. inversion h2; clear h2; subst. inversion H0; clear H0; subst. (* lam case *) - split; apply proper_lam; auto. (* app case *) - inversion H3; clear H3; subst. generalize h1; generalize h1; intros h2 h3. assert (h4:i0 In (aeq T T') Phi_a -> In (term T) Phi_x. Proof. intros Phi_x Phi_a T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | h2]. - injection h2; intros; subst; subst; simpl; auto. - simpl; right; auto with hybrid. Qed. (* Membership lemma used in adequacy of aeq *) Lemma memb_aeq_adeq2 : forall (Phi_x Phi_a:list atm) (T T':uexp), xaR Phi_x Phi_a -> In (aeq T T') Phi_a -> In (term T') Phi_x. Proof. intros Phi_x Phi_a T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | h2]. - injection h2; intros; subst; subst; simpl; auto. - simpl; right; auto with hybrid. Qed. End ctx_aeq_adeq. (****************) (* aeq Adequacy *) (****************) #[global] Hint Resolve memb_aeq_adeq1 memb_aeq_adeq2 : hybrid. Section aeq_adeq. Lemma aeq_term : forall (i:nat) (T T':uexp) (Phi_x Phi_a:list atm), xaR Phi_x Phi_a -> seq_ i Phi_a (atom_ (aeq T T')) -> seq_ i Phi_x (atom_ (term T)) /\ seq_ i Phi_x (atom_ (term T')). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (T T':uexp) (Phi_x Phi_a:list atm), xaR Phi_x Phi_a -> seq_ i Phi_a (atom_ (aeq T T')) -> seq_ i Phi_x (atom_ (term T)) /\ seq_ i Phi_x (atom_ (term T')))). intro H'. apply H'; clear H' i; auto. intros i h T T' Phi_x Phi_a cInv h1. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* lam case *) + inversion H3; subst; clear H3. generalize (ae_l_inv i Phi_a M N H4); clear H4; intros [j [h1 h2]]; subst. assert (h':forall x:uexp, proper x -> (seq_ j (term x:: Phi_x) (atom_ (term (M x))) /\ seq_ j (term x:: Phi_x) (atom_ (term (N x))))). { intros x h1. apply h with (aeq x x::Phi_a); eauto with hybrid; try lia. } split. * unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (term x) (atom_ (term (M x)))))); auto with hybrid. apply s_all; auto. intros x h5. apply s_imp; auto. generalize (h' x h5); tauto. * unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (term x) (atom_ (term (N x)))))); auto with hybrid. apply s_all; auto. intros x h5. apply s_imp; auto. generalize (h' x h5); tauto. (* app case *) + inversion H3; subst; clear H3. assert (hi:i (seq0 (atom_ (term T)) /\ seq0 (atom_ (term T'))). Proof. intros T T' [n h]. generalize nil_xa; intro h1. specialize aeq_term with (1:=h1) (2:=h); intros [h2 h3]. split; exists n; auto. Qed. End aeq_adeq. (************) (* Contexts *) (************) Section ctx_deq_adeq. Inductive xdR : list atm -> list atm -> Prop := | nil_xd : xdR nil nil | cons_xd : forall (Phi_x Phi_xd:list atm) (x:uexp), proper x -> xdR Phi_x Phi_xd -> xdR (term x::Phi_x) (deq x x::term x::Phi_xd). Lemma memb_deq_adeq1 : forall (Phi_x Phi_xd:list atm) (T T':uexp), xdR Phi_x Phi_xd -> In (deq T T') Phi_xd -> In (term T) Phi_x. Proof. intros Phi_x Phi_xd T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | [h2 | h2]]. - injection h2; intros; subst; subst; simpl; auto. - discriminate h2. - simpl; right; auto with hybrid. Qed. Lemma memb_deq_adeq2 : forall (Phi_x Phi_xd:list atm) (T T':uexp), xdR Phi_x Phi_xd -> In (deq T T') Phi_xd -> In (term T') Phi_x. Proof. intros Phi_x Phi_xd T T'; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | [h2 | h2]]. - injection h2; intros; subst; subst; simpl; auto. - discriminate h2. - simpl; right; auto with hybrid. Qed. Lemma memb_deq_adeq3 : forall (Phi_x Phi_xd:list atm) (T:uexp), xdR Phi_x Phi_xd -> In (term T) Phi_xd -> In (term T) Phi_x. Proof. intros Phi_x Phi_xd T; induction 1; try (simpl; tauto). intro h2; simpl in h2; destruct h2 as [h2 | [h2 | h2]]. - discriminate h2. - injection h2; intros; subst; simpl; auto. - simpl; right; auto with hybrid. Qed. Hint Resolve memb_deq_adeq3 : hybrid. Lemma c_str_xd2x_term : forall (i:nat) (M:uexp) (Phi_x Phi_xd:list atm), xdR Phi_x Phi_xd -> seq_ i Phi_xd (atom_ (term M)) -> seq_ i Phi_x (atom_ (term M)). Proof. intros i M Phi_x Phi_xd h; apply term_strengthen_weaken. intros; eauto with hybrid. (* eauto applies memb_deq_adeq3 *) Qed. End ctx_deq_adeq. (****************) (* deq Adequacy *) (****************) Section deq_adeq. Hint Resolve nil_xd cons_xd : hybrid. Hint Resolve memb_deq_adeq1 memb_deq_adeq2 : hybrid. Lemma deq_term : forall (i:nat) (T T':uexp) (Phi_x Phi_xd:list atm), xdR Phi_x Phi_xd -> seq_ i Phi_xd (atom_ (deq T T')) -> seq_ i Phi_x (atom_ (term T)) /\ seq_ i Phi_x (atom_ (term T')). Proof. intro i. generalize (lt_wf_ind i (fun i:nat => forall (T T':uexp) (Phi_x Phi_xd:list atm), xdR Phi_x Phi_xd -> seq_ i Phi_xd (atom_ (deq T T')) -> seq_ i Phi_x (atom_ (term T)) /\ seq_ i Phi_x (atom_ (term T')))). intro H'. apply H'; clear H' i; auto. intros i h T T' Phi_x Phi_xd cInv h1. inversion h1; subst; clear h1. - inversion H0; subst; clear H0. (* lam case *) + inversion H3; subst; clear H3. generalize (de_l_inv i Phi_xd M N H4); clear H4; intros [j [h1 h2]]; subst. assert (h':forall x:uexp, proper x -> (seq_ j (term x:: Phi_x) (atom_ (term (M x))) /\ seq_ j (term x:: Phi_x) (atom_ (term (N x))))). { intros x h1. apply h with (deq x x::term x::Phi_xd); eauto with hybrid; try lia. } replace (j+2) with (j+1+1); try lia. split. * unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (term x) (atom_ (term (M x)))))); auto with hybrid. apply s_all; auto. intros x h5. apply s_imp; auto. generalize (h' x h5); intros [h6 h7]. apply seq_mono with j; auto; try lia. * unfold seq_,atom_; apply s_bc with (All (fun x:uexp => (Imp (term x) (atom_ (term (N x)))))); auto with hybrid. apply s_all; auto. intros x h5. apply s_imp; auto. generalize (h' x h5); intros [h6 h7]. apply seq_mono with j; auto; try lia. (* app case *) + inversion H3; subst; clear H3. assert (hi:i (seq0 (atom_ (term T)) /\ seq0 (atom_ (term T'))). Proof. intros T T' [n h]. generalize nil_xd; intro h1. specialize deq_term with (1:=h1) (2:=h); intros [h2 h3]. split; exists n; auto. Qed. End deq_adeq.